WO2021179875A1 - 单类和多类微小物体悬浮定向移动及自主装巨量转移方法 - Google Patents
单类和多类微小物体悬浮定向移动及自主装巨量转移方法 Download PDFInfo
- Publication number
- WO2021179875A1 WO2021179875A1 PCT/CN2021/075998 CN2021075998W WO2021179875A1 WO 2021179875 A1 WO2021179875 A1 WO 2021179875A1 CN 2021075998 W CN2021075998 W CN 2021075998W WO 2021179875 A1 WO2021179875 A1 WO 2021179875A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solution
- target carrier
- bubbles
- patterned
- tiny
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67144—Apparatus for mounting on conductive members, e.g. leadframes or conductors on insulating substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C3/00—Assembling of devices or systems from individually processed components
- B81C3/001—Bonding of two components
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/68—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C2203/00—Forming microstructural systems
- B81C2203/05—Aligning components to be assembled
- B81C2203/052—Passive alignment, i.e. using only structural arrangements or thermodynamic forces without an internal or external apparatus
- B81C2203/055—Passive alignment, i.e. using only structural arrangements or thermodynamic forces without an internal or external apparatus using the surface tension of fluid solder to align the elements
Definitions
- the invention relates to the technical field of the movement of small objects, and more specifically, to a method for suspending and directional movement of single and multiple types of small objects and autonomously mounted massive transfer methods.
- Fine Pick/Place precise grasping a transfer head with a bipolar structure is used, and positive and negative voltages are applied during the transfer process. When picking a tiny object from the substrate, a silicon electrode is positively charged, and the tiny object will be attracted to the transfer head.
- Van der Waals force use elastic impression, combined with high-precision movement to control the print head, and use van der Waals force to change the speed of the print head to allow tiny objects to adhere to the transfer head or print to the target substrate.
- Magnetic force Before cutting, mix magnetic materials such as iron, cobalt and nickel on tiny objects, and use electromagnetic adsorption and release; 2) Selective Release: Selective release: directly from the original substrate without going through the pick-up link
- the main technology for transferring small objects is patterned laser: using excimer laser to irradiate the sparsely dispersed mold-sized area on the gallium nitride sheet on the growth interface, and then generate gallium metal and nitrogen through ultraviolet exposure to achieve parallel transfer To the substrate, to achieve precise optical array transfer;
- the purpose of the present invention is to overcome the problems of low transfer efficiency, low reliability, poor positioning accuracy, and poor operability in the existing methods for mass transfer of small objects, and to provide a single type of small objects suspended directional movement and autonomously mounted mass transfer methods .
- the invention can make the directional movement of the small objects and the mass transfer of autonomous installations have high efficiency, high positioning accuracy and easy operation.
- the invention also provides a method for floating and directional movement of multiple types of small objects and autonomously mounted massive transfer
- the technical solution adopted by the present invention is: a method of suspending and directional movement of small objects and autonomously mounted massive transfer, which includes the following steps:
- the dissolving gas treatment in step S5 is to use the bubbles of gas A to drive the tiny objects to move in suspension, to ensure that the appropriate amount of tiny objects can fully contact and bond with the target carrier. If there is no dissolved gas treatment, too many tiny objects If the object directly contacts the target carrier board, the tiny objects that are not bonded on the target carrier board will be washed off later, and a lot of tiny objects will be wasted.
- step S1 solution B is coated on the surface of the micro object, the solution B is infiltrated with the micro object but not with the solution A, and the solution B is a grease macromolecular organic substance or a silane coupling agent.
- the surface treatment of small objects is to coat solution B on the surface. Solution B prevents small objects from infiltrating in solution A.
- a pattern is generated on the target position on the surface of the target carrier by mechanical processing or chemical etching, and the surface of the pattern and the surface of the target carrier except the pattern are respectively coated with surfactant A and surface active Agent B, the pattern size matches the size of the tiny object.
- Surfactant A can infiltrate the patterned groove surface of the target carrier with the solution B coated on the surface of the micro object.
- Surfactant B can infiltrate the remaining surface of the target carrier with the solution A, but cannot interact with the micro The solution B coated on the surface of the object is infiltrated.
- the difference in the wetting properties of the micro-objects after surface treatment causes the micro-objects to have a certain degree of viscosity, which can bond the pattern at the target position of the target carrier in the solution A.
- the patterns are patterned protrusions/patterned grooves/planes, and the pattern of the target position on the target carrier plate may be patterned protrusions or patterned grooves, even if the pattern is flat. As long as the surface treatment of the target position is different from the surface treatment of the target carrier except for the target position.
- the target carrier plate is formed by superimposing two layers of carrier plates, the surface of the first layer is coated with surfactant A, and the target position of the first layer of carrier plate is printed with a size matching the size of the tiny object Through holes, surface active agent B is coated on the surface of the second layer of carrier board, and then the first layer of carrier board is press-fitted on the second layer of carrier board.
- the target carrier plate is formed by superimposing two layers of carrier plates. The surface of the first layer is coated with surfactant A. On the first layer of carrier plate, a signal with the same size as the size of the tiny object is printed at the target position. Hole, the surface of the second layer of carrier board is coated with surfactant B, and then the first layer of carrier board is press-fitted on the second layer of carrier board.
