WO2021179938A1 - 电源提供装置及充电控制方法 - Google Patents

电源提供装置及充电控制方法 Download PDF

Info

Publication number
WO2021179938A1
WO2021179938A1 PCT/CN2021/078539 CN2021078539W WO2021179938A1 WO 2021179938 A1 WO2021179938 A1 WO 2021179938A1 CN 2021078539 W CN2021078539 W CN 2021078539W WO 2021179938 A1 WO2021179938 A1 WO 2021179938A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
conversion module
power supply
supply device
voltage conversion
Prior art date
Application number
PCT/CN2021/078539
Other languages
English (en)
French (fr)
Inventor
江森龙
张俊
田晨
张加亮
邱治维
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP21767371.4A priority Critical patent/EP4120537A4/en
Publication of WO2021179938A1 publication Critical patent/WO2021179938A1/zh
Priority to US17/942,306 priority patent/US20230006563A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • H02J7/06Regulation of charging current or voltage using discharge tubes or semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/008Plural converter units for generating at two or more independent and non-parallel outputs, e.g. systems with plural point of load switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/30Charge provided using DC bus or data bus of a computer

Definitions

  • the present disclosure relates to the field of charging technology, and in particular to a power supply device and a charging control method.
  • AC-DC power supply devices can convert alternating current into direct current, which can be used to charge mobile phones, laptops and other devices.
  • the AC-DC power supply device usually includes a transformer, and a control circuit is provided on the primary side of the transformer. Due to the high voltage on the primary side, the packaging of the required high voltage devices is usually large, which makes the power adapter large and inconvenient. Take it with you, the user experience is poor.
  • the purpose of the present disclosure is to provide a power supply device and a charging control method, which can realize a small-sized power supply device.
  • a power supply device including: a transformer including: a primary winding, a first secondary winding, and a second secondary winding; a first rectifier circuit connected to the primary winding of the transformer, and For converting the received AC voltage into a first DC voltage; wherein the transformer is used to convert the first DC voltage into a second DC voltage provided through a first secondary winding and a second DC voltage through the second secondary winding.
  • a third DC voltage provided by the winding a first voltage conversion module connected to the first secondary winding of the transformer; a second voltage conversion module connected to the second secondary winding of the transformer;
  • the first voltage conversion module converts the second DC voltage, or the third DC voltage is converted by the second voltage conversion module to output a fourth DC voltage; and the control unit is connected to the
  • the first voltage conversion module is connected to the second voltage conversion module, and is used to control the first voltage conversion module or the second voltage conversion module to adjust the output voltage and/or output current of the power supply device.
  • the power supply device further includes: a first input capacitor and a second input capacitor; the first voltage conversion module passes through the first input capacitor and the first secondary winding of the transformer Connection; the second voltage conversion module is connected to the second secondary winding of the transformer through the second input capacitor.
  • the second direct current voltage and the third direct current voltage have the same waveform and the same voltage value.
  • the first voltage conversion module is configured to convert the second DC voltage to output the fourth DC voltage when the voltage value of the second DC voltage is higher than a voltage threshold.
  • the second voltage conversion module is used to convert the third DC voltage to output the fourth DC voltage when the voltage value of the third DC voltage is lower than the voltage threshold.
  • control unit is further configured to receive a desired charging voltage fed back by a device to be charged connected to the power supply device; wherein the voltage threshold is determined according to the desired charging voltage.
  • control unit is further configured to control the first voltage conversion module to convert the second DC voltage when the voltage value of the second DC voltage is higher than a voltage threshold, and output The fourth direct current voltage; when the voltage value of the third direct current voltage is lower than the voltage threshold, the second voltage conversion module is controlled to convert the third direct current voltage and output the fourth direct current voltage .
  • control unit is further configured to receive first feedback information of the equipment to be charged connected to the power supply device, and control the first voltage conversion module according to the first feedback information Or the second voltage conversion module to adjust the output voltage and/or output current of the power supply device.
  • the first feedback information includes: the charging voltage and/or charging current expected by the device to be charged, or the information generated by the device to be charged based on the expected charging voltage and/or charging current Adjust instructions.
  • the power supply device further includes: a switch unit, connected to the primary winding of the transformer, for modulating the pulsating DC voltage according to a high-frequency control signal.
  • control unit is connected to the switch unit, and the control unit is further configured to output the high-frequency control signal to the switch unit, and receive the to-be-charged device connected to the power supply device. And adjust the frequency of the high-frequency control signal according to the second feedback information of the device.
  • the second feedback information includes at least one of the following information: charging stage information of the device to be charged, power information of the battery of the device to be charged, and temperature of the battery information.
  • the power supply device further includes: a second rectifier circuit, connected between the first secondary winding and the first voltage conversion module, for rectifying the second DC voltage And a third rectifier circuit, connected between the second secondary winding and the second voltage conversion module, for rectifying the third DC voltage.
  • the first voltage conversion module includes: at least one of BUCK, BUCK/Boost, charge pump, or CUK circuit; the second voltage conversion module includes: Boost, BUCK/Boost, charge At least one of the pump or the CUK circuit.
  • a charging control method applied to a power supply device comprising: converting a received AC voltage into a first DC voltage on the primary side of a transformer; and using the transformer, The first DC voltage is converted into a second DC voltage and a third DC voltage respectively; on the secondary side of the transformer, the second DC voltage is converted by the first voltage conversion module alternatively, or by The second voltage conversion module converts the third DC voltage to output a fourth DC voltage; and controls the first voltage conversion module or the second voltage conversion module to adjust the output voltage of the power supply device and / Or output current.
  • the second direct current voltage and the third direct current voltage have the same waveform and the same voltage value.
  • the second DC voltage is converted alternatively by the first voltage conversion module, or the third DC voltage is converted by the second voltage conversion module.
  • Converting and outputting the fourth DC voltage includes: when the voltage value of the second DC voltage is higher than a voltage threshold, converting the second DC voltage by the first voltage conversion module to output the constant DC voltage Voltage; when the voltage value of the third DC voltage is lower than the voltage threshold, the third DC voltage is converted by the second voltage conversion module, and the fourth DC voltage is output.
  • the second DC voltage is converted alternatively by the first voltage conversion module, or the third DC voltage is converted by the second voltage conversion module.
  • Converting and outputting a fourth DC voltage includes: when the voltage value of the second DC voltage is higher than a voltage threshold, controlling the first voltage conversion module to convert the second DC voltage to output the fourth DC voltage. DC voltage; when the voltage value of the third DC voltage is lower than the voltage threshold, the second voltage conversion module is controlled to convert the third DC voltage and output the fourth DC voltage.
  • the method further includes: receiving a desired charging voltage fed back by a device to be charged connected to the power supply device; wherein the voltage threshold is determined according to the desired charging voltage.
  • the method further includes: receiving first feedback information of a device to be charged connected to the power supply device; controlling the first voltage conversion module or the second voltage conversion module to Adjusting the output voltage and/or output current of the power supply device includes: controlling the first voltage conversion module or the second voltage conversion module according to the first feedback information to adjust the output voltage of the power supply device Output voltage and/or output current.
  • the first feedback information includes: the charging voltage and/or charging current expected by the device to be charged, or the information generated by the device to be charged based on the expected charging voltage and/or charging current Adjust instructions.
  • the method further includes: modulating the first direct current voltage according to a high-frequency control signal.
  • the method further includes: receiving second feedback information of the device to be charged connected to the power supply device; and adjusting the frequency of the high-frequency control signal according to the second feedback information .
  • the second feedback information includes at least one of the following information: charging stage information of the device to be charged, power information of the battery of the device to be charged, and temperature of the battery information.
  • the power supply device does not need to use large-volume electrolytic capacitors and high-voltage-resistant filter capacitors to filter the rectified pulsating DC voltage on the primary side of the transformer, which can reduce the size of the power supply device.
  • the voltage conversion module only needs to process the voltage with a lower amplitude to convert and output a stable constant DC voltage.
  • placing the control circuit for voltage conversion on the secondary side of the transformer can further reduce the use of components and reduce the volume of the power supply device.
