CN112483063A - 一种地下隔层式煤炭原位气化开采系统及其构造方法 - Google Patents
一种地下隔层式煤炭原位气化开采系统及其构造方法 Download PDFInfo
- Publication number
- CN112483063A CN112483063A CN202011496551.3A CN202011496551A CN112483063A CN 112483063 A CN112483063 A CN 112483063A CN 202011496551 A CN202011496551 A CN 202011496551A CN 112483063 A CN112483063 A CN 112483063A
- Authority
- CN
- China
- Prior art keywords
- coal
- gas collection
- gas
- heating
- roadway
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003245 coal Substances 0.000 title claims abstract description 197
- 238000002309 gasification Methods 0.000 title claims abstract description 62
- 238000005065 mining Methods 0.000 title claims abstract description 30
- 238000010276 construction Methods 0.000 title claims abstract description 21
- 238000011065 in-situ storage Methods 0.000 title claims abstract description 21
- 239000011229 interlayer Substances 0.000 title claims abstract description 20
- 238000010438 heat treatment Methods 0.000 claims abstract description 115
- 239000010410 layer Substances 0.000 claims abstract description 107
- 238000002485 combustion reaction Methods 0.000 claims abstract description 65
- 239000011435 rock Substances 0.000 claims abstract description 52
- 238000005553 drilling Methods 0.000 claims abstract description 44
- 239000003063 flame retardant Substances 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims abstract description 20
- 239000003034 coal gas Substances 0.000 claims abstract description 19
- 238000012544 monitoring process Methods 0.000 claims abstract description 11
- 239000007788 liquid Substances 0.000 claims description 52
- 238000002347 injection Methods 0.000 claims description 46
- 239000007924 injection Substances 0.000 claims description 46
- 239000000126 substance Substances 0.000 claims description 14
- 230000003014 reinforcing effect Effects 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 11