- step S4 lower the temperature of solution A and then dissolve into gas A, and then heat up or vibrate to make gas A separate from solution A to form bubbles, ultrasonic treatment disperses tiny objects, and the bubbles burst into several critical sizes Air bubbles, critical size air bubbles carry tiny objects up to the patterned grooves of the target carrier. After solution A is heated or vibrated with gas A, gas A will precipitate in solution A and generate bubbles. Ultrasonic treatment makes the tiny objects in solution A disperse each other and breaks the bubbles to a critical size. Under this critical size, The buoyancy of a single bubble can only carry a tiny object up to the target carrier.
- step S5 the temperature of the solution A is lowered, pressure is applied to it, and the solution A is left to stand still, so that the bubbles on the surface of the tiny object are dissolved in the solution A again.
- the bubbles dissolve and shrink to make the upper surface of the tiny object contact and bond with the target position.
- the bubble continues to shrink until it disappears, and the tiny object is completely adhered to the target position of the target carrier.
- the method of floating and directional movement of multiple types of small objects and autonomously mounted massive transfer method includes the following steps:
- solution A, solution B and solution of different surfactants and viscosity modifiers are respectively put in In solution C, the surface of each tiny object does not infiltrate with solution A, solution B, and solution C, and the density of solution A, solution B, and solution C is lower than that of the tiny object;
- the principle of the above method can also be used for the suspension and directional movement of two or more kinds of small objects and the autonomous transfer of large quantities.
- the present invention treats the surface of the small object and the target carrier with different solutions and surfactants, so that the small object can accurately find the target position on the target carrier plate; by passing the gas A into the solution A, the small object in the solution A Moving with the help of gas A makes small objects move in suspension; the whole operation process is easy to operate and has high positioning accuracy.
- FIG. 1 is a schematic diagram of the structure of the target carrier board of the method for suspending and directional movement of a single type of small objects and the method for autonomously mounted mass transfer of the present invention.
- Fig. 2 is a schematic diagram of the process of oriented and autonomous installation of small objects in the method for suspending and oriented movement of a single type of small objects and autonomous installation and mass transfer of the present invention.
- Fig. 3 is an enlarged schematic diagram of the target carrier board in the process of self-loading and massive transfer of small objects in Fig. 2.
- Figure 4 is a schematic diagram of the structure of the target carrier of the second embodiment.
- Fig. 5 is a schematic diagram of the orientation and self-assembly process of three small objects with different shapes in the second embodiment.
- 1-target carrier 2-patterned grooves, 3-micro objects, 4-first patterned grooves, 5-second patterned grooves, 6-third patterned grooves, 7-first micro Object, 8-second tiny object, 9-third tiny object.
- Figures 1 to 2 show the first embodiment of the method for floating and directional movement of a single type of small objects and autonomously mounted massive transfer of the present invention.
- the method of suspending and directional movement of a single type of small objects and autonomously mounted massive transfer includes the following steps:
- step S1 of this embodiment the surface treatment of the micro-object 3 is to coat the surface of the micro-object 3 with solution B, the solution B is infiltrated with the micro-object 3 but not with the solution A, and the solution B is a silane coupling agent Therefore, after the surface treatment of the small object 3, the patterned groove 2 of the target carrier 1 has higher adhesion, and the solution A3 needs to have a larger surface tension and a lower viscosity, so the solution A is mixed Persulfate and gelatin water.
- a patterned groove 2 is generated at the target position on the surface of the target carrier plate 1 by etching, and surfactant A and surfactant B are respectively coated on the patterned groove 2 and the remaining surfaces,
- the size of the patterned groove 2 at the target position is the same as the size of the minute object 3.
- the surfactant A can make the surface of the patterned groove 2 of the target carrier infiltrate the solution B coated on the surface of the micro-object 3
- the surfactant B can make the remaining surface of the target carrier 1 infiltrate with the solution A.
- step S4 of this embodiment gas A is dissolved in solution A at a low temperature, and then the gas A is separated from solution A by heating or vibrating to form bubbles, ultrasonic treatment disperses the tiny objects 3, and the bubbles are broken to Several critical-size bubbles make a single critical-size bubble wrap a single tiny object 3 and float in solution A. After solution A is heated or vibrated with gas A, gas A will precipitate in solution A and generate bubbles. Ultrasound treatment makes the tiny objects 3 in solution A disperse each other and breaks the bubbles to a critical size. , The buoyancy of a single bubble can only carry a tiny object 3 up to the surface of the target carrier 1.
- step S5 of this embodiment the temperature of the solution A is lowered, high pressure is applied to it, and the solution A is left to stand still, so that the critical size bubbles on the surface of the micro-object 3 are dissolved in the solution A again.
- the air bubbles of the critical size dissolve and shrink so that the upper surface of the tiny object 3 contacts and adheres to the patterned groove 2.
- the air bubble of the critical size continues to shrink until it disappears, and the tiny object 3 is completely adhered to the patterned groove of the target carrier 1 2.
- This embodiment is an embodiment of the method for floating and directional movement of multiple types of small objects and autonomously mounted mass transfer methods.
