WO2021179847A1 - 一种铁捕集废催化剂铂族金属渣型设计方法 - Google Patents

一种铁捕集废催化剂铂族金属渣型设计方法 Download PDF

Info

Publication number
WO2021179847A1
WO2021179847A1 PCT/CN2021/074715 CN2021074715W WO2021179847A1 WO 2021179847 A1 WO2021179847 A1 WO 2021179847A1 CN 2021074715 W CN2021074715 W CN 2021074715W WO 2021179847 A1 WO2021179847 A1 WO 2021179847A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
iron
waste
platinum group
phase
Prior art date
Application number
PCT/CN2021/074715
Other languages
English (en)
French (fr)
Inventor
张深根
丁云集
Original Assignee
北京科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京科技大学 filed Critical 北京科技大学
Priority to RU2021121092A priority Critical patent/RU2770393C1/ru
Priority to JP2021542210A priority patent/JP7080535B2/ja
Priority to EP21739905.4A priority patent/EP3907305A4/en
Publication of WO2021179847A1 publication Critical patent/WO2021179847A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/02Obtaining noble metals by dry processes
    • C22B11/021Recovery of noble metals from waste materials
    • C22B11/026Recovery of noble metals from waste materials from spent catalysts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to the technical field of platinum group metal recycling, in particular to a platinum group metal slag type design method for iron trap waste catalysts.
  • a Chinese invention patent discloses a method for recovering precious metal platinum from waste automobile catalysts using iron oxide as a collector.
  • FeO, CaO, Al 2 O 3 , MgO, and SiO 2 are used as the five-element slag system for smelting
  • the temperature is as high as 1600-2000°C.
  • the platinum content in the slag of this method is 5-15g/t, and the recovery rate is high (>99%).
  • the slag phase has a high melting point, a high viscosity, and a high melting temperature required to produce ferrosilicon alloys, and cause energy High consumption and high requirements for refractory materials increase production costs.
  • Chinese invention patent (application number: 201610883402.X) discloses the use of iron powder as a trapping agent, the recovery of platinum group metals from waste automobile exhaust catalysts only by adding calcium oxide slagging, and the use of plasma furnace for smelting at 1500-1800°C. It has the advantages of small amount of slag and high recovery rate of platinum and palladium (>99%), but the recovery rate of rhodium is low (about 90%).
  • the slag type is not optimized, the melting temperature is high, and it is easy to be insoluble to form ferrosilicon alloy, and the plasma furnace equipment is expensive and the operating cost is high.
  • the Chinese invention patent (application number: 201310005494.8) discloses the use of iron and copper as collectors to recover alumina-supported waste catalysts.
  • the slagging agent is only sodium salt, and the recovery rate of platinum group metals is higher than 98%.
  • the melting point of the slag phase is relatively high.
  • the sodium salt volatilizes seriously at high temperature.
  • Chinese invention patent (application number: 201611141140.6) discloses a method for extracting precious metals using iron-based materials as collectors.
  • the slagging agents are calcium oxide, silicon dioxide, calcium fluoride, aluminum oxide, magnesium oxide, sodium carbonate and Any one or a combination of any two or more of borax achieves high-efficiency iron capture of platinum group metals, but the method does not give specific slag types and slag phase composition ranges.
  • Iron powder is used as a collector to recover platinum group metals.
  • the smelting and capture process mainly includes the melting of iron, platinum group metals, and slag phases. Iron captures the precipitation of platinum group metals and Fe-PGMs. The precipitation process of Fe-PGMs continues to accumulate and Capture platinum group metals. Therefore, the platinum group metal capture rate depends on the content of Fe-PGMs in the slag. In order to increase the platinum group metal capture rate, it is necessary to reduce the platinum group metal content in the slag phase and improve the efficiency of slag type design.
  • the present invention provides a method for designing platinum group metal slag types in waste iron trapping catalysts.
  • the purpose is to efficiently allocate slag types according to the design method, reduce experimental workload, shorten the development cycle, and have rapid , Precision and high efficiency; at the same time, the present invention also provides cordierite, alumina, zeolite, silica as the carrier slag-type blending technology of platinum group metal waste catalysts, designed to have low melting point, low viscosity and density of the slag phase
  • the small slag type improves the separation efficiency of slag and iron, reduces the platinum group metal content in the slag, and realizes the high-efficiency and low-cost recovery of platinum group metals.
  • a method for designing platinum group metal slag in a waste iron trap catalyst characterized in that the method includes:
  • S1 analyzes the trajectory of iron droplets in the smelting slag, and obtains the relationship between the iron droplet diameter, the slag phase viscosity, and the slag phase density. According to the critical size and the settling velocity when the iron droplet settles completely , Clarify the slag phase viscosity and density range;
  • a slag forming agent is added to adjust the slag phase composition, and the slag type of the waste catalyst is verified and optimized to realize the efficient capture of platinum group metals.
  • step S1 is specifically:
  • L is the movement displacement (m) of the iron droplet, which can be obtained by measurement, and t is the settling time (s) after the iron is melted;
  • Control the smelting time based on the smelting efficiency that is, control the settling time t after the iron is melted; determine that the critical settling velocity of iron droplets ⁇ is not less than 1.0 ⁇ 10 -5 m/s, where the smelting efficiency is the quality of the spent catalyst smelted per unit time At this time, according to the size of the smelting furnace, control the smelting efficiency ⁇ 100kg/h;
  • the force balance equation of the iron droplets in the smelting slag is established: the iron droplets are affected by the three forces of gravity, buoyancy and viscous force in the smelting slag. When the medium gravity, buoyancy and viscous forces reach equilibrium, the iron droplets settle at a uniform speed; the force balance equation of the iron droplets in the smelting slag is as follows:
  • the density of smelting slag is mainly determined by chemical composition and temperature.
  • the density of smelting slag is estimated by the molar volume of pure components, as shown below:
  • V is the molar volume, respectively, and the molar mass of the oxide
  • X i is the molar volume of each component
  • X i 1773K molar volume of each component at 1773K
  • T is the absolute temperature (K)
  • the smelting slag density can be expressed as:
  • M is the molar mass of the smelting slag
  • a and B are constants related to the composition of the slag phase.
  • T is the absolute temperature (K)
  • a and b are constants related to the slag phase composition
  • the slag phase viscosity and density range corresponding to the complete settling of iron droplets is determined as follows: the slag phase viscosity is not higher than 0.30Pa ⁇ s, and the slag phase density is not more than 3.0 ⁇ 10 3 kg/m 3 .
  • thermodynamic software to simulate and calculate and determine the target slag phase composition is specifically: after determining the slag phase viscosity and density range corresponding to the complete settling of the iron droplets, selecting a suitable slag forming agent according to the carrier composition to determine the slag type , Fix the melting temperature T, use Pactsage thermodynamics software to calculate the corresponding slag phase composition range, select the composition range of the slag phase melting point lower than 1573K according to the silicate phase diagram, and determine the final target slag phase composition according to the principle of the least amount of slag.