- 238000009826 distribution Methods 0.000 claims description 6
- 238000005452 bending Methods 0.000 claims description 4
- 239000012466 permeate Substances 0.000 claims description 4
- 230000008569 process Effects 0.000 abstract description 17
- 239000007789 gas Substances 0.000 description 227
- 238000004519 manufacturing process Methods 0.000 description 30
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 14
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 12
- 238000005516 engineering process Methods 0.000 description 10
- 230000035882 stress Effects 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 239000000047 product Substances 0.000 description 8
- 238000004880 explosion Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 238000011031 large-scale manufacturing process Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000003345 natural gas Substances 0.000 description 3
- 239000010454 slate Substances 0.000 description 3
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 235000019353 potassium silicate Nutrition 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000012356 Product development Methods 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000010883 coal ash Substances 0.000 description 1
- 239000011280 coal tar Substances 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- -1 electric power Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/295—Gasification of minerals, e.g. for producing mixtures of combustible gases
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/24—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/24—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
- E21B43/243—Combustion in situ
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Solid-Fuel Combustion (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
本发明属于煤炭地下气化技术领域,具体涉及一种地下隔层式煤炭原位气化开采系统及其构造方法,本发明利用预控系统注阻燃剂润煤,预先控制气化系统结构;将加热竖井钻至煤层下垫板岩层中,布设燃烧设备对下垫板岩层加热,利用下垫板岩层导热性使煤燃烧产出煤气,然后集气系统收集煤气并将其输送至地面;在煤层气化过程中,对煤层温度及下垫板岩层应力进行监测。目的在于将加热设备布置在煤层下垫板岩层中,减少了对煤层的扰动;又利用预控系统留设耐高温煤壁,不仅提高了气化腔体气密性,还使煤层受热更均匀、可控,为煤层充分燃烧提供了较为理想的温度场,从而提高产出煤气的品质。
Description
技术领域
本发明属于煤炭地下气化技术领域,具体涉及一种地下隔层式煤炭原位气化开采系统及其构造方法。
背景技术
传统的煤炭地下原位气化技术是将处于地下的煤炭进行有控制的燃烧,通过对煤的热作用以及化学作用产生可燃气体的过程。它集建井、采煤、气化三大工艺为一体,将传统物理采煤变为化学采煤,把传统的机械化采煤变为无人化采气,具有开采流短、成本低、污染排放低、资源回收率高等优点,因此可提高煤炭利用价值,对难采煤层、低品位煤层的开采具有促进作用,带动煤炭、电力、化工等传统工业发展。
目前而言,我国UCG(Underground Coal Gasification)技术尚处于产业示范阶段,其稳定性、可靠性有待进一步改善。国内外探索性现场试验表明,工程技术因素是导致中深层煤炭地下气化试验项目终止的主要原因,占比达到70%。而工程技术因素中,气化炉建造工艺针对性与完整性和气化运行控制可靠性,是阻碍UCG技术向成功商业化应用转型的主要因素,具体表现为:
①气化炉建造工艺针对性与完整性
气化炉建造工艺面临套管变形、腐蚀穿孔、井口抬升、环空带压等问题,难以保障全生命周期的可靠性。国内气化炉建造设计方法正处于起步阶段,尚未形成气化炉完整性控制工艺技术体系。
②气化运行控制可靠性
气化腔温度、压力及腔体形态缺乏有效的监测手段,造成气化腔演化规律与主控因素认识不清,气化控制原理尚不明确,导致气化运行控制工艺无法保障中热值煤气稳产和气化效率,这极大制约了UCG煤气的燃气应用和化学原料气的产品开发。
总结而言,UCG技术尚存在能量耗损大、煤层受热不均匀、气闭性差等缺陷,这些技术弊端严重制约了煤炭气化过程连续、稳定、可控地进行,阻碍了煤炭绿色、高效开采以及UCG技术大规模工业化应用。对此,立足于西部煤炭绿色低碳开采理念,本发明提出了针对性的解决方案。
发明内容
本发明针对煤炭层顶底板难熔条件下的西部煤炭地下气化开采问题,着眼于加强煤炭地下气化生产的过程控制和质量控制,优化制气企业规模化生产能力,进而提升气化产品市场竞争力,提供了一种地下隔层式煤炭原位气化开采系统及其构造方法。
所采用的技术方案是:一种地下隔层式煤炭原位气化开采加热系统,包括数口加热井,每口所述加热井由加热竖井、加热巷道和燃烧室组成,所述加热竖井与加热巷道连通,所述加热巷道的末端连通燃烧室;所述燃烧室设置在待加热煤炭层下方的下垫板岩层中,所述燃烧室内设置有燃烧加热装置。
优选的,所述燃烧加热装置包括燃烧室内设置的等离子体燃烧器,所述等离子体燃烧器的末端与导燃筒固定连接,所述导燃筒的上端面设置若干个喷火口,所述导燃筒的材料为耐高温材料。
优选的,所述加热井的数量为四口,四口所述加热井合围构成四边形。
一种地下隔层式煤炭原位气化开采集气系统,包括进气竖井、回气竖井和集气巷道组成,所述集气巷道连通进气竖井和回气竖井,所述集气巷道设置在待加热煤炭层的上方,所述集气巷道内设置有若干与待加热煤炭层连通的孔;所述进气竖井与地面送气装置连接,所述回气竖井与地面收集装置连接。
优选的,所述集气巷道由一条集气主巷道和若干条集气支巷道组成,所述集气支巷道分布在集气主巷道的两侧、并偏向于进气竖井方向;所述集气支巷道内设置有若干与待加热煤炭层连通的孔。
优选的,所述集气支巷道均匀、等间距分布在集气主巷道的两侧,所述集气支巷道的长度为15~18m,每两个集气支巷道之间的距离为15~30m;所述集气主巷道和集气支巷道设置有若干集气泵,所述集气泵设置在与待加热煤炭层连通的孔处,所述集气泵的吸气口与集气导管连通,所述集气导管设置在与待加热煤炭层连通的孔处、倾斜伸入至待加热煤炭层内,所述集气导管与煤炭层之间的夹角小于45°。
优选的,包括预控分系统、加热分系统和集气分系统;