  • Fig. 1 is a schematic circuit diagram of an AC-DC power supply device in the related art according to an example
  • Fig. 2 is a schematic diagram showing a charging system according to an exemplary embodiment
  • Fig. 3 is a schematic structural diagram showing a power supply device according to an exemplary embodiment
  • Fig. 4 is a schematic structural diagram showing another power supply device according to an exemplary embodiment
  • 5A is a schematic diagram showing the waveform of a pulsating DC voltage output from the secondary side of a transformer according to an example
  • Fig. 5B is a schematic diagram showing a waveform of a pulsating DC voltage input to a voltage conversion module according to an example
  • Fig. 6 is a flowchart showing a charging control method according to an exemplary embodiment
  • Fig. 7 is a flowchart showing another charging control method according to an exemplary embodiment
  • Fig. 8 is a flowchart showing yet another charging control method according to an exemplary embodiment
  • Fig. 9 is a flowchart showing yet another charging control method according to an exemplary embodiment.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • the features defined with “first” and “second” may explicitly or implicitly include one or more of these features.
  • Fig. 1 is a circuit diagram of an AC-DC power supply device in the related art according to an example.
  • AC power is input through the AC terminal.
  • the input AC power waveform is 220V sine wave.
  • the full bridge rectifier U1 composed of 4 diodes, the input alternating current is rectified and the steamed bun wave is output.
  • the primary winding of the transformer T1 is connected to the switch pin SW of the switching power supply chip U2.
  • the switch pin SW outputs a high-frequency PWM (Pulse Width Modulation, pulse width modulation) square wave, which is used to modulate the steamed bread wave output by the rectifier U1.
  • PWM Pulse Width Modulation, pulse width modulation
  • AC-DC power supply devices When electrical appliances (such as equipment to be charged) require AC-DC power supply devices to provide output voltages of different voltage values, for example, terminals that support PD (Power Delivery) protocol or QC (Quick Charge) protocol require adapters
  • the voltage provided is direct current of different voltage values, and AC-DC needs to communicate with the consumer through a communication chip.
  • the electrical appliance sends the required voltage to the AC-DC power supply device.
  • the AC-DC power supply device adjusts the pulse width or frequency of the output PWM signal according to the received voltage demand, and obtains the feedback voltage from the winding of the transformer, and then according to the The feedback voltage adjusts the pulse width or frequency of the PWM signal to obtain a stable output voltage.
  • control circuit used to adjust the output voltage is mainly on the primary side of the transformer, and the primary side voltage is relatively high, and the required voltage-resistant device package is usually relatively large.
  • Fig. 2 is a schematic diagram showing a charging system according to an exemplary embodiment.
  • the charging system 1 includes: a power supply device 11 and a device 13 to be charged.
  • the power supply device 11 is, for example, a power adapter, a power bank (Power Bank) and other equipment.
  • the power supply device 11 is connected with the device to be charged 13 through a cable, and provides electrical energy for the device to be charged 13 to charge the battery 132 in the device to be charged 13.
  • the device to be charged 13 may be, for example, a terminal or an electronic device.
  • the terminal or electronic device may be a mobile phone, a game console, a tablet computer, an e-book reader, a smart wearable device, MP4 (Moving Picture Experts Group Audio Layer IV, a compression standard for moving picture experts) Audio level 4)
  • MP4 Motion Picture Experts Group Audio Layer IV, a compression standard for moving picture experts
  • Audio level 4 Motion Picture Experts Group Audio Layer IV, a compression standard for moving picture experts Audio level 4
  • Players smart home devices, AR (Augmented Reality) devices, VR (Virtual Reality, virtual reality) devices and other mobile terminals, can also be mobile power sources (such as power banks, travel chargers), electronic cigarettes , Wireless mouse, wireless keyboard, wireless headset, Bluetooth speaker and other rechargeable electronic devices with charging function, or it can also be a personal computer (PC), such as laptop portable computer and desktop computer.
  • PC personal computer
  • the device to be charged 13 is connected to the charging interface 116 in the power supply device 11 through the charging interface 131.
  • the charging interface 131 may be, for example, a female connector of a USB 2.0 interface, a Micro USB interface, or a USB TYPE-C interface. In some embodiments, the charging interface 131 may also be a female lightning interface, or any other type of parallel port or serial port that can be used for charging.
  • the charging interface 116 may be a USB 2.0 interface, a Micro USB interface, a USB Type C interface, or a male connector of a Lightning interface that is compatible with the charging interface 131.
  • the power supply device 11 can communicate with the device to be charged 13 through the charging interface 116 and the charging interface 131, neither of which needs to set up additional communication interfaces or other wireless communication modules.
  • the charging interface 116 and the charging interface 131 are USB interfaces
  • the power supply device 11 and the device to be charged 13 can communicate based on the data lines (such as D+ and/or D- lines) in the USB interface.
  • the charging interface 116 and the charging interface 131 are USB interfaces (such as a USB TYPE-C interface) supporting a power transmission (PD) communication protocol
  • the power supply device 11 and the device to be charged 13 can communicate based on the PD communication protocol.
  • the power supply device 11 and the device to be charged 13 may also communicate through other communication methods besides the charging interface 116 and the charging interface 131.
  • the power supply device 11 and the device to be charged 13 communicate in a wireless manner, such as near field communication (NFC).
  • NFC near field communication
  • Fig. 3 is a schematic diagram showing the structure of a power supply device according to an exemplary embodiment.
  • the power supply device 11 includes: a first rectifier circuit 111, a transformer 112, a first input capacitor 113, a first voltage conversion module 114, a second input capacitor 118, a second voltage conversion module 119, and a control unit 115 And charging interface 116.
  • the first rectifier circuit 111 is located on the primary side of the transformer 112 and is used to convert the AC voltage received from the AC port into a first DC voltage.
  • the first direct current voltage is, for example, a pulsating direct current voltage.
  • Fig. 4 is a schematic structural diagram showing another power supply device according to an exemplary embodiment.
  • the first rectifier circuit 111 may be, for example, a full-bridge rectifier, but the present disclosure is not limited to this.
  • the first rectifier circuit 111 may also be a half-bridge rectifier or other types of rectifier circuits.
  • the first rectifier circuit 111 is connected to the primary winding 1121 of the transformer 112.
  • the first voltage conversion module 114 and the second voltage conversion module 119 are both located on the secondary side of the transformer 112.
  • the first voltage conversion module 114 is connected to the first secondary winding 1122 of the transformer 112.
  • the second voltage conversion module 119 is connected to the second secondary winding 1123 of the transformer 112.
  • the transformer 112 is used to transform the above-mentioned first direct current voltage into a second direct current voltage provided through the first secondary winding 1122 and a third direct current voltage provided through the second secondary winding 1123.
  • the second DC voltage and the third DC voltage have the same waveform and the same voltage value.
  • the second direct current voltage and the third direct current voltage are, for example, the same pulsating direct current voltage.
  • a first input capacitor 113 may be provided between the first voltage conversion module 114 and the first secondary winding 1122 of the transformer 112, and the first input capacitor 113 may enable the first input capacitor 113 to be input to the first voltage conversion module 114.
  • the second DC voltage will not be too low, so as to ensure the normal operation of the first voltage conversion module 114.
  • a second input capacitor 118 can be provided between the second voltage conversion module 119 and the second secondary winding 1123 of the transformer 112, and the second input capacitor 118 can make the third DC voltage input to the second voltage conversion module 119 different. It will be too low to ensure the normal operation of the second voltage conversion module 119.
  • control module is provided on the primary side of the transformer 112 to control the input voltage to the first voltage conversion module 114 and the second voltage conversion module 119 not to be too low.
  • the second DC voltage can be converted by the first voltage conversion module 114, or the third DC voltage can be converted by the second voltage conversion module 119 to output the fourth DC voltage.
  • the fourth DC voltage may be a constant DC voltage, but the present disclosure is not limited thereto. According to the requirements of the application scenario, the fourth DC voltage may also be a pulsating DC voltage.
  • the first voltage conversion module 114 and the second voltage conversion module 119 can determine whether to convert the second DC voltage, for example.
  • the first voltage conversion module 114 and the second voltage conversion module 119 both have built-in control circuits, and respectively store preset voltage thresholds. When the voltage value of the second DC voltage is higher than the voltage threshold, the first voltage conversion module 114 works to convert the second DC voltage to output a fourth DC voltage; when the voltage value of the third DC voltage is lower than the voltage threshold , The second voltage conversion module 119 works, converts the third DC voltage, and outputs the fourth DC voltage.
  • control unit 115 may also record the voltage threshold, and by comparing the voltage threshold with the magnitude of the second DC voltage, control the operation of the first voltage conversion module 114 to convert the second DC voltage. , Or control the second voltage conversion module 119 to work, transform the third DC voltage, and output the fourth DC voltage.
  • control unit 115 controls the first voltage conversion module 114 to work to convert the second DC voltage and output the fourth DC voltage; and when the third DC voltage