  • the spent catalyst includes any one or a combination of any one or more of platinum group metal-containing catalysts supported by cordierite, alumina, zeolite, and silica.
  • the catalyst carrier is cordierite
  • the slag phase density ⁇ 2.75 ⁇ 10 3 kg/m 3
  • the slag phase viscosity ⁇ 0.20Pa ⁇ s
  • the added slag-forming agent includes calcium oxide and borax , Sodium carbonate, stainless steel slag, garbage incineration fly ash or a combination of more than one, the mass ratio of waste catalyst to slag-forming agent is 1:0.8-1:1.2;
  • the slag phase density is ⁇ 3.0 ⁇ 10 3 kg/m 3
  • the slag phase viscosity is ⁇ 0.30Pa ⁇ s
  • the melting temperature is 1723-1773K
  • the added slag-forming agent includes calcium oxide, borax, and dioxide
  • the mass ratio of waste catalyst and slag-forming agent is 1:1 -1:1.5;
  • the slag phase density is ⁇ 2.85 ⁇ 10 3 kg/m 3
  • the slag phase viscosity is ⁇ 0.22Pa ⁇ s
  • the melting temperature is 1623-1723K
  • the added slagging agent includes calcium oxide, borax, sodium carbonate, Two or more combinations of waste glass, stainless steel slag, waste incineration fly ash, and waste incineration bottom ash, and the mass ratio of waste catalyst to slag-forming agent is 1:0.5-1:1.1;
  • the slag phase density is ⁇ 2.45 ⁇ 10 3 kg/m 3
  • the slag phase viscosity is ⁇ 0.18Pa ⁇ s
  • the smelting temperature is 1573-1673K
  • the added slag-forming agents include calcium oxide, borax, and carbonic acid
  • designing the slag type using the slag type design method can improve the separation efficiency of the slag phase and the iron alloy, and reduce the platinum group metal content in the slag, so that the platinum group metal content in the slag does not exceed 10 g/t.
  • using iron to capture platinum group metals in the spent catalyst includes the following steps:
  • the principle of the present invention is: using the principle that iron and platinum group metals form a solid solution, in the smelting process, the trapping agent iron first melts and begins to settle due to gravity. The sedimentation process continuously captures platinum group metals and interacts with the surrounding iron droplets. When the fusion grows, gravity, viscous and buoyancy are involved in the process of settlement. After the three are balanced, they will fall at a uniform speed, and finally the alloy phase and the slag phase will be separated.
  • the trapping efficiency of platinum group metals depends on the iron droplets that have not entered the alloy phase, that is, the degree of separation of slag and iron.
  • the key of the present invention is to improve the separation efficiency of the slag phase and the iron alloy, and reduce the platinum group metal content in the slag.
  • the only factors that affect the capture rate are the melting temperature, time and slag phase composition.
  • the melting temperature and time are controlled, and the corresponding slag phase composition range is calculated through thermodynamic software and data.
  • the slag type design method of platinum group metals in the iron trap waste catalyst disclosed in the present invention determines the target slag type through modeling, calculation solution, and software simulation analysis, and adds a slag-forming agent to verify and optimize the slag phase composition.
  • the added slagging agent includes two or more of calcium oxide, borax, silica, sodium carbonate, quartz, waste glass, stainless steel slag, waste incineration fly ash, and waste incineration bottom ash.
  • waste glass and garbage incineration bottom ash are general solid wastes, which mainly contain SiO 2 , Na 2 O, SiO 2 and CaO respectively; stainless steel slag and garbage incineration fly ash are hazardous solid wastes, which mainly contain CaO, SiO 2 and K 2 respectively. O, Na 2 O, CaO, and heavy metals such as Cr, Pb, Zn, and Cd.
  • the slag type design method of the present invention not only greatly improves the research and development efficiency and shortens the research and development cycle of the slag type, the slag type designed by this method can also co-process part of the solid waste and hazardous solid waste, realizes the high-efficiency capture of platinum group metals, and has significant advantages Economic, environmental and social benefits.
  • the slag type design method of the present invention provides theoretical guidance and support for high-efficiency iron capture of platinum group metals, and the method can reduce the experimental workload, shorten the research and development period, and reduce the research and development cost.
  • the slag type design method of the present invention has a wide application range and a wide technical window, and is suitable for the preparation and composition optimization of various waste catalyst iron trapping platinum group metal slag types.
  • the slag type designed by the present invention has the characteristics of low viscosity, melting point, low viscosity, and low density, which is beneficial to improve the separation efficiency of slag and iron.
  • the platinum group metal content in the slag is less than 10g/t, and the platinum group metal recovery rate is not Less than 99%, with significant economic benefits.
  • solid waste or hazardous waste such as waste glass, stainless steel slag, garbage incineration fly ash, bottom ash, etc. can be added as a slag-making agent to realize waste treatment and waste recycling. Purpose.
  • Fig. 1 shows a flow chart of a method for designing platinum group metal slag in a waste iron trap catalyst according to an embodiment of the present invention.
  • the present invention is a slag-type design method for platinum group metals in iron trapping waste catalysts.
  • the trajectory of iron droplets in the smelting slag is first analyzed as follows: Then use Matlab to solve the relationship between the movement displacement of the iron droplet and the diameter of the iron droplet, determine the critical size when the iron droplet settles completely, and clarify the slag phase viscosity and density range. Thermodynamic software and data are used to calculate the target slag phase composition, and finally the slag type of the spent catalyst is verified and optimized to achieve high-efficiency capture of platinum group metals.
  • the boundary conditions are determined as follows: smelting temperature 1673K, sedimentation velocity ⁇ 1.0 ⁇ 10 -5 m/s, critical size ⁇ 20 ⁇ m, and the slag phase viscosity ⁇ 0.2Pa ⁇ s and density ⁇ 2.75 ⁇ 10 3 kg/m 3 .
  • the mass ratio of Al 2 O 3 /SiO 2 in the slag phase is defined as 1:1.4-1:1.6, Al 2 O 3 ⁇ 20wt.%, and the target slag type CaO 20-22wt.% and SiO 2 are simulated by thermodynamic software.
  • the boundary conditions are determined as follows: smelting temperature 1693K, sedimentation velocity ⁇ 1.7 ⁇ 10 -5 m/s, critical size ⁇ 17 ⁇ m, and the slag phase viscosity ⁇ 0.18Pa ⁇ s and density ⁇ 2.65 ⁇ 10 3 kg/m 3 .
  • the mass ratio of Al 2 O 3 /SiO 2 in the slag phase is defined as 1:1.4-1:1.6, Al 2 O 3 ⁇ 20wt.%, and the target slag type CaO 22-28wt.% and SiO 2 are simulated by thermodynamic software.
  • the platinum group metal content in the slag is 6.7g/t.
  • the particle size of the iron particles in the slag is found to be 6.4 ⁇ m by scanning electron microscope, which is consistent with the simulation results.
  • the boundary conditions are determined as follows: smelting temperature 1723K, sedimentation speed ⁇ 2.2 ⁇ 10 -5 m/s, critical size ⁇ 10 ⁇ m, and the slag phase viscosity ⁇ 0.16Pa ⁇ s and density ⁇ 2.45 ⁇ 10 3 kg/m 3 .
  • the mass ratio of Al 2 O 3 /SiO 2 in the slag phase is defined as 1:1.4-1:1.6, Al 2 O 3 ⁇ 20wt.%, and the target slag type CaO 20-25wt.% and SiO 2 are simulated by thermodynamic software.
  • the boundary conditions are determined as follows: smelting temperature 1723K, sedimentation speed ⁇ 1.6 ⁇ 10 -5 m/s, critical size ⁇ 10 ⁇ m, and the slag phase viscosity ⁇ 0.3Pa ⁇ s and density ⁇ 3.0 ⁇ 10 3 kg/m 3 .
  • the carrier composition limit the slag phase Al 2 O 3 ⁇ 40wt.%, and use thermodynamic software to simulate the target slag type CaO 25-35wt.%, SiO 2 8-12wt.%, Al 2 O 3 40-50wt.%, Na 2 O 8-12wt.%, Fe 2 O 3 2-4wt.%, CaF 2 3-4wt.%, B 2 O 3 3-5wt.%.
