WO2021179793A1 - 一种产生假光信号的装置以及级联系统 - Google Patents

一种产生假光信号的装置以及级联系统 Download PDF

Info

Publication number
WO2021179793A1
WO2021179793A1 PCT/CN2021/072128 CN2021072128W WO2021179793A1 WO 2021179793 A1 WO2021179793 A1 WO 2021179793A1 CN 2021072128 W CN2021072128 W CN 2021072128W WO 2021179793 A1 WO2021179793 A1 WO 2021179793A1
Authority
WO
WIPO (PCT)
Prior art keywords
band
false light
false
output
signal
Prior art date
Application number
PCT/CN2021/072128
Other languages
English (en)
French (fr)
Inventor
钟胜前
陈健
林友熙
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21767346.6A priority Critical patent/EP4109791A4/en
Publication of WO2021179793A1 publication Critical patent/WO2021179793A1/zh
Priority to US17/941,401 priority patent/US12074689B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • H04J14/02212Power control, e.g. to keep the total optical power constant by addition of a dummy signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/03WDM arrangements
    • H04J14/0305WDM arrangements in end terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0009Construction using wavelength filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/1301Optical transmission, optical switches

Definitions

  • This application relates to the field of optical communications, and in particular to a device for generating false optical signals and a cascade system.
  • wavelength division multiplexing (WDM) technology enables dozens or even hundreds of optical channels in an optical fiber, and with the use of optical fiber amplifiers, high-power multi-wavelength optical signals It is coupled into an optical fiber, which causes multi-wavelength optical signals to be concentrated on a small interface. At this time, the optical fiber begins to exhibit nonlinear characteristics and becomes a key factor limiting transmission performance.
  • WDM wavelength division multiplexing
  • the embodiments of the present application provide a device for generating false light signals, which is used to reduce the cost of generating false light signals.
  • an embodiment of the present application provides a device for generating false optical signals, the specific structure of which includes: a multi-longitudinal mode laser and a comb-shaped band-pass optical filter; wherein, the multi-longitudinal-mode laser and the comb-shaped band-pass optical filter The filter is connected; the multi-longitudinal mode laser is used to provide a light source signal and output to the comb band pass optical filter; the comb band pass optical filter filters the light source signal and then outputs a false light signal, wherein the Fake optical signals are optical signals that do not contain service information.
  • the device for generating false light signals may also be called a false light device.
  • the false light device In order to achieve channel equalization, the false light device needs to generate a false light signal consistent with the service signal.
  • the multi-longitudinal mode laser can be a Fabry-Perot (FP) laser or other lasers.
  • the cost of the multi-longitudinal mode laser and the comb-shaped band-pass optical filter is relatively low, thereby reducing the cost of generating false optical signals.
  • the fake optical signal is a multi-wavelength signal with a preset wavelength interval. It is understandable that the false optical signal may be a multi-wavelength signal with equal intervals.
  • the comb-shaped bandpass optical filter may be an etalon or a gain flattening filter.
  • the etalon can be selected according to actual needs, such as using 50/100GHz interval etalon or using 25GHz or other interval etalon.
  • the device further includes a circulator; wherein, the multi-longitudinal mode laser, the circulator, and the comb-shaped bandpass optical filter are connected in sequence; wherein, The optical path in the device is as follows: the light source signal provided by the multi-longitudinal mode laser is input through the first port of the circulator, and then output to the comb band-pass optical filter through the second port of the circulator; The light source signal provided by the mode laser is output to the third port of the circulator through the first output port of the comb band pass optical filter, and is output to the comb band pass optical filter through the second port of the circulator again; When the false light signal output by the comb band pass optical filter reaches the first preset condition, the false light signal is output through the second output port of the comb band pass optical filter.
  • the light source signal provided by the multi-longitudinal mode laser is input through the first port of the circulator, output from the second port, and then returns to the third port of the circulator after passing through the comb-shaped band-pass optical filter, and then output from the first port into the multi
  • the light source signal provided by the longitudinal mode laser constitutes a resonant cavity, and the longitudinal mode position of the multi-longitudinal mode laser is controlled by thermoelectric cooler (TEC), so that each longitudinal mode obtains gain balance and effectively improves the flatness between the output longitudinal modes .
  • TEC thermoelectric cooler
  • the device may further include a coupler, and the specific structure is that the multi-longitudinal mode laser, the circulator, the comb-shaped band-pass optical filter and the coupler are connected in sequence; wherein, the light source provided by the multi-longitudinal mode laser Input through the first port of the circulator, and then output to the comb band pass optical filter through the second port of the circulator; the light source signal provided by the multi-longitudinal mode laser is output to the comb band pass optical filter through the comb band pass optical filter.
  • the coupler then outputs to the third port of the circulator through the first output port of the coupler, and then outputs to the comb-shaped band-pass optical filter through the second port of the circulator, and passes through the comb-shaped band pass.
  • the optical filter is output to the coupler; when the false light signal output by the coupler reaches the second preset condition, the false light signal is output through the second output port of the coupler.
  • the light source signal provided by the multi-longitudinal-mode laser is input through the first port of the circulator, output from the second port, and returns to the third port of the circulator after passing through the comb band pass optical filter and the coupler, and then from the first port
  • the output enters the light source signal provided by the multi-longitudinal mode laser to form a resonant cavity.
  • the longitudinal mode position of the multi-longitudinal mode laser is controlled by the TEC, so that each longitudinal mode obtains gain equalization, and the flatness between the output longitudinal modes is effectively improved.
  • the first preset condition and the second preset condition may be the same or different, as long as the false light signal is amplified to a condition that can be output.
  • the device may further include a band-pass filter for receiving the false light signal, and obtaining a false light signal of a specific wavelength band from the false light signal, and the false light signal of the specific wavelength band
  • the peak power is greater than or equal to the preset threshold.
  • the flatness of the false light signal of the specific wavelength band is less than or equal to a preset threshold.
  • the band-pass filter can be located after the comb-shaped band-pass optical filter.
  • the band-pass filter can also be located after the coupler.
  • the device for generating false light will generate fixed relative intensity noise (RIN) during actual application.
  • RIN relative intensity noise
  • the structure of the multi-longitudinal mode laser can be optimized. When the conditions remain unchanged, increasing the reflectivity of the light-emitting end face of the multi-longitudinal-mode laser can effectively reduce the RIN. It can be understood that the light-emitting end surface of the multi-longitudinal-mode laser is its output end surface, and the reflectivity of the output end surface affects the output characteristics of the laser.
  • an embodiment of the present application provides a cascade system for generating false optical signals, which specifically includes a plurality of devices for generating false optical signals and at least one multiplexing device;
  • the device for generating false optical signals includes: multiple longitudinal modes A laser and a comb band pass optical filter; the multi-longitudinal mode laser is connected to the comb band pass optical filter; the multi-longitudinal mode laser is used to provide a light source signal; the light source provided by the multi-longitudinal mode laser passes through the comb band After the light pass filter, a false light signal is output, and the false light signal is an optical signal that does not contain service information; the at least one multiplexing device multiplexes the false light signals generated by the plurality of devices that generate false light signals.
  • the cascade system multiplexes the false light signals generated by multiple independent false light devices, so that different wavelength ranges can be formed.
  • each unit of the false light structure is independent, with high reliability, good scalability and high integration.
  • the superposition of multiple false optical devices with different wavelength intervals increases the number of longitudinal modes in each optical signal channel, the channel power remains unchanged, and the power spectral density is equivalently reduced, which can effectively reduce the RIN in each optical signal channel, thereby effectively reducing The non-linear cost of signal transmission per channel.
  • the device for generating false light signals may further include a band-pass filter for receiving the false light signal, and obtaining a false light signal of a specific wavelength band from the false light signal, and the specific wavelength band
  • the peak power corresponding to the false optical signal is greater than or equal to the preset threshold.
  • the flatness of the false light signal of the specific wavelength band is less than or equal to a preset threshold.
  • the band-pass filter can be located after the comb-shaped band-pass optical filter.
  • the band-pass filter can also be located after the coupler.
  • the cascade system multiplexes the false light signals generated by the multiple false light signal generating devices may specifically be as follows:
  • multiple devices that generate false light signals only perform one-stage multiplexing.
  • the cascade system includes a first device for generating false light signals and a second device for generating false light signals, the first device for generating false light signals includes a first bandpass filter, and the second device for generating false light signals includes
  • the specific operation of the second band-pass filter for multiplexing the false light signal is as follows: the first band-pass filter obtains the first specific false light signal in the first false light signal output by the first false light signal generating device; The second band-pass filter obtains the second specific false light signal in the second false light signal output by the second false light signal generating device; the multiplexing device uses a wavelength division multiplexing device to perform the first wave band and the second false light signal. Two-band multiplexing.
  • the cascade system includes a first device for generating false light signals, a second device for generating false light signals, a third device for generating false light signals, a fourth device for generating false light signals, a first multiplexing device, and a second combining device.
  • a wave device and a third multiplexing device the first device for generating false light signals includes a first band pass filter
  • the second device for generating false light signals includes a second band pass filter
  • the third device for generating false light signals The device includes a third band-pass filter