所述预控分系统通过阻燃剂,将整个待加热煤炭层进行网格划分形成独立的单位加热区域;所述预控分系统设置在待加热煤炭层的上方,所述预控分系统包括设置在网格交叉点上的若干注液竖井,每个所述注液竖井与水平注液通道连通,两个对称的注液通道合围构成独立的四边形加热区域,每个所述注液通道内与煤炭层连通;
所述加热分系统包括设置在煤炭层下方下垫板岩层中的燃烧室,所述燃烧室与加热竖井连通,所述加热竖井与地面供气装置连接,所述燃烧室内设置有燃烧加热装置;
所述集气分系统包括进气竖井、回气竖井和集气巷道,所述集气巷道连通进气竖井和回气竖井,所述集气巷道设置在待加热煤炭层的上方,所述集气巷道内设置有若干与待加热煤炭层连通的孔;所述进气竖井与地面送气装置连接,所述回气竖井与地面收集装置连接。
优选的,还包括监测分系统,所述监测分系统包括分别设置在煤炭层顶面、底面以及岩层1/2高度处的热电偶;在煤炭层下方的下垫板岩层顶面、底面及岩层1/2高度位置设置高温应力传感器;所述集气巷道中布设若干可燃气体探测器,所述回气竖井地面出气口处设置有可燃气体探测仪和煤气热值分析仪;所述热电偶、高温应力传感器、可燃气体探测器和煤气热值分析仪均与地面控制中心连接。
优选的,所述集气巷道与煤炭层顶部的距离为2~5m,所述注液通道与煤炭层顶部的距离小于1m。
一种地下隔层式煤炭原位气化开采系统的构造方法,包括以下步骤:
1)构建集气分系统;钻进一个进气竖井,待钻进到所在煤炭层上方2~5m时,退出钻进设备并对进气竖井进行加固;从进气竖井的底部沿煤炭层的分布方向进行水平集气系统定向钻进作业,先钻进一个集气主巷道;且沿集气主巷道两侧每隔15~30m分别钻进两个集气支巷道,每个集气支巷道长15~18m;集气主巷道与集气支巷道的截面宽、高尺寸均为2~3m;在集气主巷道和集气支巷道中均每隔5~6m安设一个集气泵,在集气支巷道上靠近集气主巷道一端,设置一台防爆旋涡式鼓风机,同时在集气泵正下方钻孔通入煤炭层中形成集气导管,集气导管与煤炭层夹角为30°;钻进一个回气竖井,使其与水平集气巷道贯通,对回气竖井进行加固;
2)构建加热分系统;由地面向下钻进四个加热竖井,待钻进到煤炭层下方的下垫板岩层内后,退出钻进设备并对加热竖井进行加固;对每个加热竖井均水平定向钻进一个加热巷道;在加热巷道末端进行二次扩孔形成燃烧室;在燃烧室内安装燃烧加热装置;
3)构建预控分系统;钻进两个注液竖井,待钻进到距离煤炭层上方小于1m时,退出钻进设备并对注液竖井进行加固;从每个注液竖井的底部、沿煤炭层的分布方向钻进一个注液通道,注液通道弯折形成直角边,两直角边的注液通道合围构成120m*60m的四边形预控单元;向每一条注液通道内通入化学阻燃剂,化学阻燃剂从水平注液通道向下方临近煤层自然渗透,进而润湿煤壁、形成耐高温的润湿煤壁;
4)构建监测分系统;在回气竖井的地面出气口位置布置可燃气体探测仪和煤气热值分析仪;在集气主巷道和集气支巷道内、沿煤气易泄露处布置若干可燃气体探测器;在煤炭层顶面、底面以及岩层1/2高度处的热电偶;在煤炭层下方的下垫板岩层顶面、底面及岩层1/2高度位置设置高温应力传感器。
本发明具有以下有益效果:
1)提高产出定稿煤气质量。将加热设备布置在煤层下垫板岩层中,减少了对煤层的扰动;又利用预控系统留设耐高温煤壁,不仅提高了气化腔体气密性,还使煤层受热更均匀、可控,为煤层充分燃烧提供了较为理想的温度场,从而提高产出煤气的品质。
2)增强对气化过程的控制。基于室内模拟物理试验结果,掌握下垫板岩层导热效率规律,实际生产通过调节井下点火温度,以精准控制煤层气化反应温度,从而实现分级提取煤炭气化产品目的。同时,在实际生产过程中,通过实时监测下垫板岩层应力,防止下垫板岩层出现失稳。
3)降低技术成本。将产出分离的高压蒸汽、甲烷、氢气进行循环再利用,并在扩大的规模化生产中,重复利用竖向钻孔,大幅降低了技术成本。
4)提高企业经济效益。煤炭地下隔层式气化技术可与煤气多联产综合利用技术结合,产出多种低成本高附加值的化工产品、气体燃料,从而实现煤炭资源价值、利用效率、经济效益的最大化。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来说,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为预控、集气、加热系统单元功能布局示意图;
图2为预控系统单元布局示意图;
图3为点火装置组合结构示意图;
图4为集气系统布局结构示意图;
图5为煤炭地下隔层式气化点火流程;