  • the control unit 115 controls the second voltage conversion module 119 to work, convert the third DC voltage, and output the fourth DC voltage.
  • the first voltage conversion module 114 may be implemented as a step-down conversion circuit, such as a BUCK step-down circuit, a BUCK-BOOST circuit, or a charge pump (ChargePump) circuit.
  • the second voltage conversion module 119 may be implemented as a boost conversion circuit, such as a BOOST boost circuit, a BUCK-BOOST circuit, or a charge pump circuit.
  • the present disclosure does not limit the conversion ratio of the charge pump. In actual applications, it can be set according to actual requirements. For example, it can be set to 1:1, 2:1, 3:1, etc. In addition, when it is necessary to output a higher voltage, the conversion ratio of the charge pump can also be set to 1:2, 1:3, etc. to perform a boost operation.
  • first voltage conversion module 114 and the second voltage conversion module 119 may further include a CUK circuit.
  • the CUK circuit can achieve both step-up operation and step-down operation.
  • the voltage threshold can also be determined based on the expected charging voltage fed back by the device to be charged 13, that is, when the expected charging voltage is high, the voltage threshold is also corresponding The ground increases; when the desired charging voltage is low, the voltage threshold decreases accordingly.
  • the voltage threshold may be set to the desired charging voltage.
  • the control unit 115 may obtain the desired charging voltage by communicating with the device 13 to be charged.
  • different voltage conversion modules are selected to perform voltage conversion operations, which can avoid the problem that partial voltage values cannot be converted due to the single use of a voltage conversion module (boost or buck).
  • the efficiency of voltage conversion can be improved.
  • first voltage conversion module 114 and the second voltage conversion module 119 can also work alternately in a time-sharing manner, for example, problems such as device heating caused by the continuous operation of a single voltage conversion module can be avoided.
  • FIG. 5A shows the pulsation output from the secondary side of the transformer according to an example.
  • FIG. 5B shows a schematic diagram of the waveform of the pulsating DC voltage input to the voltage conversion module according to an example.
  • the input of the input terminal of the first rectification circuit 111 after being rectified by the first rectification circuit 111, it is converted into a pulsating DC voltage with a voltage amplitude of 220V.
  • the waveform of the pulsating DC voltage with a voltage amplitude of 220V after being stepped down by the transformer 112 is shown in FIG. 5A. At 0ms, 10ms, etc., the voltage value will be equal to or even less than 0V.
  • a first input capacitor 113 is provided between the first voltage conversion module 114 and the first secondary winding 1122 of the transformer 112, and a second input capacitor 113 is provided between the second voltage conversion module 119 and the second secondary winding 1123 of the transformer 112.
  • the input capacitor 118 is taken as an example. Due to the existence of the first input capacitor 113 and the second input capacitor 118, when an appropriate capacitance value is selected, the voltage of the pulsating DC voltage input to the first voltage conversion module 114 or the second voltage conversion module 119 The value will not be too low, thereby ensuring the normal operation of the first voltage conversion module 114 or the second voltage conversion module 119. Taking the first voltage conversion module 114 as a BUCK step-down circuit as an example, when the output peak value is 120W load power, the 22 ⁇ F first input capacitor 113 can effectively support the operation of the BUCK circuit. As shown in Figure 5B, the lowest voltage value is 3V. About the lowest working voltage of the BUCK circuit.
  • the selection of input capacitors for different voltage conversion modules in practical applications is common knowledge in the art, and will not be repeated here.
  • the second voltage conversion module 118 is a Boost boost circuit and the output peak value is 120W load power
  • selecting an input capacitor of 100 ⁇ F can effectively support the operation of the Boost boost circuit.
  • the control unit 115 is connected to the first voltage conversion module 114 for controlling the first voltage conversion module 114 to adjust the output voltage and/or output current of the power supply device 11.
  • the power supply device does not need to use large-volume electrolytic capacitors and high-voltage filter capacitors to filter the rectified pulsating DC voltage on the primary side of the transformer.
  • the size of the power supply device can be reduced.
  • the liquid electrolytic capacitor has a short service life and is easy to burst, removing the liquid electrolytic capacitor can also increase the service life and safety of the power supply device.
  • the voltage conversion module only needs to process the voltage with a lower amplitude to convert and output a stable constant DC voltage.
  • placing the control circuit for voltage conversion on the secondary side of the transformer can further reduce the use of components and reduce the volume of the power supply device.
  • control unit 115 may also communicate with the device to be charged 13 through the charging interface 116, receive the first feedback information sent by the device to be charged 13, and control the first voltage conversion module 114 or the second voltage conversion module 114 according to the first feedback information.
  • the second voltage conversion module 119 adjusts the output voltage and/or output current of the power supply device 11.
  • the first feedback information may be, for example, the desired charging voltage and/or charging current of the device to be charged 13, or an adjustment command generated by the device to be charged 13 based on the desired charging voltage and/or charging current, such as increasing or decreasing the output. Instructions for voltage and/or output current.
  • the adjustment process based on the feedback of the electrical appliance is usually that the electrical appliance feeds back the desired voltage to the AC-DC power supply device.
  • the control chip adjusts the PWM pulse width or frequency according to the feedback of the electrical appliance.
  • the control chip obtains the sampling voltage fed back by the transformer, and then further adjusts the PWM pulse width or frequency according to the sampling voltage to output a stable voltage.
  • the feedback loop is long and the real-time adjustment is poor; and the transformer feedbacks the steamed bun wave signal with a small voltage amplitude, but the final requirement is the DC signal output.
  • the steamed bun wave is sampled to adjust and stabilize the DC signal output, and the accuracy is poor.
  • the control unit 115 directly controls the first voltage conversion module 114 or the second voltage conversion module 119 on the secondary side of the transformer according to the information fed back from the device 13 to be charged, so as to adjust the power supply device 11 Output voltage and/or output current, on the one hand, there is no need to feedback signals to the primary side of the transformer (ie, high voltage side) via the secondary side of the transformer, saving optocouplers and other components used for feedback signal transmission, reducing the feedback transmission path, and improving
  • the first voltage conversion module 114 or the second voltage conversion module 119 on the secondary side of the transformer is directly controlled based on the feedback information to adjust the output of the constant DC voltage, and the adjustment accuracy is high.
  • the power supply device 11 further includes a switch unit 117 connected to the primary winding 1121 of the transformer 112 for chopping and modulating the pulsating DC voltage input to the primary winding 1121 according to the high-frequency control signal.
  • the switch unit 117 may be constituted by, for example, a MOS transistor.
  • the switch unit 117 is controlled by a high-frequency control signal to chop and modulate the pulsating DC voltage, which can provide a high-frequency signal to the transformer 112, so that the transformer 112 can be selected as a high-frequency transformer.
  • the operating frequency can be, for example, 50KHz ⁇ 2MHz. That is, the frequency of the high-frequency control signal can be 50KHz ⁇ 2MHz.
  • high-frequency transformers Compared with low-frequency transformers (also known as industrial frequency transformers, which are mainly used for mains frequency, such as 50Hz or 60Hz alternating current), high-frequency transformers have a small size, and the selection of high-frequency transformers can further reduce the power supply device volume.
  • low-frequency transformers also known as industrial frequency transformers, which are mainly used for mains frequency, such as 50Hz or 60Hz alternating current
  • high-frequency transformers have a small size, and the selection of high-frequency transformers can further reduce the power supply device volume.
  • the high frequency control signal of the switch unit 117 may be, for example, a fixed frequency signal, for example, it may be output to the switch unit 117 by a signal generator that provides a fixed frequency.
  • control unit 115 can also be used to output the high-frequency control signal to the switch unit 117.
  • control unit 115 receives the second feedback information of the device to be charged 13, and adjusts the frequency of the high-frequency control signal according to the second feedback information.
  • the second feedback information may be, for example, the current charging stage information of the device to be charged and/or the power information of the battery 132 of the device to be charged 13.
  • the second feedback information may further include, for example, temperature information of the battery 122 of the device 12 to be charged, and the like.
  • control unit may be additionally provided to control the switch unit 117.
  • the battery charging process may include the following charging stages: trickle charging stage, constant current charging stage, and constant voltage charging stage.
  • the trickle charging stage the battery discharged to the preset voltage threshold is precharged (that is, restorative charging).
  • the trickle charging current is usually one-tenth of the constant current charging current.
  • the battery In the constant current charging stage, the battery is charged with a constant current, and the battery voltage rises rapidly. When the battery voltage reaches the expected voltage threshold (or cut-off voltage) of the battery, it will switch to the constant voltage charging stage.
  • the battery In the constant voltage charging stage, the battery is charged with a constant voltage, and the charging current gradually decreases.
