WO2021179684A1 - 一种地下气化炉的预控结构、气化炉及气化方法 - Google Patents

一种地下气化炉的预控结构、气化炉及气化方法 Download PDF

Info

Publication number
WO2021179684A1
WO2021179684A1 PCT/CN2020/131625 CN2020131625W WO2021179684A1 WO 2021179684 A1 WO2021179684 A1 WO 2021179684A1 CN 2020131625 W CN2020131625 W CN 2020131625W WO 2021179684 A1 WO2021179684 A1 WO 2021179684A1
Authority
WO
WIPO (PCT)
Prior art keywords
flame retardant
retardant injection
channel
gasifier
coal seam
Prior art date
Application number
PCT/CN2020/131625
Other languages
English (en)
French (fr)
Inventor
文志杰
黄景
肖鹏
张景凯
朱恒忠
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Priority to US17/786,596 priority Critical patent/US20230008988A1/en
Publication of WO2021179684A1 publication Critical patent/WO2021179684A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/295Gasification of minerals, e.g. for producing mixtures of combustible gases
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/30Specific pattern of wells, e.g. optimising the spacing of wells
    • E21B43/305Specific pattern of wells, e.g. optimising the spacing of wells comprising at least one inclined or horizontal well

Definitions

  • the invention belongs to the technical field of underground coal gasification, and in particular relates to a pre-control structure of an underground gasification furnace, a gasification furnace and a gasification method.
  • underground coal gasification is a new technology for mining coal.
  • Underground coal gasification has the characteristics of low cost, high efficiency, high resource recovery rate, reliable operation, and low environmental impact. It is possible to exploit and utilize coal resources that are difficult to extract by traditional methods.
  • the underground coal gasification technology has not yet been industrially applied after more than 80 years of field trials.
  • One of the technical bottlenecks it faces is that the structure of the gasifier is difficult to control.
  • the carrier of underground coal gasifier is geological body. The shape and structure of coal during gasification and combustion in the stratum cannot be controlled. This will cause the uncontrolled development and diffusion of the gasifier structure.
  • CN107701166A discloses an underground coal gasifier with double-layer standard petroleum casing high temperature resistant cement slurry cementing technology, but none of them solves the problem of gasification. The problem of pre-control of furnace cavity structure.
  • the present invention proposes a pre-control structure of an underground gasifier, a gasifier and a gasification method, which changes the structural properties of the coal body. , So that the coal on both sides of the gasifier is moistened, thereby controlling the expansion and spreading of the gasifier to both sides. At the same time, thanks to the support of the wet coal at both ends, the stability of the gasification furnace cavity is improved and the gasification furnace is kept stable.
  • the complete structure of the surrounding rock enables the gasifier to have good airtightness and pressure-bearing performance during the operation, so as to realize the stable gasification of the underground coal seam.
  • One of the tasks of the present invention is to provide a pre-control structure of an underground gasifier, which adopts the following technical solutions:
  • a pre-control structure of an underground gasification furnace which includes a flame retardant injection system.
  • the flame retardant injection system includes a flame retardant injection shaft pipe channel drilled into the coal seam from the ground and an injection resistance located in the coal seam.
  • the flame retardant injection channel includes a first flame retardant injection channel located on both sides of each gasification furnace, a second flame retardant injection channel, and a third flame retardant injection channel located in the horizontal direction of the adjacent gasification furnace
  • the flame-retardant injection channel wherein the first flame-retardant injection channel includes a horizontal section arranged along the direction of the coal seam and a circuitous section offset toward the gasifier; the second flame-retardant injection channel is The structure of the first flame retardant injection channel is the same, and the horizontal section of the first flame retardant injection channel and the horizontal section of the second horizontal channel are arranged symmetrically with respect to the gasification furnace;
  • the flame retardant injection shaft pipe channel is provided with several groups, the bottom of which is in communication with the first flame retardant injection channel and the second flame retardant injection channel;
  • the first flame retardant injection channel, the second flame retardant injection channel and the third flame retardant injection channel are injected into the flame retardant solution to make the coal seam A wet coal wall is formed to realize the pre-control of the gasifier.
  • the construction of the flame retardant injection system pre-controls the underground gasification that could not be controlled, reduces the width of the gasification process, and controls the gasification furnace cavity within the stable range of the surrounding rock, which is beneficial to the mine according to specific needs Carry out flexible production gasification.
  • the flame retardant injection system itself is also a low-cost auxiliary means. In the process of gasification furnace gas production to close the furnace, the cost of other flame retardant injection is very low, which is beneficial to the production cost of the mine, except for the input of drilling. control.
  • Another task of the present invention is to provide a gasifier.
  • An underground gasification furnace comprising an air intake shaft tube passage from the ground to a coal seam, a directional built-in horizontal tube passage arranged horizontally in the coal seam, a return gas shaft tube passage for gas outlet and ignition Zone, the two ends of the directional built-in horizontal pipe channel are kept in communication with the air inlet shaft pipe channel and the gas return shaft pipe channel, and the pre-control structure of the underground gasifier as described above is also included;
  • the inlet shaft pipe passage, the directional built-in horizontal pipe passage and the return gas shaft pipe passage form a "U"-shaped structure; several adjacent gasifiers have the same structure, and several adjacent gasifiers form one Gasification furnace unit, and form several gasification zones.
  • the combination of the flame retardant injection system and the gasification furnace makes the gasification process of the original unit have manual control factors, which allows the gasification furnace to set the size of the gasification furnace and the gasification channel according to the production needs
  • the length of the flame retardant can be adjusted flexibly, and the flame retardant injection system can be flexibly adjusted and controlled according to the specific geological conditions and construction conditions, with the gasification method.
  • the flame retardant injection can be controlled for a single gasifier to realize simultaneous gasification production of multiple production units, which makes the flame retardant injection system and the gasification furnace can be Flexible combination brings significant convenience and economic benefits to the producer.
  • the above-mentioned flame retardant injection shaft pipe passage is drilled to a distance above the coal seam where the gasification furnace is located, and a shaft support casing is arranged below it.
  • the length of the horizontal section of the first flame retardant injection channel and the second flame retardant injection channel is the same as the length of the directional built-in horizontal tube.
  • Another task of the present invention is to provide the above-mentioned underground gasification furnace gasification method, which in turn includes the following steps:
  • the directional drilling length is the advancing length of the gasifier to be gasified. After the drilling is completed, it is the said directional built-in horizontal pipe channel. Simultaneously carry out the shaft drilling of the return gas shaft pipe channel;
  • the drilling of the horizontal section of the first flame retardant injection channel is completed, and then adjust The drilling direction is such that the drilling direction is offset to the side of the gasification furnace.
  • the offset reaches a certain arc, then a distance is drilled along the tangent direction of the arc section where it is located, forming the circuitous section of the first flame retardant injection channel ;
  • the specific drilling method of the flame retardant injection vertical pipe passage is: drilling in the direction of the coal seam with drilling equipment, and the horizontal distance to the left side of the directional built-in horizontal pipe passage is 22 meters When the distance from the bottom of the return gas shaft pipe is 10 meters, stop drilling.
  • the directional built-in horizontal pipe channel is arranged at a distance of 1/3 of the coal thickness from the coal seam floor, and is arranged in parallel with the coal seam.
  • the arc segment is 1/4 the length of a circle with a radius of less than 22 meters, and the arc segment is drilled for 25 meters in the tangential direction of the arc segment.
  • magnesium chloride is selected as the flame retardant, and the magnesium chloride is added to the flame retardant injection system to form a flame retardant injection solution with a concentration of 10%-20%, which is prepared for current use.