图6为构建集气系统单元阶段示意图;
图7为构建循环系统结构示意图;
图8为一种UCIGS平面布局方案;
图9为预控、集气系统单元水平部分竖向位置关系。
图中:1-加热竖井;2-加热巷道;3-燃烧室;4-等离子体燃烧器;5-导燃筒;6-喷火口;7-进气竖井;8-回气竖井;9-集气主巷道;10-集气支巷道;11-集气泵;12-集气导管;13-注液竖井;14-注液通道。
具体实施方式
本发明是一种地下隔层式煤炭原位气化开采系统及其构造方法,在我国煤炭地下气化资源巨大开发潜力背景下,针对现阶段UCG技术需要重点攻克的方向,以西部煤炭资源绿色开采先进理念为导向,尝试提出一种煤炭地下隔层式气化开采系统(UndergroundCoal Interlayer In-situ Gasification System,UCIGS)及其构造方法。UCIGS的基本工作原理为:如图1所示,在煤层底板下方的岩层(下垫板岩层)内一定深度处设置燃烧装置,对煤层下垫板岩层进行加热,利用下垫板岩层导热性能,将热量通过下垫板岩层传递给煤层使煤层气化,达到隔层加热的效果,应当说明的是,本发明中所述的下垫板岩层为煤层下方的致密岩层(非煤层本身);同时,在UCIG系统运行过程中,对煤层温度及其下垫板岩层应力进行监测,一方面对煤层加热温度实施精准控制,进而分质分级获得煤气产品,另一方面确保下垫板岩层具有足够的高温热稳定性。
本发明提供了一种地下隔层式煤炭原位气化开采加热系统,包括数口加热井,每口所述加热井由加热竖井1、加热巷道2和燃烧室3组成,所述加热竖井1与加热巷道2连通,所述加热巷道2的末端连通燃烧室3;所述燃烧室3设置在待加热煤炭层下方的下垫板岩层中,所述燃烧室内设置有燃烧加热装置。
所述燃烧加热装置包括燃烧室内设置的等离子体燃烧器4,所述等离子体燃烧器4的末端与导燃筒5固定连接,所述导燃筒5的上端面设置若干个喷火口6,所述导燃筒5的材料为耐高温材料。如图3所示,等离子燃烧器右侧加设耐高温材料制成的圆筒状导燃筒,从而将等离子燃烧器形成的最后一级火焰限制在导燃筒中,而导燃筒上方分布若干喷火孔,从而达到仅对导燃筒上方临近岩板进行均匀加热的目的。
本发明中加热井的数量优选为四口,四口所述加热井合围构成四边形,四边形的加热方式区别传统的排式加热,四边形的加热方式具有更高的加热效率,且加热的温度更加均匀。
初次生产时,由地面供热系统将天然气(添加体积分数为30%~40%的氧气)先输送到加热竖井1中;接着,天然气进入加热巷道2内,继而沿加热巷道2进入燃烧室3中;最后,天然气被等离子体燃烧器4点燃实现初次点火,对下垫板岩层直接加热;下垫板岩层发挥导热性能,进而达到对岩板上部煤层进行气化分解的目的。进行多次生产时,以初次生产得到的甲烷、氢气为气化剂,由地面供热系统将新的气化剂输送到加热竖井1中,其余操作流程与初次初次生产时相同。
本发明提供了一种地下隔层式煤炭原位气化开采集气系统,如图4所示,包括进气竖井7、回气竖井8和集气巷道组成,所述集气巷道连通进气竖井7和回气竖井8,所述集气巷道设置在待加热煤炭层的上方,所述集气巷道内设置有若干与待加热煤炭层连通的孔;所述进气竖井7与地面送气装置连接,所述回气竖井8与地面收集装置连接。
所述集气巷道由一条集气主巷道9和若干条集气支巷道10组成,所述集气支巷道10分布在集气主巷道9的两侧、并偏向于进气竖井7方向;所述集气支巷道10内设置有若干与待加热煤炭层连通的孔。集气主巷道9和若干条集气支巷道10的平面布局整体呈鱼骨状结构,所述集气支巷道10均匀、等间距分布在集气主巷道9的两侧。从集气功能上而言,集气主巷道9发挥主要作用,主要对其两侧临近的、较大范围区域中的煤气进行高效收集,而集气支巷道10发挥次要作用,即集气支巷道10主要对远离集气主巷道9两侧区域中的煤气进行收集;相邻两集气支巷道10之间的距离及集气支巷道10的长度可根据煤炭层的情况具体设计,本发明中优选集气支巷道10的长度为15~18m,每两个集气支巷道10之间的距离为15~30m。
所述集气主巷道9和集气支巷道10设置有若干集气泵11,所述集气泵11设置在与待加热煤炭层连通的孔处,所述集气泵11的吸气口与集气导管12连通,使集气导管作为集气泵抽取煤气的通道,所述集气导管12设置在与待加热煤炭层连通的孔处、倾斜伸入至待加热煤炭层内,所述集气导管12与煤炭层之间的夹角小于45°,以尽量减小对煤层的扰动。在靠近集气泵11的位置设置防回火装置,以保护井下集气设备安全,在集气支巷道10靠近集气主巷道9的口部位置设置防爆旋涡式鼓风机,利用防爆旋涡式鼓风机将集气支巷道10所收集的煤气输送到集气主巷道中。