- the difference from the first embodiment is that in this embodiment, three different shapes of small objects are realized on a target carrier board.
- the numbers of the three kinds of micro-objects with different shapes and sizes are the first micro-object 7, the second micro-object 8 and the third micro-object 9, respectively.
- Patterned grooves of three shapes and sizes are made on the target carrier by etching, which are the first patterned groove 4, the second patterned groove 5, and the third patterned groove 6, respectively.
- the surfaces of the groove 4, the second patterned groove 5, and the third patterned groove 6 and the first small object 7, the second small object 8 and the third small object 9 are respectively subjected to different surface treatments.
- the surface of the patterned groove 4 is wetted with the surface of the first small object 7, the surface of the second patterned groove 5 is wetted with the surface of the second small object 8, and the surface of the third patterned groove 6 is wetted with the surface of the third small object 9. infiltration.
- Solution A is placed in the first tiny object 7
- solution B is placed in the second tiny object 8
- solution C is placed in the third tiny object 9.
- the first minute object 7 and the first patterned groove 4 of the target carrier show non-wetting to solution A, and the first minute object 7 is transferred through step S3 to step S6 of the first embodiment To the first patterned groove 4.
- step S3-step S6 of the first embodiment The second tiny object 8 is transferred to the second patterned groove 5, it should be noted that the solution A in step S3 to step S6 is replaced with solution B.
- step S3 to step S6 of the first embodiment the third minute object 9 is transferred to the third patterned groove 6.
- solution A in step S3 to step S6 is replaced with solution C.
- similar methods can be used to transfer two or more kinds of tiny objects.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Micromachines (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
本发明提供单类及多类微小物体悬浮定向移动及自主装巨量转移方法。通过对微小物体和目标载板进行表面处理,使目标载板目标位置具有不同的表面能。将微小物体和目标载板放入溶液中,在溶液中溶入或通入气体并析出气泡包裹微小物体进行悬浮上升靠近目标载板。利用目标载板目标位置的表面能的差异,使气泡和芯片被目标位置捕获并停留,再进行除气处理,使气泡溶解,微小物体与目标载板的目标位置进行结合。对目标载板不同目标位置进行差异化表面处理,可以进一步在不同溶液中依次实现多类微小物体的悬浮定向移动及自主装巨量转移。本发明提供单类及多类微小物体悬浮定向移动及自主装巨量转移方法,具有效率高,定位精度高,易操作的优点。
Description
本发明涉及微小物体移动技术领域,更具体地,涉及单类和多类微小物体悬浮定向移动及自主装巨量转移方法。
