CN212027764U - 一种地下气化炉的预控结构及气化炉 - Google Patents

一种地下气化炉的预控结构及气化炉 Download PDF

Info

Publication number
CN212027764U
CN212027764U CN202020273377.5U CN202020273377U CN212027764U CN 212027764 U CN212027764 U CN 212027764U CN 202020273377 U CN202020273377 U CN 202020273377U CN 212027764 U CN212027764 U CN 212027764U
Authority
CN
China
Prior art keywords
retardant injection
fire retardant
flame retardant
injection channel
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202020273377.5U
Other languages
English (en)
Inventor
肖鹏
黄景
张景凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Science and Technology
Original Assignee
Shandong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Science and Technology filed Critical Shandong University of Science and Technology
Priority to CN202020273377.5U priority Critical patent/CN212027764U/zh
Application granted granted Critical
Publication of CN212027764U publication Critical patent/CN212027764U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本实用新型公开了一种地下气化炉的预控结构及气化炉,属于煤炭地下气化技术领域。其预控结构包括注入阻燃剂系统,注入阻燃剂系统包括从地面向煤层中钻进的注阻燃剂竖井管通道及位于煤层中的注阻燃剂通道,注阻燃剂通道包括位于每个气化炉两侧的第一注阻燃剂通道、第二注阻燃剂通道及位于相邻气化炉水平方向上的第三注阻燃剂通道,其中,第一注阻燃剂通道包括沿煤层走向布置的水平段、向气化炉方向偏移的迂回段。通过注阻燃剂系统使得煤层中形成湿润煤壁从而实现对气化炉的预控。本实用新型预控结构改变了煤体结构性,使气化炉的两侧煤体得到湿润进而控制气化炉向两侧扩展蔓延,同时由于有了两端湿润煤体的支撑,提高了气化炉腔内部的稳定性。