集气的流程为:首先,水平集气系统中集气泵11、防爆旋涡式鼓风机工作,将煤气不断地收集到集气主巷道9中。然后,向进气竖井7通高压蒸汽,高压蒸汽进入集气主巷道9后驱动煤气定向流动,最终高压蒸汽和煤气混合气体通过回气竖井8输送至地面。最后,在地面分离混合气体,将分离得到的有机产品储存在有机物溶液储罐中;采用变压吸附分离技术脱除混合在煤气中的CO2,脱除的CO2可用于合成氨,将分离得到的煤气产品分别储存在对应的储气罐中;同时,回收的流态相物质可进行循环利用,将降温后得到的冷凝水送入高温锅炉处理,将产生的高压蒸汽再次注入进气竖井7中,将部分甲烷、氢气混合气体再次输送入加热井中作为煤层下层垫板岩层加热燃料。
优选的,集气主巷道9长度不小于50m,以防止煤灰、焦油等煤炭气化产物在集气主巷道9内大量沉积、堵塞巷道,从而降低煤气输送效率;在集气主巷道9进气端部位置设置抽液泵,以便将高压蒸汽在进气竖井7输送过程中液化形成的冷凝水输送回地面,冷凝水可用于重新制备高压蒸汽;在集气主巷道9出气端部位置设置防爆排风扇,以应急加速排出煤气,迅速降低集气主巷道9中煤气浓度;当煤气抽出量较小或所需要的抽放负压较高时,集气泵11采用水环式真空泵,目前其常见类型包括2BE、2BY和SK系列水环式真空泵;当煤气抽出量较大(30~1200m3/min)、管道阻力较小(4~5kPa)时,集气泵11采用离心式鼓风机,如苏州斯克莱压缩机有限公司生产的空气悬浮离心式鼓风机;在集气泵11吸气侧和排气侧均安装水封式防暴器,如FBQ型系列水封式防暴器,利用水封隔离集气泵11的吸气管和排气管,从而防止产生由集气泵吸气侧或排气侧煤气点燃而引发的连贯爆炸。
如图1所示,本发明提供一种地下隔层式煤炭原位气化开采系统,包括预控分系统、加热分系统和集气分系统;
如图2所示,所述预控分系统通过阻燃剂,将整个待加热煤炭层进行网格划分形成独立的单位加热区域,可以理解的是,整个煤炭层可由阻燃剂浸润煤层的方式形成多个小格,每一小格构成一个单位加热区域,并通过逐个单位加热的方式进行规模化生产。
所述预控分系统设置在待加热煤炭层的上方,所述预控分系统包括设置在网格交叉点上的若干注液竖井13,每个所述注液竖井13与水平注液通道14连通,两个对称的注液通道14合围构成独立的四边形加热区域,每个所述注液通道14内与煤炭层连通。
预控系统工作流程为:利用注液竖井7向水平注液通道14内通入化学阻燃剂,化学阻燃剂从水平注液通道14向下方临近煤层自然渗透,进而润湿煤壁、形成润湿煤壁;水平注液通道14在下次生产时,部分阻燃剂在前次生产燃空区边缘会浇筑形成耐高温挡墙,该耐高温挡墙与相邻润湿煤体连接、形成新的围合结构。
留设润湿煤壁具有显著提高煤炭地下气化生产安全性的作用。一方面,润湿煤壁的存在限制了单位气化炉气化边界,提高气化腔体气密性,防止煤燃烧无序蔓延及降低煤气化效率;另一方面,化学阻燃剂是由工业阻燃材料加水以一定合理配合比拌和而成,工业阻燃材料应具有高温耐压强度大、高温抗折强度大、高温稳定性好的基本特征,使化学阻燃剂能显著提高在煤层气化高温环境下润湿煤壁对煤层顶底板的支撑性能,防止煤层燃空前出现下垫板失稳问题。
阻燃材料可采用水玻璃结合耐高温浇注料,其长期使用温度为1000℃,短期使用温度不超过1400℃,换用改性水玻璃作浇注料的结合剂可提高这一温度阈值。该阻燃材料具有较好的高温力学性能,其高温耐压强度,在1400℃时可达到4.5MPa;其高温抗折强度,1200℃时大于3.8MPa,1400℃时为2.3MPa;其高温稳定性好,高温线变形从0.6%至4%的温度间隔近400℃。因此,水玻璃结合耐高温浇注料加水拌和的阻燃剂,除能了赋予润湿煤壁阻燃性能,还能显著增强其高温力学性能。
所述加热分系统包括设置在煤炭层下方下垫板岩层中的燃烧室3,所述燃烧室3与加热竖井1连通,所述加热竖井1与地面供气装置连接,所述燃烧室3内设置有燃烧加热装置;
所述集气分系统包括进气竖井7、回气竖井8和集气巷道,所述集气巷道连通进气竖井7和回气竖井8,所述集气巷道设置在待加热煤炭层的上方,所述集气巷道内设置有若干与待加热煤炭层连通的孔;所述进气竖井7与地面送气装置连接,所述回气竖井8与地面收集装置连接。