  • the simulated slag phase composition mix 100 parts of platinum-containing alumina carrier waste catalyst, 70 parts of waste incineration fly ash, 10 parts of quartz, 10 parts of waste glass, 26 parts of sodium carbonate, 8 parts of borax, and 15 parts of iron powder.
  • the boundary conditions are determined as follows: smelting temperature 1753K, sedimentation velocity ⁇ 1.64 ⁇ 10 -5 m/s, critical size ⁇ 16 ⁇ m, and the slag phase viscosity ⁇ 0.26Pa ⁇ s and density ⁇ 2.72 ⁇ 10 3 kg/m 3 .
  • limit the slag phase Al 2 O 3 ⁇ 45wt.% and use thermodynamic software to simulate the target slag type CaO 15-24wt.%, SiO 2 13-18wt.%, Al 2 O 3 45-55wt.%, Na 2 O 15-22wt.%, Fe 2 O 3 1-2wt.%, CaF 2 5-8wt.%, B 2 O 3 5-9wt.%.
  • the simulated slag phase composition 100 parts of palladium-containing alumina carrier waste catalyst, 40 parts of waste incineration fly ash, 30 parts of waste incineration bottom ash, 20 parts of waste glass, 40 parts of sodium carbonate, 10 parts of calcium fluoride, 10 parts of borax , 15 parts of iron powder are mixed and added to the melting furnace, preheated for 20 minutes, and then smelted at 1753K. After the material is melted, it is kept and settled for 70 minutes before casting.
  • the palladium content in the slag is 7.2g/t.
  • the slag is found by scanning electron microscope.
  • the particle size of the medium iron particles is 15.4 ⁇ m, which is consistent with the simulation results.
  • the boundary conditions are determined as follows: smelting temperature 1773K, sedimentation speed ⁇ 2.32 ⁇ 10 -5 m/s, critical size ⁇ 16 ⁇ m, and the slag phase viscosity ⁇ 0.22Pa ⁇ s and density ⁇ 2.56 ⁇ 10 3 kg/m 3 .
  • limit the slag phase Al 2 O 3 ⁇ 45wt.% and use thermodynamic software to simulate the target slag type CaO 27-32wt.%, SiO 2 10-13wt.%, Al 2 O 3 42-47wt.%, Na 2 O 13-15wt.%, Fe 2 O 3 1-3wt.%, CaF 2 4-5wt.%, B 2 O 3 4-5wt.%.
  • the simulated slag phase composition 100 parts of palladium-containing alumina carrier waste catalyst, 60 parts of waste incineration fly ash, 20 parts of waste incineration bottom ash, 22 parts of quartz, 20 parts of sodium carbonate, 11 parts of borax, and 10 parts of iron powder are mixed After homogenization, put it into the smelting furnace, preheat for 30min, and then smelt at 1773K. After the material is melted, it is kept and settled for 30min before casting.
  • the palladium content in the slag is 6.3g/t, and the iron particle size in the slag is found to be 5.6 by scanning electron microscope. ⁇ m, which is consistent with the simulation results.
  • the boundary conditions are determined as follows: smelting temperature 1623K, sedimentation velocity ⁇ 1.3 ⁇ 10 -5 m/s, critical size ⁇ 15 ⁇ m, and the slag phase viscosity ⁇ 0.22Pa ⁇ s and density ⁇ 2.85 ⁇ 10 3 kg/m 3 .
  • limit the slag phase SiO 2 ⁇ 40wt.% and use thermodynamic software to simulate the target slag type CaO 20-36wt.%, SiO 2 40-60wt.%, Al 2 O 3 20-33wt.%, Na 2 O 8-15wt.%, Fe 2 O 3 2-4wt.%, B 2 O 3 2-8wt.%.
  • the simulated slag phase composition mix 100 parts of platinum-containing zeolite carrier waste catalyst, 50 parts of waste incineration fly ash, 20 parts of stainless steel slag, 10 parts of waste glass, 24 parts of sodium carbonate, 6 parts of borax, and 15 parts of iron powder. It was added to the smelting furnace, preheated for 20 minutes, then smelted for 180 minutes at 1623K, and then cast. The platinum content in the slag was 5.9g/t. Scanning electron microscopy found that the particle size of iron particles in the slag was 13.4 ⁇ m, which was consistent with the simulation results.
  • the boundary conditions are determined as follows: smelting temperature 1723K, sedimentation velocity ⁇ 2.5 ⁇ 10 -5 m/s, critical size ⁇ 13 ⁇ m, and the solution is to obtain the slag phase viscosity ⁇ 0.19Pa ⁇ s and density ⁇ 2.45 ⁇ 10 3 kg/m 3 .
  • the carrier composition limit the slag phase SiO 2 ⁇ 40wt.%, and use thermodynamic software to simulate the target slag type CaO 15-24wt.%, SiO 2 40-56wt.%, Al 2 O 3 18-27wt.%, Na 2 O 12-23wt.%, Fe 2 O 3 1-3wt.%, B 2 O 3 4-11wt.%.
  • the simulated slag phase composition 100 parts of palladium-containing zeolite carrier waste catalyst, 20 parts of calcium oxide, 25 parts of waste incineration bottom ash, 34 parts of sodium carbonate, 10 parts of borax, and 15 parts of iron powder are mixed and added to the smelting furnace. , Preheated for 30 minutes, then smelted at 1723K for 100 minutes, and then cast.
  • the palladium content in the slag is 4.1g/t. Scanning electron microscopy shows that the particle size of iron particles in the slag is 8.1 ⁇ m, which is consistent with the simulation results.
  • the boundary conditions are determined as follows: smelting temperature 1573K, sedimentation velocity ⁇ 1.2 ⁇ 10 -5 m/s, critical size ⁇ 15 ⁇ m, and the slag phase viscosity is ⁇ 0.18Pa ⁇ s and density ⁇ 2.45. ⁇ 10 3 kg/m 3 .
  • limit the slag phase SiO 2 ⁇ 60wt.% and use thermodynamic software to simulate the target slag type CaO 10-25wt.%, SiO 2 60-78wt.%, Al 2 O 3 7-15wt.%, Na 2 O 0-20wt.%, Fe 2 O 3 0-2wt.%, B 2 O 3 0-3wt.%.
  • the simulated slag phase composition 100 parts of platinum-containing silica carrier waste catalyst, 10 parts of calcium oxide, 10 parts of waste incineration bottom ash, 10 parts of stainless steel slag, 5 parts of sodium carbonate, 5 parts of borax, and 10 parts of iron powder are mixed After homogenization, put it into the smelting furnace, preheat for 20 minutes, and then smelt at 1573K. After the material is completely melted, it will settle for 60 minutes and then cast.
  • the platinum content in the slag is 9.5g/t
  • the iron particle size in the slag is 10.7 by scanning electron microscope. ⁇ m, which is consistent with the simulation results.
  • the boundary conditions are determined as follows: smelting temperature 1623K, sedimentation speed ⁇ 2.1 ⁇ 10 -5 m/s, critical size ⁇ 16 ⁇ m, and the slag phase viscosity ⁇ 0.16 Pa ⁇ s and density ⁇ 2.4 ⁇ 10 3 kg/m 3 .
  • the carrier composition limit the slag phase SiO 2 ⁇ 65wt.%, and use thermodynamic software to simulate the target slag type CaO 12-23wt.%, SiO 2 65-74wt.%, Al 2 O 3 10-21wt.%, Na 2 O 5-14wt.%, Fe 2 O 3 1-2wt.%, B 2 O 3 2-8wt.%.
  • the simulated slag phase composition 100 parts of palladium-containing silica carrier waste catalyst, 30 parts of waste incineration fly ash, 12 parts of sodium carbonate, 10 parts of borax, and 10 parts of iron powder are mixed and added to the smelting furnace and preheated 15min, then smelt at 1623K. After the material is completely melted, it settles for 30min and then cast.
  • the palladium content in the slag is 7.1g/t. Scanning electron microscopy shows that the particle size of iron particles in the slag is 12.3 ⁇ m, which is consistent with the simulation results.
  • the boundary conditions are determined as follows: smelting temperature 1673K, sedimentation rate ⁇ 3.6 ⁇ 10 -5 m/s, critical size ⁇ 14 ⁇ m, and the solution is to obtain the slag phase viscosity ⁇ 0.16Pa ⁇ s and density ⁇ 2.37 ⁇ 10 3 kg/m 3 .
  • the carrier composition limit the slag phase SiO 2 ⁇ 70wt.%, and use thermodynamic software to simulate the target slag type CaO 0-20wt.%, SiO 2 70-80wt.%, Al 2 O 3 5-15wt.%, Na 2 O 10-20wt.%, B 2 O 3 5-15wt.%.
  • the simulated slag phase composition 100 parts of palladium-containing silica carrier waste catalyst, 10 parts of calcium oxide, 10 parts of silica, 15 parts of sodium carbonate, 5 parts of borax, and 10 parts of iron powder are mixed and added to the smelting furnace It is preheated for 20 minutes and then smelted at 1673K. After the material is completely melted, it settles for 240 minutes and then casts.
  • the palladium content in the slag is 3.7g/t. Scanning electron microscopy shows that the particle size of iron particles in the slag is 8.6 ⁇ m, which is consistent with the simulation results. Coincide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种铁捕集废催化剂中铂族金属渣型设计方法。基于渣相与铁相易分离、渣中铂族金属含量低的要求,通过分析铁液滴在熔炼渣中的运动轨迹,明确铁液滴沉降完全时渣相粘度、密度等范围区间,采用热力学软件模拟计算并确定渣型,根据渣相最少原则,添加造渣剂,设计出渣相熔点低、粘度小的渣型,提高渣铁的分离效率,降低渣中铂族金属含量,实现铂族金属的高效捕集。提供的渣型设计方法适用范围广,适合于堇青石、氧化铝、沸石、二氧化硅为载体的铂族金属催化剂,同时可协同处置部分固废,设计的渣相与铁相分离效果好,具有成本低、铂族金属回收率高等优点,适合于工业化生产。