Description

一种地下气化炉的预控结构及气化炉
技术领域
本实用新型属于煤炭地下气化技术领域,尤其涉及一种地下气化炉预控结构及气化炉。
背景技术
我国能源体系正面临着双重挑战,即在必须满足于我国能源消费的不断增长的同时,还需要适应低碳社会绿色的发展需求。根据本国富煤少气的资源分布特点,并且为贯彻煤炭清洁高效利用的绿色开采理念,因此,煤炭地下气化技术在我国这个煤炭储量及消费大国就显的尤为重要,煤炭地下气化也是弥补我国气源供需缺口的多元化途径之一。
与传统煤炭物理开采相比,煤炭地下气化是开采煤炭的一种新工艺。煤炭地下气化具有低成本、高效率、高资源采出率、运行可靠、环境影响小的特点,有可能开采利用传统方法难以采出的煤炭资源。然而,煤炭地下气化技术历经80余年现场试验现在仍未产业化应用,其面临的技术瓶颈之一就是气化炉的结构难以控制。目前煤炭地下气化炉的载体为地质体,煤炭在地层中气化燃烧时的形态及结构无法控制,这就会使气化炉结构显无控制的发展扩散,当气化炉内部空间过大煤体就会受热破裂、围岩应力增加、覆岩垮落的影响,这就会直接影响煤炭地下气化炉的正常运作。现有技术虽然公开了很多地下气化炉的设计方案,比如CN107701166A公开了一种带有采用双层标准石油套管抗高温水泥砂浆固井技术的煤炭地下气化炉,但均没有解决气化炉腔结构预控制的问题。
实用新型内容
为了解决现有技术中的煤炭气化炉形态和结构无法控制的技术缺陷,本实用新型提出了一种地下气化炉的预控结构及气化炉,其通过改变煤体结构性,使得气化炉两侧的煤体得到湿润,从而控制了气化炉向两侧扩展蔓延,同时由于有了两端湿润煤体的支撑,提高了气化炉腔内部的稳定性,保持了围岩的完整结构,使气化炉运行过程中具有很好的密闭性和承压性,从而实现地下煤层的稳定气化。
其采用了以下技术方案:
一种地下气化炉的预控结构,其包括阻燃剂注入系统,所述的阻燃剂注入系统包括从地面向煤层中钻进的注阻燃剂竖井管通道及位于煤层中的注阻燃剂通道,所述的注阻燃剂通道包括位于每个气化炉两侧的第一注阻燃剂通道、第二注阻燃剂通道及位于相邻气化炉水平方向上的第三注阻燃剂通道,其中,所述的第一注阻燃剂通道包括沿煤层走向布置的水平段、向气化炉方向偏移的迂回段;所述的第二注阻燃剂通道与所述的第一注阻燃剂通道结构相同,所述的第一注阻燃剂通道的水平段与第二水平通道的水平段关于气化炉对称排布;
所述的注阻燃剂竖井管通道设置有若干组,其底部与所述的第一注阻燃剂通道、第二注阻燃剂通道连通;
通过所述的注阻燃剂竖井管通道向其对应的第一注阻燃剂通道、第二注阻燃剂通道及第三注阻燃剂通道内注入阻燃剂溶液的方式,使得煤层中形成湿润煤壁从而实现对气化炉的预控。
上述技术方案直接带来的有益技术效果为:
注阻燃剂系统的构建将原来无法控制的地下气化范围进行了预控制,将缩小气化进行的宽度,将气化炉炉腔控制在围岩稳定的范围内,有利于矿方根据具体需求进行灵活的生产气化。并且注阻燃剂系统本身也是低成本的辅助手段,在气化炉开始产气到产气完毕过程中除去钻孔的投入,注入阻燃剂成本非常低,有利于矿方的生产成本的控制。
本实用新型的另一任务在于提供一种气化炉。
一种地下气化炉,所述的气化炉包括从地面到煤层方向的进气竖井管通道、在煤层中水平布置的定向内置水平管通道、用于出气用的回气竖井管通道及点火区,所述的定向内置水平管通道的两端与所述的进气竖井管通道、回气竖井管通道保持连通,还包括上述的一种地下气化炉的预控结构;
所述的进气竖井管通道、定向内置水平管通道和回气竖井管通道形成一“U”形结构;相邻的几个气化炉结构相同,且相邻的几个气化炉组成一个气化炉单元,并形成若干气化区。
上述技术方案直接带来的有益技术效果为:
阻燃剂注入系统和气化炉二者之间的结合,使原本单元的气化过程有了人工控制的因数参于,这使得气化炉可以根据生产需要来设置气化炉的大小和气化通道的长度,灵活调整,并且注阻燃剂系统可以根据具体的地质条件和施工条件,配合气化方式,可以灵活的调控生产。并且可以根据矿方的不同时期生产要求不同,对多个气化炉进行注入阻燃剂控制,实现多个生产单元同时气化生产,这使得注阻燃剂系统和气化炉二者之间的可以灵活结合,为生产方带来了显著的便利和经济实惠。