还包括监测分系统,所述监测分系统包括分别设置在煤炭层顶面、底面以及岩层1/2高度处的热电偶;在煤炭层下方的下垫板岩层顶面、底面及岩层1/2高度位置设置高温应力传感器;所述集气巷道中布设若干可燃气体探测器,所述回气竖井8地面出气口处设置有可燃气体探测仪和煤气热值分析仪;所述热电偶、高温应力传感器、可燃气体探测器和煤气热值分析仪均与地面控制中心连接。
一旦岩层应力实测值逼近室内相似物理模型试验确定的煤层下垫板岩层失稳预警值,由地面控制中心合理下调对下垫板岩层的加热温度。在集气主巷道9和集气支巷道10中布设一些测点,布置工业用可燃气体探测器以检测各测点煤气浓度。可燃气体探测器可将煤气浓度转化为电信号,并将电信号通过耐高温光缆传输到地面控制中心的报警控制器,一旦巷道中煤气浓度超出预设的阈值,报警器发出报警信号,地面控制中心立即停止集气设备工作,并启动集气主巷道9靠近回气竖井8一端的的防爆排气扇,迅速降低集气主巷道中煤气浓度。在回气竖井地面出气口设置可燃气体探测仪和煤气热值分析仪,分别用以检测输出煤气浓度和热值,据此分析煤气输出速率稳定性及煤气品质,从而评价井下点火是否成功。
如图9所示,所述集气巷道与煤炭层顶部的距离为2~5m,所述注液通道14与煤炭层顶部的距离小于1m。
本发明提供了一种地下隔层式煤炭原位气化开采系统的构造方法,包括以下步骤:
1)构建集气分系统;钻进一个进气竖井7,待钻进到所在煤炭层上方2~5m时,本实施例中优选5m,退出钻进设备并对进气竖井进行加固;从进气竖井7的底部沿煤炭层的分布方向进行水平集气系统定向钻进作业,先钻进一个集气主巷道;且沿集气主巷道两侧每隔15~30m分别钻进两个集气支巷道,每个集气支巷道长15~18m;集气主巷道与集气支巷道的截面宽、高尺寸均为2~3m;在集气主巷道9和集气支巷道10中均每隔5~6m安设一个集气泵11,在集气支巷道10上靠近集气主巷道9一端,设置一台防爆旋涡式鼓风机,同时在集气泵正下方钻孔通入煤炭层中形成集气导管12,集气导管12与煤炭层夹角为30°;钻进一个回气竖井8,使其与水平集气巷道贯通,对回气竖井8进行加固;
2)构建加热分系统;由地面向下钻进四个加热竖井1,待钻进到煤炭层下方的下垫板岩层内、距离煤炭层下侧25~30m后(具体根据燃烧加热装置的功率以及下垫板岩层的导热系数确定,本发明中以燃烧加热装置最佳运行功率为6kW,而下垫板岩层在800~1000K的加热温度范围下导热系数为0.25~0.24W/(m·K)为例),退出钻进设备并对加热竖井1进行加固;对每个加热竖井1均水平定向钻进一个加热巷道2,加热巷道2的长度为10~15m;在加热巷道2末端进行二次扩孔形成燃烧室3;在燃烧室3内安装燃烧加热装置;
3)构建预控分系统;钻进两个注液竖井13,待钻进到距离煤炭层上方小于1m(具体值由顶板岩性决定)时,退出钻进设备并对注液竖井13进行加固;从每个注液竖井13的底部、沿煤炭层的分布方向钻进一个注液通道14,注液通道14弯折形成直角边,两直角边的注液通道14合围构成120m*60m(可根据实际需要选择)的四边形预控单元,圆弧倒角为半径为4m的1/4圆弧;向每一条注液通道14内通入化学阻燃剂,化学阻燃剂从水平注液通道向下方临近煤层自然渗透,进而润湿煤壁、形成耐高温的润湿煤壁;
4)构建监测分系统;在回气竖井8的地面出气口位置布置可燃气体探测仪和煤气热值分析仪;在集气主巷道9和集气支巷道10内、沿煤气易泄露处布置若干可燃气体探测器;在煤炭层顶面、底面以及岩层1/2高度处的热电偶,本发明中优选K型热电偶;在煤炭层下方的下垫板岩层顶面、底面及岩层1/2高度位置设置高温应力传感器。
上述步骤的组合并非按顺序排布,仅仅在于该系统的构建包括上述步骤。
为了扩大生产规模,本发明的构建系统可以进行单位组建后形成循环系统,如图7-8所示,经过以上步骤完成一个单位气化炉的构建,在重复步骤1)-4)的循环构建过程中,可重复利用前一次构建形成的竖向钻井。
以沿水平集气巷道布置方向为例,说明循环构建方法,构建过程中可二次利用部件包括:第I次生产构建的阻燃竖井A(注液竖井)可直接用于第II次生产;同时,竖井B在第I次生产时作为回气竖井,在第II次生产时作为进气竖井使用;第I次生产构建的注液通道水平段C可再用于第II、III次生产。需要指出的是,与竖井B沿x方向共线的两个加热竖井不能再次用于II次生产,以避免第II次生产时对采空区底板进行加热,即避免在采空区底板上部已卸压情况下在其内部施加热应力,从而加速采空区底板裂纹扩展,进而影响未采区煤层底板稳定性。类似地,第I次生产沿x方向进行循环构建,即进入第III次生产,阻燃竖井A可再次使用。