  • the fourth device for generating false light signals includes a fourth band-pass filter.
  • the specific operation of multiplexing false light signals is as follows: the first band-pass filter obtains the first false light signal The first specific false light signal in the first false light signal output by the optical signal device; the second band-pass filter acquires the second specific false light signal in the second false light signal output by the second false light signal generating device Signal; the first multiplexing device multiplexes the first specific false light signal and the second specific false light signal into a first multiplexing; the third band-pass filter obtains the output of the third false light signal generating device The third specific false light signal in the third false light signal; the fourth band-pass filter obtains the fourth specific false light signal in the fourth false light signal output by the fourth false light signal generating device; the second combination The wave device multiplexes the third specific false optical signal and the fourth specific false optical signal into a second multiplexer; the third multiplexer multiplexes the first multiplexer and the second multiplexer into a third multiplexer Wave.
  • the wave combining device may be a wavelength division multiplexing device, and at the same time, the wave combining device includes, but is not limited to, a coupler or a polarization beam splitter. It can be understood that the coupler or the polarization beam splitter can multiplex false optical signals of different wavelength bands when performing wavelength division multiplexing. If a band-pass filter is set before the multiplexing device, the multiplexing device can multiplex the false optical signals of each band selected by the band-pass filter.
  • the waveband range of the false light signal after multiplexing includes the sum of the wavebands of each false light signal before multiplexing.
  • the comb-shaped bandpass optical filter may be an etalon or a gain flattening filter.
  • the etalon can be selected according to actual needs, such as using 50/100GHz interval etalon or using 25GHz or other interval etalon.
  • the device for generating the false optical signal further includes a circulator; wherein the multi-longitudinal mode laser, the circulator, and the comb band pass optical filter are connected in sequence;
  • the optical path direction in the device is as follows: the light source signal provided by the multi-longitudinal mode laser is input through the first port of the circulator, and then output to the comb band pass optical filter through the second port of the circulator; The light source signal provided by the multi-longitudinal mode laser is output to the third port of the circulator through the first output port of the comb-shaped band-pass optical filter, and then output to the comb-shaped band-pass optical filter through the second port of the circulator.
  • the false light signal output by the comb band pass optical filter When the false light signal output by the comb band pass optical filter reaches the first preset condition, the false light signal is output through the second output port of the comb band pass optical filter. That is, the light source signal provided by the multi-longitudinal mode laser is input through the first port of the circulator, output from the second port, and then returns to the third port of the circulator after passing through the comb-shaped band-pass optical filter, and then output from the first port into the multi
  • the light source signal provided by the longitudinal mode laser constitutes a resonant cavity, and the longitudinal mode position of the multi-longitudinal mode laser is controlled by thermoelectric cooler (TEC), so that each longitudinal mode obtains gain balance and effectively improves the flatness between the output longitudinal modes .
  • TEC thermoelectric cooler
  • the device for generating false optical signals may further include a coupler, and the specific structure is that the multi-longitudinal mode laser, the circulator, the comb-shaped band-pass optical filter and the coupler are connected in sequence; wherein, the multi-longitudinal The light source provided by the multi-mode laser is input through the first port of the circulator, and then output to the comb band pass optical filter through the second port of the circulator; the light source signal provided by the multi-longitudinal mode laser passes through the comb band pass The optical filter is output to the coupler, and then output to the third port of the circulator through the first output port of the coupler, and output to the comb band-pass optical filter through the second port of the circulator again.
  • the comb-shaped band-pass optical filter is output to the coupler; when the false light signal output by the coupler reaches the second preset condition, the false light signal is output through the second output port of the coupler. That is, the light source signal provided by the multi-longitudinal-mode laser is input through the first port of the circulator, output from the second port, and returns to the third port of the circulator after passing through the comb band pass optical filter and the coupler, and then from the first port The output enters the light source signal provided by the multi-longitudinal mode laser to form a resonant cavity.
  • the position of the longitudinal mode of the multi-longitudinal mode laser is controlled by the TEC, so that the gains of each longitudinal mode are balanced, and the flatness between the output longitudinal modes is effectively improved.
  • the first preset condition and the second preset condition may be the same or different, as long as the false light signal is amplified to a condition that can be output.
  • embodiments of the present application provide a network system, which specifically includes the device described in the first aspect and/or the device described in the second aspect, and an optical switching device; wherein the optical switching device receives The device described in the first aspect and/or the device described in the second aspect provides a false optical signal, and combines the false optical signal with other optical signals for output.
  • FIG. 1 is an example diagram of an application system of a device for generating false light signals in an embodiment of the application
  • FIG. 2 is a schematic structural diagram of a device for generating false light signals in an embodiment of the application
  • FIG. 3 is a schematic diagram of the etalon in an embodiment of the application for generating false optical signals at equal intervals
  • FIG. 4 is another schematic diagram of the structure of the device for generating false light signals in an embodiment of the application
  • FIG. 5 is another schematic diagram of the structure of the device for generating false light signals in an embodiment of the application.
  • FIG. 6 is another schematic diagram of the structure of the device for generating false light signals in an embodiment of the application.
  • FIG. 7 is a schematic structural diagram of a cascade system for generating false light signals in an embodiment of the application.
  • FIG. 8 is a schematic diagram of the multiplexing of false optical signals in the cascade system in an embodiment of the application.
  • FIG. 9 is another schematic diagram of the multiplexing of false optical signals by the cascade system in an embodiment of the application.
  • FIG. 10 is a schematic diagram of a multiplexing effect of a cascaded system on false optical signals in an embodiment of the application
  • FIG. 11 is a schematic diagram of the relationship between the reflectance of the laser light emitting end face and the RIN in the embodiment of the application.
  • the embodiments of the present application provide a device for generating false light signals, which is used to reduce the cost of generating false light signals.
  • the device called false optical signal generation is applied to optical communication system, which includes optical switching equipment (reconfigurable optical add drop multiplexer (ROADM) as shown in Figure 1) ), at this time, the fake optical signal provided by the fake optical device can be input to the optical switching device, and then the optical switching device multiplexes the fake optical signal with other optical signals and outputs it.
  • ROADM reconfigurable optical add drop multiplexer
  • the fake optical technology requires that all wavelengths be turned on at the initial stage, which means that a large number of OTUs are configured at the initial stage, which leads to higher costs.
  • the apparatus 200 for generating false optical signals includes a multi-longitudinal mode laser 201 and a comb band pass optical filter 202.
  • the multi-longitudinal-mode laser 201 is connected to the comb-shaped bandpass filter 202; the multi-longitudinal-mode laser 201 is used to provide a light source signal; the multi-longitudinal-mode laser 201 provides a light source signal through the comb-shaped band pass light
  • the filter 202 then outputs a false light signal, where the false light signal is an optical signal that does not contain service information.
  • the false optical signal may be an equally spaced multi-wavelength false optical signal.
  • the comb-shaped bandpass optical filter may be an etalon or a gain flattening filter.
  • the etalon can be selected according to actual needs, such as using 50/100GHz frequency interval etalon or using 25GHz or other interval etalon.
  • the multi-longitudinal mode laser may be an FP laser or other lasers, as long as it can output a multi-longitudinal mode light source signal.
  • the process of generating the longitudinal mode interval of the false optical signal may be as shown in FIG.
  • the comb-shaped band-pass optical filter is a 100 GHz etalon, and the frequency interval of the false optical signal finally filtered and output by the comb-shaped band-pass optical filter is 100 GHz.
  • the device 200 for generating the false optical signal further includes a circulator 203.
  • the optical path in the device is as follows: the light source signal provided by the multi-longitudinal mode laser 201 is input through the first port of the circulator 203, and then output to the comb band pass through the second port of the circulator 203 Optical filter 202; the light source signal provided by the multi-longitudinal mode laser 201 is output to the third port of the circulator 203 through the first output port of the comb-shaped band-pass optical filter 202, and then passes through the second port of the circulator 203 again Port output to the comb band pass optical filter 202; when the false light signal output by the comb band pass optical filter 202 reaches the first preset condition, the false light signal passes through the comb band pass optical filter 202's second output port output.
  • the light source signal provided by the multi-longitudinal mode laser 201 is input through the first port of the circulator 203, output from the second port, passes through the comb band pass optical filter, and returns to the third port of the circulator, and then output from the first port. Enter the light source signal provided by the multi-longitudinal mode laser to form a resonant cavity.
  • the position of the longitudinal mode of the multi-longitudinal mode laser is controlled by thermoelectric cooler (TEC), so that each longitudinal mode obtains gain balance, which effectively improves the output between the longitudinal modes. flatness.
  • TEC thermoelectric cooler
  • the device 200 for generating false optical signals may also include a coupler 204, the specific structure of which is shown in FIG.
  • the filter 202 and the coupler 204 are sequentially connected; wherein, the light source provided by the multi-longitudinal mode laser 201 is input through the first port of the circulator 203, and then output to the comb band pass through the second port of the circulator 203 Optical filter 202; the light source signal provided by the multi-longitudinal-mode laser 201 is output to the coupler 204 through the comb band-pass optical filter 202, and then output to the circulator 203 through the first output port of the coupler 204 The third port is again output to the comb band pass optical filter 202 through the second port of the circulator 203, and output to the coupler 204 through the comb band pass optical filter 202; When the false light signal reaches the second preset condition, the false light signal is output through the second output port of the coupler 204.