Description

一种铁捕集废催化剂铂族金属渣型设计方法 技术领域
本发明涉及铂族金属循环利用技术领域,特别涉及一种铁捕集废催化剂铂族金属渣型设计方法。
背景技术
我国铂族金属矿产资源极度匮乏,原矿产量仅为2-3吨,但消耗量却高达150吨,是全球最大的铂族金属消费国,供需矛盾极其突出。废催化剂是铂族金属二次资源最重要的来源,其回收将有效缓解我国铂族金属的供应风险,已成为研究的重点。
中国发明专利(申请号:201810185054.8)公开了采用铁氧化物为捕集剂回收汽车废催化剂中贵金属铂的方法,以FeO、CaO、Al 2O 3、MgO、SiO 2为五元渣系,熔炼温度高达1600-2000℃。该方法渣中铂含量5-15g/t,回收率高(>99%),但因渣型设计不合理,渣相熔点高,粘度大,所需熔炼温度高,生成硅铁合金,且造成能耗大、对耐火材料要求高,使生产成本增大。中国发明专利(申请号:201610883402.X)公开了以铁粉为捕集剂,仅通过加入氧化钙造渣回收废汽车尾气催化剂中铂族金属,采用等离子体炉在1500-1800℃下熔炼,具有渣量少、铂钯回收率高(>99%)的优点,但铑回收率低(约90%)。但因渣型没有优化,致熔炼温度高,易难溶生成硅铁合金,且等离子体炉设备昂贵,运行成本高。中国发明专利(申请号:201310005494.8)公开了以铁、铜为捕集剂回收氧化铝载体废催化剂, 造渣剂仅为钠盐,实现了铂族金属回收率高于98%。但仅通过添加钠盐造渣实际很难达到上述效果,渣相熔点较高,同时钠盐在高温下挥发严重。中国发明专利(申请号:201611141140.6)公开了一种以铁基材料为捕集剂提取贵金属的方法,造渣剂为氧化钙、二氧化硅、氟化钙、氧化铝、氧化镁、碳酸钠和硼砂中的任意一种或任意两种以上的组合,实现了铂族金属高效铁捕集,但该方法未给出具体的渣型以及渣相成分区间。
以铁粉为捕集剂回收铂族金属,熔炼捕集过程主要包括铁、铂族金属、渣相的熔化,铁捕集铂族金属和Fe-PGMs沉降,其中Fe-PGMs沉降过程不断聚集和捕集铂族金属。因此,铂族金属捕集率取决于渣中Fe-PGMs的含量。为了提高铂族金属捕集率,需要降低渣相中铂族金属含量,提高渣型设计效率。
发明内容
针对上述技术问题,本发明提供了一种铁捕集废催化剂中铂族金属渣型设计方法,其目的在于根据该设计方法高效进行渣型的调配,减少实验工作量,缩短研发周期,具有快速、精准、高效的特点;同时本发明还提供了堇青石、氧化铝、沸石、二氧化硅为载体的含铂族金属废催化剂的渣型调配技术,设计出渣相熔点低、粘度小、密度小的渣型,提高渣铁的分离效率,降低渣中铂族金属含量,实现铂族金属的高效、低成本回收。
本发明采用如下技术方案:
一种铁捕集废催化剂中铂族金属渣型设计方法,其特征在于,所 述方法包括:
S1通过分析铁液滴在熔炼渣中的运动轨迹,得到铁液滴匀速沉降速度与铁液滴直径、渣相粘度及渣相密度的关系,根据铁液滴沉降完全时的临界尺寸和沉降速度,明确渣相粘度和密度范围;
S2根据废催化剂载体类型,选择造渣剂种类,明确渣相元素的组成,选取合适的熔炼温度区间,采用热力学软件模拟计算并确定目标渣相成分;
S3根据模拟确定的目标渣相成分,以废催化剂载体为基础,添加造渣剂进行渣相成分调配,对废催化剂的渣型进行验证与优化,实现铂族金属的高效捕集。
进一步地,步骤S1具体为:
(1)确定铁液滴的临界尺寸d不大于20μm,铁液滴的临界尺寸d为熔渣中未沉降的铁液滴最大尺寸;铁液滴的临界尺寸的确定过程具体是:根据已有实验数据,明确铂族金属回收率与铁液滴直径d的经验关系,当铁液滴的临界尺寸不大于20μm时,铂族金属回收率不低于99%;
(2)基于熔炼效率确定铁液滴临界沉降速度ν:
因铁液滴的沉降过程以匀速运动为主,其运动位移近似与沉降时间成正比,
L=vt
其中:L为铁液滴的运动位移(m),可通过测量获得,t为铁熔化后的沉降时间(s);
基于熔炼效率控制熔炼时间,即控制铁熔化后的沉降时间t;确定铁液滴临界沉降速度ν不低于1.0×10 -5m/s,其中,熔炼效率是单位时间内熔炼废催化剂的质量,此时,根据熔炼炉的大小,控制熔炼效率≥100kg/h;
(3)根据铁液滴沉降完全时的铁液滴的临界尺寸d和铁液滴临界沉降速度ν,确定铁液滴沉降完全所对应的渣相粘度和密度关系:
根据铁液滴在熔炼渣中的受力分析,建立铁液滴在熔炼渣中受力平衡方程:铁液滴在熔炼渣中受重力、浮力和粘滞力三个力的作用,在沉降过程中重力、浮力和粘滞力三者达到平衡时,铁液滴匀速沉降;铁液滴在熔炼渣中受力平衡方程如下:
Figure PCTCN2021074715-appb-000001
确定在熔炼渣中受力平衡时铁液滴相对渣相的沉降速度ν与铁液滴直径d的关系为:
Figure PCTCN2021074715-appb-000002
根据公式(2)确定铁液滴沉降完全所对应的渣相粘度和密度关系;
式(1)和式(2)中:η为渣相的粘度,单位为Pa·s;d为铁液滴的临界直径,单位为m;ν是受力平衡时铁液滴相对渣相的沉降速度,单位为m/s;ρ Fe为铁液滴密度,单位为kg/m 3;ρ s为熔炼渣密度,单位为kg/m 3;g为重力加速度,单位为m/s 2
由于铁合金中铂族金属含量约1.0-2.0wt.%,将铁液滴密度近似 为纯铁密度:ρ Fe=8.58×10 3-0.853T kg/m 3
熔炼渣的密度主要由化学成分和温度决定,熔炼渣的密度用纯组元摩尔体积来估计,如下所示:
V=∑X iV i          (式3)
Figure PCTCN2021074715-appb-000003
其中:V分别为氧化物的摩尔体积和摩尔质量,X i为各组元的摩尔体积,X i,1773K各组元在1773K下的摩尔体积,T为绝对温度(K);
进而,熔炼渣密度可表示为:
Figure PCTCN2021074715-appb-000004
其中:M为熔炼渣摩尔质量,A和B是与渣相成分有关的常数。
进一步的,渣相粘度主要由温度与化学成分决定,如(式7)所示:
Figure PCTCN2021074715-appb-000005
其中:T为绝对温度(K),a和b是与渣相成分有关的常数;
(4)在1573-1773K的熔炼温度范围内,确定铁液滴沉降完全所对应的渣相粘度和密度范围为:渣相粘度不高于0.30Pa·s,渣相密度不大于3.0×10 3kg/m 3
进一步地,所述采用热力学软件模拟计算并确定目标渣相成分,具体为:确定铁液滴沉降完全所对应的渣相粘度和密度范围后,根据载体成分选择合适的造渣剂,明确渣型,固定熔炼温度T,采用Pactsage热力学软件计算得到对应的渣相成分范围,依据硅酸盐相图选取渣相熔点低于1573K的成分区间,根据渣量最少原则,确定最 终的目标渣相成分。
进一步地,所述废催化剂包括以堇青石、氧化铝、沸石、二氧化硅为载体的含铂族金属催化剂中任意一种或任意一种以上的组合。
进一步地,当催化剂载体为堇青石时,优选渣相密度≤2.75×10 3kg/m 3,渣相粘度≤0.20Pa·s,熔炼温度1673-1723K;添加的造渣剂包括氧化钙、硼砂、碳酸钠、不锈钢渣、垃圾焚烧飞灰一种或一种以上的组合,废催化剂与造渣剂的质量比为1:0.8-1:1.2;
当催化剂载体为氧化铝时,优选渣相密度≤3.0×10 3kg/m 3,渣相粘度≤0.30Pa·s,熔炼温度1723-1773K;添加的造渣剂包括氧化钙、硼砂、二氧化硅、碳酸钠、氟化钙、石英、废玻璃、不锈钢渣、垃圾焚烧飞灰、垃圾焚烧底灰中的两种或两种以上的组合,废催化剂与造渣剂的质量比为1:1-1:1.5;