  • the horizontal directional borehole of the coal seam and the coal seam have the same inclination angle, and the distance from the coal seam roof where the gasifier is located is 1.0-1.5 meters.
  • the pre-control structure of the gasifier of the present invention is designed with a flame retardant injection system.
  • the flame retardant injection system and its related pipelines By designing the flame retardant injection system and its related pipelines, the flame spread during the gasification process of the gasifier can be controlled.
  • the flame retardant injection system according to the design and layout of the flame retardant injection pipeline in the coal seam, during the coal seam gasification process, the gasifier is only connected to the first flame retardant injection pipeline and the second flame retardant injection pipeline
  • the third flame-retardant injection pipeline is used for gasification in the wet coal wall.
  • a single gasifier is protected by a flame-retardant injection system. It is designed to be carried out around a single gasification furnace.
  • the efficient pipeline layout is used for economical injection.
  • the flame retardant equipment maximizes the utilization rate of the flame retardant injection pipeline of a single gasifier.
  • multiple gasification units can be performed at the same time, and the flame retardant injection pipeline can be flexibly adjusted according to the specific production situation, and the parameters of the pipeline and flame retardant injection can be flexibly adjusted to cooperate with the gasification production for efficient operation.
  • the pre-controlled aspect ratio of the gasifier is 5:1
  • the width of the gasification channel pre-controlled by the gasifier is smaller than the limit collapse step distance of the overburden, which does not damage the integrity of the overburden and will not cause damage to the overburden.
  • Large-area collapse can further effectively control the development height of the overlying strata fissure zone and ensure the pressure-bearing and air-tightness of the gasifier.
  • the stable gasifier structure further lays the foundation for the simultaneous production and gasification of multiple unit gasifiers, and solves the problems of insufficient gas production of a single gasifier and unstable operation of the gasifier structure during the subsequent gasification process. .
  • the pre-control of the gasifier structure is flexible, and multiple gasification units can be operated at the same time to achieve the designed capacity of gasification, or multiple gasification units can be started at the same time, which solves the problem of long start-up time and long production cycle.
  • Figure 1 is a schematic diagram of the pre-control structure of the gasifier of the present invention.
  • Fig. 2 is a schematic top view of the structure of Fig. 1;
  • Fig. 3 is a schematic top view of the structure of each unit in Fig. 2;
  • Figure 4 is a schematic cross-sectional view of the structure of Figure 3 A-A;
  • Figure 5 is a schematic sectional view of the structure of Figure 3 B-B;
  • Figure 6 is a schematic diagram of segmented sealing with flame retardant injection
  • the present invention proposes a pre-control structure, gasification furnace and method of an underground gasification furnace.
  • the first flame retardant injection channel 5 mentioned in the present invention is a horizontal long section of the coal seam directional flame retardant injection channel
  • the third flame retardant injection channel 6 is a horizontal short section of the coal seam directional flame retardant injection channel.
  • the present invention is a pre-control structure of an underground gasifier, which is used to solve the problem that the gasifier is difficult to control.
  • the stable gasifier structure lays the foundation for realizing the simultaneous production and gasification of multiple unit gasifiers, and solves the problem at the same time.
  • the structure and shape of the gasifier in the prior art are difficult to control during the gasification process.
  • the main technical difficulty lies in the fact that the underground gasifier is basically in an uncontrolled state after ignition and gasification. The direction and vaporization range continue to spread around after ignition.
  • the present invention creatively designs a flame retardant injection system.
  • a certain concentration of coal mine flame retardant is injected into the coal seam. (Select magnesium chloride), so that the flame retardant used in coal mines will remain in the coal seam, which can protect the wet coal wall due to the high temperature evaporation of water and the structural control failure.
  • a pre-control structure of an underground gasification furnace includes a flame retardant injection system.
  • the flame retardant injection system includes a flame retardant injection shaft pipe channel drilled into the coal seam from the ground and The flame retardant injection channel located in the coal seam.
  • the flame retardant injection channel includes a first flame retardant injection channel, a second flame retardant injection channel located on both sides of each gasification furnace, and a horizontal direction of adjacent gasification furnaces.
  • the third flame retardant injection channel wherein the first flame retardant injection channel includes a horizontal section arranged along the direction of the coal seam and a circuitous section offset to the direction of the gasifier; the second flame retardant injection channel and the first injection resistance
  • the structure of the fuel channel is the same.
  • the horizontal section of the first flame retardant injection channel and the horizontal section of the second horizontal channel are arranged symmetrically with respect to the gasification furnace;
  • the flame retardant channel and the second flame retardant injection channel are connected; through the flame retardant injection shaft pipe channel to the corresponding first flame retardant injection channel, the second flame retardant injection channel and the third flame retardant injection channel.
  • the above-mentioned pre-control structure can be used in an underground gasifier to control its structure.
  • the main principle is achieved by combining the above-mentioned flame retardant injection system and flame retardant injection to moisturize coal.
  • the gasification furnace including the above-mentioned pre-control structure will be described in detail.
  • the gasification furnace includes an intake shaft tube passage from the ground to the coal seam, a directional built-in horizontal tube passage arranged horizontally in the coal seam, a return gas shaft tube passage for gas outlet and an ignition area.
  • the two ends of the directional built-in horizontal pipe channel are kept in communication with the air inlet shaft pipe channel and the air return shaft pipe channel,
  • the intake shaft tube channel, the directional built-in horizontal tube channel and the return gas shaft tube channel form a U-shaped structure; several adjacent gasifiers have the same structure, and several adjacent gasifiers form a gasifier unit. And form several gasification zones;
  • the first flame retardant injection channel, the second flame retardant injection channel, the third flame retardant injection channel, and the flame retardant injection shaft pipe channel are respectively arranged at the corresponding positions of the gasification furnace.
  • Preparation for lowering the directional drill After adjusting the casing of the air inlet channel, lower the coal seam directional drilling rig, and carry out the coal seam horizontal directional drilling operation according to the geological data and the requirements of the mine.
  • the directional drilling length is the advancing length of the gasification furnace to be gasified. Therefore, the length of the directional built-in horizontal pipe channel 2 can be set according to the requirements of the specific situation. In this embodiment, it is set to be 150 meters long.
  • the vertical shaft drilling of the return gas shaft pipe passage 3 is carried out, and the equipment used is the same as the equipment used for drilling the gas shaft pipe passage 1.
  • the shaft support casing is placed on the return gas shaft pipe passage 3 to prepare for gas outflow collection. So far, the U-shaped single gasifier is completed.
  • the flame retardant injection shaft pipe channel 4 is drilled, and the drilling equipment used is the same as that of the air intake shaft pipe channel.
  • the drilling position of the flame retardant injection shaft pipe channel 4 is shown in Fig. 3, which is 22 meters from the left side of the directional built-in horizontal pipe channel 2 of the gasifier and 10 meters from the lower side of the gas return shaft pipe channel 3.
  • Fig. 3 is 22 meters from the left side of the directional built-in horizontal pipe channel 2 of the gasifier and 10 meters from the lower side of the gas return shaft pipe channel 3.
  • coal seam horizontal directional drilling to drill the horizontal section of the first flame-retardant injection channel.
  • the drilling equipment is the same as that of the directional built-in horizontal pipe channel.
  • the specific drilling method is:
  • the coal seam’s directional drilling arrangement should serve as much as possible for the injection of flame retardants. Therefore, the coal seam’s horizontal directional drilling should have the same inclination angle as the coal seam as far as possible, and the distance from the coal seam roof where the gasifier is located is 1.0-1.5 meters.
  • the hole angle is adjusted to +4° based on the ignition and gasification working surface, and the azimuth angle is 90°.