进一步优选,上述的注阻燃剂竖井管通道钻进到距离气化炉所在煤层上方一段距离处,在其下方设置有竖井支护套管。
进一步优选,上述的第一注阻燃剂通道、第二注阻燃剂通道的水平段的长度与上述的定向内置水平管的长度相同。
进一步优选,所述的阻燃剂选用氯化镁,将所述的氯化镁加入到所述的阻燃剂系统中形成浓度为10%-20%的注阻燃剂溶液,现配现用。
与现有技术相比,本实用新型带来了以下有益技术效果:
(1)本实用新型气化炉的预控结构,设计了阻燃剂注入系统,通过对阻燃剂注入系统及其相关管道进行设计,可以预先调控汽化炉尺寸,控制气化炉气化过程中火焰蔓延范围。
(2)同时,注阻燃剂系统根据阻燃剂注入管路在煤层中的设计布置,气化炉在煤层气化过程中只在第一注阻燃剂管道和第二注阻燃剂管道与第三注阻燃剂管道所构成的湿润煤壁内进行气化,单个气化炉有了阻燃剂系统的保护,设计围绕单个气化炉进行,用高效的管路布置,经济的注阻燃剂设备,使单个气化炉的注阻燃剂管路使用率达到最大。同时,多个气化单元可以同时进行,注阻燃剂管路可以根据具体的生产情况,灵活调整管路和注阻燃剂参数,配合气化生产高效运行。
(3)稳定的气化炉结构进一步为实现多个单元气化炉的同时生产气化奠定基础,解决了单个气化炉产气量不足和气化炉结构在接续气化过程中运行不稳定的问题。
(4)气化炉结构预控制灵活,可以多个气化单元同时运行达到气化设计的产能,也可以多个气化单元同时启动,解决启动时间较长,导致达产周期长的问题。
(5)通过设计注阻燃剂系统来预先调控气化炉的气化尺寸。
附图说明
下面结合附图对本实用新型做进一步说明:
图1为本实用新型气化炉的预控结构示意图;
图2为图1的俯视结构示意图;
图3为图2中逐个单元的俯视结构示意图;
图4为图3的A—A剖视结构示意图;
图5是图3的B—B剖视结构示意图;
图6是注阻燃剂分段封孔示意图;
图中:1、进气竖井管通道;2、定向内置水平管通道;3、回气竖井管通道;4、阻燃剂注入竖井管通道;5、第一注阻燃剂通道;6、第三注阻燃剂通道;7、注入阻燃剂湿润的煤柱;8、气化炉气化区域;9、煤层。
具体实施方式
本实用新型提出了一种地下气化炉的预控结构及气化炉,为了使本实用新型的优点、技术方案更加清楚、明确,下面结合具体实施例对本实用新型做详细说明。
本实用新型中述及的第一注阻燃剂通道5为煤层水平长段定向注阻燃剂通道,第三注阻燃剂通道6为煤层水平短段定向注阻燃剂通道。
本实用新型一种地下气化炉的预控结构,其用于解决气化炉难以控制的问题,稳定的气化炉结构为实现多个单元气化炉的同时生产气化奠定基础,同时解决了单个气化炉产气量不足和气化炉结构在接续气化过程中运行不稳定的问题。
具体来说,现有技术中的气化炉在气化过程中其结构及形态难以控制,主要技术难点在于:地下气化炉在进行点火气化后,井下基本就为无控制状态,气化方向和气化范围在点火后不断向四周扩散。
为了解决上述技术问题,本实用新型创造性的设计了注水系统,通过注阻燃剂系统细节性结构的设计,并结合该注阻燃剂系统向煤层中注入一定浓度的煤矿用阻燃剂(选用氯化镁),这样煤矿用阻燃剂会存留在煤层中,可以保护湿润煤壁因阻燃剂高温蒸发而结构控制失败。
如图1-图6所示,一种地下气化炉的预控结构,其包括阻燃剂注入系统,阻燃剂注入系统包括从地面向煤层中钻进的注阻燃剂竖井管通道及位于煤层中的注阻燃剂通道,注阻燃剂通道包括位于每个气化炉两侧的第一注阻燃剂通道、第二注阻燃剂通道及位于相邻气化炉水平方向上的第三注阻燃剂通道,其中,第一注阻燃剂通道包括沿煤层走向布置的水平段、向气化炉方向偏移的迂回段;第二注阻燃剂通道与第一注阻燃剂通道结构相同,第一注阻燃剂通道的水平段与第二注阻燃剂平通道的水平段关于气化炉对称排布;注阻燃剂竖井管通道设置有若干组,其底部与第一注阻燃剂通道、第二注阻燃剂通道连通;通过注阻燃剂竖井管通道向其对应的第一注阻燃剂通道、第二注阻燃剂通道及第三注阻燃剂通道内注入阻燃剂溶液的方式,使得煤层中形成湿润煤壁从而实现对气化炉的预控。
将上述的预控结构用于地下气化炉中,即可对其结构进行控制。主要原理是通过上述阻燃剂注入系统与阻燃剂润煤二者结合的方式来实现。首先,对包括上述预控结构的气化炉做详细说明。