  • the charging current drops to the set current threshold (the current threshold is usually one-tenth of the charging current value in the constant current charging stage) Or lower, optionally, the current threshold can be tens of milliamperes or lower), and the battery is fully charged.
  • the constant current charging phase mentioned in the embodiments of the present disclosure does not require the charging current to remain completely constant.
  • the constant current charging stage can also be charged in a multi-stage constant current charging method.
  • the segmented constant current charging can have M constant current stages (M is an integer not less than 2), the segmented constant current charging starts the first stage charging with a predetermined charging current, and the M constant current stages of the segmented constant current charging
  • M is an integer not less than 2
  • the flow stage is executed sequentially from the first stage to the Mth stage.
  • the current will become smaller; when the battery voltage reaches the charging voltage threshold corresponding to this constant current stage, it will go to the next constant current stage.
  • the current conversion process between two adjacent constant current stages can be gradual or stepwise jump changes.
  • the charging current is the largest, and the electrical energy required by the power supply device is the largest, which causes the battery voltage to increase rapidly.
  • the switching frequency of the switching unit 117 can be increased, that is, the frequency of the high-frequency control signal can be increased to accelerate the extraction of energy.
  • the switching frequency of the switching unit 117 can be slowed down, that is, the frequency of the high-frequency control signal can be reduced to slow down the extraction of energy.
  • the frequency of the high-frequency control signal can be increased to speed up the extraction of energy.
  • the frequency of the high-frequency control signal can be reduced to slow down the extraction of energy.
  • the power level determination of the battery 132 may be implemented by, for example, a preset power threshold value or a threshold range.
  • trickle charging stage constant current charging stage
  • constant voltage charging stage constant voltage charging stage
  • control unit 115 can also control the switch unit 117 according to the monitored input voltages of the first voltage conversion module 114 and the second voltage conversion module 119, so that the input of the first voltage conversion module 114 and the second voltage conversion module 119 The voltage satisfies the working voltage range requirement, or the adjusted input voltage can make the first voltage conversion module 114 and the second voltage conversion module 119 work in a more efficient working state.
  • the power supply device 11 may further include a second rectifier circuit 120 and a third rectifier circuit 122, for example, both may be implemented as diodes as shown in FIG.
  • the second rectifier circuit 120 is connected to the first secondary winding 1122 of the transformer 112, and is used to rectify the second DC voltage output by the transformer 112.
  • the third rectifier circuit 122 is connected to the second secondary winding 1123 of the transformer 112 for rectifying the third DC voltage output by the transformer 112.
  • the power supply device 11 may also include a small-capacity or small-volume first filter capacitor 121 and a second filter circuit 123, and further filter the fourth DC voltage output by the first voltage conversion module 114 and the second voltage conversion module 119 , Such as filtering out the output voltage burrs, etc., to further improve the quality of the output voltage.
  • Fig. 6 is a flowchart showing a charging control method according to an exemplary embodiment.
  • the charging control method can be applied to the above-mentioned power supply device 11, for example.
  • the charging control method 10 includes:
  • step S102 on the primary side of the transformer, the received AC voltage is converted into a first DC voltage.
  • the first direct current voltage is, for example, a pulsating direct current voltage.
  • step S104 the first direct current voltage is transformed into a second direct current voltage and a third direct current voltage respectively through a transformer.
  • the second DC voltage and the third DC voltage are like pulsating DC voltages.
  • step S106 on the secondary side of the transformer, the second DC voltage is converted alternatively by the first voltage conversion module, or the third DC voltage is converted by the second voltage conversion module to output the fourth DC voltage.
  • step S108 the first voltage conversion module or the second voltage conversion module is controlled to adjust the output voltage and/or output current of the power supply device.
  • the charging control method provided by the embodiments of the present disclosure does not need to use large-volume electrolytic capacitors and high-voltage-resistant filter capacitors to filter the rectified pulsating DC voltage on the primary side of the transformer.
  • the volume of the power supply device can be reduced.
  • the liquid electrolytic capacitor has a short service life and is easy to burst, removing the liquid electrolytic capacitor can also increase the service life and safety of the power supply device.
  • the voltage conversion part is moved to the secondary side of the transformer, and a stable and constant DC voltage can be converted and output by the voltage conversion module through a small input capacitor or a small-volume input capacitor.
  • the voltage conversion module is controlled on the secondary side of the transformer, which can further reduce the use of components and reduce the volume of the power supply device.
  • Fig. 7 is a flowchart showing another charging control method according to an exemplary embodiment.
  • the charging control method can be applied to the above-mentioned power supply device 11, for example.
  • the charging control method shown in FIG. 7 further provides how to transform the second DC voltage through the first voltage conversion module on the secondary side of the transformer, or through the first voltage conversion module.
  • the second voltage conversion module transforms the third DC voltage to output an implementation manner of the fourth DC voltage, that is, an implementation manner of step S106 is provided.
  • step S106 includes:
  • step S1062 when the voltage value of the second DC voltage is higher than the voltage threshold, the second DC voltage is converted by the first voltage conversion module to output the third DC voltage.
  • step S1064 when the voltage value of the third DC voltage is lower than the voltage threshold, the third DC voltage is converted by the second voltage conversion module to output the fourth DC voltage.
  • control unit may also control the operation of the first voltage conversion module or the second voltage conversion module.
  • Step S106 can also be implemented as: when the voltage value of the second DC voltage is higher than the voltage threshold, the first voltage conversion module is controlled to convert the second DC voltage and output the third DC voltage; when the voltage value of the third DC voltage is When the voltage threshold is lower than the voltage threshold, the second voltage conversion module is controlled to convert the third DC voltage and output the fourth DC voltage.
  • the charging control method may further include: receiving a desired charging voltage fed back by a device to be charged connected to the power supply device. Wherein, the voltage threshold is determined according to the expected charging voltage.
  • different voltage conversion modules are selected to perform voltage conversion operations according to different voltage values of the pulsating DC voltage, which can avoid the use of a single voltage conversion module (boost or buck).
  • boost or buck boost
  • the problem that some voltage values cannot be converted can improve the efficiency of voltage conversion.
  • Fig. 8 is a flowchart showing another charging control method according to an exemplary embodiment.
  • the charging control method can be applied to the above-mentioned power supply device 11, for example.
  • the charging control method 20 shown in FIG. 8 may further include:
  • step S202 first feedback information of the device to be charged connected to the power supply device is received.
  • step S108 further includes step S1082: controlling the first voltage conversion module or the second voltage conversion module according to the first feedback information to adjust the output voltage and/or output current of the power supply device.
  • the first feedback information includes: the charging voltage and/or charging current expected by the device to be charged, or an adjustment command generated by the device to be charged based on the expected charging voltage and/or charging current.
  • the charging control method provided by the embodiments of the present disclosure directly controls the first voltage conversion module or the second voltage conversion module on the secondary side of the transformer according to the information fed back from the equipment to be charged, thereby adjusting the output voltage and/or output of the power supply device Current, on the one hand, there is no need to feedback signals to the primary side of the transformer via the secondary side of the transformer (ie, the high-voltage side), saving optocouplers and other devices used for feedback signal transmission, reducing the feedback transmission path, and improving the real-time feedback; On the other hand, based on the feedback information, the first voltage conversion module or the second voltage conversion module on the secondary side of the transformer is directly controlled to adjust the output of the constant DC voltage, and the adjustment accuracy is high.
  • Fig. 9 is a flowchart showing yet another charging control method according to an exemplary embodiment.
  • the charging control method can be applied to the above-mentioned power supply device 11, for example.
  • the charging control method 30 shown in FIG. 9 may further include:
  • step S302 the first DC voltage is modulated according to the high-frequency control signal.
  • the first DC voltage is chopped and modulated by a high-frequency control signal, and a high-frequency signal can be provided to the transformer, so that a high-frequency transformer can be selected.
  • a high-frequency transformer can be selected.
  • high-frequency transformers have a small size, and the selection of high-frequency transformers can further reduce the size of the power supply device.
  • the charging control method 30 may further include:
  • step S304 the second feedback information of the device to be charged connected to the power supply device is received.
  • step S306 the frequency of the high-frequency control signal is adjusted according to the second feedback information.
  • the second feedback information includes at least one of the following information: charging stage information of the device to be charged, and power information of the battery of the device to be charged.