  • the light source signal provided by the multi-longitudinal mode laser 201 is input through the first port of the circulator 203, output from the second port, passes through the comb band pass optical filter 202 and the coupler 204, and then returns to the third port of the circulator 203. Then output the light source signal provided by the multi-longitudinal mode laser 201 from the first port to form a resonant cavity.
  • the longitudinal mode position of the multi-longitudinal mode laser 201 is controlled by the TEC, so that each longitudinal mode obtains gain equalization, which effectively improves the output between the longitudinal modes. flatness.
  • the first preset condition and the second preset condition may be the same or different, as long as the false light signal is amplified to a condition that can be output (for example, the false light signal is amplified) To the same power state as the service signal).
  • the device 200 for generating false light signals may further include a band-pass filter 205 for receiving the false light signal and receiving the false light signal from The false light signal obtains a false light signal of a specific waveband, and the flatness of the specific waveband (that is, the difference between the maximum power value and the minimum power value in the waveband) is less than or equal to the preset threshold X, or the specific waveband The peak power is greater than or equal to the preset threshold Y.
  • the false light signal of the specific wavelength band can be determined according to the flatness X, for example, the flatness of the false light signal is set to be less than or equal to plus or minus 1 dB.
  • the preset threshold value Y of the peak power can also be set, and the corresponding band can be selected according to the preset threshold value. It is understandable that the selected band can be continuous selection or interval selection, as long as the conditions can be met.
  • the band pass filter 205 may be located after the comb-shaped band pass optical filter 202 as shown in FIG. 4. Alternatively, the band pass filter 205 may also be located after the coupler 204 as shown in FIG. 5. The details are not limited here. In an exemplary solution shown in FIG. 6, the band-pass filter 205 is located after the comb-shaped band-pass optical filter 202.
  • the false light signal generating devices described in any one of FIGS. 2 to 6 can be superimposed (that is, the false light signals generated by multiple false light devices are multiplexed).
  • the cascade system 300 includes a plurality of devices 200 for generating false optical signals and at least one multiplexing device 301.
  • the device 200 for generating false optical signals includes: a multi-longitudinal mode laser 201 and a comb band-pass optical filter 202.
  • the multi-longitudinal mode laser 201 is connected to the comb-shaped band-pass optical filter 202.
  • the multi-longitudinal mode laser 201 is used to provide a light source signal.
  • the light source provided by the multi-longitudinal-mode laser 201 outputs a false light signal after passing through the comb-shaped band-pass optical filter 202, and the false light signal is an optical signal that does not contain service information.
  • the multiplexing device 301 multiplexes the false light signals generated by the plurality of false light generating devices.
  • the multiplexing device 301 may be a wavelength division multiplexing device.
  • the multiplexing device includes but is not limited to a coupler or a polarization beam splitter.
  • each device (fake optical device) 200 that generates a false light signal in the cascade system 300 may further include a band-pass filter for receiving the false light signal, And obtain a specific waveband in the false light signal, and the peak power corresponding to the false light signal in the specific waveband is greater than or equal to a preset threshold.
  • the band-pass filter may be located after the comb-shaped band-pass optical filter. Alternatively, the band-pass filter can also be located after the coupler.
  • multiple devices 200 that generate false optical signals perform one-stage multiplexing.
  • the cascade system includes a first device for generating false light signals and a second device for generating false light signals, the first device for generating false light signals includes a first bandpass filter, and the second device for generating false light signals includes
  • the specific operation of the second band-pass filter for multiplexing the false light signal is as follows: the first band-pass filter obtains the first specific false light signal in the first false light signal output by the first false light signal generating device; The second band-pass filter obtains the second specific false light signal in the second false light signal output by the second false light signal generating device; the multiplexing device utilizes a wavelength division multiplexing device for the first specific false light signal Multiplexed with the second specific false optical signal.
  • the cascade system 300 includes N false light devices, all of which include a band pass filter.
  • the first false light device includes a multi-longitudinal mode laser 1, a comb-shaped band-pass optical filter 1, and a band-pass filter 1
  • the Nth false light device includes a multi-longitudinal mode laser N, Comb band pass optical filter N and band pass filter N.
  • the band-pass filter obtains the false optical signal from band 1 to band N, for example, the band-pass filter 1 obtains the false optical signal of band 1, and the band-pass filter N obtains the false optical signal of band N; then the wavelength division multiplexing device
  • the output of the false optical signal of the multiplexed band 1 to band N is a multiplexed wave.
  • the cascade system includes a first device for generating false light signals, a second device for generating false light signals, a third device for generating false light signals, a fourth device for generating false light signals, a first multiplexing device, and a second combining device.
  • a wave device and a third multiplexing device the first device for generating false light signals includes a first band pass filter
  • the second device for generating false light signals includes a second band pass filter
  • the third device for generating false light signals The device includes a third band-pass filter
  • the fourth device for generating false light signals includes a fourth band-pass filter.
  • the specific operation of multiplexing false light signals is as follows: the first band-pass filter obtains the first false light signal The first specific false light signal in the first false light signal output by the optical signal device; the second band-pass filter acquires the second specific false light signal in the second false light signal output by the second false light signal generating device Signal; the first multiplexing device multiplexes the first specific false light signal and the second specific false light signal into a first multiplexing; the third band-pass filter obtains the output of the third false light signal generating device The third specific false light signal in the third false light signal; the fourth band-pass filter obtains the fourth specific false light signal in the fourth false light signal output by the fourth false light signal generating device; the second combination The wave device multiplexes the third specific false optical signal and the fourth specific false optical signal into a second multiplexer; the third multiplexer multiplexes the first multiplexer and the second multiplexer into a third multiplexer Wave.
  • the cascade system 300 includes N+M false light devices, and each includes a band-pass filter.
  • the first false light device includes a multi-longitudinal mode laser 1, a comb band-pass optical filter 1, and a band-pass filter 1
  • the Nth false light device includes a multi-longitudinal mode laser N, Comb band pass optical filter N and band pass filter N.
  • the band-pass filter obtains the false optical signal from band 1 to band N, for example, the band-pass filter 1 obtains the false optical signal of band 1, and the band-pass filter N obtains the false optical signal of band N; then the wavelength division multiplexing device 1
  • the false optical signal output of multiplexed band 1 to band N is a multiplexed wave.
  • the first false light device includes a multi-longitudinal mode laser 1, a comb band-pass optical filter 1, and a band-pass filter 1
  • the M-th false light device includes a multi-longitudinal mode laser M, comb-shaped band-pass optical filter M and band-pass filter M.
  • the band-pass filter obtains the false optical signal from band 1 to band M, for example, the band-pass filter 1 obtains the false optical signal of band 1, and the band-pass filter M obtains the false optical signal of band M; then the wavelength division multiplexing device 2 The output of the false optical signal from the multiplexing band 1 to the band M is a multiplexer; finally, the wavelength division multiplexing device 3 multiplexes the two multiplexers again.
  • the wavelength division multiplexing device includes but is not limited to a coupler or a polarization beam splitter.
  • the coupler or the polarization beam splitter can perform wavelength division multiplexing on the false optical signals of various bands selected by multiple band-pass filters.
  • the band-pass filter can perform band selection according to the peak power corresponding to the false optical signal, and select a band with a peak power greater than or equal to a preset threshold. For example, the waveband is selected based on the peak power greater than or equal to 50dB. Under this standard, the false light signal output by the first false light device selects wave band 1, and the false light signal output by the second false light device selects wave band 2.
  • the band-pass filter can perform waveband selection for the false light signal according to a preset waveband.
  • the false light signal output by the first false light device selects band A
  • the false light signal output by the second false light device selects band B
  • the wavelength division multiplexing device performs wavelength division on the false light signals of band A and band B. Reuse.
  • the power spectrum of the false optical signal generated by the wavelength division multiplexing device is shown in FIG. When multiplexing is performed, the overall output false optical signal has a better flatness than the false optical signal that has not been selected before.
  • the waveband range of the false light signal after multiplexing includes the sum of the wavebands of each false light signal before multiplexing, for example, wave band A plus wave band B.
  • the waveband range of the false light signal after multiplexing can meet the waveband requirements of the WDM system for false light signals.
  • the non-linear cost of the WDM system is the cross-phase modulation (XPM) effect introduced by the intensity fluctuation of the pressure wave. This effect is directly related to the RIN index of the false optical device. The lower the RIN, the smaller the non-linear cost.
  • the relative intensity noise (RIN) is the ratio of the average output power of the laser to the noise at a certain frequency.
  • the multiple false light devices can be spliced into a cascade system as shown in FIG. 7.
  • the laser can be optimized, that is, the reflectance of the light-emitting end surface of the laser can be designed according to the RIN threshold.
  • increasing the reflectivity of the light-emitting end face of the multi-longitudinal-mode laser can effectively reduce the RIN. It can be understood that the light-emitting end surface of the multi-longitudinal-mode laser is its output end surface, and the reflectivity of the output end surface affects the output characteristics of the laser.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