  • the length of the horizontal directional borehole for the flame retardant injection pipeline is determined according to the number of gasification channels and the length of the coal seam.
  • the length of the horizontal straight section of the flame retardant injection pipeline is the same as the length of the gasification furnace, that is, the horizontal straight section of the drilling is completed, the directional drilling needs to be adjusted, and the drilling is 122 meters away from the intake shaft pipe channel , Adjust the drilling direction, drill off to the inside of the gasifier, as shown in Figure 3, drill 90 degrees to the right, the channel forms a 1/4 arc section, the radius of the circle is within 22 meters, wait for the 1/4 circle to drill When finished, continue to drill 25 meters forward along the tangent line of the arc, which basically constitutes the flame retardant injection pipeline on the side of the gasifier.
  • the supporting casing is installed in time to support the exposed channel and avoid blockage caused by the collapse of the channel.
  • the diameter of the supporting casing pipe needs to be determined according to the size of the horizontal directional drilling equipment for the coal seam, which can be slightly smaller than the diameter of the directional drilling hole.
  • the method of making the water outlet holes of the flame-retardant support casing is to open 8 water outlet holes with a diameter of 5mm on the circumference of the supporting pipe body at an interval of 45°. Row.
  • the construction of the second flame retardant injection channel is continued, the method is the same as the construction of the first flame retardant injection channel, as shown in Figure 3, the flame retardant injection is on the far left
  • the flame retardant injection pipe channel on the right is constructed, and the flame retardant injection shaft pipe channel 4 is drilled down 22 meters from the right side of the directional built-in horizontal pipe channel 2 and is away from the return gas shaft
  • the pipe channel 3 is located 10 meters down, and the arrangement is basically symmetrical about the gasification furnace, and then the same equipment technology and method requirements are constructed using the flame retardant pipe channel before.
  • the construction of the flame retardant injection pipelines on the left and right sides and the upper part of the gasifier is basically completed. Then, in order to make the pre-control of the gasifier structure closer to perfection, the other side structure needs to be constructed. , That is, the construction method of the horizontal short section of the lower part of the coal seam shown in FIG.
  • the third component of the flame retardant injection pipe channel 6, that is, the construction method of the horizontal short section of the coal seam directional flame retardant injection channel, as shown in Figure 3.
  • the lower end is required.
  • the drilling position of the flame retardant injection shaft pipe channel 4 can be determined according to the specific situation, but for The drilling can be fully utilized and unnecessary drilling waste can be reduced.
  • the length of the directional flame retardant injection channel 6 in the horizontal short section of the coal seam is 4 times the width of the short side of the gasifier. Therefore, first use Figure 3 for details.
  • the flame retardant injection shaft pipe channel 4 is drilled at 40 meters to the right of the fourth gasification furnace on the far left and 4 meters below the flame retardant injection shaft pipe channel on both sides of the gasification furnace.
  • the flame retardant injection shaft pipe channel 4 is drilled to a position 5 meters above the coal seam where the gasification furnace is located, the shaft pipe channel drilling rig is exited, and the shaft supporting casing is lowered. Then use the coal seam directional drilling machine to construct the coal seam horizontal short section of the directional flame retardant injection channel 6.
  • the coal seam horizontal directional drilling is required to be the same as the coal seam inclination as far as possible, and the distance from the coal seam roof where the gasifier is located is 1.0-1.5 meters to improve the wetness Effect Adjust the drilling angle to +4° based on the ignition and gasification working surface, and the azimuth angle is 0°, and perform straight drilling.
  • the flame retardant is injected When the vertical shaft pipe channel 4 is at the same position, stop drilling, exit the coal seam directional drilling machine, and put down the flame retardant special supporting casing in time.
  • the piping arrangement required for the pre-control of the structure around a unit gasifier is basically completed, and the problem of insufficient gas production in a single gasifier is solved in advance. It requires multiple gasifiers to gasify at the same time, so a generation system is required.
  • the utilization rate of the regional gasification furnace production system and the flame retardant injection system designed according to the diagram can reach the best, that is, the two wings in Figure 2 can share the coal seam at the same time
  • the horizontal short section of the directional flame retardant injection channel 6 can accelerate the construction of the gasification furnace structure, while reducing the number of drilling holes and saving costs.
  • the specific steps of injecting flame retardant to moisturize coal are: lower the flame retardant pipe, which is a flexible high-pressure water inlet hose made of braided steel wire, and the flame retardant injection pipe is set as a long enough whole pipe, eliminating the need for connection steps. At the same time, since the number of joints reduces the frictional resistance in the casing, the flame-retardant injection pipe can be directly guided into the supporting casing of the flame-retardant injection channel.
  • coal mine flame retardant magnesium chloride is selected
  • a flame retardant injection solution with a concentration of 10%-20%.
  • the flame retardant used in coal mines will remain in the coal seam, which can protect the wet coal wall due to high temperature evaporation of water and structural control failure.
  • the time of flame retardant injection also needs to be controlled. If the flame retardant injection time is too long, it will cause a waste of water and solvent. The key is to leave a pillar of flame retardant moistened coal in the coal seam. No coal moistening effect.
  • the flame retardant injection time and flame retardant injection pressure should be determined according to the coal thickness and coal quality of the coal seam where the gasifier is located.
  • the injection time of flame retardant per hole shall not be less than 12 hours, but not more than 24 hours.
  • intermittent high and low pressure alternate injection of flame retardants can be selected, intermittent high and low pressure alternate injection of flame retardants, the water pressure of low pressure injection of flame retardant is 3MPa, and high pressure injection of flame retardant The water pressure is 9MPa.
  • This flame retardant injection method forms a phenomenon similar to "impact”, causing continuous volume expansion and contraction of the coal body, resulting in strength fatigue of the coal body, so as to increase the degree of coal body rupture and increase the connectivity of the coal body's fissures, directly in the coal seam.
  • a large number of new small fissure networks are formed inside, and the efficiency of flame retardant injection is significantly improved.
  • the hole sealing is the key to the effect of the flame retardant injection in the coal seam.
  • the plugging device is matched with the drilling hole, and can withstand a certain pressure at the same time.
  • Expansive cement can be used for physical sealing.
  • the expansion cement sealing depth is required to be more than 1.5m.
  • the horizontal long section of the coal seam on the left side of the unit gasifier can be injected with the flame retardant channel 5 after the injection of the flame retardant is completed.
  • the directional flame retardant injection channel 5 can be closed by the valve, so that the next gasifier can share the flame retardant injection channel.
  • the directional flame retardant injection channel 6 is segmented and sealed. As shown in Figure 6, when the first gasifier on the left starts to ignite and gasify, the sealing protection of section a is carried out in advance After the first gasifier is injected with flame retardant, continue to seal the holes in section b, and continue to inject the flame retardant after the first gasifier is extinguished, and so on. This can protect the horizontal short section of the coal seam.
  • the flame retardant injection channel 6 will not cause water waste due to excessive length, and at the same time, due to the presence of segments, the flame retardant injection time, flame retardant injection pressure and flame retardant injection flow rate can be more accurately controlled.
  • the gasification unit body can be determined according to requirements.
  • the two-wing gasifier shown in Figure 2 is required to be injected with flame retardant to moisturize the coal and ignite and gasify at the same time. This is not only convenient for gasification management of the gasifier, but also for injection of flame retardants. Centralized management of pipelines.
  • the flame retardant injection pipelines are controlled by valves, connected with a schedule, flow meter, pressure gauge, and pressure relief valve, which can make the flame retardant injection operation more accurate, efficient and safe.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Processing Of Solid Wastes (AREA)
  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Abstract