Abstract

本公开提供了一种电源提供装置及充电控制方法。该电源提供装置包括:变压器;第一整流电路,与所述变压器的初级绕组连接,用于将接收的交流电压转换为第一直流电压;第一电压转换模块,与所述变压器的第一次级绕组连接;第二电压转换模块,与所述变压器的第二次级绕组连接;其中,所述第一电压转换模块和所述第二电压转换模块择一地对变压器次级侧输出的直流电压进行变换,输出直流电压;以及控制单元,分别与所述第一电压转换模块和所述第二电压转换模块连接,用于控制所述第一电压转换模块或所述第二电压转换模块,来调整所述电源提供装置的输出电压和/或输出电流。 (图3)

Description

电源提供装置及充电控制方法
交叉引用
本公开要求于2020年03月12日提交的申请号为202010172277.8名称为“电源提供装置及充电控制方法”的中国专利申请的优先权,该中国专利申请的全部内容通过引用全部并入本文。
技术领域
本公开涉及充电技术领域,尤其涉及一种电源提供装置及充电控制方法。
背景技术
AC-DC电源提供装置(如电源适配器)可将交流电转换为直流电,从而用于为手机、笔记本电脑等设备进行充电。其中,AC-DC电源提供装置通常包含变压器,在变压器的初级侧设置有控制电路,由于初级侧电压高,所需高耐压器件的封装通常体积较大,导致电源适配器体积较大,不便于随身携带,用户体验差。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
公开内容
本公开的目的在于提供一种电源提供装置及充电控制方法,可以实现较小体积的电源提供装置。
本公开的其他特性和优点将通过下面的详细描述变得显然,或部分地通过本公开的实践而习得。
根据本公开的一个方面,提供一种电源提供装置,包括:变压器,包括:初级绕组、第一次级绕组和第二次级绕组;第一整流电路,与所述变压器的初级绕组连接,用于将接收的交流电压转换为第一直流电压;其中,所述变压器用于将所述第一直流电压变换为分别通过第一次级绕组提供的第二直流电压和通过所述第二次级绕组提供的第三直流电压;第一电压转换模块,与所述变压器的第一次级绕组连接;第二电压转换模块,与所述变压器的第二次级绕组连接;其中,择一地通过所述第一电压转换模块对所述第二直流电压进行变换,或者通过所述第二电压转换模块对所述第三直流电压进行变换,输出第四直流电压;以及控制单元,分别与所述第一电压转换模块和所述第二电压转换模块连接,用于控制所述第一电压转换模块或所述第二电压转换模块,来调整所述电源提供装置的输出电压和/或输出电流。
在本公开一个实施例中,所述电源提供装置还包括:第一输入电容和第二输入电容;所述第一电压转换模块通过所述第一输入电容与所述变压器的第一次级绕组连接;所述第二电压转换模块通过所述第二输入电容与所述变压器的第二次级绕组连接。
在本公开一个实施例中,所述第二直流电压与所述第三直流电压具有相同波形及相同电压值。
在本公开一个实施例中,所述第一电压转换模块用于当所述第二直流电压的电压值高于电压阈值时,对所述第二直流电压进行变换,输出所述第四直流电压;所述第二电压转换模块用于当所述第三直流电压的电压值低于所述电压阈值时,对所述第三直流电压进行变换,输出所述第四直流电压。
在本公开一个实施例中,所述控制单元还用于接收与所述电源提供装置连接的待充电设备反馈的期望的充电电压;其中,所述电压阈值根据所述期望的充电电压确定。
在本公开一个实施例中,所述控制单元还用于当所述第二直流电压的电压值高于电压阈值时,控制所述第一电压转换模块对所述第二直流电压进行变换,输出所述第四直流电压;当所述第三直流电压的电压值低于所述电压阈值时,控制所述第二电压转换模块对所述第三直流电压进行变换,输出所述第四直流电压。
在本公开一个实施例中,所述控制单元还用于接收与所述电源提供装置连接的待充电设备的第一反馈信息,并根据所述第一反馈信息,控制所述第一电压转换模块或所述第二电压转换模块,来调整所述电源提供装置的输出电压和/或输出电流。
在本公开一个实施例中,所述第一反馈信息包括:所述待充电设备期望的充电电压和/或充电电流,或者,所述待充电设备基于期望的充电电压和/或充电电流生成的调整指令。
在本公开一个实施例中,所述电源提供装置还包括:开关单元,与所述变压器的初级绕组连接,用于根据高频控制信号对所述脉动直流电压进行调制。
在本公开一个实施例中,所述控制单元与所述开关单元连接,所述控制单元还用于向所述开关单元输出所述高频控制信号,接收与所述电源提供装置连接的待充电设备的第二反馈信息,并根据所述第二反馈信息,调整所述高频控制信号的频率。
在本公开一个实施例中,所述第二反馈信息包括下述信息中的至少一项:所述待充电设备的充电阶段信息、所述待充电设备的电池的电量信息、所述电池的温度信息。
在本公开一个实施例中,电源提供装置还包括:第二整流电路,连接于所述第一次级绕组与所述第一电压转换模块之间,用于对所述第二直流电压进行整流;以及第三整流电路,连接于所述第二次级绕组与所述第二电压转换模块之间,用于对所述第三直流电压进行整流。
在本公开一个实施例中,所述第一电压转换模块包括:BUCK、BUCK/Boost、电荷泵或CUK电路中的至少一个;所述第二电压转换模块分别包括:Boost、BUCK/Boost、电荷泵或CUK电路中的至少一个。
根据本公开的另一个方面,提供一种充电控制方法,应用于电源提供装置中,所述方 法包括:在变压器的初级侧,将接收的交流电压转换为第一直流电压;通过所述变压器,分别将所述第一直流电压变换为第二直流电压和第三直流电压;在所述变压器的次级侧,择一地通过第一电压转换模块对所述第二直流电压进行变换,或通过第二电压转换模块对所述第三直流电压进行变换,输出第四直流电压;以及控制所述第一电压转换模块或所述第二电压转换模块,来调整所述电源提供装置的输出电压和/或输出电流。
在本公开一个实施例中,所述第二直流电压与所述第三直流电压具有相同波形及相同电压值。
在本公开一个实施例中,在所述变压器的次级侧,择一地通过第一电压转换模块对所述第二直流电压进行变换,或通过第二电压转换模块对所述第三直流电压进行变换,输出第四直流电压,包括:当所述第二直流电压的电压值高于电压阈值时,通过所述第一电压转换模块对所述第二直流电压进行变换,输出所述恒定直流电压;当所述第三直流电压的电压值低于所述电压阈值时,通过所述第二电压转换模块对所述第三直流电压进行变换,输出所述第四直流电压。
在本公开一个实施例中,在所述变压器的次级侧,择一地通过第一电压转换模块对所述第二直流电压进行变换,或通过第二电压转换模块对所述第三直流电压进行变换,输出第四直流电压,包括:当所述第二直流电压的电压值高于电压阈值时,控制所述第一电压转换模块对所述第二直流电压进行变换,输出所述第四直流电压;当所述第三直流电压的电压值低于所述电压阈值时,控制所述第二电压转换模块对所述第三直流电压进行变换,输出所述第四直流电压。
在本公开一个实施例中,所述方法还包括:接收与所述电源提供装置连接的待充电设备反馈的期望的充电电压;其中,所述电压阈值根据所述期望的充电电压确定。
在本公开一个实施例中,所述方法还包括:接收与所述电源提供装置连接的待充电设备的第一反馈信息;控制所述第一电压转换模块或所述第二电压转换模块,来调整所述电源提供装置的输出电压和/或输出电流,包括:根据所述第一反馈信息,控制所述第一电压转换模块或所述第二电压转换模块,来调整所述电源提供装置的输出电压和/或输出电流。
在本公开一个实施例中,所述第一反馈信息包括:所述待充电设备期望的充电电压和/或充电电流,或者,所述待充电设备基于期望的充电电压和/或充电电流生成的调整指令。
在本公开一个实施例中,所述方法还包括:根据高频控制信号,对所述第一直流电压进行调制。
在本公开一个实施例中,所述方法还包括:接收与所述电源提供装置连接的待充电设备的第二反馈信息;及根据所述第二反馈信息,调整所述高频控制信号的频率。
在本公开一个实施例中,所述第二反馈信息包括下述信息中的至少一项:所述待充电设备的充电阶段信息、所述待充电设备的电池的电量信息、所述电池的温度信息。
本公开实施例提供的电源提供装置,在变压器的初级侧,无需使用大体积的电解电容 和耐高压的滤波电容等对整流后的脉动直流电压进行滤波,可以减小电源提供装置的体积。此外,将电压转换部分移至变压器的次级侧,电压转换模块只需要处理幅度较低的电压,就可以转换输出稳定的恒定直流电压。并且将对电压转换的控制电路放在变压器的次级侧,还可以进一步减少器件的使用,减小电源提供装置的体积。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据一示例示出的相关技术中AC-DC电源装置的电路示意图;
图2是根据一示例性实施例示出的一种充电系统的示意图;
图3是根据一示例性实施例示出的一种电源提供装置的结构示意图;
图4是根据一示例性实施例示出的另一种电源提供装置的结构示意图;
图5A是根据一示例示出的变压器次级侧输出的脉动直流电压的波形示意图;
图5B是根据一示例示出的输入至电压转换模块的脉动直流电压的波形示意图;
图6是根据一示例性实施例示出的一种充电控制方法的流程图;
图7是根据一示例性实施例示出的另一种充电控制方法的流程图;
图8是根据一示例性实施例示出的再一种充电控制方法的流程图;
图9是根据一示例性实施例示出的再一种充电控制方法的流程图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本公开将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。
此外,附图仅为本公开的示意性图解,并非一定是按比例绘制。图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。附图中所示的一些方框图是功能实体,不一定必须与物理或逻辑上独立的实体相对应。可以采用软件形式来实现这些功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处理器装置和/或微控制器装置中实现这些功能实体。
此外,在本公开的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
图1是根据一示例示出的相关技术中AC-DC电源装置的电路示意图。如图1所示,交流电经AC端输入,以交流电为220V/50Hz的市电为例,输入的交流电波形为220V正弦波。通过由4个二极管组成的全桥整流器U1,对输入的交流电进行整流,输出馒头波。变压器T1的初级绕组,连接到开关电源芯片U2的开关管脚SW上。开关管脚SW输出频率很高的PWM(Pulse Width Modulation,脉冲宽度调制)方波,用于对整流器U1输出的馒头波进行调制。并由单独的一个绕组取得反馈,输入至开关电源芯片U2的反馈管脚FB上,从而使得次级侧的输出电压稳定。