定向移动是材料加工与物质分离的重要手段,在材料、生物、电子等领域有广泛的应用。微小物体的巨量转移在微小物体等微型芯片、生物、材料领域具有重要应用价值。目前主要的巨量转移的技术分为几个类别:1)Fine Pick/Place精准抓取,主要是a)静电力:采用具有双极结构的转移头,在转移过程中分别施于正负电压,当从衬底上抓取微小物体时,对一硅电极通正电,微小物体就会吸附到转移头上,当需要把微小物体放在既定位置时,对另外一个硅电极通负电,即可完成转移;b)范德华力:使用弹性印模,结合高精度运动控制打印头,利用范德华力,通过改变打印头的速度,让微小物体黏附在转移头上,或打印到目标衬底片的预定位置上;c)磁力:在切割之前,在微小物体上混入诸如铁钴镍等磁性材料,利用电磁吸附和释放;2)Selective Release选择性释放:不经过拾取环节,直接从原有衬底上将微小物体进行转移,主要技术有图案化激光:使用准分子激光,照射在生长界面上的氮化镓薄片上稀疏分散的模具大小区域,再通过紫外线曝光产生镓金属和氮气,做到平行转移至衬底,实现精准的光学阵列转移;3)Self-Assembly自组装,主要使用流体力技术:利用刷桶在衬底上滚动,使得微小物体置于液体悬浮液中,通过流体力,使微小物体落入衬底上的对应井中。
对于微小物体的巨量转移,精准抓取和选择性释放转移方式存在转移效率低的问题,而自主装方式存在转移可靠性低,定位精度差,可操作性差的问题。转移效率和转移精度难以兼容。
发明内容
本发明的目的在于克服现有的微小物体的巨量转移方法存在转移效率低、可靠性低、定位精度差,可操作性差的问题,提供单类微小物体悬浮定向移动及自主装巨量转移方法。本发明能够使得微小物体的定向移动及自主装巨量转移效率高,定位精度高,易操作。
本发明还提供多类微小物体悬浮定向移动及自主装巨量转移方法
为解决上述技术问题,本发明采用的技术方案是:微小物体悬浮定向移动及自主装巨量转移方法,包括以下步骤:
S1.将待转移的微小物体进行表面处理后,放入具有表面活性剂和粘度调节剂的溶液A中,微小物体的表面不与溶液A发生浸润,溶液A密度低于微小物体;
S2.对目标载板进行图案化处理和表面处理,使其目标位置产生图案,且图案表面对溶液A不发生浸润但对微小物体表面发生浸润,目标载板上除所述图案之外的表面对溶液A发生浸润但对微小物体表面不发生浸润;
S3.将目标载板上具有图案的表面朝下浸入溶液A内,目标载板水平向下或倾斜向下;
S4.在溶液A中溶入气体A,使得气体A在溶液A中产生气泡,气泡吸附在微小物体表面,同时进行超声处理,使气泡破裂成若干个临界尺寸气泡,临界尺寸气泡携带微小物体上升至目标载板的图案;
S5.对溶液A进行溶气处理,气泡溶解,微小物体上表面与图案接触并粘结;
S6.将目标载板移出溶液A,并进行冲洗,烘干去除目标载板表面残余溶液。
在步骤S5中进行溶气处理是为了利用气体A的气泡带动微小物体进行悬浮移动,保证适量的微小物体能够与目标载板进行充分接触并粘结,若没有溶气处理,使得过多的微小物体直接与目标载板接触,会导致目标载板上未进行粘结的微小物体被后期洗掉处理,浪费较多的微小物体。
进一步的,在步骤S1中,在微小物体的表面涂覆溶液B,溶液B与微小物体发生浸润但不与溶液A发生浸润,溶液B为油脂大分子有机物或硅烷偶联剂。微小物体的表面处理就是在其表面上涂覆溶液B,溶液B使得微小物体在溶液A中不发生浸润。
进一步的,在步骤S2中,通过机械加工或化学刻蚀在目标载板表面的目标位置产生图案,在图案表面以及目标载板上除图案之外的表面分别涂覆表面活性剂A和表面活性剂B,图案大小与微小物体的尺寸相匹配。表面活性剂A能够使得目标载板的图案化凹槽表面与微小物体表面涂覆的溶液B发生浸润,表面活性剂B能够使得目标载板的其余表面与溶液A发生浸润,但不能够与微小物体表面涂覆的溶液B发生浸润。微小物体经过表面处理后浸润性质的差异,使 得微小物体产生一定粘性,能够在溶液A中能够对目标载板的目标位置的图案进行粘结。
进一步的,所述图案为图案化凸起/图案化凹槽/平面,目标载板上的目标位置的图案可以为图案化凸起也可以为图案化凹槽,甚至图案为平面也是可以的。只要目标位置的表面处理与目标载板除目标位置之外的表面处理不同即可。
优选的,在步骤S2中,目标载板由两层载板叠加而成,第一层表面涂覆表面活性剂A,在第一层载板的目标位置打出大小与微小物体的尺寸相匹配的通孔,在第二层载板的表面涂覆表面活性剂B,然后将第一层载板压合在第二层载板上。同样的,在步骤S2中,目标载板由两层载板叠加而成,第一层表面涂覆表面活性剂A,在第一层载板在目标位置打出大小与微小物体的尺寸相同的通孔,在第二层载板的表面涂覆表面活性剂B,然后将第一层载板压合在第二层载板上。
进一步的,在步骤S4中,降低溶液A的温度再溶入气体A,再通过升温或振动,使气体A从溶液A中析出形成气泡,超声处理分散微小物体,使气泡破裂成若干个临界尺寸气泡,临界尺寸气泡携带微小物体上升至目标载板的图案化凹槽。溶液A在通入气体A再进行升温或振动之后,气体A会在溶液A中析出产生气泡,超声处理使得溶液A中微小物体互相分散,并且使气泡破碎至临界尺寸,在该临界尺寸下,单个气泡的浮力仅能携带一个微小物体上升至目标载板。
进一步的,在步骤S5中,降低溶液A温度、对其施加压力并静置,使微小物体表面的气泡重新溶解于溶液A。气泡溶解并缩小,使微小物体上表面与目标位置接触并粘结,气泡持续缩小直到消失,微小物体完全粘结于目标载板的目标位置。
多类微小物体悬浮定向移动及自主装巨量转移方法,包括以下步骤:
S1.将待转移的三种不同形状尺寸的第一微小物体、第二微小物体和第三微小物体进行表面处理后,分别对应放入不同表面活性剂和粘度调节剂的溶液A、溶液B和溶液C中,各个微小物体的表面不与溶液A、溶液B和溶液C发生浸润,且溶液A、溶液B和溶液C密度低于微小物体;