公开了一种地下气化炉的预控结构、气化炉及气化方法。该预控结构包括注阻燃剂系统,注阻燃剂系统包括从地面向煤层中钻进的注阻燃剂竖井管通道(4)及位于煤层(9)中的注阻燃剂通道,注阻燃剂通道包括位于每个气化炉两侧的第一注阻燃剂通道(5)、第二注阻燃剂通道及位于相邻气化炉水平方向上的第三注阻燃剂通道(6),其中,第一注阻燃剂通道(5)包括沿煤层(9)走向布置的水平段、向气化炉方向偏移的迂回段。通过注阻燃剂系统使得煤层(9)中形成湿润煤壁从而实现对气化炉的预控。该预控结构改变了煤体结构性,使气化炉的两侧煤体得到湿润进而控制气化炉向两侧扩展蔓延,同时由于有了两端湿润煤体的支撑,提高了气化炉腔内部的稳定性。

Description

一种地下气化炉的预控结构、气化炉及气化方法 技术领域
本发明属于煤炭地下气化技术领域,尤其涉及一种地下气化炉预控结构、气化炉及气化方法。
背景技术
我国能源体系正面临着双重挑战,即在必须满足于我国能源消费的不断增长的同时,还需要适应低碳社会绿色的发展需求。根据本国富煤少气的资源分布特点,并且为贯彻煤炭清洁高效利用的绿色开采理念,因此,煤炭地下气化技术在我国这个煤炭储量及消费大国就显的尤为重要,煤炭地下气化也是弥补我国气源供需缺口的多元化途径之一。
与传统煤炭物理开采相比,煤炭地下气化是开采煤炭的一种新工艺。煤炭地下气化具有低成本、高效率、高资源采出率、运行可靠、环境影响小的特点,有可能开采利用传统方法难以采出的煤炭资源。然而,煤炭地下气化技术历经80余年现场试验现在仍未产业化应用,其面临的技术瓶颈之一就是气化炉的结构难以控制。目前煤炭地下气化炉的载体为地质体,煤炭在地层中气化燃烧时的形态及结构无法控制,这就会使气化炉结构显无控制的发展扩散,当气化炉内部空间过大煤体就会受热破裂、围岩应力增加、覆岩垮落的影响,这就会直接影响煤炭地下气化炉的正常运作。现有技术虽然公开了很多地下气化炉的设计方案,比如CN107701166A公开了一种带有采用双层标准石油套管抗高温水泥浆固井技术的煤炭地下气化炉,但均没有解决气化炉腔结构预控制的问题。
技术解决方案
为了解决现有技术中的煤炭气化炉形态和结构无法控制的技术缺陷,本发明提出了一种地下气化炉的预控结构、气化炉及气化方法,其通过改变煤体结构性,使得气化炉两侧的煤体得到湿润,从而控制了气化炉向两侧扩展蔓延,同时由于有了两端湿润煤体的支撑,提高了气化炉腔内部的稳定性,保持了围岩的完整结构,使气化炉运行过程中具有很好的密闭性和承压性,从而实现地下煤层的稳定气化。
本发明的任务之一在于提供一种地下气化炉的预控结构,其采用了以下技术方案:
一种地下气化炉的预控结构,其包括注阻燃剂系统,所述的注阻燃剂系统包括从地面向煤层中钻进的注阻燃剂竖井管通道及位于煤层中的注阻燃剂通道,所述的注阻燃剂通道包括位于每个气化炉两侧的第一注阻燃剂通道、第二注阻燃剂通道及位于相邻气化炉水平方向上的第三注阻燃剂通道,其中,所述的第一注阻燃剂通道包括沿煤层走向布置的水平段、向气化炉方向偏移的迂回段;所述的第二注阻燃剂通道与所述的第一注阻燃剂通道结构相同,所述的第一注阻燃剂通道的水平段与第二水平通道的水平段关于气化炉对称排布;
所述的注阻燃剂竖井管通道设置有若干组,其底部与所述的第一注阻燃剂通道、第二注阻燃剂通道连通;
通过所述的注阻燃剂竖井管通道向其对应的第一注阻燃剂通道、第二注阻燃剂通道及第三注阻燃剂通道内注入阻燃剂溶液的方式,使得煤层中形成湿润煤壁从而实现对气化炉的预控。
上述技术方案直接带来的有益技术效果为:
注阻燃剂系统的构建将原来无法控制的地下气化进行了预控制,将缩小气化进行的宽度,将气化炉炉腔控制在围岩稳定的范围内,有利于矿方根据具体需求进行灵活的生产气化。并且注阻燃剂系统本身也是低成本的辅助手段,在气化炉产气到闭炉的过程中,除去钻孔的投入,其他注阻燃剂成本非常低,有利于矿方的生产成本的控制。
本发明的另一任务在于提供一种气化炉。
一种地下气化炉,所述的气化炉包括从地面到煤层方向的进气竖井管通道、在煤层中水平布置的定向内置水平管通道、用于出气用的回气竖井管通道及点火区,所述的定向内置水平管通道的两端与所述的进气竖井管通道、回气竖井管通道保持连通, 还包括上述的一种地下气化炉的预控结构;
所述的进气竖井管通道、定向内置水平管通道和回气竖井管通道形成一“U”形结构;相邻的几个气化炉结构相同,且相邻的几个气化炉组成一个气化炉单元,并形成若干气化区。
上述技术方案直接带来的有益技术效果为:
注阻燃剂系统和气化炉二者之间的结合,使原本单元的气化过程有了人工控制的因数参于,这使得气化炉可以根据生产需要来设置气化炉的大小和气化通道的长度,灵活调整,并且注阻燃剂系统可以根据具体的地质条件和施工条件,配合气化方式,可以灵活的调控生产。并且可以根据矿方的不同时期生产要求不同,对单个气化炉进行注阻燃剂控制,实现多个生产单元同时气化生产,这使得注阻燃剂系统和气化炉二者之间的可以灵活结合,为生产方带来了显著的便利和经济实惠。
进一步优选,上述的注阻燃剂竖井管通道钻进到距离气化炉所在煤层上方一段距离处,在其下方设置有竖井支护套管。
进一步优选,上述的第一注阻燃剂通道、第二注阻燃剂通道的水平段的长度与上述的定向内置水平管的长度相同。
本发明的再一任务在于提供上述地下气化炉的气化方法,依次包括以下步骤:
a、构建单个地下气化炉
首先钻进进气竖井管通道,待钻进到所在煤层上方5米时,退出钻进设备并对所述的进气竖井管通道进行加固;
其次,进行煤层水平定向钻进作业,其定向钻进长度即为气化炉要气化的推进长度,钻进完成后即为所述的定向内置水平管通道,在煤层水平定向钻进作业的同时进行回气竖井管通道的竖井钻进;
最后,待所述的定向内置水平管通道与所述的回气竖井管通道贯通后,对所述的回气竖井管通进行加固,即完成单个地下气化炉的构建;
b、构建注阻燃剂系统
首先,钻进所述的注阻燃剂竖井管通道,待钻进到距离煤层上方5米时,退出钻进设备并对所述的注阻燃剂竖井管通道进行支护;
接着沿煤层水平定向钻进,待所述的第一注阻燃剂通道的水平段的长度与气化炉走向长度相同时,即完成第一注阻燃剂通道水平段的钻进,接着调整钻进方向,使得钻进方向向气化炉侧偏移,当偏移至一定弧度后,再沿所在圆弧段的切线方向钻进一段距离,即形成第一注阻燃剂通道的迂回段;
然后钻进第二注阻燃剂管通道,其方法与第一注阻燃剂管通道的构件方法相同;
最后,在煤层水平短段方向上钻进第三注阻燃剂管通道,其长度为相邻四个气化炉的水平间距的总和,完成之后及时对第三注阻燃剂管通道进行支护;
c、完成一个单元格气化炉的构建,接着按照步骤a、b的方法依次完成其它单元格气化炉的构建;
d、调和水剂,使用地面的注阻燃剂系统,并向其中加入一定浓度的阻燃剂