而当用电器(如待充电设备)需要AC-DC电源装置提供不同电压值的输出电压时,例如支持PD(Power Delivery,功率传输)协议或QC(Quick Charge,快速充电)协议的终端需要适配器提供的电压为不同电压值的直流电,AC-DC需要通过一个通信芯片,与用电器进行通信。用电器将需要的电压大小发送给AC-DC电源装置,AC-DC电源装置根据接收到的电压需求,调整输出的PWM信号的脉冲宽度或频率,并从变压器的绕组获取反馈的电压,再根据反馈的电压调整PWM信号的脉冲宽度或频率,从而得到稳定的输出电压。
由此,可以看到用于调整输出电压的控制电路主要在变压器的初级侧,而初级侧电压比较高,所需耐压器件的封装通常比较大。
下面,将结合附图及实施例对本公开示例实施例中的电源提供装置及充电控制方法进行更详细的说明。
图2是根据一示例性实施例示出的一种充电系统的示意图。
参考图2,充电系统1包括:电源提供装置11和待充电设备13。
其中,电源提供装置11例如为电源适配器、移动电源(Power Bank)等设备。
电源提供装置11与待充电设备13的通过缆线连接,为待充电设备13提供电能,以为待充电设备13中的电池132充电。
待充电设备13例如可以是终端或电子设备,该终端或电子设备可以是手机、游戏主机、平板电脑、电子书阅读器、智能穿戴设备、MP4(MovingPicture Experts Group Audio Layer IV,动态影像专家压缩标准音频层面4)播放器、智能家居设备、AR(Augmented Reality,增强现实)设备、VR(Virtual Reality,虚拟现实)设备等移动终端,也可以是移动电源(如充电宝、旅充)、电子烟、无线鼠标、无线键盘、无线耳机、蓝牙音箱等具有充电功能的可充电电子设备,或者,还可以是个人计算机(Personal Computer,PC),比如膝上型便携计算机和台式计算机等。
待充电设备13通过充电接口131与电源提供装置11中的充电接口116连接。
充电接口131例如可以为USB 2.0接口、Micro USB接口或USB TYPE-C接口的母头。在一些实施例中,充电接口131还可以为lightning接口的母头,或者其他任意类型的能够 用于充电的并口或串口。
相应地,充电接口116则可以为与充电接口131相适配的USB 2.0接口、Micro USB接口、USB Type C接口或Lightning接口的公头。
电源提供装置11如可以通过充电接口116和充电接口131与待充电设备13通信,双方均无需设置额外的通信接口或其他无线通信模块。如充电接口116和充电接口131为USB接口,则电源提供装置11和待充电设备13可以基于USB接口中的数据线(如D+和/或D-线)进行通信。又如充电接口116和充电接口131为支持功率传输(PD)通信协议的USB接口(如USB TYPE-C接口),则电源提供装置11和待充电设备13可以基于PD通信协议进行通信。此外,电源提供装置11和待充电设备13也可以通过除充电接口116和充电接口131之外的其他通信方式通信。例如电源提供装置11和待充电设备13通过无线方式进行通信,如近场通讯(NFC)等。
图3是根据一示例性实施例示出的一种电源提供装置的结构示意图。
如图3所示,电源提供装置11包括:第一整流电路111、变压器112、第一输入电容113、第一电压转换模块114、第二输入电容118、第二电压转换模块119、控制单元115及充电接口116。
第一整流电路111位于变压器112的初级侧,用于将从AC端口接收的交流电压转换为第一直流电压。第一直流电压如为脉动直流电压。
图4是根据一示例性实施例示出的另一种电源提供装置的结构示意图。参考图4,第一整流电路111例如可以为全桥整流器,但本公开不以此为限,第一整流电路111也可以为半桥整流器,或其他类型的整流电路。
如图4所示,第一整流电路111与变压器112的初级绕组1121连接。
联合参考图3和图4,第一电压转换模块114及第二电压转换模块119均位于变压器112的次级侧。
第一电压转换模块114与变压器112的第一次级绕组1122连接。
第二电压转换模块119与变压器112的第二次级绕组1123连接。
变压器112用于将上述的第一直流电压变换为通过第一次级绕组1122提供的第二直流电压和通过第二次级绕组1123提供的第三直流电压。
当第一次级绕组1122与第二次级绕组1123完全相同(如绕组圈数、缠绕方式)时,第二直流电压和第三直流电压具有相同的波形和相同的电压值。第二直流电压和第三直流电压例如同为脉动直流电压。
在一些实施例中,可以在第一电压转换模块114与变压器112的第一次级绕组1122之间设置第一输入电容113,第一输入电容113可以使得输入至第一电压转换模块114的第二直流电压不会过低,从而保证第一电压转换模块114的正常工作。
此外,可以在第二电压转换模块119与变压器112的第二次级绕组1123之间设置第 二输入电容118,第二输入电容118可以使得输入至第二电压转换模块119的第三直流电压不会过低,从而保证第二电压转换模块119的正常工作。
或者,也可以通过在变压器112的初级侧进行控制,来保证第一电压转换模块114和第二电压转换模块119的输入电压不至于过低。如在变压器112的初级侧设置控制模块,来控制输入至第一电压转换模块114和第二电压转换模块119的输入电压不至于过低。
择一地,可以通过第一电压转换模块114对第二直流电压进行变换,或者通过第二电压转换模块119对第三直流电压进行变换,输出第四直流电压。
第四直流电压可以为恒定直流电压,但本公开不以此为限。根据应用场景的需要,第四直流电压如也可以为脉动直流电压。
在一些实施例中,第一电压转换模块114与第二电压转换模块119如可以自行确定是否对第二直流电压进行变换。例如,第一电压转换模块114与第二电压转换模块119中均内置有控制电路,分别存储有预设的电压阈值。当第二直流电压的电压值高于电压阈值时,第一电压转换模块114工作,对第二直流电压进行变换,输出第四直流电压;当第三直流电压的电压值低于该电压阈值时,第二电压转换模块119工作,对第三直流电压进行变换,输出第四直流电压。
此外,在一些实施例中,也可以由控制单元115记录该电压阈值,并通过比较该电压阈值与第二直流电压的大小,来控制第一电压转换模块114工作,对第二直流电压进行变换,或控制第二电压转换模块119工作,对第三直流电压进行变换,输出第四直流电压。同样地,例如,当第二直流电压的电压值高于该电压阈值时,控制单元115控制第一电压转换模块114工作,对第二直流电压进行变换,输出第四直流电压;而当第三直流电压的电压值低于该电压阈值时,控制单元115控制第二电压转换模块119工作,对第三直流电压进行变换,输出第四直流电压。
也即,第一电压转换模块114可以被实施为降压转换电路,如BUCK降压电路、BUCK-BOOST电路或电荷泵(ChargePump)电路等。第二电压转换模块119可以被实施为升压转换电路,如BOOST升压电路、BUCK-BOOST电路或电荷泵电路等。
需要说明的是,本公开不限制电荷泵的转换比例,在实际应用中,根据实际的需求而设定,例如,可以被设置为1:1,2:1,3:1等。此外,当需要输出较高电压时,电荷泵的转换比例还可以被设置为1:2,1:3等,以进行升压操作。
再或者,第一电压转换模块114和第二电压转换模块119还可以包括:CUK电路。CUK电路既可以实现升压操作,也可以实现降压操作。
如上述,当连接的待充电设备13需要不同的充电电压时,该电压阈值还可以基于待充电设备13反馈的期望的充电电压确定,也即当期望的充电电压高时,该电压阈值也相应地增高;当期望的充电压低时,该电压阈值也相应地降低。在一个实施例中,该电压阈值可以被设置为该期望的充电电压。例如,可以由控制单元115通过与待充电设备13通信获取该期望的充电电压。
根据脉动直流电压不同的电压值选用不同的电压转换模块进行电压转换操作,可以避免因单一地使用一种电压转换模块(升压或降压)而导致的对部分电压值无法进行转换的问题,可提升电压转换的效率。
此外,第一电压转换模块114和第二电压转换模块119还可以分时地交替工作,如可以避免由于单一电压转换模块持续工作而引起的诸如器件发热等问题。
以变压器112次级侧输出的第二直流电压与第三直流电压均为脉动直流电压,且两者具有相同波形及电压值为例,图5A根据一示例示出了变压器次级侧输出的脉动直流电压的波形示意图,图5B根据一示例示出了输入至电压转换模块的脉动直流电压的波形示意图。
以第一整流电路111输入端的输入为市电为例,经第一整流电路111整流后,转换为电压幅度为220V的脉动直流电压。电压幅度为220V的脉动直流电压经变压器112降压后的波形如图5A所示,在0ms、10ms等处,电压值会等于甚至小于0V。以在第一电压转换模块114与变压器112的第一次级绕组1122之间设置第一输入电容113,及在第二电压转换模块119与变压器112的第二次级绕组1123之间设置第二输入电容118为例,由于第一输入电容113和第二输入电容118的存在,当选用适当的电容值时,输入至第一电压转换模块114或第二电压转换模块119的脉动直流电压的电压值就不会过低,从而确保第一电压转换模块114或第二电压转换模块119的正常工作。以第一电压转换模块114为BUCK降压电路为例,输出峰值为120W负载功率时,选用22μF的第一输入电容113可以有效支持BUCK电路的工作,如图5B所示,最低电压值在3V左右,可以BUCK电路的最低工作电压。
不同电压转换模块在实际应用中输入电容的选择为本领域的公知常识,在此不再赘述。比如,当第二电压转换模块118为Boost升压电路时,输出峰值为120W负载功率时,选用100μF的输入电容则可以有效支持Boost升压电路的工作。
控制单元115与第一电压转换模块114连接,用于控制第一电压转换模块114,来调整电源提供装置11的输出电压和/或输出电流。
本公开实施例提供的电源提供装置,在变压器的初级侧,无需使用大体积的电解电容和耐高压的滤波电容等对整流后的脉动直流电压进行滤波,一方面可以减小电源提供装置的体积,另一方面由于液态电解电容的使用寿命短、且容易爆浆,去掉液态电解电容还可以提升电源提供装置的使用寿命和安全。此外,将电压转换部分移至变压器的次级侧,电压转换模块只需要处理幅度较低的电压,就可以转换输出稳定的恒定直流电压。并且将对电压转换的控制电路放在变压器的次级侧,还可以进一步减少器件的使用,减小电源提供装置的体积。
在一些实施例中,控制单元115还可以通过充电接口116与待充电设备13通信,接收待充电设备13发送的第一反馈信息,并根据第一反馈信息,控制第一电压转换模块114或第二电压转换模块119来调整电源提供装置11的输出电压和/或输出电流。第一反馈信 息例如可以为待充电设备13期望的充电电压和/或充电电流,或者为待充电设备13基于期望的充电电压和/或充电电流生成的调整指令,该指令如为提升或降低输出电压和/或输出电流的指令。
如上述,在图1所示的AC-DC电源装置中,由于电压转换的过程在变压器的初级侧,基于用电器的反馈调整流程通常为用电器反馈期望的电压给AC-DC电源装置中的控制芯片,控制芯片根据用电器的反馈调整PWM的脉冲宽度或频率,控制芯片获取变压器反馈的采样电压,再根据采样电压进一步调整PWM的脉冲宽度或频率,从而输出稳定的电压。该反馈回路较长,调整的实时性较差;并且变压器反馈的是电压幅度较小的馒头波信号,但最终要求的是直流信号输出,采样馒头波去调整稳定直流信号输出,精度较差。