本申请实施例公开了产生假光信号的装置,用于降低产生假光信号的成本。该装置具体包括:多纵模激光器和梳状带通光滤波器;该多纵模激光器与该梳状带通光滤波器相连;该多纵模激光器用于提供光源信号;该多纵模激光器提供的光源通过该梳状带通光滤波器之后输出假光信号,该假光信号为不包含业务信息的光信号。该多纵模激光器与该梳状带通光滤波器成本较低,从而降低产生假光信号的成本。

Description

一种产生假光信号的装置以及级联系统
本申请要求于2020年03月12日提交中国专利局、申请号为202010170688.3、发明名称为“一种产生假光信号的装置以及级联系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信领域,尤其涉及一种产生假光信号的装置以及级联系统。
背景技术
随着通信技术的发展,波分复用(wavelength division multiplexing,WDM)技术使得一根光纤中存在数十条甚至上百条光波道,并且随着光纤放大器的使用,大功率的多波长光信号被耦合进一根光纤,从而导致多波长光信号聚集在很小的界面上,这时光纤开始表现出非线性特性,并且成为限制传输性能的关键因素。
在WDM系统中,由于受激拉曼散射(stimulated raman scattering,SRS)效应,不同波长之间可能会存在能量转移,导致光功率下降。为了防止这种情况,提供了一种假光(dummy light)技术。但是假光技术要求初期即开通所有波长,意味着初期就配置大量的光转换器单元(optical transponder unit,OTU),这样导致成本较高。
发明内容
本申请实施例提供了一种产生假光信号的装置,用于降低产生假光信号的成本。
第一方面,本申请实施例提供一种产生假光信号的装置,其具体结构包括:多纵模激光器和梳状带通光滤波器;其中,该多纵模激光器与该梳状带通光滤波器相连;该多纵模激光器用于提供光源信号,并输出至该梳状带通光滤波器;该梳状带通光滤波器将该光源信号进行滤波然后输出假光信号,其中,该假光信号为不包含业务信息的光信号。
本实施例中,该产生假光信号的装置也可以称之为假光装置,该假光装置为了实现信道均衡,需要产生与业务信号一致的假光信号。而多纵模激光器可以是法布里-珀罗(fabry perot,FP)激光器也可以是其他的激光器。
本申请实施例提供的技术方案中,该多纵模激光器与该梳状带通光滤波器成本较低,从而降低产生假光信号的成本。
可选的,该假光信号为具有预设波长间隔的多波长信号。可以理解的是,该假光信号可以是等间隔的多波长信号。
可选的,该梳状带通光滤波器可以为标准具或者增益平坦滤波器。其中,该标准具可以按照实际需求选择,比如使用50/100GHz间隔标准具或者使用25GHz或者其他间隔的标准具。
可选的,为了实现该假光信号的平坦度,该装置中还包括环形器;其中,所述多纵模激光器、所述环形器、所述梳状带通光滤波器依次相连;其中,该装置中的光路走向如下:该多纵模激光器提供的光源信号通过该环形器的第一端口输入,然后通过该环形器的第二端口输出至该梳状带通光滤波器;该多纵模激光器提供的光源信号经过该梳状带通光滤波器的第一输出端口输出至该环形器的第三端口,再次通过该环形器的第二端口输出至该梳状带通光滤波器;在该梳状带通光滤波器输出的假光信号达到第一预设条件时,将该假光 信号经过该梳状带通光滤波器的第二输出端口输出。即多纵模激光器提供的光源信号经过环形器的第一端口输入,从第二端口输出,经过梳状带通光滤波器后回到环形器的第三端口,再从第一端口输出进入多纵模激光器提供的光源信号,构成了谐振腔,通过热电制冷(thermo electric cooler,TEC)控制该多纵模激光器的纵模位置,使得各纵模获得增益均衡,有效改善输出纵模间平坦度。
可选的,该装置还可以包括耦合器,具体结构为该多纵模激光器、该环形器、该梳状带通光滤波器和该耦合器依次相连;其中,该多纵模激光器提供的光源通过该环形器的第一端口输入,然后通过该环形器的第二端口输出至该梳状带通光滤波器;该多纵模激光器提供的光源信号经过该梳状带通光滤波器输出至该耦合器,再经过该耦合器的第一输出端口输出至该环形器的第三端口,再次通过该环形器的第二端口输出至该梳状带通光滤波器,经该梳状带通光滤波器输出至该耦合器;在该耦合器输出的假光信号达到第二预设条件时,将该假光信号经过该耦合器的第二输出端口输出。即多纵模激光器提供的光源信号经过环形器的第一端口输入,从第二端口输出,经过梳状带通光滤波器以及耦合器后回到环形器的第三端口,再从第一端口输出进入多纵模激光器提供的光源信号,构成了谐振腔,通过TEC控制该多纵模激光器的纵模位置,使得各纵模获得增益均衡,有效改善输出纵模间平坦度。在上述两个装置中,该第一预设条件与该第二预设条件可以相同,也可以不相同,只要达到该假光信号放大到可以输出的条件即可。
可选的,该装置还可以包括带通滤波器,该带通滤波器用于接收该假光信号,并从该假光信号中获取特定波段的假光信号,且该特定波段的假光信号的峰值功率大于或等于预设阈值。或者,该特定波段的假光信号的平坦度小于或等于预设的阈值。而为了实现该功能,则带通滤波器可以位于梳状带通光滤波器之后。或者,则该带通滤波器也可以位于耦合器之后。
可选的,该产生假光的装置在实际应用过程中会产生固定的相对强度噪声(relative intensity noise,RIN),而为了减小RIN,可以从优化该多纵模激光器的结构入手,在其他条件不变的情况下,提高该多纵模激光器的出光端面反射率可以有效降低该RIN。可以理解的是,该多纵模激光器的出光端面即为其出射端面,而出射端面的反射率影响激光器的输出特性。
第二方面,本申请实施例提供一种产生假光信号的级联系统,其具体包括多个产生假光信号的装置和至少一个合波装置;该产生假光信号的装置包括:多纵模激光器和梳状带通光滤波器;该多纵模激光器与该梳状带通光滤波器相连;该多纵模激光器用于提供光源信号;该多纵模激光器提供的光源通过该梳状带通光滤波器之后输出假光信号,该假光信号为不包含业务信息的光信号;该至少一个合波装置将该多个产生假光信号的装置产生的假光信号复用。
本实施例提供的技术方案中,该级联系统将多个独立的假光装置产生的假光信号复用,因此可以构成不同波长范围。同时假光结构各单元独立,可靠性较高、可扩展性好、集成度高。多个不同波长间隔的假光装置叠加,增加每个光信号通道内纵模个数,通道功率不变,等效降低功率谱密度,可有效降低每个光信号通道内的RIN,从而有效降低每个通道 信号传输的非线性代价。
可选的,该产生假光信号的装置还可以包括带通滤波器,该带通滤波器用于接收该假光信号,并从该假光信号中获取特定波段的假光信号,且该特定波段的假光信号对应的峰值功率大于或等于预设阈值。或者,该特定波段的假光信号的平坦度小于或等于预设的阈值。而为了实现该功能,则带通滤波器可以位于梳状带通光滤波器之后。或者,则该带通滤波器也可以位于耦合器之后。
基于上述方案,该级联系统复用该多个产生假光信号的装置产生的假光信号具体可以如下:
一种可能实现方式中,多个产生假光信号的装置只进行一级复用。该级联系统包括第一产生假光信号的装置和第二产生假光信号的装置,该第一产生假光信号的装置包括第一带通滤波器,该第二产生假光信号的装置包括第二带通滤波器,其复用假光信号的具体操作如下:第一带通滤波器获取该第一产生假光信号的装置输出的第一假光信号中的第一特定假光信号;第二带通滤波器获取该第二产生假光信号的装置输出的第二假光信号中的第二特定假光信号;该合波装置利用波分复用器件对该第一波段和该第二波段复用。
另一种可能实现方式中,多个产生假光信号的装置进行多级复用。该级联系统包括第一产生假光信号的装置、第二产生假光信号的装置、第三产生假光信号的装置、第四产生假光信号的装置、第一合波装置、第二合波装置和第三合波装置,该第一产生假光信号的装置包括第一带通滤波器,该第二产生假光信号的装置包括第二带通滤波器,该第三产生假光信号的装置包括第三带通滤波器,该第四产生假光信号的装置包括第四带通滤波器,其复用假光信号的具体操作如下:第一带通滤波器获取该第一产生假光信号的装置输出的第一假光信号中的第一特定假光信号;第二带通滤波器获取该第二产生假光信号的装置输出的第二假光信号中的第二特定假光信号;该第一合波装置将该第一特定假光信号和该第二特定假光信号复用为第一合波;第三带通滤波器获取该第三产生假光信号的装置输出的第三假光信号中的第三特定假光信号;第四带通滤波器获取该第四产生假光信号的装置输出的第四假光信号中的第四特定假光信号;该第二合波装置将该第三特定假光信号和该第四特定假光信号复用为第二合波;该第三合波装置将该第一合波和该第二合波复用为第三合波。