e、注阻燃剂润煤,通过地面的注阻燃剂系统,依次向注阻燃剂竖井管通道内注阻燃剂,然后进入第一注阻燃剂管通道、第二注阻燃剂管通道和第三注阻燃剂管通道,并向其相邻的煤层中渗透,形成湿润煤柱从而可以防止气化时发生的蔓延;
f、点火气化。
进一步优选,步骤b中,所述的注阻燃剂竖井管通道的具体钻进方法为:利用钻进设备向煤层方向进行钻进,待距离定向内置水平管通道的左侧水平距离为22米时,且距离回气竖井管通的底部距离为10米时,停止钻进。
进一步优选,所述的定向内置水平管通道布设在距离煤层底板1/3煤厚,且同煤层平行布置。
进一步优选,步骤b中,所述圆弧段为圆半径小于22米的圆的1/4长度,且沿该圆弧段的切线方向上钻进25米。
进一步优选,所述的阻燃剂选用氯化镁,将所述的氯化镁加入到所述的注阻燃剂系统中形成浓度为10%-20%的注阻燃剂溶液,现配现用。
进一步优选,步骤b中第三注阻燃剂管通道的构建中,使得煤层水平定向钻孔与煤层倾角相同,且距离气化炉所在煤层顶板为1.0-1.5米。
有益效果
与现有技术相比,本发明带来了以下有益技术效果:
(1)本发明气化炉的预控结构,设计了注阻燃剂系统,通过对注阻燃剂系统其相关管道进行设计,可以控制气化炉气化过程中火焰蔓延。同时,注阻燃剂系统,根据注阻燃剂管路在煤层中的设计布置,在煤层气化过程中,气化炉只在第一注阻燃剂管道和第二注阻燃剂管道与第三注阻燃剂管道所构成的湿润煤壁内进行气化,单个气化炉有了注阻燃剂系统的保护,设计围绕单个气化炉进行,用高效的管路布置,经济的注阻燃剂设备,使单个气化炉的注阻燃剂管路使用率达到最大。同时,多个气化单元可以同时进行,注阻燃剂管路可以根据具体的生产情况,灵活调整管路和注阻燃剂参数,配合气化生产高效运行。
(2)由于有了湿润煤壁的支撑,达到了气化炉结构预控制的效果。气化炉预控制长宽比在5:1,且气化炉预控制的气化通道宽小于覆岩的极限垮落步距,不破坏上覆岩层的完整性,不会造成上覆岩层的大面积垮落,进一步的有效控制覆岩裂隙带的发育高度,保证气化炉的承压性和气密性。
(3)稳定的气化炉结构进一步为实现多个单元气化炉的同时生产气化奠定基础,解决了单个气化炉产气量不足和气化炉结构在接续气化过程中运行不稳定的问题。
(4)气化炉结构预控制灵活,可以多个气化单元同时运行达到气化设计的产能,也可以多个气化单元同时启动,解决启动时间较长,导致达产周期长的问题。
(5)通过设计注阻燃剂系统来预先调控气化炉的气化尺寸。
附图说明
下面结合附图对本发明做进一步说明:
图1为本发明气化炉的预控结构示意图;
图2为图1的俯视结构示意图;
图3为图2中逐个单元的俯视结构示意图;
图4为图3的A—A剖视结构示意图;
图5是图3的B—B剖视结构示意图;
图6是注阻燃剂分段封孔示意图;
图中:1、进气竖井管通道;2、定向内置水平管通道;3、回气竖井管通道;4、注阻燃剂竖井管通道;5、第一注阻燃剂通道;6、第三注阻燃剂通道;7、注阻燃剂湿润的煤柱;8、气化炉气化区域;9、煤层。
本发明的实施方式
本发明提出了一种地下气化炉的预控结构、气化炉及方法,为了使本发明的优点、技术方案更加清楚、明确,下面结合具体实施例对本发明做详细说明。
本发明中述及的第一注阻燃剂通道5为煤层水平长段定向注阻燃剂通道,第三注阻燃剂通道6为煤层水平短段定向注阻燃剂通道。
本发明一种地下气化炉的预控结构,其用于解决气化炉难以控制的问题,稳定的气化炉结构为实现多个单元气化炉的同时生产气化奠定基础,同时解决了单个气化炉产气量不足和气化炉结构在接续气化过程中运行不稳定的问题。
具体来说,现有技术中的气化炉在气化过程中其结构及形态难以控制,主要技术难点在于:地下气化炉在进行点火气化后,井下基本就为无控制状态,气化方向和气化范围在点火后不断向四周扩散。
为了解决上述技术问题,本发明创造性的设计了注阻燃剂系统,通过注阻燃剂系统细节性结构的设计,并结合该注阻燃剂系统向煤层中注入一定浓度的煤矿用阻燃剂(选用氯化镁),这样煤矿用阻燃剂会存留在煤层中,可以保护湿润煤壁因水高温蒸发而结构控制失败。
如图1-图6所示,一种地下气化炉的预控结构,其包括注阻燃剂系统,注阻燃剂系统包括从地面向煤层中钻进的注阻燃剂竖井管通道及位于煤层中的注阻燃剂通道,注阻燃剂通道包括位于每个气化炉两侧的第一注阻燃剂通道、第二注阻燃剂通道及位于相邻气化炉水平方向上的第三注阻燃剂通道,其中,第一注阻燃剂通道包括沿煤层走向布置的水平段、向气化炉方向偏移的迂回段;第二注阻燃剂通道与第一注阻燃剂通道结构相同,第一注阻燃剂通道的水平段与第二水平通道的水平段关于气化炉对称排布;注阻燃剂竖井管通道设置有若干组,其底部与第一注阻燃剂通道、第二注阻燃剂通道连通;通过注阻燃剂竖井管通道向其对应的第一注阻燃剂通道、第二注阻燃剂通道及第三注阻燃剂通道内注入阻燃剂溶液的方式,使得煤层中形成湿润煤壁从而实现对气化炉的预控。
将上述的预控结构用于地下气化炉中,即可对其结构进行控制。主要原理是通过上述注阻燃剂系统与注阻燃剂润煤二者结合的方式来实现。首先,对包括上述预控结构的气化炉做详细说明。
一种地下气化炉,气化炉包括从地面到煤层方向的进气竖井管通道、在煤层中水平布置的定向内置水平管通道、用于出气用的回气竖井管通道及点火区,所述的定向内置水平管通道的两端与所述的进气竖井管通道、回气竖井管通道保持连通,
进气竖井管通道、定向内置水平管通道和回气竖井管通道形成一U形结构;相邻的几个气化炉结构相同,且相邻的几个气化炉组成一个气化炉单元,并形成若干气化区;
上述的注阻燃剂系统中的第一注阻燃剂通道、第二注阻燃剂通道、第三注阻燃剂通道及注阻燃剂竖井管通道分别布设在该气化炉的相应位置,具体参见下述实施例。
实施例1:
构建单个地下气化炉,
结合图1-图4所示,先钻进进气竖井管通道1,待钻进到所在煤层上方5米处,退出竖井管钻机,下放竖井套管用于加固管壁结构的稳定性,为后期下放定向钻准备。进气通道套管调整好后,下放煤层定向钻机,根据地质资料和矿方要求,进行煤层水平定向钻进作业,要求水平气化通道布设在距离煤层底板1/3煤厚,且同煤层平行布置,定向钻进长度即为气化炉要气化的推进长度,因此,定向内置水平管通道2的长度可以根据具体情况要求设定,本实施例设为150米长。在煤层水平定向钻进的同时进行回气竖井管通道3的竖井钻进,使用的设备与钻进进气竖井管通道1的设备相同。待定向内置水平管通道2和回气竖井管通道3贯通后,对回气竖井管通道3下放竖井支护套管,为出气采集准备。至此U型单个气化炉完成。
按照上述方法构建其它气化炉,如通过几组气化炉形成一个气化炉单元。
作为本发明的主要创新点,注阻燃剂系统的构建。具体按照如下方法:
首先钻进注阻燃剂竖井管通道4,其所采用的钻进设备与进气竖井管通道的钻进设备相同。