而在本公开实施例中,由控制单元115直接根据待充电设备13反馈的信息,控制位于变压器次级侧的第一电压转换模块114或第二电压转换模块119,从而调整电源提供装置11的输出电压和/或输出电流,一方面无需经由变压器次级侧反馈信号至变压器的初级侧(即高压侧),节省了光耦等用于反馈信号传输的器件,减小了反馈传输路径,提升了反馈的实时性;另一方面,基于反馈信息直接控制变压器次级侧的第一电压转换模块114或第二电压转换模块119,调整恒定直流电压的输出,调整精度高。
联合参考图3和图4,电源提供装置11还包括开关单元117,与变压器112的初级绕组1121连接,用于根据高频控制信号对输入至初级绕组1121的脉动直流电压进行斩波调制。开关单元117例如可以由MOS管构成。通过高频控制信号来控制开关单元117,从而对脉动直流电压进行斩波调制,可以向变压器112提供高频信号,从而使得变压器112可以选用高频变压器,工作频率例如可以为50KHz~2MHz,也即高频控制信号的频率可以为50KHz~2MHz。相较于低频变压器(又称为工频变压器,主要用于市电的频率,如50Hz或60Hz的交流电),高频变压器具有体积小的特定,选用高频变压器可以进一步减小电源提供装置的体积。
开关单元117的高频控制信号例如可以为固定频率的信号,如可以由提供固定频率的信号发生器向开关单元117输出。
在一些实施例中,控制单元115还可以用于向开关单元117输出该高频控制信号。此外,控制单元115接收待充电设备13的第二反馈信息,并根据该第二反馈信息,调整高频控制信号的频率。
第二反馈信息例如可以为待充电设备当前所处的充电阶段信息和/或待充电设备13的电池132的电量信息。此外,第二反馈信息如还可以包括:待充电设备12的电池122的温度信息等。
需要说明的是,也可以另外设置控制单元对开关单元117进行控制。
下面说明电池在充电过程中的各充电阶段。
电池在充电过程中可以包括如下充电阶段:涓流充电阶段、恒流充电阶段、恒压充电阶段。
其中,在涓流充电阶段,先对放电至预设电压阈值的电池进行预充电(即恢复性充电),涓流充电电流通常是恒流充电电流的十分之一,当电池电压上升到涓流充电电压阈值以上时,提高充电电流进入恒流充电阶段。
在恒流充电阶段,以恒定电流对电池进行充电,电池电压快速上升,当电池电压达到电池所预期的电压阈值(或截止电压)时转入恒压充电阶段。
在恒压充电阶段,以恒定电压对电池进行充电,充电电流逐渐减小,当充电电流降低至设定的电流阈值时(该电流阈值通常为恒流充电阶段充电电流数值的数十分之一或者更低,可选地,该电流阈值可为数十毫安或更低),电池被充满电。
此外,电池被充满电后,由于电池自放电的影响,会产生部分电流损耗,此时转入补充充电阶段。在补充充电阶段,充电电流很小,仅仅为了保证电池在满电量状态。
需要说明的是,本公开实施例中提及的恒流充电阶段并非要求充电电流保持完全恒定不变,例如可以是泛指充电电流的峰值或均值在一段时间内保持不变。
实际中,恒流充电阶段还可以采用分段恒流充电(Multi-stage constant current charging)的方式进行充电。
分段恒流充电可具有M个恒流阶段(M为一个不小于2的整数),分段恒流充电以预定的充电电流开始第一阶段充电,所述分段恒流充电的M个恒流阶段从第一阶段到第M阶段依次被执行。当恒流阶段中的前一个恒流阶段转到下一个恒流阶段后,电流大小可变小;当电池电压达到本恒流阶段对应的充电电压阈值时,会转到下一个恒流阶段。相邻两个恒流阶段之间的电流转换过程可以是渐变的,也可以是台阶式的跳跃变化。
如上述可知,电池在充电过程中,在恒流充电阶段,充电电流最大,需要电源提供装置提供的电能能量最大,使得电池电压快速增长。则在恒流充电阶段,可以加快开关单元117的开关频率,也即提升高频控制信号的频率,以加快能量的抽取。
而在涓流充电阶段和/或恒压充电阶段,因所需的充电电流较小,可以减慢开关单元117的开关频率,也即降低高频控制信号的频率,以减慢能量的抽取。
同理地,当电池132的电量低时,可以通过提升高频控制信号的频率,来加快能量的抽取。而当电池132的电量高时,可以通过降低高频控制信号的频率,来减慢能量的抽取。
电池132电量的高低判断例如可以通过预设电量阈值或阈值范围的方式来实现。
本领域技术人员应理解的是,虽然上述以涓流充电阶段、恒流充电阶段、恒压充电阶段为例,但本公开中所述的“充电阶段”不限于此,还可以为其他充电阶段。
此外,控制单元115还可以根据监控的第一电压转换模块114及第二电压转换模块119的输入电压,来控制开关单元117,以使第一电压转换模块114和第二电压转换模块119的输入电压满足其可工作的电压范围要求,或者调整后的输入电压可以使第一电压转换模块114和第二电压转换模块119处于效率较高的工作状态。
参考图4,电源提供装置11还可以进步包括第二整流电路120和第三整流电路122,例如均可以如图4所示实施为二极管。第二整流电路120连接于变压器112的第一次级绕 组1122,用于对变压器112输出的第二直流电压进行整流。第三整流电路122连接于变压器112的第二次级绕组1123,用于对变压器112输出的第三直流电压进行整流。
此外,电源提供装置11还可以包括小容量或小体积的第一滤波电容121和第二滤波电路123,进一步对第一电压转换模块114和第二电压转换模块119输出的第四直流电压进行滤波,例如滤除输出电压的毛刺等,进一步提高输出电压的质量。
下述为本公开方法实施例,可以应用于本公开装置实施例中。对于本公开方法实施例中未披露的细节,请参照本公开装置实施例。
图6是根据一示例性实施例示出的一种充电控制方法的流程图。该充电控制方法如可以应用于上述的电源提供装置11中。
参考图6,充电控制方法10包括:
在步骤S102中,在变压器的初级侧,将接收的交流电压转换为第一直流电压。
第一直流电压如为脉动直流电压。
在步骤S104中,通过变压器,分别将第一直流电压变换为第二直流电压和第三直流电压。
第二直流电压和第三直流电压如同为脉动直流电压。
在步骤S106中,在变压器的次级侧,择一地通过第一电压转换模块对第二直流电压进行变换,或通过第二电压转换模块对第三直流电压进行变换,输出第四直流电压。
在步骤S108中,控制第一电压转换模块或第二电压转换模块,来调整电源提供装置的输出电压和/或输出电流。
本公开实施例提供的充电控制方法,在变压器的初级侧,无需使用大体积的电解电容和耐高压的滤波电容等对整流后的脉动直流电压进行滤波,一方面可以减小电源提供装置的体积,另一方面由于液态电解电容的使用寿命短、且容易爆浆,去掉液态电解电容还可以提升电源提供装置的使用寿命和安全。此外,将电压转换部分移至变压器的次级侧,通过一个容量或体积较小的输入电容,通过电压转换模块只需要处理幅度较低的电压,就可以转换输出稳定的恒定直流电压。并且在变压器的次级侧对电压转换模块进行控制,还可以进一步减少器件的使用,减小电源提供装置的体积。
图7是根据一示例性实施例示出的另一种充电控制方法的流程图。该充电控制方法如可以应用于上述的电源提供装置11中。与图6所示的充电控制方法10不同的是,图7所示的充电控制方法进一步提供了如何在变压器的次级侧,通过第一电压转换模块对第二直流电压进行变换,或通过第二电压转换模块对第三直流电压进行变换,输出第四直流电压的一种实施方式,也即提供了步骤S106的一种实施方式。
参考图7,步骤S106包括:
在步骤S1062中,当第二直流电压的电压值高于电压阈值时,通过第一电压转换模块 对第二直流电压进行变换,输出第三直流电压。
在步骤S1064中,当第三直流电压的电压值低于电压阈值时,通过所述第二电压转换模块对第三直流电压进行变换,输出第四直流电压。
在一些实施例中,如上述,也可以由控制单元来控制第一电压转换模块或第二电压转换模块工作。步骤S106也可以被实施为:当第二直流电压的电压值高于电压阈值时,控制第一电压转换模块对第二直流电压进行变换,输出第三直流电压;当第三直流电压的电压值低于电压阈值时,控制所述第二电压转换模块对第三直流电压进行变换,输出第四直流电压。
在一些实施例中,该充电控制方法还可以包括:接收与电源提供装置连接的待充电设备反馈的期望的充电电压。其中,所述电压阈值根据所述期望的充电电压确定。
本公开实施例提供的充电控制方法,根据脉动直流电压不同的电压值选用不同的电压转换模块进行电压转换操作,可以避免因单一地使用一种电压转换模块(升压或降压)而导致的对部分电压值无法进行转换的问题,可提升电压转换的效率。
图8是根据一示例性实施例示出的另一种充电控制方法的流程图。该充电控制方法如可以应用于上述的电源提供装置11中。与图6所示的充电控制方法10不同的是,图8所示的充电控制方法20还可以进一步包括:
在步骤S202中,接收与电源提供装置连接的待充电设备的第一反馈信息。
此外,步骤S108进一步包括步骤S1082:根据第一反馈信息,控制第一电压转换模块或第二电压转换模块,来调整电源提供装置的输出电压和/或输出电流。
在一些实施例中,第一反馈信息包括:待充电设备期望的充电电压和/或充电电流,或者,待充电设备基于期望的充电电压和/或充电电流生成的调整指令。
本公开实施例提供的充电控制方法,直接根据待充电设备反馈的信息,控制位于变压器次级侧的第一电压转换模块或第二电压转换模块,从而调整电源提供装置的输出电压和/或输出电流,一方面无需经由变压器次级侧反馈信号至变压器的初级侧(即高压侧),节省了光耦等用于反馈信号传输的器件,减小了反馈传输路径,提升了反馈的实时性;另一方面,基于反馈信息直接控制变压器次级侧的第一电压转换模块或第二电压转换模块,调整恒定直流电压的输出,调整精度高。
图9是根据一示例性实施例示出的再一种充电控制方法的流程图。该充电控制方法如可以应用于上述的电源提供装置11中。与图6所示的充电控制方法10不同的是,图9所示的充电控制方法30还可以进一步包括:
在步骤S302中,根据高频控制信号,对第一直流电压进行调制。
通过高频控制信号来对第一直流电压进行斩波调制,可以向变压器提供高频信号,从而可以选用高频变压器。相较于低频变压器,高频变压器具有体积小的特定,选用高频变 压器可以进一步减小电源提供装置的体积。
在一些实施例中,充电控制方法30还可以进一步包括:
在步骤S304中,接收与电源提供装置连接的待充电设备的第二反馈信息。
在步骤S306中,根据第二反馈信息,调整高频控制信号的频率。
在一些实施例中,第二反馈信息包括下述信息中的至少一项:待充电设备的充电阶段信息、待充电设备的电池的电量信息。
需要注意的是,上述附图仅是根据本公开示例性实施方式的方法所包括的处理的示意性说明,而不是限制目的。易于理解,上述附图所示的处理并不表明或限制这些处理的时间顺序。另外,也易于理解,这些处理可以是例如在多个模块中同步或异步执行的。
以上具体地示出和描述了本公开的示例性实施方式。应可理解的是,本公开不限于这里描述的详细结构、设置方式或实现方法;相反,本公开意图涵盖包含在所附权利要求的精神和范围内的各种修改和等效设置。