一种地下气化炉,气化炉包括从地面到煤层方向的进气竖井管通道、在煤层中水平布置的定向内置水平管通道、用于出气用的回气竖井管通道及点火区,所述的定向内置水平管通道的两端与所述的进气竖井管通道、回气竖井管通道保持连通,进气竖井管通道、定向内置水平管通道和回气竖井管通道形成一U形结构;相邻的几个气化炉结构相同,且相邻的几个气化炉组成一个气化炉单元,并形成若干气化区;
上述的阻燃剂注入系统中的第一注阻燃剂通道、第二注阻燃剂通道、第三注阻燃剂通道及注阻燃剂竖井管通道分别布设在该气化炉的相应位置,具体参见下述实施例。
实施例1:
构建单个地下气化炉,
结合图1-图4所示,先钻进进气竖井管通道1,待钻进到所在煤层上方5米处,退出竖井管钻机,下放竖井套管用于加固管壁结构的稳定性,为后期下放定向钻准备。进气通道套管调整好后,下放煤层定向钻机,根据地质资料和矿方要求,进行煤层水平定向钻进作业,要求水平气化通道布设在距离煤层底板1/3煤厚,且同煤层平行布置,定向钻进长度即为气化炉要气化的推进长度,因此,定向内置水平管通道2的长度可以根据具体情况要求设定,本实施例设为150米长。在煤层水平定向钻进的同时进行回气竖井管通道3的竖井钻进,使用的设备与钻进进气竖井管通道1的设备相同。待定向内置水平管通道2和回气竖井管通道3贯通后,对回气竖井管通道3下放竖井支护套管,为出气采集准备。至此U型单个气化炉完成。
按照上述方法构建其它气化炉,如通过几组气化炉形成一个气化炉单元。
下面对阻燃剂注入系统的构建做详细说明。
首先钻进注阻燃剂竖井管通道4,其所采用的钻进设备与进气竖井管通道的钻进设备相同。
注阻燃剂竖井管通道4的下钻位置如图3所示,距离气化炉定向内置水平管通道2左侧为22米,距离回气竖井管通道3下侧10米的位置。待注阻燃剂竖井管通道4钻进到距离煤层上方5米时,退出竖井管钻机,下放竖井支护套管,用于注阻燃剂备用。
进一步下放煤层水平定向钻,钻取第一注阻燃剂通道的水平段,其钻取设备与定向内置水平管通道的钻进设备相同
具体钻进方法为:
要求煤层水平长段定向钻孔布置应尽量为阻燃剂注入服务,因此,煤层水平定向钻孔尽量与煤层倾角相同,且距离气化炉所在煤层顶板为1.0-1.5米,提高湿润效果将钻孔角度以点火气化工作面为基准调整为+4°,并且方位角90°。注阻燃剂管路的水平定向钻孔长度根据气化通道布置数目及煤层走向长度确定。待水平直段注阻燃剂管路的长度同气化炉走向长度,即水平直段钻进完成,需要对定向钻进行定向调整,在钻进到距离进气竖井管通道122米的位置时候,调整钻进方向,向气化炉内侧偏钻,如图3所示,向右侧偏钻90度,通道构成1/4圆弧段,圆半径在22米内,待1/4圆钻进完毕,继续沿圆弧的切线向前钻进25米,基本构成气化炉一侧的注阻燃剂管路。在定向钻孔打好后及时下支护套管,起到对裸露通道的支护作用,避免通道坍塌造成堵塞。支护套管管径需要根据煤层水平定向钻设备尺寸决定,可以略小于定向钻孔孔径。注阻燃剂支护套管上阻燃剂释放孔的制作方法,以45°角的间隔在支护管体一周上开8个孔径为5mm的阻燃剂释放孔,开孔轴线间距0.5m,成圆孔60°错排。
在第一注阻燃剂通道构件好后,接着继续第二注阻燃剂通道的构建,方法同上述第一注阻燃剂通道的构建,如图3所示,在最左边的注阻燃剂管通道构建完后,进行右侧的注阻燃剂管通道构建,其注阻燃剂竖井管通道4的下钻位置为距离定向内置水平管通道2右侧22米,且距离回气竖井管通道3往下10米的位置,布置方式基本关于气化炉对称分布,接着使用之前注阻燃剂管通道构建相同的设备技术和方法要求。如图3所示,至此基本完成气化炉左右两侧和上部分注阻燃剂管路通道的构建,接着,为使气化炉结构预控制更加接近完美,需要进行另一侧结构的构建,即图3所示的下部分煤层水平短段定向注阻燃剂通道6的构建方法。