S2.对目标载板进行图案化处理和表面处理,使其目标位置制作对应第一微小物体、第二微小物体和第三微小物体的第一图案化凹槽、第二图案化凹槽和第三图案化凹槽,且第一图案化凹槽、第二图案化凹槽和第三图案化凹槽对溶液A、 溶液B和溶液C不发生浸润,但第一图案化凹槽、第二图案化凹槽和第三图案化凹槽均只与对应匹配的第一微小物体、第二微小物体和第三微小物体表面发生浸润,目标载板上除所述第一图案化凹槽、第二图案化凹槽和第三图案化凹槽以外的表面对溶液A、溶液B和溶液C发生浸润但对第一微小物体、第二微小物体和第三微小物体表面均不发生浸润;
S3.将目标载板上具有所述第一图案化凹槽、第二图案化凹槽和第三图案化凹槽的表面朝下浸入溶液A内,目标载板水平向下或倾斜向下;
S4.在溶液A中溶入气体A,使得气体A在溶液A中产生气泡,气泡吸附在第一微小物体表面,同时进行超声处理,使气泡破裂成若干个临界尺寸气泡,临界尺寸气泡携带第一微小物体上升至目标载板的第一图案化凹槽;
S5.对溶液A进行溶气处理,气泡溶解,第一微小物体上表面与第一图案化凹槽接触并粘结;
S6.将目标载板移出溶液A,并进行冲洗,烘干去除目标载板表面残余溶液;
S7.将目标载板上具有所述第一图案化凹槽、第二图案化凹槽和第三图案化凹槽的表面朝下浸入溶液B内,目标载板水平向下或倾斜向下;
S8.在溶液B中溶入气体A,使得气体A在溶液B中产生气泡,气泡吸附在第二微小物体表面,同时进行超声处理,使气泡破裂成若干个临界尺寸气泡,临界尺寸气泡携带第二微小物体上升至目标载板的第二图案化凹槽;
S9.对溶液B进行溶气处理,气泡溶解,第二微小物体上表面与第二图案化凹槽接触并粘结;
S10.将目标载板移出溶液B,并进行冲洗,烘干去除目标载板表面残余溶液;
S11.将目标载板上具有所述第一图案化凹槽、第二图案化凹槽和第三图案化凹槽的表面朝下浸入溶液C内,目标载板水平向下或倾斜向下;
S12.在溶液C中溶入气体A,使得气体A在溶液C中产生气泡,气泡吸附在第三微小物体表面,同时进行超声处理,使气泡破裂成若干个临界尺寸气泡,临界尺寸气泡携带第三微小物体上升至目标载板的第三图案化凹槽;
S13.对溶液C进行溶气处理,气泡溶解,第三微小物体上表面与第三图案化凹槽接触并粘结;
S14.将目标载板移出溶液C,并进行冲洗,烘干去除目标载板表面残余溶液。
对于两种或三种以上微小物体进行悬浮定向移动及自主装巨量转移也可以 采用以上方法原理进行操作。
与现有技术相比,本发明的有益效果是:
本发明通过不同溶液与表面活性剂处理待微小物体和目标载体的表面,使得微小物体能在目标载板上精确找到目标位置;通过在溶液A中通入气体A,使得溶液A中的微小物体在气体A的帮助下进行移动,使得微小物体进行悬浮移动;整个操作过程易操作且定位精度高。
图1为本发明单类微小物体悬浮定向移动及自主装巨量转移方法的目标载板的结构示意图。
图2为本发明单类微小物体悬浮定向移动及自主装巨量转移方法的微小物体定向自主装的过程示意图。
图3为图2中微小物体自主装巨量转移过程中目标载板的放大示意图。
图4为第二实施例的目标载板的结构示意图.
图5为第二实施例的三种形状不同微小物体定向自主装的过程示意图。
图示标记说明如下:
1-目标载板,2-图案化凹槽,3-微小物体,4-第一图案化凹槽,5-第二图案化凹槽,6-第三图案化凹槽,7-第一微小物体,8-第二微小物体,9-第三微小物体。
下面结合具体实施方式对本发明作进一步的说明。其中,附图仅用于示例性说明,表示的仅是示意图,而非实物图,不能理解为对本专利的限制;为了更好地说明本发明的实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
本发明实施例的附图中相同或相似的标号对应相同或相似的部件;在本发明的描述中,需要理解的是,若有术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此附图中描述位置关系的用语仅用于示例性说明,不能理解为对本专利的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上 述术语的具体含义。
第一实施例
图1至图2所示为本发明单类微小物体悬浮定向移动及自主装巨量转移方法的第一实施例。单类微小物体悬浮定向移动及自主装巨量转移方法,其中,包括以下步骤:
S1.将待转移的微小物体3进行表面处理后,放入具有表面活性剂和粘度调节剂的溶液A中,微小物体3的表面不与溶液A发生浸润,溶液A密度低于微小物体3;
S2.对目标载板1进行图案化处理和表面处理,使其目标位置产生图案化凹槽2,且图案化凹槽2表面对溶液A不发生浸润但对微小物体3表面发生浸润,目标载板1上除图案化凹槽2之外的表面对溶液A发生浸润但对微小物体3表面不发生浸润;
S3.将目标载板1上具有图案化凹槽2表面朝下的方式浸入溶液A内,目标载板1倾斜向下;
S4.在溶液A中溶入气体A,气体A在溶液A中产生气泡,气泡吸附在微小物体3表面,同时进行超声处理,使气泡破裂成若干个临界尺寸的气泡,每个临界尺寸的气泡携带一个微小物体3上升至目标载板1的图案化凹槽;
S5.对溶液A进行溶气处理,气泡溶解,微小物体3上表面与图案化凹槽2接触并粘结;
S6.将目标载板1移出溶液A,并进行冲洗,烘干去除目标载板1表面残余溶液。
在本实施例的步骤S1中,微小物体3的表面处理就是在微小物体3的表面涂覆溶液B,溶液B与微小物体3发生浸润但不与溶液A发生浸润,溶液B为硅烷偶联剂,故微小物体3经过的表面处理后对目标载板1的图案化凹槽2具有较高的粘结性,且溶液A3需要具有较大表面张力和较低的粘度,故溶液A为混有过硫酸盐和明胶的水。
在本实施例的步骤S2中,通过刻蚀在目标载板1表面的目标位置产生图案化凹槽2,在图案化凹槽2和其余表面分别涂覆表面活性剂A和表面活性剂B,目标位置的图案化凹槽2大小与微小物体3的尺寸相同。其中,表面活性剂A能够使得目标载板的图案化凹槽2表面与微小物体3表面涂覆的溶液B发生浸 润,表面活性剂B能够使得目标载板1的其余表面与溶液A发生浸润,但不能够与微小物体3表面涂覆的溶液B发生浸润。