当催化剂载体为沸石时,优选渣相密度≤2.85×10 3kg/m 3,渣相粘度≤0.22Pa·s,熔炼温度1623-1723K;添加的造渣剂包括氧化钙、硼砂、碳酸钠、废玻璃、不锈钢渣、垃圾焚烧飞灰、垃圾焚烧底灰中的两种或两种以上的组合,废催化剂与造渣剂的质量比为1:0.5-1:1.1;
当催化剂载体为二氧化硅时,优选渣相密度≤2.45×10 3kg/m 3,渣相粘度≤0.18Pa·s,熔炼温度1573-1673K;添加的造渣剂包括氧化钙、硼砂、碳酸钠、不锈钢渣、垃圾焚烧飞灰、垃圾焚烧底灰中的两种或两种以上的组合,废催化剂与造渣剂的质量比为1:0.4-1:1.0。
进一步地,采用所述渣型设计方法设计渣型能够提高渣相与铁合金的分离效率,降低渣中铂族金属含量,使渣中铂族金属含量不高于 10g/t。
进一步地,采用铁捕集废催化剂中铂族金属包括如下步骤:
S1、将配比好的捕集剂、废催化剂、造渣剂混匀后装入熔炼炉内;
S2、先预热10-30min,然后开始升温熔炼;
S3、反应完全后静置,使合金熔体充分捕集铂族金属并沉入底部;渣金分离得到富含铂族金属的铁合金和熔炼渣。
本发明的原理为:利用铁与铂族金属形成固溶体的原理,在熔炼过程中,捕集剂铁首先熔化,因重力作用开始沉降,沉降过程不断捕集铂族金属并与周围的铁液滴融合长大,沉降过程受重力、粘滞力和浮力作用,三者平衡后匀速下降,最终达到合金相与渣相分离。铂族金属的捕集效率取决于未进入合金相中的铁液滴,即渣铁分离程度。因此,本发明的关键在于提高渣相与铁合金的分离效率,降低渣中铂族金属含量。通过建模、求解和分析,影响捕集率的因素只有熔炼温度、时间和渣相成分,控制熔炼温度和时间,通过热力学软件和数据计算得到对应的渣相成分范围。
本发明公开的铁捕集废催化剂中铂族金属的渣型设计方法通过建模、计算求解、软件模拟分析确定目标渣型,添加造渣剂验证并优化渣相成分。根据目标渣型要求,添加的造渣剂包括氧化钙、硼砂、二氧化硅、碳酸钠、石英、废玻璃、不锈钢渣、垃圾焚烧飞灰、垃圾焚烧底灰中的两种或两种以上。其中废玻璃、垃圾焚烧底灰为一般固废,分别主要含SiO 2、Na 2O和SiO 2和CaO;不锈钢渣、垃圾焚烧飞灰属于危险固废,分别主要含CaO、SiO 2和K 2O、Na 2O、CaO,同 时含有Cr、Pb、Zn、Cd等重金属。本发明的渣型设计方法不仅大幅提高研发效率,缩短渣型的研发周期,利用本方法设计的渣型还可协同处置部分固废和危险固废,实现铂族金属高效捕集,具有显著的经济、环境和社会效益。
本发明的有益效果为:
(1)本发明的渣型设计方法为高效铁捕集铂族金属提供了理论指导和支撑,利用该方法能减少实验工作量,缩短研发周期,降低研发成本。
(2)本发明渣型设计方法适用范围广,技术窗口宽,适合于各类废催化剂铁捕集铂族金属渣型的调配及成分优化。
(3)利用本发明设计的渣型具有粘度熔点低、粘度小、密度小等特点,有利于提高渣铁的分离效率,渣中铂族金属含量低于10g/t,铂族金属回收率不小于99%,具有显著的经济效益。
(4)针对本发明设计的目标渣相成分,可通过添加废玻璃、不锈钢渣、垃圾焚烧飞灰、底灰等固废或危废作为造渣剂,实现以废治废、废物循环利用的目的。
附图说明
图1所示为本发明实施例一种铁捕集废催化剂中铂族金属渣型设计方法流程图。
具体实施方式
下文将结合具体附图详细描述本发明具体实施例。应当注意的是,下述实施例中描述的技术特征或者技术特征的组合不应当被认为是 孤立的,它们可以被相互组合从而达到更好的技术效果。在下述实施例的附图中,各附图所出现的相同标号代表相同的特征或者部件,可应用于不同实施例中。
本发明为一种铁捕集废催化剂中铂族金属的渣型设计方法,如图1所述,首先对铁液滴在熔炼渣中运动轨迹进行分析如下:
Figure PCTCN2021074715-appb-000006
然后采用Matlab求解得到铁液滴的运动位移与铁液滴直径的关系,确定铁液滴沉降完全时的临界尺寸,明确渣相粘度和密度范围。采用热力学软件和数据计算出目标渣相成分,最后对废催化剂的渣型进行验证与优化,实现铂族金属的高效捕集。
以下结合具体实施例对本发明的实现进行详细描述:
实施例1
以堇青石载体废催化剂为原料,确定边界条件如下:熔炼温度1673K、沉降速度≥1.0×10 -5m/s、临界尺寸≤20μm,求解得到渣相粘度≤0.2Pa·s和密度≤2.75×10 3kg/m 3。根据载体成分,限定渣相Al 2O 3/SiO 2质量比1:1.4-1:1.6,Al 2O 3≥20wt.%,采用热力学软件模拟得到目标渣型CaO 20-22wt.%、SiO 2 23-35wt.%、Al 2O 3 21-23wt.%、Na 2O 8-11wt.%、MgO 7-9wt.%、ZrO 2 4-6wt.%、CeO 2 2-4wt.%、Fe 2O 3 2-4wt.%、B 2O 3 3-5wt.%。根据模拟的渣相成分,将100份废汽车尾气催化剂、45份氧化钙、34份碳酸钠、10份硼砂、10份铁粉、5份氟化钙混匀后加入到熔炼炉中,预热15min,然后在1673K条件下熔炼,待物料熔化后保温沉降120min后浇铸,渣中铂族金属含量为8.2g/t,通过扫描电镜发现渣中铁微粒粒径为12.8μm。
实施例2
以堇青石载体废催化剂为原料,确定边界条件如下:熔炼温度1693K、沉降速度≥1.7×10 -5m/s、临界尺寸≤17μm,求解得到渣相粘度≤0.18Pa·s和密度≤2.65×10 3kg/m 3。根据载体成分,限定渣相Al 2O 3/SiO 2质量比1:1.4-1:1.6,Al 2O 3≥20wt.%,采用热力学软件模拟得到目标渣型CaO 22-28wt.%、SiO 2 22-26wt.%、Al 2O 3 20-25wt.%、Na 2O 5-17wt.%、MgO 7-10wt.%、ZrO 2 4-6wt.%、CeO 2 3-4wt.%、Fe 2O 3 2-4wt.%、B 2O 3 3-5wt.%。根据模拟的渣相成分,将100份废汽车尾气催化剂、60份不锈钢渣、30份碳酸钠、7份硼砂、13份铁粉混匀后加入到熔炼炉中,预热20min,然后在1693K条件下熔炼,待物料熔化后保温沉降100min后浇铸,渣中铂族金属含量为6.7g/t,通过扫描电镜发现渣中铁微粒粒径为6.4μm,与模拟结果相吻合。
实施例3
以堇青石载体废催化剂为原料,确定边界条件如下:熔炼温度1723K、沉降速度≥2.2×10 -5m/s、临界尺寸≤10μm,求解得到渣相粘度≤0.16Pa·s和密度≤2.45×10 3kg/m 3。根据载体成分,限定渣相Al 2O 3/SiO 2质量比1:1.4-1:1.6,Al 2O 3≥20wt.%,采用热力学软件模拟得到目标渣型CaO 20-25wt.%、SiO 2 24-30wt.%、Al 2O 3 22-28wt.%、Na 2O 14-22wt.%、MgO 6-13wt.%、ZrO 2 4-6wt.%、CeO 2 3-4wt.%、Fe 2O 3 2-4wt.%、B 2O 3 5-9wt.%。根据模拟的渣相成分,将100份废汽车尾气催化剂、40份垃圾焚烧飞灰、40份不锈钢渣、25份碳酸钠、15份硼砂、15份铁粉混匀后加入到熔炼炉中,预热20min,然后在 1723K条件下熔炼,待物料熔化后保温沉降50min后浇铸,渣中铂族金属含量为5.2g/t,通过扫描电镜发现渣中铁微粒粒径为4.8μm,与模拟结果相吻合。
实施例4