最后构件第三注阻燃剂管通道6,即煤层水平短段定向注阻燃剂通道的构建方法,如图3所示,在第一个单元格气化炉构建完成后,需要进行下端部的注阻燃剂通道的构建,其中注阻燃剂竖井管通道的钻进设备同之前的采用过的设备,注阻燃剂竖井管通道4的下钻位置可以根据具体情况而定,但为了使钻井得到充分的利用,减少额外不必要的钻井浪费,其煤层水平短段定向注阻燃剂通道6的长度为4倍气化炉短边宽度为最佳,因此,先采用图3进行具体的说明,注阻燃剂竖井管通道4的下钻在距离最左边第四个气化炉往右40米,且距离气化炉两侧的注阻燃剂竖井管通道下方4米位置。在注阻燃剂竖井管通道4钻进到距离气化炉所在煤层上方5米的位置,退出竖井管通道钻机,下放竖井支护套管。接着使用煤层定向钻进机进行煤层水平短段定向注阻燃剂通道6的构建,要求煤层水平定向钻孔尽量与煤层倾角相同,且距离气化炉所在煤层顶板为1.0-1.5米,提高湿润效果将钻孔角度以点火气化工作面为基准调整为+4°,并且方位角0°,进行直段钻进,待钻进到图3所示最左边气化炉的左侧注阻燃剂竖井管通道4同位置时,停止钻进,退出煤层定向钻进机,及时下放注阻燃剂专用支护套管。至此,基本完成一个单元体气化炉四周的结构预控制所需要的管路布置,预解决单个气化炉产气量不足的问题,就需要多个气化炉同时气化,因此需要进行生产系统和阻燃剂注入系统的构建,根据图2所示,按照该图设计出的区域气化炉生产系统和阻燃剂注入系统的使用率能够达到最佳,即图2中两翼可以同时共用煤层水平短段定向注阻燃剂通道6,这样可以加速气化炉结构的构建,同时减少钻孔的数目,节约成本。
在上述阻燃剂注入系统构建完成后,还需对其进行注入阻燃剂润煤才能控制气化炉在气化过程中的结构及形态。
注入阻燃剂润煤的步骤具体为:下放阻燃剂注入管,其为钢丝编织而成的柔性高压进阻燃剂胶管,阻燃剂注入管设置成足够长的整根管,省去连接的步骤,同时由于接头少也减少了在套管中的摩擦阻力,直接将注阻燃剂管导入注阻燃剂通道的支护套管中即可。
注入的阻燃剂中加入一定浓度的煤矿用阻燃剂(选用氯化镁),调配浓度为10%-20%的阻燃剂溶液。该溶剂被注入到煤层后,煤矿用阻燃剂会存留在煤层中,可以保护湿润煤壁因阻燃剂高温蒸发而结构控制失败。
阻燃剂压力越大,湿润半径越大,但实际情况受供压设备、管路及生产成本等因素制约,不允许阻燃剂压力无限大。注入阻燃剂的时间也需要控制,注入阻燃剂时间过长会造成阻燃剂溶剂浪费,关键是造成煤层中用于湿润阻燃剂的留设煤柱7过大造成煤炭资源浪费,时间过短又达不到润煤效果。
因此阻燃剂注入时间和注入压力应该根据气化炉所在煤层的煤厚、煤质确定,对于薄及中厚煤层,选用5MPa的恒压阻燃剂,为确保煤层9中的阻燃剂注入量,每孔注阻燃剂时间不得少于12个小时,但不得大于24小时。对于厚及特厚煤层且煤质坚硬的可以选用间歇式高低压交替阻燃剂注入方式,间歇式高低压交替注入阻燃剂,低压阻燃剂的阻燃剂压为3MPa,高压阻燃剂的阻燃剂压为9MPa。这种注阻燃剂方式形成类似于“冲击”现象,使煤体连续出现体积膨胀和收缩,导致煤体强度疲劳,从而达到煤体破裂程度增加,煤体裂隙的连通性增强,直接在煤层内形成数量众多新的小裂隙网,注阻燃剂效率明显提升。
待阻燃剂注入完毕后,煤层阻燃剂效果的好坏,封孔是关键。考虑到封孔器与钻孔相匹配,同时能够承受一定的压力。可以选用膨胀水泥进行物理封孔。要求膨胀水泥封孔深度1.5m以上,如图6所示,在该单元气化炉左侧的煤层水平长段定向注阻燃剂通道5在注阻燃剂完毕后可以依次进行膨胀水泥封孔,对于该气化炉右侧的煤层水平长段定向注阻燃剂通道5则进行阀门关闭操作即可,以供下一个气化炉共用该注阻燃剂通道。对于煤层水平短段定向注阻燃剂通道6则进行分段封孔作业,在图6所示中,当左边第一个气化炉开始点火气化的时候,提前进行a段的封孔保护,第一个气化炉阻燃剂注入完毕后在b段继续封孔,待第一个气化炉熄炉后再继续进行阻燃剂注入,以此类推,这可以保护煤层水平短段定向注阻燃剂通道6不会因为长度过长导致阻燃剂浪费,同时由于有了分段的存在可以使阻燃剂注入时间、压力及流量得到更加精确的控制。
在阻燃剂管道布设,阻燃剂封孔润煤完毕后可以进行点火气化,在气化炉气化区域8进行气化生产。可以根据要求决定气化的单元体,要求图2所示两翼气化炉同时注阻燃剂润煤,并且同时点火气化,这样既便于气化炉的集气管理,也便于阻燃剂注入管路的集中管理。阻燃剂管路之间由阀门控制,连接有时间表、流量表、压力表、泄压阀,可以使阻燃剂作业更加精确高效安全。
需要说明的是,在本文中,在未作相反说明的情况下,所使用的方位词如“上、下、左、右”均是指该说明书附图中所示的方向。
本实用新型中未述及的部分借鉴现有技术即可实现。
需要说明的是:在本说明的教导下本领域技术人员所做出的任何等同方式,或明显变型方式均应在本实用新型的保护范围内。