基于上述方案,该合波装置可以为波分复用器件,同时,该合波装置包括但不限于耦合器或者偏振分束器。可以理解的是,该耦合器或该偏振分束器在进行波分复用时,可以对不同波段的假光信号进行复用。如果合波装置前设置了带通滤波器,合波装置可以对带通滤波器选择出来的各个波段的假光信号进行复用。合波之后假光信号的波段范围包括合波之前各个假光信号的波段之和。
可选的,该梳状带通光滤波器可以为标准具或者增益平坦滤波器。其中,该标准具可以按照实际需求选择,比如使用50/100GHz间隔标准具或者使用25GHz或者其他间隔的标准具。
可选的,为了实现该假光信号的平坦度,该产生假光信号的装置中还包括环形器;其中,该多纵模激光器、该环形器、该梳状带通光滤波器依次相连;其中,该装置中的光路 走向如下:该多纵模激光器提供的光源信号通过该环形器的第一端口输入,然后通过该环形器的第二端口输出至该梳状带通光滤波器;该多纵模激光器提供的光源信号经过该梳状带通光滤波器的第一输出端口输出至该环形器的第三端口,再次通过该环形器的第二端口输出至该梳状带通光滤波器;在该梳状带通光滤波器输出的假光信号达到第一预设条件时,将该假光信号经过该梳状带通光滤波器的第二输出端口输出。即多纵模激光器提供的光源信号经过环形器的第一端口输入,从第二端口输出,经过梳状带通光滤波器后回到环形器的第三端口,再从第一端口输出进入多纵模激光器提供的光源信号,构成了谐振腔,通过热电制冷(thermo electric cooler,TEC)控制该多纵模激光器的纵模位置,使得各纵模获得增益均衡,有效改善输出纵模间平坦度。
可选的,该产生假光信号的装置还可以包括耦合器,具体结构为该多纵模激光器、该环形器、该梳状带通光滤波器和该耦合器依次相连;其中,该多纵模激光器提供的光源通过该环形器的第一端口输入,然后通过该环形器的第二端口输出至该梳状带通光滤波器;该多纵模激光器提供的光源信号经过该梳状带通光滤波器输出至该耦合器,再经过该耦合器的第一输出端口输出至该环形器的第三端口,再次通过该环形器的第二端口输出至该梳状带通光滤波器,经该梳状带通光滤波器输出至该耦合器;在该耦合器输出的假光信号达到第二预设条件时,将该假光信号经过该耦合器的第二输出端口输出。即多纵模激光器提供的光源信号经过环形器的第一端口输入,从第二端口输出,经过梳状带通光滤波器以及耦合器后回到环形器的第三端口,再从第一端口输出进入多纵模激光器提供的光源信号,构成了谐振腔,通过TEC控制该多纵模激光器的纵模位置,使得各纵模获得增益均衡,有效改善输出纵模间平坦度。在上述两个装置中,该第一预设条件与该第二预设条件可以相同,也可以不相同,只要达到该假光信号放大到可以输出的条件即可。
第三方面,本申请实施例提供一种网络系统,该系统具体包括上述第一方面所述的装置和/或该第二方面所述的装置,以及光交换设备;其中,该光交换设备接收该第一方面所述的装置和/或该第二方面所述的装置提供的假光信号,并将该假光信号与其他光信号合波输出。
附图说明
图1为本申请实施例中产生假光信号的装置的应用系统的一个示例图;
图2为本申请实施例中产生假光信号的装置的一个结构示意图;
图3为本申请实施例中标准具对于生成等间隔假光信号的示意图;
图4为本申请实施例中产生假光信号的装置的另一个结构示意图;
图5为本申请实施例中产生假光信号的装置的另一个结构示意图;
图6为本申请实施例中产生假光信号的装置的另一个结构示意图;
图7为本申请实施例中产生假光信号的级联系统的一个结构示意图;
图8为本申请实施例中级联系统对于假光信号的一个复用示意图;
图9为本申请实施例中级联系统对于假光信号的另一个复用示意图;
图10为本申请实施例中级联系统对于假光信号的一个复用效果示意图;
图11为本申请实施例中激光器出光端面反射率与RIN之间的关系示意图。
具体实施方式
本申请实施例提供了一种产生假光信号的装置,用于降低产生假光信号的成本。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
随着通信技术的发展,WDM技术使得一根光纤中存在数十条甚至上百条光波道,并且随着光纤放大器的使用,大功率的多波长光信号被耦合进一根光纤,从而导致多波长光信号聚集在很小的界面上,这时光纤开始表现出非线性特性,并且成为限制传输性能的关键因素。在WDM系统中,由于SRS效应,不同波长之间可能会存在能量转移,导致光功率下降。假光技术的提出可以有效解决SRS效应引起的功率下降问题,一种示例性方案中,具体请参阅图1所示,该假光(如图1中的DL)装置(本申请实施例中也称为产生假光信号的装置)应用于光通信系统,该光通信系统包括光交换设备(如图1中所示的可重构的光分插复用器(reconfigurable optical add drop Multiplexer,ROADM)),这时该假光装置提供的假光信号可以输入该光交换设备,然后该光交换设备将该假光信号与其他光信号进行合波并输出。但是假光技术要求初期即开通所有波长,意味着初期就配置大量的OTU,这样导致成本较高。
为了解决这一问题,本申请实施例提供一种产生假光信号的装置200,具体如图2所示,产生假光信号的装置200包括多纵模激光器201和梳状带通光滤波器202;其中,该多纵模激光器201与该梳状带通光滤波器202相连;该多纵模激光器201用于提供光源信号;该多纵模激光器201提供的光源信号通过该梳状带通光滤波器202之后输出为假光信号,其中,该假光信号为不包含业务信息的光信号。
在波分复用场景下,该假光信号可以是等间隔多波长假光信号。
本实施例中,该梳状带通光滤波器可以为标准具或者增益平坦滤波器。其中,该标准具可以按照实际需求选择,比如使用50/100GHz的频率间隔标准具或者使用25GHz或者其他间隔的标准具。多纵模激光器可以是FP激光器也可以是其他的激光器,只要可以输出多纵模光源信号即可。一种示例性方案中,该假光信号的纵模间隔的生成过程可以如图3所示,该多纵横激光器产生的光源信号的频率间隔(也称为纵模间隔)不为100GHz,而该梳状带通光滤波器为100GHz的标准具,最终通过该梳状带通光滤波器过滤输出的假光信号的频率间隔为100GHz。
而为了实现该假光信号的平坦度,该产生假光信号的装置200中还包括环形器203。 在加入了该环形器203之后,其具体结构如图4所示,该多纵模激光器201、该环形器203、该梳状带通光滤波器202依次相连。在此结构下,该装置中的光路如下:该多纵模激光器201提供的光源信号通过该环形器203的第一端口输入,然后通过该环形器203的第二端口输出至该梳状带通光滤波器202;该多纵模激光器201提供的光源信号经过该梳状带通光滤波器202的第一输出端口输出至该环形器203的第三端口,再次通过该环形器203的第二端口输出至该梳状带通光滤波器202;在该梳状带通光滤波器202输出的假光信号达到第一预设条件时,将该假光信号经过该梳状带通光滤波器202的第二输出端口输出。即多纵模激光器201提供的光源信号经过环形器203的第一端口输入,从第二端口输出,经过梳状带通光滤波器后回到环形器的第三端口,再从第一端口输出进入多纵模激光器提供的光源信号,构成了谐振腔,通过热电制冷(thermo electric cooler,TEC)控制该多纵模激光器的纵模位置,使得各纵模获得增益均衡,有效改善输出纵模间平坦度。
在图4的结构基础上,该产生假光信号的装置200还可以包括耦合器204,其具体结构如图5所示,该多纵模激光器201、该环形器203、该梳状带通光滤波器202和该耦合器204依次相连;其中,该多纵模激光器201提供的光源通过该环形器203的第一端口输入,然后通过该环形器203的第二端口输出至该梳状带通光滤波器202;该多纵模激光器201提供的光源信号经过该梳状带通光滤波器202输出至该耦合器204,再经过该耦合器204的第一输出端口输出至该环形器203的第三端口,再次通过该环形器203的第二端口输出至该梳状带通光滤波器202,经该梳状带通光滤波器202输出至该耦合器204;在该耦合器204输出的假光信号达到第二预设条件时,将该假光信号经过该耦合器204的第二输出端口输出。即多纵模激光器201提供的光源信号经过环形器203的第一端口输入,从第二端口输出,经过梳状带通光滤波器202以及耦合器204后回到环形器203的第三端口,再从第一端口输出进入多纵模激光器201提供的光源信号,构成了谐振腔,通过TEC控制该多纵模激光器201的纵模位置,使得各纵模获得增益均衡,有效改善输出纵模间平坦度。在上述两个装置中,该第一预设条件与该第二预设条件可以相同,也可以不相同,只要达到该假光信号放大到可以输出的条件即可(比如将该假光信号放大至与业务信号同功率状态)。