在本实施例的步骤S4中,在低温下对溶液A中溶入气体A,再通过升温或振动,使气体A从溶液A中析出形成气泡,超声处理分散微小物体3,并使气泡破碎至若干个临界尺寸的气泡,使得单个临界尺寸的气泡包裹着单个微小物体3在溶液A浮动。溶液A在通入气体A再进行升温或振动之后,气体A会在溶液A中析出产生气泡,超声处理使得溶液A中微小物体3互相分散,并且使气泡破碎至临界尺寸,在该临界尺寸下,单个气泡的浮力仅能携带一个微小物体3上升至目标载板1表面。
在本实施例的步骤S5中,降低溶液A温度、对其施加高压并静置,使微小物体3表面的临界尺寸的气泡重新溶解于溶液A。临界尺寸的气泡溶解并缩小,使微小物体3上表面与图案化凹槽2接触并粘结,临界尺寸的气泡持续缩小直到消失,微小物体3完全粘结于目标载板1的图案化凹槽2。
第二实施例
本实施例是多类微小物体悬浮定向移动及自主装巨量转移方法的实施例,与第一实施例所不同之处在于,本实施例中是在一块目标载板上实现三种形状不同微小物体进行悬浮定向移动及自主装巨量转移的方法。三种形状尺寸不同的微小物体的编号分别为第一微小物体7、第二微小物体8和第三微小物体9。
通过刻蚀在目标载板上制作三种形状尺寸的图案化凹槽,分别为第一图案化凹槽4、第二图案化凹槽5和第三图案化凹槽6,在第一图案化凹槽4、第二图案化凹槽5和第三图案化凹槽6的表面和第一微小物体7、第二微小物体8和第三微小物体9分别进行不同表面处理,处理后的第一图案化凹槽4表面与第一微小物体7表面发生浸润,第二图案化凹槽5表面与第二微小物体8表面发生浸润,第三图案化凹槽6表面与第三微小物体9表面发生浸润。
准备三种溶液,如图5,分别为溶液A,溶液B和溶液C,溶液A内放置第一微小物体7,溶液B内放置第二微小物体8,溶液C内放置第三微小物体9。
在溶液A中,第一微小物体7及目标载板的第一图案化凹槽4对溶液A表现出不浸润性,通过第一实施例的步骤S3至步骤S6,将第一微小物体7转移至第一图案化凹槽4。
再将目标载板放入溶液B中,第二微小物体8及目标载板的第二图案化凹 槽5对溶液B表现出不浸润性,通过第一实施例的步骤S3-步骤S6,将第二微小物体8转移至第二图案化凹槽5,需要说明的是,将步骤S3-步骤S6中的溶液A换成溶液B。
再将目标载板放入溶液C中,第三微小物体9及目标载板的第三图案化凹槽6对溶液C表现出不浸润性,通过第一实施例的步骤S3至步骤S6,将第三微小物体9转移至第三图案化凹槽6,需要说明的是,将步骤S3至步骤S6中的溶液A换成溶液C。完成了三种微小物体的定向移动及自主装巨量转移。需要说明的是,对于两种或三种以上微小物体也可用类似方法进行转移。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。
Claims (8)
- 单类微小物体悬浮定向移动及自主装巨量转移方法,其特征在于:包括以下步骤:S1.将待转移的微小物体进行表面处理后,放入具有表面活性剂和粘度调节剂的溶液A中,微小物体的表面不与溶液A发生浸润,溶液A密度低于微小物体;S2.对目标载板进行图案化处理和表面处理,使其目标位置产生图案,且图案表面对溶液A不发生浸润但对微小物体表面发生浸润,目标载板上除所述图案之外的表面对溶液A发生浸润但对微小物体的表面不发生浸润;S3.将目标载板上具有图案的表面朝下浸入溶液A内,目标载板水平向下或倾斜向下;S4.在溶液A中溶入气体A,使得气体A在溶液A中产生气泡,同时进行超声处理,使气泡破裂成若干个临界尺寸气泡,每个临界尺寸气泡携带一个微小物体上升至目标载板的图案处;S5.对溶液A进行溶气处理,气泡溶解,微小物体上表面与图案接触并粘结;S6.将目标载板移出溶液A,并进行冲洗,烘干去除目标载板表面残余溶液。
- 根据权利要求1所述的单类微小物体悬浮定向移动及自主装巨量转移方法,其特征在于:在步骤S1中,在微小物体的表面涂覆溶液B,溶液B与微小物体发生浸润但不与溶液A发生浸润,溶液B为油脂大分子有机物或硅烷偶联剂。
- 根据权利要求2所述的单类微小物体悬浮定向移动及自主装巨量转移方法,其特征在于:在步骤S2中,通过机械加工或化学刻蚀在目标载板表面的目标位置产生图案,在图案表面以及目标载板上除图案之外的表面分别涂覆表面活性剂A和表面活性剂B,图案大小与微小物体的尺寸相匹配。
- 根据权利要求3所述的单类微小物体悬浮定向移动及自主装巨量转移方法,其特征在于:所述图案为图案化凸起/图案化凹槽/平面。
- 根据权利要求3所述的单类微小物体悬浮定向移动及自主装巨量转移方法,其特征在于:在步骤S2中,目标载板由两层载板叠加而成,第一层表面涂覆表面活性剂A,在第一层载板的目标位置打出大小与微小物体的尺寸相匹配的通孔,在第二层载板的表面涂覆表面活性剂B,然后将第一层载板压合在第二层 载板上。
- 根据权利要求1所述的单类微小物体悬浮定向移动及自主装巨量转移方法,其特征在于:在步骤S4中,降低溶液A的温度再溶入气体A,再通过升温或振动,使气体A从溶液A中析出形成气泡,超声处理分散微小物体,使气泡破裂成若干个临界尺寸气泡,临界尺寸气泡携带微小物体上升至目标载板的图案化凹槽。
- 根据权利要求1所述的单类微小物体悬浮定向移动及自主装巨量转移方法,其特征在于:在步骤S5中,降低溶液A温度、对其施加压力并静置,使微小物体表面的气泡重新溶解于溶液A。