Claims (4)

1.一种地下气化炉的预控结构,其特征在于:其包括注入阻燃剂系统,所述的注入阻燃剂系统包括从地面向煤层中钻进的注阻燃剂竖井管通道及位于煤层中的注阻燃剂通道,所述的注阻燃剂通道包括位于每个气化炉两侧的第一注阻燃剂通道、第二注阻燃剂通道及位于相邻气化炉水平方向上的第三注阻燃剂通道,其中,所述的第一注阻燃剂通道包括沿煤层走向布置的水平段、向气化炉方向偏移的迂回段;所述的第二注阻燃剂通道与所述的第一注阻燃剂通道结构相同,所述的第一注阻燃剂通道的阻燃剂平段与第二阻燃剂平通道的水平段关于气化炉对称排布;
所述的注阻燃剂竖井管通道设置有若干组,其底部与所述的第一注阻燃剂通道、第二注阻燃剂通道连通;
通过所述的注阻燃剂竖井管通道向其对应的第一注阻燃剂通道、第二注阻燃剂通道及第三注阻燃剂通道内注入阻燃剂溶液的方式,使得煤层中形成湿润煤壁从而实现对气化炉的预控。
2.一种地下气化炉,所述的气化炉包括从地面到煤层方向的进气竖井管通道、在煤层中水平布置的定向内置水平管通道、用于出气用的回气竖井管通道及点火区,所述的定向内置水平管通道的两端与所述的进气竖井管通道、回气竖井管通道保持连通,其特征在于:
还包括权利要求1所述的一种地下气化炉的预控结构;
所述的进气竖井管通道、定向内置水平管通道和回气竖井管通道形成一U形结构;相邻的几个气化炉结构相同,且相邻的几个气化炉组成一个气化炉单元,并形成若干气化区。
3.根据权利要求2所述的一种地下气化炉,其特征在于:所述的注阻燃剂竖井管通道钻进到距离气化炉所在煤层上方一段距离处,在其下方设置有竖井支护套管。
4.根据权利要求3所述的一种地下气化炉,其特征在于:所述的注入阻燃剂系统中的阻燃剂选用氯化镁。
CN202020273377.5U 2020-03-09 2020-03-09 一种地下气化炉的预控结构及气化炉 Expired - Fee Related CN212027764U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202020273377.5U CN212027764U (zh) 2020-03-09 2020-03-09 一种地下气化炉的预控结构及气化炉