在基于图2、图4或图5所示的结构基础上,该产生假光信号的装置200还可以包括带通滤波器205,该带通滤波器205用于接收该假光信号,并从该假光信号中获取特定波段的假光信号,且该特定波段的平坦度(即该波段内的最大功率值和最小功率值的差值)小于或等于预设阈值X,或者该特定波段的峰值功率大于或等于预设阈值Y。本实施例中可以根据平坦度X来确定该特定波段的假光信号,比如设置假光信号的平坦度小于或等于正负1dB。此外,还可以设置峰值功率的预设阈值Y,并根据该预设阈值选择相应的波段。可以理解的是,选择波段可以是连续选择,也可以是间隔选择,只要可以满足条件即可。而为了实现该功能,则该带通滤波器205可以位于如图4所示的梳状带通光滤波器202之后。或者,则该带通滤波器205也可以位于如图5所示的耦合器204之后。具体此处不做限定。如图6所示的一个示例性方案中,该带通滤波器205位于该梳状带通光滤波器202之后。
而为了实现多波长范围的假光信号,可以将上述图2至图6中任一项所述的产生假光 信号的装置进行叠加(即对于多个假光装置产生的假光信号进行复用)生成级联系统300。具体请参阅图7所示,该级联系统300包括多个产生假光信号的装置200以及至少一个合波装置301。该产生假光信号的装置200包括:多纵模激光器201和梳状带通光滤波器202。该多纵模激光器201与该梳状带通光滤波器202相连。该多纵模激光器201用于提供光源信号。该多纵模激光器201提供的光源通过该梳状带通光滤波器202之后输出假光信号,该假光信号为不包含业务信息的光信号。该合波装置301对该多个产生假光的装置产生的假光信号复用。本实施例中,该合波装置301可以为波分复用器件,比如该合波装置包括但不限于耦合器或者偏振分束器。
为了实现更好的复用方式,该级联系统300中的每个产生假光信号的装置(假光装置)200还可以包括带通滤波器,该带通滤波器用于接收该假光信号,并获取该假光信号中的特定波段,且该特定波段的假光信号对应的峰值功率大于或等于预设阈值。而为了实现该功能,则该带通滤波器可以位于该梳状带通光滤波器之后。或者,则该带通滤波器也可以位于该耦合器之后。
而该级联系统300在复用该多个产生假光信号的装置200时,具体可以有如下几种可能实现方式:
一种可能实现方式中,多个产生假光信号的装置200进行一级复用。该级联系统包括第一产生假光信号的装置和第二产生假光信号的装置,该第一产生假光信号的装置包括第一带通滤波器,该第二产生假光信号的装置包括第二带通滤波器,其复用假光信号的具体操作如下:第一带通滤波器获取该第一产生假光信号的装置输出的第一假光信号中的第一特定假光信号;第二带通滤波器获取该第二产生假光信号的装置输出的第二假光信号中的第二特定假光信号;该合波装置利用波分复用器件对该第一特定假光信号和该第二特定假光信号复用。一种示例性方案如图8所示,该级联系统300中包括N个假光装置,均包括带通滤波器。比如N个假光装置中,第一个假光装置包括多纵模激光器1、梳状带通光滤波器1和带通滤波器1,而第N个假光装置包括多纵模激光器N、梳状带通光滤波器N和带通滤波器N。然后带通滤波器分别获取波段1至波段N的假光信号,比如带通滤波器1获取波段1的假光信号,带通滤波器N获取波段N的假光信号;然后波分复用器件复用波段1至波段N的假光信号输出为一个合波。
另一种可能实现方式中,多个产生假光信号的装置进行多级复用。该级联系统包括第一产生假光信号的装置、第二产生假光信号的装置、第三产生假光信号的装置、第四产生假光信号的装置、第一合波装置、第二合波装置和第三合波装置,该第一产生假光信号的装置包括第一带通滤波器,该第二产生假光信号的装置包括第二带通滤波器,该第三产生假光信号的装置包括第三带通滤波器,该第四产生假光信号的装置包括第四带通滤波器,其复用假光信号的具体操作如下:第一带通滤波器获取该第一产生假光信号的装置输出的第一假光信号中的第一特定假光信号;第二带通滤波器获取该第二产生假光信号的装置输出的第二假光信号中的第二特定假光信号;该第一合波装置将该第一特定假光信号和该第二特定假光信号复用为第一合波;第三带通滤波器获取该第三产生假光信号的装置输出的第三假光信号中的第三特定假光信号;第四带通滤波器获取该第四产生假光信号的装置输 出的第四假光信号中的第四特定假光信号;该第二合波装置将该第三特定假光信号和该第四特定假光信号复用为第二合波;该第三合波装置将该第一合波和该第二合波复用为第三合波。一种示例性方案如图9所示,该级联系统300中包括N+M个假光装置,均包括带通滤波器。比如N个假光装置中,第一个假光装置包括多纵模激光器1、梳状带通光滤波器1和带通滤波器1,而第N个假光装置包括多纵模激光器N、梳状带通光滤波器N和带通滤波器N。然后带通滤波器分别获取波段1至波段N的假光信号,比如带通滤波器1获取波段1的假光信号,带通滤波器N获取波段N的假光信号;然后波分复用器件1复用波段1至波段N的假光信号输出为一个合波。同理,M个假光装置中,第一个假光装置包括多纵模激光器1、梳状带通光滤波器1和带通滤波器1,而第M个假光装置包括多纵模激光器M、梳状带通光滤波器M和带通滤波器M。然后带通滤波器分别获取波段1至波段M的假光信号,比如带通滤波器1获取波段1的假光信号,带通滤波器M获取波段M的假光信号;然后波分复用器件2复用波段1至波段M的假光信号输出为一个合波;最后该波分复用器件3对两个合波进行再次复用。
基于上述方案,该波分复用器件包括但不限于耦合器或者偏振分束器。可以理解的是,该耦合器或该偏振分束器可以对多个带通滤波器选取出来的各个波段的假光信号进行波分复用。一个例子中,带通滤波器可以根据假光信号对应的峰值功率进行波段选择,选择峰值功率大于或等于预设阈值的波段。比如,根据峰值功率大于或等于50dB选取波段,在此标准下,第一个假光装置输出的假光信号选取波段1,第二个假光装置输出的假光信号选取波段2,波分复用器件对波段1和波段2的假光信号进行复用。另一个例子中,带通滤波器可以根据预设波段对假光信号进行波段选择。比如,第一个假光装置输出的假光信号选取波段A,第二个假光装置输出的假光信号选取波段B,波分复用器件对波段A和波段B的假光信号进行波分复用。一种示例性方案中,该波分复用器件产生的假光信号的功率谱如图10所示,两个假光信号选择波段A和波段B,然后将波段A与波段B的假光信号进行复用,这时整体输出的假光信号相比之前未进行波段选择的假光信号平坦度更好。合波之后假光信号的波段范围包括合波之前各个假光信号的波段之和,例如波段A加上波段B。合波之后的假光信号的波段范围能够满足WDM系统对假光信号的波段要求。
WDM系统的非线性代价是由于压波的强度起伏引入的交叉相位调制(cross phase modulation,XPM)效应,此效应与假光装置的RIN指标直接相关,RIN越低,非线性代价越小。而相对强度噪声(RIN)是激光器的输出平均功率和某个频率下的噪声的比值。
因此优化RIN有两种方式:
一种可能实现方式中,可以将该多个假光装置拼接为如图7所示的级联系统。
另一种可能实现方式中,可以优化该激光器,即可以根据RIN的阈值设计该激光器的出光端面反射率。在其他条件不变的情况下,提高该多纵模激光器的出光端面反射率可以有效降低该RIN。可以理解的是,该多纵模激光器的出光端面即为其出射端面,而出射端面的反射率影响激光器的输出特性。该出光端面反射率与RIN的关系可以如图11所示,其中横坐标用于指示激光器的一个端面,而R用于指示激光器的另一个端面,纵坐标用于指示RIN值,从图11可以看出,在其他条件不变的情况下,出光端面反射率越高,RIN值越 小。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (17)