以氧化铝载体废催化剂为原料,确定边界条件如下:熔炼温度1723K、沉降速度≥1.6×10 -5m/s、临界尺寸≤10μm,求解得到渣相粘度≤0.3Pa·s和密度≤3.0×10 3kg/m 3。根据载体成分,限定渣相Al 2O 3≥40wt.%,采用热力学软件模拟得到目标渣型CaO 25-35wt.%、SiO 2 8-12wt.%、Al 2O 3 40-50wt.%、Na 2O 8-12wt.%、Fe 2O 3 2-4wt.%、CaF 2 3-4wt.%、B 2O 3 3-5wt.%。根据模拟的渣相成分,将100份含铂氧化铝载体废催化剂、70份垃圾焚烧飞灰、10份石英、10份废玻璃、26份碳酸钠、8份硼砂、15份铁粉混匀后加入到熔炼炉中,预热20min,然后在1723K条件下熔炼,待物料熔化后保温沉降70min后浇铸,渣中铂含量为9.4g/t,通过扫描电镜发现渣中铁微粒粒径为14.5μm,与模拟结果相吻合。
实施例5
以氧化铝载体废催化剂为原料,确定边界条件如下:熔炼温度1753K、沉降速度≥1.64×10 -5m/s、临界尺寸≤16μm,求解得到渣相粘度≤0.26Pa·s和密度≤2.72×10 3kg/m 3。根据载体成分,限定渣相Al 2O 3≥45wt.%,采用热力学软件模拟得到目标渣型CaO 15-24wt.%、SiO 2 13-18wt.%、Al 2O 3 45-55wt.%、Na 2O 15-22wt.%、Fe 2O 3 1-2wt.%、CaF 2 5-8wt.%、B 2O 3 5-9wt.%。根据模拟的渣相成分,将100份含钯 氧化铝载体废催化剂、40份垃圾焚烧飞灰、30份垃圾焚烧底灰、20份废玻璃、40碳酸钠、10份氟化钙、10份硼砂、15份铁粉混匀后加入到熔炼炉中,预热20min,然后在1753K条件下熔炼,待物料熔化后保温沉降70min后浇铸,渣中钯含量为7.2g/t,通过扫描电镜发现渣中铁微粒粒径为15.4μm,与模拟结果相吻合。
实施例6
以氧化铝载体废催化剂为原料,确定边界条件如下:熔炼温度1773K、沉降速度≥2.32×10 -5m/s、临界尺寸≤16μm,求解得到渣相粘度≤0.22Pa·s和密度≤2.56×10 3kg/m 3。根据载体成分,限定渣相Al 2O 3≥45wt.%,采用热力学软件模拟得到目标渣型CaO 27-32wt.%、SiO 2 10-13wt.%、Al 2O 3 42-47wt.%、Na 2O 13-15wt.%、Fe 2O 3 1-3wt.%、CaF 2 4-5wt.%、B 2O 3 4-5wt.%。根据模拟的渣相成分,将100份含钯氧化铝载体废催化剂、60份垃圾焚烧飞灰、20份垃圾焚烧底灰、22份石英、20份碳酸钠、11份硼砂、10份铁粉混匀后加入到熔炼炉中,预热30min,然后在1773K条件下熔炼,待物料熔化后保温沉降30min后浇铸,渣中钯含量为6.3g/t,通过扫描电镜发现渣中铁微粒粒径为5.6μm,与模拟结果相吻合。
实施例7
以沸石载体废催化剂为原料,确定边界条件如下:熔炼温度1623K、沉降速度≥1.3×10 -5m/s、临界尺寸≤15μm,求解得到渣相粘度≤0.22Pa·s和密度≤2.85×10 3kg/m 3。根据载体成分,限定渣相SiO 2≥40wt.%,采用热力学软件模拟得到目标渣型CaO 20-36wt.%、 SiO 2 40-60wt.%、Al 2O 3 20-33wt.%、Na 2O 8-15wt.%、Fe 2O 3 2-4wt.%、B 2O 3 2-8wt.%。根据模拟的渣相成分,将100份含铂沸石载体废催化剂、50份垃圾焚烧飞灰、20份不锈钢渣、10份废玻璃、24份碳酸钠、6份硼砂、15份铁粉混匀后加入到熔炼炉中,预热20min,然后在1623K条件下熔炼180min后浇铸,渣中铂含量为5.9g/t,通过扫描电镜发现渣中铁微粒粒径为13.4μm,与模拟结果相吻合。
实施例8
以沸石载体废催化剂为原料,确定边界条件如下:熔炼温度1723K、沉降速度≥2.5×10 -5m/s、临界尺寸≤13μm,求解得到渣相粘度≤0.19Pa·s和密度≤2.45×10 3kg/m 3。根据载体成分,限定渣相SiO 2≥40wt.%,采用热力学软件模拟得到目标渣型CaO 15-24wt.%、SiO 2 40-56wt.%、Al 2O 3 18-27wt.%、Na 2O 12-23wt.%、Fe 2O 3 1-3wt.%、B 2O 3 4-11wt.%。根据模拟的渣相成分,将100份含钯沸石载体废催化剂、20份氧化钙、25份垃圾焚烧底灰、34份碳酸钠、10份硼砂、15份铁粉混匀后加入到熔炼炉中,预热30min,然后在1723K条件下熔炼100min后浇铸,渣中钯含量为4.1g/t,通过扫描电镜发现渣中铁微粒粒径为8.1μm,与模拟结果相吻合。
实施例9
以二氧化硅载体废催化剂为原料,确定边界条件如下:熔炼温度1573K、沉降速度≥1.2×10 -5m/s、临界尺寸≤15μm,求解得到渣相粘度≤0.18Pa·s和密度≤2.45×10 3kg/m 3。根据载体成分,限定渣相SiO 2≥60wt.%,采用热力学软件模拟得到目标渣型CaO 10-25wt.%、 SiO 2 60-78wt.%、Al 2O 3 7-15wt.%、Na 2O 0-20wt.%、Fe 2O 3 0-2wt.%、B 2O 3 0-3wt.%。根据模拟的渣相成分,将100份含铂二氧化硅载体废催化剂、10份氧化钙、10份垃圾焚烧底灰、10份不锈钢渣、5份碳酸钠、5份硼砂、10份铁粉混匀后加入到熔炼炉中,预热20min,然后在1573K条件下熔炼,待物料完全熔化后沉降60min后浇铸,渣中铂含量为9.5g/t,通过扫描电镜发现渣中铁微粒粒径为10.7μm,与模拟结果相吻合。
实施例10
以二氧化硅载体废催化剂为原料,确定边界条件如下:熔炼温度1623K、沉降速度≥2.1×10 -5m/s、临界尺寸≤16μm,求解得到渣相粘度≤0.16Pa·s和密度≤2.4×10 3kg/m 3。根据载体成分,限定渣相SiO 2≥65wt.%,采用热力学软件模拟得到目标渣型CaO 12-23wt.%、SiO 2 65-74wt.%、Al 2O 3 10-21wt.%、Na 2O 5-14wt.%、Fe 2O 3 1-2wt.%、B 2O 3 2-8wt.%。根据模拟的渣相成分,将100份含钯二氧化硅载体废催化剂、30份垃圾焚烧飞灰、12份碳酸钠、10份硼砂、10份铁粉混匀后加入到熔炼炉中,预热15min,然后在1623K条件下熔炼,待物料完全熔化后沉降30min后浇铸,渣中钯含量为7.1g/t,通过扫描电镜发现渣中铁微粒粒径为12.3μm,与模拟结果相吻合。
实施例11
以二氧化硅载体废催化剂为原料,确定边界条件如下:熔炼温度1673K、沉降速度≥3.6×10 -5m/s、临界尺寸≤14μm,求解得到渣相粘度≤0.16Pa·s和密度≤2.37×10 3kg/m 3。根据载体成分,限定渣相 SiO 2≥70wt.%,采用热力学软件模拟得到目标渣型CaO 0-20wt.%、SiO 2 70-80wt.%、Al 2O 3 5-15wt.%、Na 2O 10-20wt.%、B 2O 3 5-15wt.%。根据模拟的渣相成分,将100份含钯二氧化硅载体废催化剂、10份氧化钙、10份二氧化硅、15份碳酸钠、5份硼砂、10份铁粉混匀后加入到熔炼炉中,预热20min,然后在1673K条件下熔炼,待物料完全熔化后沉降240min后浇铸,渣中钯含量为3.7g/t,通过扫描电镜发现渣中铁微粒粒径为8.6μm,与模拟结果相吻合。