注阻燃剂竖井管通道4的下钻位置如图3所示,距离气化炉定向内置水平管通道2左侧为22米,距离回气竖井管通道3下侧10米的位置。待注阻燃剂竖井管通道4钻进到距离煤层上方5米时,退出竖井管钻机,下放竖井支护套管,用于注阻燃剂备用。
进一步下放煤层水平定向钻,钻取第一注阻燃剂通道的水平段,其钻取设备与定向内置水平管通道的钻进设备相同
具体钻进方法为:
要求煤层水平长段定向钻孔布置应尽量为注阻燃剂服务,因此,煤层水平定向钻孔尽量与煤层倾角相同,且距离气化炉所在煤层顶板为1.0-1.5米,提高湿润效果将钻孔角度以点火气化工作面为基准调整为+4°,并且方位角90°。注阻燃剂管路的水平定向钻孔长度根据气化通道布置数目及煤层走向长度确定。待水平直段注阻燃剂管路的长度同气化炉走向长度,即水平直段钻进完成,需要对定向钻进行定向调整,在钻进到距离进气竖井管通道122米的位置时候,调整钻进方向,向气化炉内侧偏钻,如图3所示,向右侧偏钻90度,通道构成1/4圆弧段,圆半径在22米内,待1/4圆钻进完毕,继续沿圆弧的切线向前钻进25米,基本构成气化炉一侧的注阻燃剂管路。在定向钻孔打好后及时下支护套管,起到对裸露通道的支护作用,避免通道坍塌造成堵塞。支护套管管径需要根据煤层水平定向钻设备尺寸决定,可以略小于定向钻孔孔径。注阻燃剂支护套管出水孔的制作方法,以45°角的间隔在支护管体一周上开8个孔径为5mm的出水孔,开孔轴线间距0.5m,成圆孔60°错排。
在第一注阻燃剂通道构件好后,接着继续第二注阻燃剂通道的构建,方法同上述第一注阻燃剂通道的构建,如图3所示,在最左边的注阻燃剂管通道构建完后,进行右侧的注阻燃剂管通道构建,其注阻燃剂竖井管通道4的下钻位置为距离定向内置水平管通道2右侧22米,且距离回气竖井管通道3往下10米的位置,布置方式基本关于气化炉对称分布,接着使用之前注阻燃剂管通道构建相同的设备技术和方法要求。如图3所示,至此基本完成气化炉左右两侧和上部分注阻燃剂管路通道的构建,接着,为使气化炉结构预控制更加接近完美,需要进行另一侧结构的构建,即图3所示的下部分煤层水平短段定向注阻燃剂通道6的构建方法。
最后构件第三注阻燃剂管通道6,即煤层水平短段定向注阻燃剂通道的构建方法,如图3所示,在第一个单元格气化炉构建完成后,需要进行下端部的注阻燃剂通道的构建,其中注阻燃剂竖井管通道的钻进设备同之前的采用过的设备,注阻燃剂竖井管通道4的下钻位置可以根据具体情况而定,但为了使钻井得到充分的利用,减少额外不必要的钻井浪费,其煤层水平短段定向注阻燃剂通道6的长度为4倍气化炉短边宽度为最佳,因此,先采用图3进行具体的说明,注阻燃剂竖井管通道4的下钻在距离最左边第四个气化炉往右40米,且距离气化炉两侧的注阻燃剂竖井管通道下方4米位置。在注阻燃剂竖井管通道4钻进到距离气化炉所在煤层上方5米的位置,退出竖井管通道钻机,下放竖井支护套管。接着使用煤层定向钻进机进行煤层水平短段定向注阻燃剂通道6的构建,要求煤层水平定向钻孔尽量与煤层倾角相同,且距离气化炉所在煤层顶板为1.0-1.5米,提高湿润效果将钻孔角度以点火气化工作面为基准调整为+4°,并且方位角0°,进行直段钻进,待钻进到图3所示最左边气化炉的左侧注阻燃剂竖井管通道4同位置时,停止钻进,退出煤层定向钻进机,及时下放注阻燃剂专用支护套管。至此,基本完成一个单元体气化炉四周的结构预控制所需要的管路布置,预解决单个气化炉产气量不足的问题,就需要多个气化炉同时气化,因此需要进行生成系统和注阻燃剂系统的构建,根据图2所示,按照该图设计出的区域气化炉生产系统和注阻燃剂系统的使用率能够达到最佳,即图2中两翼可以同时共用煤层水平短段定向注阻燃剂通道6,这样可以加速气化炉结构的构建,同时减少钻孔的数目,节约成本。
在上述注阻燃剂系统构建完成后,还需对其进行注阻燃剂润煤才能控制气化炉在气化过程中的结构及形态。
注阻燃剂润煤步骤具体为:下放注阻燃剂管,其为钢丝编织而成的柔性高压进水胶管,注阻燃剂管设置成足够长的整根管,省去连接的步骤,同时由于接头少也减少了在套管中的摩擦阻力,直接将注阻燃剂管导入注阻燃剂通道的支护套管中即可。
注入的水中加入一定浓度的煤矿用阻燃剂(选用氯化镁),调配浓度为10%-20%的注阻燃剂溶液。该溶剂被注入到煤层后,煤矿用阻燃剂会存留在煤层中,可以保护湿润煤壁因水高温蒸发而结构控制失败。
注阻燃剂压力越大,湿润半径越大,但实际情况受供压设备、管路及生产成本等因素制约,不允许注阻燃剂压力无限大。注阻燃剂时间也需要控制,注阻燃剂时间过长会造成水溶剂浪费,关键是造成煤层中留设注阻燃剂湿润的煤柱7过大造成煤炭资源浪费,时间过短又达不到润煤效果。
因此注阻燃剂时间和注阻燃剂压力应该根据气化炉所在煤层的煤厚、煤质确定,对于薄及中厚煤层,选用5兆帕的恒压注阻燃剂,为确保煤层9注阻燃剂量,每孔注阻燃剂时间不得少于12个小时,但不得大于24小时。对于厚及特厚煤层且煤质坚硬的可以选用间歇式高低压交替注阻燃剂方式,间歇式高低压交替注阻燃剂,低压注阻燃剂的水压为3MPa,高压注阻燃剂的水压为9MPa。这种注阻燃剂方式形成类似于“冲击”现象,使煤体连续出现体积膨胀和收缩,导致煤体强度疲劳,从而达到煤体破裂程度增加,煤体裂隙的连通性增强,直接在煤层内形成数量众多新的小裂隙网,注阻燃剂效率明显提升。
待注阻燃剂完毕后,煤层注阻燃剂效果的好坏,封孔是关键。考虑到封孔器与钻孔相匹配,同时能够承受一定的压力。可以选用膨胀水泥进行物理封孔。要求膨胀水泥封孔深度1.5m以上,如图6所示,在该单元气化炉左侧的煤层水平长段定向注阻燃剂通道5在注阻燃剂完毕后可以依次进行膨胀水泥封孔,对于该气化炉右侧的煤层水平长段定向注阻燃剂通道5则进行阀门关闭操作即可,以待下一个气化炉共用该注阻燃剂通道。对于煤层水平短段定向注阻燃剂通道6则进行分段封孔作业,在图6所示中,当左边第一个气化炉开始点火气化的时候,提前进行a段的封孔保护,第一个气化炉注阻燃剂完毕后在b段继续封孔,待第一个气化炉熄炉后再继续进行注阻燃剂,以此类推,这可以保护煤层水平短段定向注阻燃剂通道6不会因为长度过长导致水剂浪费,同时由于有了分段的存在可以使注阻燃剂时间、注阻燃剂压力及注阻燃剂流量得到更加精确的控制。
在注阻燃剂管道布设,注阻燃剂封孔润煤完毕后可以进行点火气化,在气化炉气化区域8进行气化生产。可以根据要求决定气化的单元体,要求图2所示两翼气化炉同时注阻燃剂润煤,并且同时点火气化,这样既便于气化炉的集气管理,也便于注阻燃剂管路的集中管理。注阻燃剂管路之间由阀门控制,连接有时间表,流量表,压力表,泄压阀,可以使注阻燃剂作业更加精确高效安全。
需要说明的是,在本文中,在未作相反说明的情况下,所使用的方位词如“上、下、 左、右”均是指该说明书附图中所示的方向。
本发明中未述及的部分借鉴现有技术即可实现。
需要说明的是:在本说明的教导下本领域技术人员所做出的任何等同方式,或明显变型方式均应在本发明的保护范围内。