  1. 一种产生假光信号的装置,其特征在于,包括:
    多纵模激光器和梳状带通光滤波器;
    所述多纵模激光器与所述梳状带通光滤波器相连;
    所述多纵模激光器用于提供光源信号;
    所述多纵模激光器提供的光源信号通过所述梳状带通光滤波器之后输出假光信号,所述假光信号为不包含业务信息的光信号。
  2. 根据权利要求1所述的装置,其特征在于,所述假光信号为具有预设波长间隔的多波长信号。
  3. 根据权利要求1或2所述的装置,其特征在于,所述梳状带通光滤波器包括标准具或增益平坦滤波器。
  4. 根据权利要求1至3中任一项所述的装置,其特征在于,所述装置还包括环形器;
    所述多纵模激光器、所述环形器、所述梳状带通光滤波器依次相连;
    其中,所述多纵模激光器提供的光源信号通过所述环形器的第一端口输入,然后通过所述环形器的第二端口输出至所述梳状带通光滤波器;
    所述多纵模激光器提供的光源信号经过所述梳状带通光滤波器的第一输出端口输出至所述环形器的第三端口,再次通过所述环形器的第二端口输出至所述梳状带通光滤波器;
    在所述梳状带通光滤波器输出的假光信号达到第一预设条件时,将所述假光信号经过所述梳状带通光滤波器的第二输出端口输出。
  5. 根据权利要求4所述的装置,其特征在于,所述装置还包括耦合器;
    所述多纵模激光器、所述环形器、所述梳状带通光滤波器和所述耦合器依次相连;
    其中,所述多纵模激光器提供的光源通过所述环形器的第一端口输入,然后通过所述环形器的第二端口输出至所述梳状带通光滤波器;
    所述多纵模激光器提供的光源信号经过所述梳状带通光滤波器输出至所述耦合器,再经过所述耦合器的第一输出端口输出至所述环形器的第三端口,再次通过所述环形器的第二端口输出至所述梳状带通光滤波器,经所述梳状带通光滤波器输出至所述耦合器;
    在所述耦合器输出的假光信号达到第二预设条件时,将所述假光信号经过所述耦合器的第二输出端口输出。
  6. 根据权利要求1至5中任一项所述的装置,其特征在于,所述装置还包括带通滤波器;
    所述带通滤波器用于接收所述假光信号,并从所述假光信号中获取特定波段的假光信号,所述特定波段的假光信号对应的峰值功率大于或等于预设阈值。
  7. 根据权利要求1至6中任一项所述的装置,其特征在于,所述多纵模激光器的出光端面反射率根据所述产生假光信号的装置的相对强度噪声RIN确定。
  8. 一种产生假光信号级联系统,其特征在于,包括多个产生假光信号的装置和至少一个合波装置;
    所述产生假光信号的装置包括:
    多纵模激光器和梳状带通光滤波器;
    所述多纵模激光器与所述梳状带通光滤波器相连;
    所述多纵模激光器用于提供光源信号;
    所述多纵模激光器提供的光源通过所述梳状带通光滤波器之后输出假光信号,所述假光信号为不包含业务信息的光信号;
    所述至少一个合波装置将所述多个产生假光信号的装置产生的假光信号复用
  9. 根据权利要求8所述的级联系统,其特征在于,所述假光信号为具有预设频率间隔的多波长信号。
  10. 根据权利要求8或9所述的级联系统,其特征在于,所述产生假光信号的装置还包括带通滤波器;
    所述带通滤波器用于接收所述假光信号,并从所述假光信号中获取特定波段的假光信号,所述特定波段的假光信号对应的峰值功率大于或等于预设阈值。
  11. 根据权利要求10所述的级联系统,其特征在于,所述级联系统包括第一产生假光信号的装置、第二产生假光信号的装置和合波装置,所述第一产生假光信号的装置包括第一带通滤波器,所述第二产生假光信号的装置包括第二带通滤波器;
    所述第一带通滤波器,用于获取第一假光信号中的第一特定假光信号,所述第一假光信号由所述第一产生假光信号的装置输出;
    所述第二带通滤波器,用于获取第二假光信号中的第二特定假光信号,所述第二假光信号由所述第二产生假光信号的装置输出;
    所述合波装置对所述第一特定假光信号和所述第二特定假光信号进行波分复用。
  12. 根据权利要求10所述的级联系统,其特征在于,所述级联系统包括第一产生假光信号的装置、第二产生假光信号的装置、第三产生假光信号的装置、第四产生假光信号的装置、第一合波装置、第二合波装置和第三合波装置,所述第一产生假光信号的装置包括第一带通滤波器,所述第二产生假光信号的装置包括第二带通滤波器,所述第三产生假光信号的装置包括第三带通滤波器,所述第四产生假光信号的装置包括第四带通滤波器;
    所述第一带通滤波器,用于获取第一假光信号中的第一特定假光信号,所述第一假光信号由所述第一产生假光信号的装置输出;
    所述第二带通滤波器,用于获取第二假光信号中的第二特定假光信号,所述第二假光信号由所述第二产生假光信号的装置输出;
    所述第一合波装置将所述第一特定假光信号和所述第二特定假光信号复用为第一合波;
    所述第三带通滤波器,用于获取第三假光信号中的第三特定假光信号,所述第三假光信号由所述第三产生假光信号的装置输出;
    所述第四带通滤波器,用于获取第四假光信号中的第四特定假光信号,所述第四假光信号由所述第四产生假光信号的装置输出;
    所述第二合波装置将所述第三特定假光信号和所述第四特定假光信号复用为第二合波;
    所述第三合波装置将所述第一合波和所述第二合波复用为第三合波。
  13. 根据权利要求8至12中任一项所述的级联系统,其特征在于,所述合波装置包括但不限于耦合器或者偏振分束器。
  14. 根据权利要求8至13中任一项所述的级联系统,其特征在于,所述梳状带通光滤波器包括但不限于标准具或增益平坦滤波器。
  15. 根据权利要求8至14中任一项所述的级联系统,其特征在于,所述产生假光信号的装置还包括环形器;
    所述多纵模激光器、所述环形器、所述梳状带通光滤波器依次相连;
    其中,所述多纵模激光器提供的光源信号通过所述环形器的第一端口输入,然后通过所述环形器的第二端口输出至所述梳状带通光滤波器;
    所述多纵模激光器提供的光源信号经过所述梳状带通光滤波器的第一输出端口输出至所述环形器的第三端口,再次通过所述环形器的第二端口输出至所述梳状带通光滤波器;
    在所述梳状带通光滤波器输出的假光信号达到第一预设条件时,将所述假光信号经过所述梳状带通光滤波器的第二输出端口输出。
  16. 根据权利要求15所述的级联系统,其特征在于,所述产生假光信号的装置还包括耦合器;
    所述多纵模激光器、所述环形器、所述梳状带通光滤波器和所述耦合器依次相连;
    其中,所述多纵模激光器提供的光源通过所述环形器的第一端口输入,然后通过所述环形器的第二端口输出至所述梳状带通光滤波器;
    所述多纵模激光器提供的光源信号经过所述梳状带通光滤波器输出至所述耦合器,再经过所述耦合器的第一输出端口输出至所述环形器的第三端口,再次通过所述环形器的第二端口输出至所述梳状带通光滤波器,经所述梳状带通光滤波器输出至所述耦合器;
    在所述耦合器输出的假光信号达到第二预设条件时,将所述假光信号经过所述耦合器的第二输出端口输出。
  17. 一种网络系统,其特征在于,包括如权利要求1至7中任一项所述的产生假光信号的装置和/或如权利要求8至16中任一项所述的产生假光信号的级联系统,以及光交换设备;
    所述光交换设备接收所述产生假光信号的装置和/或所述产生假光信号的级联系统提供的假光信号,并输出。
PCT/CN2021/072128 2020-03-12 2021-01-15 一种产生假光信号的装置以及级联系统 WO2021179793A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21767346.6A EP4109791A4 (en) 2020-03-12 2021-01-15 DEVICE FOR GENERATING A DUMMY LIGHT SIGNAL AND CASCADE SYSTEM
US17/941,401 US12074689B2 (en) 2020-03-12 2022-09-09 Apparatus and cascading system for generating dummy optical signal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010170688.3A CN113395128B (zh) 2020-03-12 2020-03-12 一种产生假光信号的装置以及级联系统
CN202010170688.3 2020-03-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/941,401 Continuation US12074689B2 (en) 2020-03-12 2022-09-09 Apparatus and cascading system for generating dummy optical signal