Claims (7)

  1. 一种铁捕集废催化剂中铂族金属渣型设计方法,其特征在于,所述方法包括:
    S1通过分析铁液滴在熔炼渣中的运动轨迹,根据铁液滴沉降完全时的临界尺寸和沉降速度,明确渣相粘度和密度范围;
    S2根据废催化剂载体类型,选择造渣剂种类,明确渣相元素的组成,选取合适的熔炼温度区间,采用热力学软件模拟计算并确定目标渣相成分;
    S3根据模拟确定的目标渣相成分,以废催化剂载体为基础,添加造渣剂进行渣相成分调配,对废催化剂的渣型进行验证与优化,实现铂族金属的高效捕集。
  2. 根据权利要求1所述一种铁捕集废催化剂中铂族金属渣型设计方法,其特征在于,步骤S1具体为:
    (1)确定铁液滴的临界尺寸d不大于20μm;
    (2)基于熔炼效率确定铁液滴临界沉降速度ν:铁液滴受力平衡时沉降速度不低于1.0×10 -5m/s;
    (3)根据铁液滴沉降完全时的铁液滴的临界尺寸d和铁液滴临界沉降速度ν,确定铁液滴沉降完全所对应的渣相粘度和密度关系:
    Figure PCTCN2021074715-appb-100001
    其中:铁液滴临界沉降速度ν是指在熔炼渣中铁液滴受力平衡时铁液滴相对渣相的沉降速度,单位为m/s;η为渣相的粘度,单位为Pa·s;d为铁液滴受力平衡时铁液滴的直径,单位为m;ρ Fe为铁液滴 密度,单位为kg/m 3;ρ s为熔炼渣密度,单位为kg/m 3;g为重力加速度,单位为m/s 2
    其中,熔炼渣密度ρ s及渣相的粘度η仅和渣相成分及熔炼温度有关:
    Figure PCTCN2021074715-appb-100002
    Figure PCTCN2021074715-appb-100003
    M为熔炼渣摩尔质量,单位为kg/mol;T为熔炼温度,单位为K;A、B、a和b是和渣相成分有关的常数;
    (4)在1573-1773K的熔炼温度范围内,确定铁液滴沉降完全所对应的渣相粘度和密度范围为:渣相粘度不高于0.30Pa·s,渣相密度不大于3.0×10 3kg/m 3
  3. 根据权利要求1所述一种铁捕集废催化剂中铂族金属渣型设计方法,其特征在于,所述采用热力学软件模拟计算并确定目标渣相成分,具体为:确定铁液滴沉降完全所对应的渣相粘度和密度范围后,根据载体成分选择合适的造渣剂,明确渣型,固定熔炼温度T,采用热力学软件计算得到对应的渣相成分范围,依据硅酸盐相图选取渣相熔点低于1573K的成分区间,根据渣量最少原则,确定最终的目标渣相成分。
  4. 根据权利要求1所述一种铁捕集废催化剂中铂族金属渣型设计方法,其特征在于,所述废催化剂包括以堇青石、氧化铝、沸石、二氧化硅为载体的含铂族金属催化剂中任意一种或任意一种以上的组合。
  5. 根据权利要求1所述一种铁捕集废催化剂中铂族金属渣型设计方法,其特征在于,当催化剂载体为堇青石时,渣相密度≤2.75×10 3kg/m 3,渣相粘度≤0.20Pa·s,熔炼温度1673-1723K;添加的造渣剂包括氧化钙、硼砂、碳酸钠、不锈钢渣、垃圾焚烧飞灰一种或一种以上的组合,废催化剂与造渣剂的质量比为1:0.8-1:1.2;
    当催化剂载体为氧化铝时,渣相密度≤3.0×10 3kg/m 3,渣相粘度≤0.30Pa·s,熔炼温度1723-1773K;添加的造渣剂包括氧化钙、硼砂、二氧化硅、碳酸钠、氟化钙、石英、废玻璃、不锈钢渣、垃圾焚烧飞灰、垃圾焚烧底灰中的两种或两种以上的组合,废催化剂与造渣剂的质量比为1:1-1:1.5;
    当催化剂载体为沸石时,渣相密度≤2.85×10 3kg/m 3,渣相粘度≤0.22Pa·s,熔炼温度1623-1723K;添加的造渣剂包括氧化钙、硼砂、碳酸钠、废玻璃、不锈钢渣、垃圾焚烧飞灰、垃圾焚烧底灰中的两种或两种以上的组合,废催化剂与造渣剂的质量比为1:0.5-1:1.1;
    当催化剂载体为二氧化硅时,渣相密度≤2.45×10 3kg/m 3,渣相粘度≤0.18Pa·s,熔炼温度1573-1673K;添加的造渣剂包括氧化钙、硼砂、碳酸钠、不锈钢渣、垃圾焚烧飞灰、垃圾焚烧底灰中的两种或两种以上的组合,废催化剂与造渣剂的质量比为1:0.4-1:1.0。
  6. 根据权利要求1所述一种铁捕集废催化剂中铂族金属渣型设计方法,其特征在于,采用所述渣型设计方法设计渣型能够提高渣相与铁合金的分离效率,降低渣中铂族金属含量,使渣中铂族金属含量不高于10g/t。
  7. 根据权利要求1-6任一项所述一种铁捕集废催化剂中铂族金属渣型设计方法,其特征在于,采用铁捕集废催化剂中铂族金属包括如下步骤:
    S1、将配比好的捕集剂、废催化剂、造渣剂混匀后装入熔炼炉内;
    S2、先预热10-30min,然后开始升温熔炼;
    S3、反应完全后静置,使合金熔体充分捕集铂族金属并沉入底部;渣金分离得到富含铂族金属的铁合金和熔炼渣。
PCT/CN2021/074715 2020-07-03 2021-02-01 一种铁捕集废催化剂铂族金属渣型设计方法 WO2021179847A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2021121092A RU2770393C1 (ru) 2020-07-03 2021-02-01 Способ подбора состава шлака для извлечения металлов платиновой группы из отработанного катализатора с помощью железа в качестве коллектора
JP2021542210A JP7080535B2 (ja) 2020-07-03 2021-02-01 鉄を利用して廃触媒中の白金族金属を捕集するスラグ組成の設計方法
EP21739905.4A EP3907305A4 (en) 2020-07-03 2021-02-01 METHOD FOR PREPARING A SLAB TYPE FOR CAPTURING A PLATINUM GROUP METAL IN A WASTE CATALYST USING IRON

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010631384.2 2020-07-03
CN202010631384.2A CN111893314B (zh) 2020-07-03 2020-07-03 一种铁捕集废催化剂铂族金属渣型设计方法

Publications (1)

Publication Number Publication Date
WO2021179847A1 true WO2021179847A1 (zh) 2021-09-16

Family

ID=73192857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074715 WO2021179847A1 (zh) 2020-07-03 2021-02-01 一种铁捕集废催化剂铂族金属渣型设计方法

Country Status (6)