Claims (10)

  1. 一种地下气化炉的预控结构,其特征在于:其包括注阻燃剂系统,所述的注阻燃剂系统包括从地面向煤层中钻进的注阻燃剂竖井管通道及位于煤层中的注阻燃剂通道,所述的注阻燃剂通道包括位于每个气化炉两侧的第一注阻燃剂通道、第二注阻燃剂通道及位于相邻气化炉水平方向上的第三注阻燃剂通道,其中,所述的第一注阻燃剂通道包括沿煤层走向布置的水平段、向气化炉方向偏移的迂回段;所述的第二注阻燃剂通道与所述的第一注阻燃剂通道结构相同,所述的第一注阻燃剂通道的水平段与第二水平通道的水平段关于气化炉对称排布;
    所述的注阻燃剂竖井管通道设置有若干组,其底部与所述的第一注阻燃剂通道、第二注阻燃剂通道连通;
    通过所述的注阻燃剂竖井管通道向其对应的第一注阻燃剂通道、第二注阻燃剂通道及第三注阻燃剂通道内注入阻燃剂溶液的方式,使得煤层中形成湿润煤壁从而实现对气化炉的预控。
  2. 一种地下气化炉,所述的气化炉包括从地面到煤层方向的进气竖井管通道、在煤层中水平布置的定向内置水平管通道、用于出气用的回气竖井管通道及点火区,所述的定向内置水平管通道的两端与所述的进气竖井管通道、回气竖井管通道保持连通,其特征在于:
    还包括权利要求1所述的一种地下气化炉的预控结构;
    所述的进气竖井管通道、定向内置水平管通道和回气竖井管通道形成一U形结构;相邻的几个气化炉结构相同,且相邻的几个气化炉组成一个气化炉单元,并形成若干气化区。
  3. 根据权利要求2所述的一种地下气化炉,其特征在于:所述的注阻燃剂竖井管通道钻进到距离气化炉所在煤层上方一段距离处,在其下方设置有竖井支护套管。
  4. 根据权利要求2所述的一种地下气化炉,其特征在于:所述的第一注阻燃剂通道、第二注阻燃剂通道的水平段的长度与所述的定向内置水平管的长度相同。
  5. 根据权利要求2所述的地下气化炉的气化方法,其特征在于:依次包括以下步骤:
    a、构建单个地下气化炉
    首先钻进进气竖井管通道,待钻进到所在煤层上方5米时,退出钻进设备并对所述的进气竖井管通道进行加固;
    其次,进行煤层水平定向钻进作业,其定向钻进长度即为气化炉要气化的推进长度,钻进完成后即为所述的定向内置水平管通道,在煤层水平定向钻进作业的同时进行回气竖井管通道的竖井钻进;
    最后,待所述的定向内置水平管通道与所述的回气竖井管通道贯通后,对所述的回气竖井管通进行加固,即完成单个地下气化炉的构建;
    b、构建注阻燃剂系统
    首先,钻进所述的注阻燃剂竖井管通道,待钻进到距离煤层上方5米时,退出钻进设备并对所述的注阻燃剂竖井管通道进行支护;
    接着沿煤层水平定向钻进,待所述的第一注阻燃剂通道的水平段的长度与气化炉走向长度相同时,即完成第一注阻燃剂通道水平段的钻进,接着调整钻进方向,使得钻进方向向气化炉侧偏移,当偏移至一定弧度后,再沿所在圆弧段的切线方向钻进一段距离,即形成第一注阻燃剂通道的迂回段;
    然后钻进第二注阻燃剂管通道,其方法与第一注阻燃剂管通道的构件方法相同;
    最后,在煤层水平短段方向上钻进第三注阻燃剂管通道,其长度为相邻四个气化炉的水平间距的总和,完成之后及时对第三注阻燃剂管通道进行支护;
    c、完成一个单元格气化炉的构建,接着按照步骤a、b的方法依次完成其它单元格气化炉的构建;
    d、调和水剂,使用地面的注阻燃剂系统,并向其中加入一定浓度的阻燃剂
    e、注阻燃剂润煤,通过地面的注阻燃剂系统,依次向注阻燃剂竖井管通道内注阻燃剂,然后进入第一注阻燃剂管通道、第二注阻燃剂管通道和第三注阻燃剂管通道,并向其相邻的煤层中渗透,形成湿润煤柱从而可以防止气化时发生的蔓延;
    f、点火气化。
  6. 根据权利要求5所述的一种地下气化炉的气化方法,其特征在于:步骤b中,所述的注阻燃剂竖井管通道的具体钻进方法为:利用钻进设备向煤层方向进行钻进,待距离定向内置水平管通道的左侧水平距离为22米时,且距离回气竖井管通的底部距离为10米时,停止钻进。
  7. 根据权利要求5所述的一种地下气化炉的气化方法,其特征在于:所述的定向内置水平管通道布设在距离煤层底板1/3煤厚,且同煤层平行布置。
  8. 根据权利要求5所述的一种地下气化炉的气化方法,其特征在于:步骤b中,所述圆弧段为圆半径小于22米的圆的1/4长度,且沿该圆弧段的切线方向上钻进25米。
  9. 根据权利要求5所述的一种地下气化炉的气化方法,其特征在于:所述的阻燃剂选用氯化镁,将所述的氯化镁加入到所述的注阻燃剂系统中形成浓度为10%-20%的注阻燃剂溶液,现配现用。
  10. 根据权利要求5所述的一种地下气化炉的气化方法,其特征在于:步骤b中第三注阻燃剂管通道的构建中,使得煤层水平定向钻孔与煤层倾角相同,且距离气化炉所在煤层顶板为1.0-1.5米。
PCT/CN2020/131625 2020-03-09 2020-11-26 一种地下气化炉的预控结构、气化炉及气化方法 WO2021179684A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/786,596 US20230008988A1 (en) 2020-03-09 2020-11-26 Underground gasifier pre-control structure, gasifier and gasification method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010155367.6 2020-03-09
CN202010155367.6A CN111173491B (zh) 2020-03-09 2020-03-09 一种地下气化炉的预控结构、气化炉及气化方法