Claims (23)

  1. 一种电源提供装置,其特征在于,包括:
    变压器,包括:初级绕组、第一次级绕组和第二次级绕组;
    第一整流电路,与所述变压器的初级绕组连接,用于将接收的交流电压转换为第一直流电压;其中,所述变压器用于将所述第一直流电压变换为分别通过第一次级绕组提供的第二直流电压和通过所述第二次级绕组提供的第三直流电压;
    第一电压转换模块,与所述变压器的第一次级绕组连接;
    第二电压转换模块,与所述变压器的第二次级绕组连接;其中,择一地通过所述第一电压转换模块对所述第二直流电压进行变换,或者通过所述第二电压转换模块对所述第三直流电压进行变换,输出第四直流电压;以及
    控制单元,分别与所述第一电压转换模块和所述第二电压转换模块连接,用于控制所述第一电压转换模块或所述第二电压转换模块,来调整所述电源提供装置的输出电压和/或输出电流。
  2. 根据权利要求1所述的电源提供装置,其特征在于,还包括:第一输入电容和第二输入电容;所述第一电压转换模块通过所述第一输入电容与所述变压器的第一次级绕组连接;所述第二电压转换模块通过所述第二输入电容与所述变压器的第二次级绕组连接。
  3. 根据权利要求1所述的电源提供装置,其特征在于,所述第二直流电压与所述第三直流电压具有相同波形及相同电压值。
  4. 根据权利要求3所述的电源提供装置,其特征在于,所述第一电压转换模块用于当所述第二直流电压的电压值高于电压阈值时,对所述第二直流电压进行变换,输出所述第四直流电压;所述第二电压转换模块用于当所述第三直流电压的电压值低于所述电压阈值时,对所述第三直流电压进行变换,输出所述第四直流电压。
  5. 根据权利要求3所述的电源提供装置,其特征在于,所述控制单元还用于当所述第二直流电压的电压值高于电压阈值时,控制所述第一电压转换模块对所述第二直流电压进行变换,输出所述第四直流电压;当所述第三直流电压的电压值低于所述电压阈值时,控制所述第二电压转换模块对所述第三直流电压进行变换,输出所述第四直流电压。
  6. 根据权利要求4或5所述的电源提供装置,其特征在于,所述控制单元还用于接收与所述电源提供装置连接的待充电设备反馈的期望的充电电压;其中,所述电压阈值根据所述期望的充电电压确定。
  7. 根据权利要求1-5任一项所述的电源提供装置,其特征在于,所述控制单元还用于接收与所述电源提供装置连接的待充电设备的第一反馈信息,并根据所述第一反馈信息,控制所述第一电压转换模块或所述第二电压转换模块,来调整所述电源提供装置的输出电压和/或输出电流。
  8. 根据权利要求7所述的电源提供装置,其特征在于,所述第一反馈信息包括:所述待充电设备期望的充电电压和/或充电电流,或者,所述待充电设备基于期望的充电电 压和/或充电电流生成的调整指令。
  9. 根据权利要求1-5任一项所述的电源提供装置,其特征在于,还包括:开关单元,与所述变压器的初级绕组连接,用于根据高频控制信号对所述第一直流电压进行调制。
  10. 根据权利要求9所述的电源提供装置,其特征在于,所述控制单元与所述开关单元连接,所述控制单元还用于向所述开关单元输出所述高频控制信号,接收与所述电源提供装置连接的待充电设备的第二反馈信息,并根据所述第二反馈信息,调整所述高频控制信号的频率。
  11. 根据权利要求10所述的电源提供装置,其特征在于,所述第二反馈信息包括下述信息中的至少一项:所述待充电设备的充电阶段信息、所述待充电设备的电池的电量信息、所述电池的温度信息。
  12. 根据权利要求1-5任一项所述的电源提供装置,其特征在于,还包括:
    第二整流电路,连接于所述第一次级绕组与所述第一电压转换模块之间,用于对所述第二直流电压进行整流;以及
    第三整流电路,连接于所述第二次级绕组与所述第二电压转换模块之间,用于对所述第三直流电压进行整流。
  13. 根据权利要求4或5所述的电源提供装置,其特征在于,所述第一电压转换模块包括:BUCK、BUCK/Boost、电荷泵或CUK电路中的至少一个;所述第二电压转换模块分别包括:Boost、BUCK/Boost、电荷泵或CUK电路中的至少一个。
  14. 一种充电控制方法,应用于电源提供装置中,其特征在于,所述方法包括:
    在变压器的初级侧,将接收的交流电压转换为第一直流电压;
    通过所述变压器,分别将所述第一直流电压变换为第二直流电压和第三直流电压;
    在所述变压器的次级侧,择一地通过第一电压转换模块对所述第二直流电压进行变换,或通过第二电压转换模块对所述第三直流电压进行变换,输出第四直流电压;以及
    控制所述第一电压转换模块或所述第二电压转换模块,来调整所述电源提供装置的输出电压和/或输出电流。
  15. 根据权利要求14所述的方法,其特征在于,所述第二直流电压与所述第三直流电压具有相同波形及相同电压值。
  16. 根据权利要求15所述的方法,其特征在于,在所述变压器的次级侧,择一地通过第一电压转换模块对所述第二直流电压进行变换,或通过第二电压转换模块对所述第三直流电压进行变换,输出第四直流电压,包括:
    当所述第二直流电压的电压值高于电压阈值时,通过所述第一电压转换模块对所述第二直流电压进行变换,输出所述第四直流电压;
    当所述第三直流电压的电压值低于所述电压阈值时,通过所述第二电压转换模块对所述第三直流电压进行变换,输出所述第四直流电压。
  17. 根据权利要求15所述的方法,其特征在于,在所述变压器的次级侧,择一地通 过第一电压转换模块对所述第二直流电压进行变换,或通过第二电压转换模块对所述第三直流电压进行变换,输出第四直流电压,包括:
    当所述第二直流电压的电压值高于电压阈值时,控制所述第一电压转换模块对所述第二直流电压进行变换,输出所述第四直流电压;
    当所述第三直流电压的电压值低于所述电压阈值时,控制所述第二电压转换模块对所述第三直流电压进行变换,输出所述第四直流电压。
  18. 根据权利要求16或17所述的方法,其特征在于,还包括:
    接收与所述电源提供装置连接的待充电设备反馈的期望的充电电压;
    其中,所述电压阈值根据所述期望的充电电压确定。
  19. 根据权利要求14-17任一项所述的方法,其特征在于,还包括:接收与所述电源提供装置连接的待充电设备的第一反馈信息;
    控制所述第一电压转换模块或所述第二电压转换模块,来调整所述电源提供装置的输出电压和/或输出电流,包括:根据所述第一反馈信息,控制所述第一电压转换模块或所述第二电压转换模块,来调整所述电源提供装置的输出电压和/或输出电流。
  20. 根据权利要求19所述的方法,其特征在于,所述第一反馈信息包括:所述待充电设备期望的充电电压和/或充电电流,或者,所述待充电设备基于期望的充电电压和/或充电电流生成的调整指令。
  21. 根据权利要求14-17任一项所述的方法,其特征在于,还包括:
    根据高频控制信号,对所述第一直流电压进行调制。
  22. 根据权利要求21所述的方法,其特征在于,还包括:
    接收与所述电源提供装置连接的待充电设备的第二反馈信息;及
    根据所述第二反馈信息,调整所述高频控制信号的频率。
  23. 根据权利要求22所述的方法,其特征在于,所述第二反馈信息包括下述信息中的至少一项:所述待充电设备的充电阶段信息、所述待充电设备的电池的电量信息、所述电池的温度信息。
PCT/CN2021/078539 2020-03-12 2021-03-01 电源提供装置及充电控制方法 WO2021179938A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21767371.4A EP4120537A4 (en) 2020-03-12 2021-03-01 POWER SUPPLY DEVICE AND CHARGE CONTROL METHOD
US17/942,306 US20230006563A1 (en) 2020-03-12 2022-09-12 Power supply device and charging control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010172277.8 2020-03-12
CN202010172277.8A CN113394979B (zh) 2020-03-12 2020-03-12 电源提供装置及充电控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/942,306 Continuation US20230006563A1 (en) 2020-03-12 2022-09-12 Power supply device and charging control method

Publications (1)

Publication Number Publication Date
WO2021179938A1 true WO2021179938A1 (zh) 2021-09-16

Family

ID=77615875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078539 WO2021179938A1 (zh) 2020-03-12 2021-03-01 电源提供装置及充电控制方法

Country Status (4)

Country Link
US (1) US20230006563A1 (zh)
EP (1) EP4120537A4 (zh)
CN (1) CN113394979B (zh)
WO (1) WO2021179938A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113890371B (zh) * 2021-09-30 2023-11-24 康舒科技股份有限公司 多输出的功率分配控制装置
TWI818582B (zh) * 2022-06-09 2023-10-11 群光電能科技股份有限公司 電壓轉換器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10285830A (ja) * 1997-04-10 1998-10-23 Fujitsu Ltd 無停電電源装置
EP1962415A2 (en) * 2007-02-20 2008-08-27 TDK Corporation Switching power supply unit
CN105121212A (zh) * 2013-01-31 2015-12-02 罗伯特·博世有限公司 能量传输装置
CN206341146U (zh) * 2016-11-30 2017-07-18 深圳市凌康技术股份有限公司 一种宽电压输出范围的变压电路及充电桩
CN206742931U (zh) * 2017-04-12 2017-12-12 深圳市金欣辉电子科技有限公司 充电宝多功率充电自动转换电路
CN107623365A (zh) * 2017-09-30 2018-01-23 深圳威迈斯电源有限公司 一种带逆变功能的三端口充电机

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100950913B1 (ko) * 2007-11-29 2010-04-01 삼성전기주식회사 전력변환장치
CN104779784A (zh) * 2014-01-11 2015-07-15 亚荣源科技(深圳)有限公司 具升降压功能的单相功率因子修正器
WO2016139745A1 (ja) * 2015-03-03 2016-09-09 三菱電機株式会社 電力変換器
JP6554323B2 (ja) * 2015-05-25 2019-07-31 日立オートモティブシステムズ株式会社 電源装置
MY190877A (en) * 2016-02-05 2022-05-13 Guangdong Oppo Mobile Telecommunications Corp Ltd Terminal charging system, charging method, and power adapter
US20190393798A1 (en) * 2016-12-09 2019-12-26 North Carolina State University Buck-boost power conversion system
CN108539832A (zh) * 2018-03-16 2018-09-14 维沃移动通信有限公司 无线充电接收端设备、无线充电方法、系统及终端设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10285830A (ja) * 1997-04-10 1998-10-23 Fujitsu Ltd 無停電電源装置
EP1962415A2 (en) * 2007-02-20 2008-08-27 TDK Corporation Switching power supply unit
CN105121212A (zh) * 2013-01-31 2015-12-02 罗伯特·博世有限公司 能量传输装置
CN206341146U (zh) * 2016-11-30 2017-07-18 深圳市凌康技术股份有限公司 一种宽电压输出范围的变压电路及充电桩
CN206742931U (zh) * 2017-04-12 2017-12-12 深圳市金欣辉电子科技有限公司 充电宝多功率充电自动转换电路
CN107623365A (zh) * 2017-09-30 2018-01-23 深圳威迈斯电源有限公司 一种带逆变功能的三端口充电机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4120537A4 *

Also Published As

Publication number Publication date
EP4120537A4 (en) 2023-08-16
US20230006563A1 (en) 2023-01-05
CN113394979B (zh) 2023-11-17
CN113394979A (zh) 2021-09-14
EP4120537A1 (en) 2023-01-18

Similar Documents

Publication Publication Date Title
AU2017215264B2 (en) Charging system, charging method, and power adapter for terminal
US20230006563A1 (en) Power supply device and charging control method
WO2022068375A1 (zh) 电源提供装置以及充电方法、系统、存储介质
CN109904913B (zh) 一种充电设备及其快速充电电路
WO2022100196A1 (zh) 一种供电电源、电源提供方法及计算机存储介质
WO2022068351A1 (zh) 电源提供装置及充电控制方法
WO2023019713A1 (zh) 电池电源调节电路、调节方法、充电线及终端设备
US20230283185A1 (en) Power source supplying apparatus, circuit control method, and power supply system
WO2022206481A1 (zh) 一种电源转换电路和适配器
CN115313593A (zh) 一种大功率电源充电器
CN201732940U (zh) 一种usb电源插线板
WO2021179945A1 (zh) 电源提供装置及充电控制方法
WO2022007617A1 (zh) 电源适配器
CN108063487A (zh) 一种充电器及充电方法
WO2022007668A1 (zh) 电源提供装置及充电控制方法
WO2021179941A1 (zh) 电源转换装置及充电控制方法
WO2022007577A1 (zh) 电源提供装置及充电控制方法
WO2023246059A1 (zh) 充电电路、电子设备、充电系统及充电控制方法
CN215601078U (zh) 一种智能电源及充电器
WO2021134288A1 (zh) 电源提供装置及充电控制方法
WO2021179888A1 (zh) 一种电源变换电路及充电设备
WO2022127413A1 (zh) 充电电路、电源适配器和充电系统
WO2021208226A1 (zh) 兼具适配器、移动电源、hub功能的移动电源
CN105375754A (zh) 一种电源适配器
CN117791794A (zh) 充电控制电路、方法、装置、供电设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21767371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021767371

Country of ref document: EP

Effective date: 20221012