- 多类微小物体悬浮定向移动及自主装巨量转移方法,其特征在于:包括以下步骤:S1.将待转移的多种不同形状尺寸的第一微小物体、第二微小物体和第三微小物体进行表面处理后,分别对应放入不同表面活性剂和粘度调节剂的溶液A、溶液B和溶液C中,各个微小物体的表面不与溶液A、溶液B和溶液C发生浸润,且溶液A、溶液B和溶液C密度低于微小物体;S2.对目标载板进行图案化处理和表面处理,使其目标位置制作对应第一微小物体、第二微小物体和第三微小物体的第一图案化凹槽、第二图案化凹槽和第三图案化凹槽,且第一图案化凹槽、第二图案化凹槽和第三图案化凹槽对溶液A、溶液B和溶液C不发生浸润,但第一图案化凹槽、第二图案化凹槽和第三图案化凹槽均只与对应匹配的第一微小物体、第二微小物体和第三微小物体表面发生浸润,目标载板上除所述第一图案化凹槽、第二图案化凹槽和第三图案化凹槽以外的表面对溶液A、溶液B和溶液C发生浸润但对第一微小物体、第二微小物体和第三微小物体表面均不发生浸润;S3.将目标载板上具有所述第一图案化凹槽、第二图案化凹槽和第三图案化凹槽的表面朝下浸入溶液A内,目标载板水平向下或倾斜向下;S4.在溶液A中溶入气体A,使得气体A在溶液A中产生气泡,气泡吸附在第一微小物体表面,同时进行超声处理,使气泡破裂成若干个临界尺寸气泡,临界尺寸气泡携带第一微小物体上升至目标载板的第一图案化凹槽;S5.对溶液A进行溶气处理,气泡溶解,第一微小物体上表面与第一图案化凹槽接触并粘结;S6.将目标载板移出溶液A,并进行冲洗,烘干去除目标载板表面残余溶液;S7.将目标载板上具有所述第一图案化凹槽、第二图案化凹槽和第三图案化凹槽的表面朝下浸入溶液B内,目标载板水平向下或倾斜向下;S8.在溶液B中溶入气体A,使得气体A在溶液B中产生气泡,气泡吸附在第二微小物体表面,同时进行超声处理,使气泡破裂成若干个临界尺寸气泡,临界尺寸气泡携带第二微小物体上升至目标载板的第二图案化凹槽;S9.对溶液B进行溶气处理,气泡溶解,第二微小物体上表面与第二图案化凹槽接触并粘结;S10.将目标载板移出溶液B,并进行冲洗,烘干去除目标载板表面残余溶液;S11.将目标载板上具有所述第一图案化凹槽、第二图案化凹槽和第三图案化凹槽的表面朝下浸入溶液C内,目标载板水平向下或倾斜向下;S12.在溶液C中溶入气体A,使得气体A在溶液C中产生气泡,气泡吸附在第三微小物体表面,同时进行超声处理,使气泡破裂成若干个临界尺寸气泡,临界尺寸气泡携带第三微小物体上升至目标载板的第三图案化凹槽;S13.对溶液C进行溶气处理,气泡溶解,第三微小物体上表面与第三图案化凹槽接触并粘结;S14.将目标载板移出溶液C,并进行冲洗,烘干去除目标载板表面残余溶液。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010158051.2A CN111430272B (zh) | 2020-03-09 | 2020-03-09 | 单类和多类微小物体悬浮定向移动及自主装巨量转移方法 |
CN202010158051.2 | 2020-03-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021179875A1 true WO2021179875A1 (zh) | 2021-09-16 |
Family
ID=71553436
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/075998 WO2021179875A1 (zh) | 2020-03-09 | 2021-02-08 | 单类和多类微小物体悬浮定向移动及自主装巨量转移方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111430272B (zh) |
WO (1) | WO2021179875A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111430272B (zh) * | 2020-03-09 | 2023-02-03 | 广东工业大学 | 单类和多类微小物体悬浮定向移动及自主装巨量转移方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110112090A (zh) * | 2019-03-15 | 2019-08-09 | 泉州市盛维电子科技有限公司 | 统一微型发光二极管元器件取向的方法及应用其的巨量转移方法 |
CN110611018A (zh) * | 2019-10-21 | 2019-12-24 | 深圳市思坦科技有限公司 | Led芯片的转移方法、基板及系统 |
CN110767582A (zh) * | 2019-11-06 | 2020-02-07 | 广东工业大学 | 一种Micro-LED芯片的转移方法 |
CN111430272A (zh) * | 2020-03-09 | 2020-07-17 | 广东工业大学 | 单类和多类微小物体悬浮定向移动及自主装巨量转移方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1511632B1 (en) * | 2002-05-27 | 2011-11-02 | Koninklijke Philips Electronics N.V. | Method and device for transferring a pattern from a stamp to a substrate |
CN204824698U (zh) * | 2015-07-14 | 2015-12-02 | 三峡大学 | 一种具有荷叶效应表面的制备设备 |
US10889914B2 (en) * | 2018-02-12 | 2021-01-12 | The Trustees Of The Stevens Institute Of Technology | Location-specific growth and transfer of single crystalline TMD monolayer arrays |