Publications (1)

Publication Number Publication Date
WO2021179684A1 true WO2021179684A1 (zh) 2021-09-16

Family

ID=70648579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131625 WO2021179684A1 (zh) 2020-03-09 2020-11-26 一种地下气化炉的预控结构、气化炉及气化方法

Country Status (3)

Country Link
US (1) US20230008988A1 (zh)
CN (1) CN111173491B (zh)
WO (1) WO2021179684A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111173491B (zh) * 2020-03-09 2023-09-19 山东科技大学 一种地下气化炉的预控结构、气化炉及气化方法
CN116575900B (zh) * 2023-07-07 2023-09-15 太原理工大学 一种原位煤体分区可控气化制氢及co2封存一体化方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4372381A (en) * 1981-04-10 1983-02-08 Mobil Oil Corporation Method for recovery of oil from tilted reservoirs
CN101092879A (zh) * 2007-07-26 2007-12-26 康怀宇 一种向煤体中注入阻化剂的方法
CN103821484A (zh) * 2006-12-13 2014-05-28 古舍股份有限公司 油田储层的预调节
US20140216727A1 (en) * 2013-02-05 2014-08-07 Dmitry A. Kasyanov Hydraulic drillstring sound generator
CN205936569U (zh) * 2016-08-18 2017-02-08 中国矿业大学(北京) 一种高效煤炭地下气化炉
CN207568580U (zh) * 2017-08-11 2018-07-03 新疆国利衡清洁能源科技有限公司 煤炭地下气化炉
CN111173491A (zh) * 2020-03-09 2020-05-19 山东科技大学 一种地下气化炉的预控结构、气化炉及气化方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104251133B (zh) * 2013-06-26 2018-02-23 新奥科技发展有限公司 一种可控注气点注气装置、注气工艺及气化方法
CN110145294B (zh) * 2019-06-21 2020-03-27 中国矿业大学 一种煤田火区压煤地下原位气化方法
CN212027764U (zh) * 2020-03-09 2020-11-27 山东科技大学 一种地下气化炉的预控结构及气化炉

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4372381A (en) * 1981-04-10 1983-02-08 Mobil Oil Corporation Method for recovery of oil from tilted reservoirs
CN103821484A (zh) * 2006-12-13 2014-05-28 古舍股份有限公司 油田储层的预调节
CN101092879A (zh) * 2007-07-26 2007-12-26 康怀宇 一种向煤体中注入阻化剂的方法
US20140216727A1 (en) * 2013-02-05 2014-08-07 Dmitry A. Kasyanov Hydraulic drillstring sound generator
CN205936569U (zh) * 2016-08-18 2017-02-08 中国矿业大学(北京) 一种高效煤炭地下气化炉
CN207568580U (zh) * 2017-08-11 2018-07-03 新疆国利衡清洁能源科技有限公司 煤炭地下气化炉
CN111173491A (zh) * 2020-03-09 2020-05-19 山东科技大学 一种地下气化炉的预控结构、气化炉及气化方法

Also Published As

Publication number Publication date
US20230008988A1 (en) 2023-01-12
CN111173491A (zh) 2020-05-19
CN111173491B (zh) 2023-09-19

Similar Documents

Publication Publication Date Title
CN103670338B (zh) 一种煤层气与煤共采方法
CN102477857B (zh) 一种煤炭地下气化贯通方法
CN107939370B (zh) 一种条带式煤炭地下气化系统及生产方法
WO2015032197A1 (zh) 煤炭地下气化炉、以及煤炭地下气化方法
CN104251133A (zh) 一种可控注气点注气装置、注气工艺及气化方法
CN110159245A (zh) 分布式注排气通道窄条带煤炭地下气化炉生产系统及方法
WO2021179684A1 (zh) 一种地下气化炉的预控结构、气化炉及气化方法
CN104563991B (zh) 一种煤炭地下气化炉的气化方法
CN111911224B (zh) 深部煤层顶板钻孔煤热气共采方法
CN111441817B (zh) 煤层钻孔喷射压裂与采动压力协同作用强化瓦斯抽采方法
CN212027764U (zh) 一种地下气化炉的预控结构及气化炉
WO2022262261A1 (zh) 煤层气煤气矿井
CN101382062A (zh) 巷控供气侧线地下气化炉
CN104695933A (zh) 一种基于分支井的煤层气化方法及煤层气化炉
CN112483063A (zh) 一种地下隔层式煤炭原位气化开采系统及其构造方法
CN114673479A (zh) 一种基于多相态co2的层位式地热强化开采方法
CN105019879B (zh) 煤炭地下气化炉及气化方法
CN112431582A (zh) 能够实现多种介质并输的煤炭地下气化系统及气化方法
CN104594873A (zh) 煤炭地下气化炉及气化方法
CN217357614U (zh) 动力煤原位l型供气燃烧、h型高效采热及碳封存系统
CN114719455B (zh) 一种基于不同相态co2的定向层位式地热强化开采方法
CN105114051A (zh) 煤炭地下气化炉型及气化方法
CN110821544A (zh) 矿井内自点火煤孔煤层气化炉式采区
CN205990906U (zh) 用于煤炭地下气化工艺的对接式气化炉
CN104088618A (zh) 地下气化通道的上方地层的处理方法及地下气化建炉方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923745

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20923745

Country of ref document: EP

Kind code of ref document: A1