Country Link
EP (1) EP3907305A4 (zh)
JP (1) JP7080535B2 (zh)
CN (1) CN111893314B (zh)
RU (1) RU2770393C1 (zh)
WO (1) WO2021179847A1 (zh)
ZA (1) ZA202105070B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115612859A (zh) * 2022-10-28 2023-01-17 安徽工业大学 一种铋捕集废催化剂中铂族金属的方法
CN116622999A (zh) * 2023-05-31 2023-08-22 昆明理工大学 一种富集铂族金属的方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111893314B (zh) * 2020-07-03 2021-06-29 北京科技大学 一种铁捕集废催化剂铂族金属渣型设计方法
CN112575177A (zh) * 2020-11-24 2021-03-30 金川集团股份有限公司 一种降低有色难熔物料熔点和粘度的方法
CN113881856B (zh) * 2021-09-13 2022-12-09 昆明贵研新材料科技有限公司 一种从氧化铝载体废催化剂中回收铂族金属的方法
CN113862478B (zh) * 2021-09-17 2022-05-31 北京科技大学 一种废氧化铝基半再生重整催化剂铂铼的回收方法
CN115323188B (zh) * 2022-07-27 2023-11-07 中南大学 一种铜捕集失效催化剂中铂族金属的方法
CN115418492B (zh) * 2022-09-21 2023-10-24 安徽工业大学 一种低温熔炼铜捕集废汽车尾气催化剂中铂族金属的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102796877A (zh) * 2012-08-27 2012-11-28 贵研铂业股份有限公司 一种从含铑有机废催化剂中富集铑的方法
CN106756084A (zh) * 2016-12-12 2017-05-31 北京科技大学 一种以铁基材料为捕集剂提取贵金属的方法
US20190256949A1 (en) * 2019-04-29 2019-08-22 Techemet, LP Low-Flux Converting Process for PGM Collector Alloy
CN111893314A (zh) * 2020-07-03 2020-11-06 北京科技大学 一种铁捕集废催化剂铂族金属渣型设计方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3839431B2 (ja) * 2003-10-07 2006-11-01 松田産業株式会社 白金族金属の回収方法
RU2248406C1 (ru) * 2004-01-20 2005-03-20 Бодров Сергей Георгиевич Способ разделения многокомпонентного материала, содержащего металлические компоненты
JP4370401B2 (ja) * 2004-03-11 2009-11-25 Dowaメタルマイン株式会社 製錬炉およびこれを用いた白金族元素の回収法
WO2010130388A1 (en) * 2009-05-14 2010-11-18 Umicore Recovery of precious metals from spent homogeneous catalysts
RU2531333C2 (ru) * 2012-06-25 2014-10-20 Радик Расулович Ахметов Способ извлечения металлов платиновой группы из отработанных автомобильных катализаторов
CN103184345A (zh) * 2013-03-26 2013-07-03 昆明贵金属研究所 一种从熔炼铁捕集物料中除铁富集铂族金属的方法
RU2564187C2 (ru) * 2013-12-25 2015-09-27 Открытое акционерное общество "Приокский завод цветных металлов" Способ извлечения платиновых металлов из отработанных катализаторов на носителях из оксида алюминия
CN107043842B (zh) * 2017-01-20 2019-01-04 中钢集团鞍山热能研究院有限公司 一种lf精炼炉最优经济配料和智能控制模型
CN107092714A (zh) * 2017-03-13 2017-08-25 昆明理工大学 一种火法炼铜炉渣渣型定量优化的方法
CN108441647A (zh) * 2018-03-07 2018-08-24 东北大学 一种火法回收汽车废催化剂中贵金属铂的方法
CN108897957A (zh) * 2018-07-03 2018-11-27 安徽工业大学 一种钢渣界面处夹杂物去除的判断方法及其去除率计算方法
CN108875285A (zh) * 2018-08-15 2018-11-23 安徽工业大学 一种钢水精炼渣成分设计方法
CN108823418B (zh) * 2018-08-23 2020-02-14 贵研资源(易门)有限公司 失效汽车催化剂协同回收贵金属的方法
CN109033715B (zh) * 2018-09-05 2023-05-16 鞍钢股份有限公司 一种高炉渣二元碱度确定方法
CN110735042B (zh) * 2019-11-08 2021-04-13 北京科技大学 一种Fe-PGMs合金的碎化方法
CN110835686B (zh) * 2019-11-29 2021-03-19 北京科技大学 一种铂族金属捕集剂及铂族金属回收方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102796877A (zh) * 2012-08-27 2012-11-28 贵研铂业股份有限公司 一种从含铑有机废催化剂中富集铑的方法
CN106756084A (zh) * 2016-12-12 2017-05-31 北京科技大学 一种以铁基材料为捕集剂提取贵金属的方法
US20190256949A1 (en) * 2019-04-29 2019-08-22 Techemet, LP Low-Flux Converting Process for PGM Collector Alloy
CN111893314A (zh) * 2020-07-03 2020-11-06 北京科技大学 一种铁捕集废催化剂铂族金属渣型设计方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DING YUNJI: "Research on the Mechanism and Application of Platinum Group Metals Enrichment from Spent Catalysts", DOCTORAL DISSERTATIONS, 31 December 2019 (2019-12-31), XP055843326 *
See also references of EP3907305A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115612859A (zh) * 2022-10-28 2023-01-17 安徽工业大学 一种铋捕集废催化剂中铂族金属的方法
CN115612859B (zh) * 2022-10-28 2024-02-09 安徽工业大学 一种铋捕集废催化剂中铂族金属的方法
CN116622999A (zh) * 2023-05-31 2023-08-22 昆明理工大学 一种富集铂族金属的方法

Also Published As

Publication number Publication date
CN111893314A (zh) 2020-11-06
JP2022522099A (ja) 2022-04-14
RU2770393C1 (ru) 2022-04-15
EP3907305A4 (en) 2022-05-04
JP7080535B2 (ja) 2022-06-06
CN111893314B (zh) 2021-06-29
EP3907305A1 (en) 2021-11-10
ZA202105070B (en) 2021-08-25

Similar Documents

Publication Publication Date Title
WO2021179847A1 (zh) 一种铁捕集废催化剂铂族金属渣型设计方法
US8882881B2 (en) Method for concentrating and recovering precious metals from spent mobile phone PCBS and spent auto-catalysts using waste nonferrous slag
CN101509077B (zh) 矿相重构从汽车催化剂中提取铂钯铑的方法
CN108441647A (zh) 一种火法回收汽车废催化剂中贵金属铂的方法
Zheng et al. Slag design and iron capture mechanism for recovering low-grade Pt, Pd, and Rh from leaching residue of spent auto-exhaust catalysts
CN112011696B (zh) 一种火法富集铝基废催化剂中铂族金属的方法
CN111575489A (zh) 一种火法处理废汽车尾气催化剂的方法
CN106086461A (zh) 一种铜冶炼过程造渣除砷的方法
Shi et al. Titanium extraction from titania-bearing blast furnace slag: a review
CN112958584B (zh) 一种二次铝灰渣还原危险固废重金属及熔渣利用的方法
Guo et al. Element distribution in oxygen-enriched bottom-blown smelting of high-arsenic copper dross
CN102534236A (zh) 一种回收冶金渣料中有价金属的方法
CN115505777A (zh) 一种铝镧硼钛晶粒细化剂的制备方法
Xie et al. Recovery of lead from spent lead paste by pre-desulfurization and low-temperature reduction smelting
CN106282568A (zh) 一种从失效汽车尾气催化剂金属载体中富集铂族金属的方法
Liu et al. A novel method for extraction of platinum from spent automotive catalyst: utilization of spent fluid catalytic cracking catalyst as flux
CN112941341B (zh) 一种锑金复杂资源协同冶炼方法
CN116814974A (zh) 以镍铁尾渣为熔剂火法回收汽车废催化剂中铂族金属的方法
RU2564187C2 (ru) Способ извлечения платиновых металлов из отработанных катализаторов на носителях из оксида алюминия
CN107058776A (zh) 一种协同亚共晶铸造铝硅合金变质与微合金化的方法
CN114381610B (zh) 废汽车催化剂贵金属的绿色高效回收方法
Sun et al. Recovery of platinum and synthesis of glass–ceramic from spent automotive catalyst via co-treatment process with coal fly ash
CN113528852B (zh) 一种高砷铅冰铜脱砷脱铅的生产方法
CN102409160A (zh) 一种去除低品位铝土矿中钛铁的方法
RU2248406C1 (ru) Способ разделения многокомпонентного материала, содержащего металлические компоненты

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021542210

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021739905

Country of ref document: EP

Effective date: 20210722

NENP Non-entry into the national phase

Ref country code: DE