CN109865485B (zh) * | 2019-03-06 | 2021-05-11 | 广东工业大学 | 一种微小物体的定向移动方法 |
-
2020
- 2020-03-09 CN CN202010158051.2A patent/CN111430272B/zh active Active
-
2021
- 2021-02-08 WO PCT/CN2021/075998 patent/WO2021179875A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110112090A (zh) * | 2019-03-15 | 2019-08-09 | 泉州市盛维电子科技有限公司 | 统一微型发光二极管元器件取向的方法及应用其的巨量转移方法 |
CN110611018A (zh) * | 2019-10-21 | 2019-12-24 | 深圳市思坦科技有限公司 | Led芯片的转移方法、基板及系统 |
CN110767582A (zh) * | 2019-11-06 | 2020-02-07 | 广东工业大学 | 一种Micro-LED芯片的转移方法 |
CN111430272A (zh) * | 2020-03-09 | 2020-07-17 | 广东工业大学 | 单类和多类微小物体悬浮定向移动及自主装巨量转移方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111430272B (zh) | 2023-02-03 |
CN111430272A (zh) | 2020-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2057006B1 (en) | Method for fabricating an electronic device | |
US8802214B2 (en) | Non-random array anisotropic conductive film (ACF) and manufacturing processes | |
Lv et al. | Directional droplet transport on functional surfaces with superwettabilities | |
WO2020125201A1 (zh) | 一种温控粘附式Micro-LED巨量转移方法 | |
CN107937915B (zh) | 一种基于激光直写技术的微液滴操控方法 | |
US20100126860A1 (en) | PCB Droplet Actuator Fabrication | |
TWI425582B (zh) | 形成自組裝之電氣接觸結構的方法 | |
KR101105991B1 (ko) | 침착 및 패턴 공정 | |
WO2021179875A1 (zh) | 单类和多类微小物体悬浮定向移动及自主装巨量转移方法 | |
KR20070084298A (ko) | 관통공을 갖는 금속제 기판을 사용한 마이크로스피어의제조 방법 | |
WO2021179874A1 (zh) | 单类和多类微小物体漂浮定向移动及自主装巨量转移方法 | |
WO2004082346A1 (ja) | 導電性ボールの搭載方法および搭載装置 | |
CN109475047B (zh) | 一种复杂曲面表面电路的制备方法及产品 | |
JPH0860400A (ja) | ラミナ金属箔のエッチング方法および電気エッチング装置 | |
Chang et al. | Self-transport and self-alignment of microchips using microscopic rain | |
CN111385974A (zh) | 一种电路制作方法及电路制作设备 | |
CN209756481U (zh) | 一种电路制作设备 | |
Zhang et al. | Titanium-based dielectrophoresis devices for microfluidic applications | |
US20060105549A1 (en) | Manipulation of micrometer-sized electronic objects with liquid droplets | |
CN115592127A (zh) | 具有三叠层结构的高精度陶瓷基叉指电极及其制造方法 | |
JP6944688B2 (ja) | 立体サンプル貼り付け用フィルムおよびその製造方法と、それを用いた微細パターン転写方法 | |
CN110369007A (zh) | 基于丝网印刷电极的低成本数字微流控芯片 | |
JP4362324B2 (ja) | 微粒子保持プレートとその製造方法 | |
Liu et al. | MEMS/microelectronics self-assembly based on analogy of Langmuir–Blodgett approach | |
Tkachenko et al. | Directed self-assembly of mesoscopic dies using magnetic force and shape recognition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21767494 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21767494 Country of ref document: EP Kind code of ref document: A1 |