Publications (1)

Publication Number Publication Date
WO2021179793A1 true WO2021179793A1 (zh) 2021-09-16

Family

ID=77615706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072128 WO2021179793A1 (zh) 2020-03-12 2021-01-15 一种产生假光信号的装置以及级联系统

Country Status (4)

Country Link
US (1) US12074689B2 (zh)
EP (1) EP4109791A4 (zh)
CN (1) CN113395128B (zh)
WO (1) WO2021179793A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118033809A (zh) * 2022-11-14 2024-05-14 武汉光迅科技股份有限公司 拼接滤波器、拼接方法及电子设备
CN118138133A (zh) * 2022-12-01 2024-06-04 中兴通讯股份有限公司 填充波保护装置、填充波光源单板、通信站点和通信组网

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101900575A (zh) * 2010-06-22 2010-12-01 浙江大学 一种基于有源谐振腔和与之级联的无源谐振腔的光传感器
CN102593697A (zh) * 2011-12-12 2012-07-18 于晋龙 基于自注入法布里-玻罗激光器的快速波长可调谐光源
US20150043920A1 (en) * 2013-08-07 2015-02-12 Nec Laboratories America, Inc. Submarine reconfigurable optical add/drop multiplexer with passive branching unit
CN107408985A (zh) * 2015-03-18 2017-11-28 日本电气株式会社 光传送系统及其分析方法、终端站设备和管理设备
CN110401098A (zh) * 2019-07-10 2019-11-01 中国电子科技集团公司第四十四研究所 一种基于光学滤波的光频梳平坦度控制装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000341728A (ja) * 1999-05-31 2000-12-08 Fujitsu Ltd 光クロスコネクト装置
US6771905B1 (en) * 1999-06-07 2004-08-03 Corvis Corporation Optical transmission systems including optical switching devices, control apparatuses, and methods
US6487329B2 (en) * 2001-03-12 2002-11-26 Turin Networks Non-blocking wavelength router architecture with wavelength reuse capability
GB0121492D0 (en) * 2001-09-05 2001-10-24 Cit Alcatel A multi-channel optical loading channel transmitter
US8971705B2 (en) * 2011-09-02 2015-03-03 Ciena Corporation Transient and switching event stabilization of fiber optic transport systems
WO2013163298A1 (en) * 2012-04-24 2013-10-31 Senseonics, Incorporated Angle of incidence selective band pass filter for implantable chemical sensor
KR102162833B1 (ko) * 2013-01-02 2020-10-08 오이솔루션 아메리카 인코퍼레이티드 집적된 마하젠더 변조기를 구비한 튜너블 u-레이저 전송기
JP6051994B2 (ja) * 2013-03-25 2016-12-27 富士通株式会社 光伝送装置及びダミー光挿入方法
CN103311802A (zh) * 2013-05-31 2013-09-18 华为技术有限公司 波长可调的激光输出方法和可调激光装置
US9841571B1 (en) * 2017-01-27 2017-12-12 Foxconn Interconnect Technology Limited Optical coupling system that reduces back reflection and improves mode matching in forward optical coupling using perturbations at a reflective surface

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101900575A (zh) * 2010-06-22 2010-12-01 浙江大学 一种基于有源谐振腔和与之级联的无源谐振腔的光传感器
CN102593697A (zh) * 2011-12-12 2012-07-18 于晋龙 基于自注入法布里-玻罗激光器的快速波长可调谐光源
US20150043920A1 (en) * 2013-08-07 2015-02-12 Nec Laboratories America, Inc. Submarine reconfigurable optical add/drop multiplexer with passive branching unit
CN107408985A (zh) * 2015-03-18 2017-11-28 日本电气株式会社 光传送系统及其分析方法、终端站设备和管理设备
CN110401098A (zh) * 2019-07-10 2019-11-01 中国电子科技集团公司第四十四研究所 一种基于光学滤波的光频梳平坦度控制装置

Also Published As

Publication number Publication date
US20230006756A1 (en) 2023-01-05
CN113395128A (zh) 2021-09-14
CN113395128B (zh) 2023-12-15
EP4109791A4 (en) 2023-08-09
US12074689B2 (en) 2024-08-27
EP4109791A1 (en) 2022-12-28

Similar Documents

Publication Publication Date Title
US12074689B2 (en) Apparatus and cascading system for generating dummy optical signal
EP1422794B1 (en) Fabry-perot laser apparatus mode-locked to multi-frequency lasing light source and optical transmission apparatus using the same
US6259555B1 (en) Multi-band amplification system for dense wavelength division multiplexing
US7446933B2 (en) Multi-band hybrid SOA-Raman amplifier for CWDM
US6396623B1 (en) Wide-band optical amplifiers with interleaved gain stages
EP3420652B1 (en) Systems and methods for reducing adjacent channel leakage ratio
GB2281670A (en) WDM Optical communication system
JPH07176815A (ja) 光通信システムにおけるゲインピークを緩和させる方法
JP2002296629A (ja) 4光波混合を用い雑音を考慮した波長変換方法と波長変換器および光源
JPH0915422A (ja) 多重波長発生源
US7054058B2 (en) Pumping source having a number of pump lasers for Raman amplification of a WDM signal with the aid of minimized four-wave mixing
US7324268B2 (en) Optical signal amplifier and method
WO2005109714A1 (en) All-optical signal regeneration
EP1292056A2 (en) A multi-channel optical loading channel transmitter
EP1570594B1 (en) Continuous wave pumped parallel fiber optical parametric amplifier
JP2000340871A (ja) 光増幅器
Kim et al. Two-stage optical limiting fiber amplifier using a synchronized etalon filter
Krzczanowicz et al. Hybrid discrete Raman/EDFA design for broadband optical amplification in metro WDM systems
US6731425B1 (en) Modular Raman pump double-multiplexer
JP2000299522A (ja) ファイバラマン増幅器及びそれを用いた光ファイバ通信システム
Takada et al. Three-stage ultra-high-density multi/demultiplexer covering low-loss fibre transmission window 1.26-1.63 µm
CN115708003A (zh) 用于宽带宽传输的基于半导体的系统和方法
CN111697424A (zh) 一种光源产生装置、方法、设备及计算机可读存储介质
Mohs et al. Undersea Communication Systems Without System Specific Optical Amplifiers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21767346

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021767346

Country of ref document: EP

Effective date: 20220921

NENP Non-entry into the national phase

Ref country code: DE