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202020273377.5U CN212027764U (zh) 2020-03-09 2020-03-09 一种地下气化炉的预控结构及气化炉

Publications (1)

Publication Number Publication Date
CN212027764U true CN212027764U (zh) 2020-11-27

Family

ID=73483448

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202020273377.5U Expired - Fee Related CN212027764U (zh) 2020-03-09 2020-03-09 一种地下气化炉的预控结构及气化炉

Country Status (1)

Country Link
CN (1) CN212027764U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111173491A (zh) * 2020-03-09 2020-05-19 山东科技大学 一种地下气化炉的预控结构、气化炉及气化方法
CN112483063A (zh) * 2020-12-17 2021-03-12 西安科技大学 一种地下隔层式煤炭原位气化开采系统及其构造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111173491A (zh) * 2020-03-09 2020-05-19 山东科技大学 一种地下气化炉的预控结构、气化炉及气化方法
CN111173491B (zh) * 2020-03-09 2023-09-19 山东科技大学 一种地下气化炉的预控结构、气化炉及气化方法
CN112483063A (zh) * 2020-12-17 2021-03-12 西安科技大学 一种地下隔层式煤炭原位气化开采系统及其构造方法
CN112483063B (zh) * 2020-12-17 2022-12-23 西安科技大学 一种地下隔层式煤炭原位气化开采系统及其构造方法

Similar Documents

Publication Publication Date Title
CN102477857B (zh) 一种煤炭地下气化贯通方法
CN107939370B (zh) 一种条带式煤炭地下气化系统及生产方法
WO2015032197A1 (zh) 煤炭地下气化炉、以及煤炭地下气化方法
CN212027764U (zh) 一种地下气化炉的预控结构及气化炉
CN101382065B (zh) 无井式地下气化工艺
CN111911224B (zh) 深部煤层顶板钻孔煤热气共采方法
CN104563991B (zh) 一种煤炭地下气化炉的气化方法
CN111173491B (zh) 一种地下气化炉的预控结构、气化炉及气化方法
CN112483063B (zh) 一种地下隔层式煤炭原位气化开采系统及其构造方法
CN101382062A (zh) 巷控供气侧线地下气化炉
CN208564527U (zh) 一种多方位u型对接井构建的煤地下气化炉
CN104695933A (zh) 一种基于分支井的煤层气化方法及煤层气化炉
CN107387055A (zh) 一种适用于煤炭地下气化的移动注气装置及方法
CN113914846A (zh) 一种应用双羽状水平井改善煤炭地下气化气腔发育的方法
CN102587883A (zh) 煤炭地下气化炉熄炉方法
CN106089177A (zh) 一种高效煤炭地下气化炉及其构建方法
CN105019879B (zh) 煤炭地下气化炉及气化方法
CN110821463A (zh) 一种煤层气热采增产方法
CN205936569U (zh) 一种高效煤炭地下气化炉
CN205990906U (zh) 用于煤炭地下气化工艺的对接式气化炉
CN112796730B (zh) 一种多水平跨采区地面钻井井网布设方法
CN210948628U (zh) 煤炭地下气化炉
CN110821544A (zh) 矿井内自点火煤孔煤层气化炉式采区
CN104088618B (zh) 地下气化通道的上方地层的处理方法及地下气化建炉方法
CN208669290U (zh) 由多层u型对接井组构成的煤炭地下气化通道

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201127

CF01 Termination of patent right due to non-payment of annual fee