第I次生产构建的注液通道水平段C用于第II、III次生产情境下,此时水平段C正下方煤层被燃烧完,通阻燃剂目的在于在C正下方浇筑一段耐高温的挡墙,该挡墙与临近被润湿煤壁连接,结合顶底板围合形成新的待气化单位煤块。
特别指出,在第I次生产结束后、进入第II次生产前,对第I次生产中所用的进气竖井D进行封孔处理,避免进气竖井D在第II次生产中成为出气通道,不利于在第II次生产过程中通高压蒸汽,使高压蒸将产出的煤气高效地输送到地面。
本技术领域的普通技术人员应当认识到,以上的实施方式仅是用来说明本发明,而并非用作为本发明的限定,只要在本发明的实质精神范围之内,对以上实施方式所作的适当改变和变化都落在本发明要求保护的范围之内。
Claims (10)
1.一种地下隔层式煤炭原位气化开采加热系统,其特征在于:包括数口加热井,每口所述加热井由加热竖井(1)、加热巷道(2)和燃烧室(3)组成,所述加热竖井(1)与加热巷道(2)连通,所述加热巷道(2)的末端连通燃烧室(3);所述燃烧室(3)设置在待加热煤炭层下方的下垫板岩层中,所述燃烧室内设置有燃烧加热装置。
2.根据权利要求1所述的地下隔层式煤炭原位气化开采加热系统,其特征在于:所述燃烧加热装置包括燃烧室内设置的等离子体燃烧器(4),所述等离子体燃烧器(4)的末端与导燃筒(5)固定连接,所述导燃筒(5)的上端面设置若干个喷火口(6),所述导燃筒(5)的材料为耐高温材料。
3.根据权利要求1或2所述的地下隔层式煤炭原位气化开采加热系统,其特征在于:所述加热井的数量为四口,四口所述加热井合围构成四边形。
4.一种地下隔层式煤炭原位气化开采集气系统,其特征在于:包括进气竖井(7)、回气竖井(8)和集气巷道组成,所述集气巷道连通进气竖井(7)和回气竖井(8),所述集气巷道设置在待加热煤炭层的上方,所述集气巷道内设置有若干与待加热煤炭层连通的孔;所述进气竖井(7)与地面送气装置连接,所述回气竖井(8)与地面收集装置连接。
5.根据权利要求4所述的地下隔层式煤炭原位气化开采集气系统,其特征在于:所述集气巷道由一条集气主巷道(9)和若干条集气支巷道(10)组成,所述集气支巷道(10)分布在集气主巷道(9)的两侧、并偏向于进气竖井(7)方向;所述集气支巷道(10)内设置有若干与待加热煤炭层连通的孔。
6.根据权利要求5所述的地下隔层式煤炭原位气化开采集气系统,其特征在于:所述集气支巷道(10)均匀、等间距分布在集气主巷道(9)的两侧,所述集气支巷道(10)的长度为15~18m,每两个集气支巷道(10)之间的距离为15~30m;所述集气主巷道(9)和集气支巷道(10)设置有若干集气泵(11),所述集气泵(11)设置在与待加热煤炭层连通的孔处,所述集气泵(11)的吸气口与集气导管(12)连通,所述集气导管(12)设置在与待加热煤炭层连通的孔处、倾斜伸入至待加热煤炭层内,所述集气导管(12)与煤炭层之间的夹角小于45°。
7.一种地下隔层式煤炭原位气化开采系统,其特征在于:包括预控分系统、加热分系统和集气分系统;
所述预控分系统通过阻燃剂,将整个待加热煤炭层进行网格划分形成独立的单位加热区域;所述预控分系统设置在待加热煤炭层的上方,所述预控分系统包括设置在网格交叉点上的若干注液竖井(13),每个所述注液竖井(13)与水平注液通道(14)连通,两个对称的注液通道(14)合围构成独立的四边形加热区域,每个所述注液通道(14)内与煤炭层连通;
所述加热分系统包括设置在煤炭层下方下垫板岩层中的燃烧室(3),所述燃烧室(3)与加热竖井(1)连通,所述加热竖井(1)与地面供气装置连接,所述燃烧室(3)内设置有燃烧加热装置;
所述集气分系统包括进气竖井(7)、回气竖井(8)和集气巷道,所述集气巷道连通进气竖井(7)和回气竖井(8),所述集气巷道设置在待加热煤炭层的上方,所述集气巷道内设置有若干与待加热煤炭层连通的孔;所述进气竖井(7)与地面送气装置连接,所述回气竖井(8)与地面收集装置连接。
8.根据权利要求7所述的地下隔层式煤炭原位气化开采系统,其特征在于:还包括监测分系统,所述监测分系统包括分别设置在煤炭层顶面、底面以及岩层1/2高度处的热电偶;在煤炭层下方的下垫板岩层顶面、底面及岩层1/2高度位置设置高温应力传感器;所述集气巷道中布设若干可燃气体探测器,所述回气竖井(8)地面出气口处设置有可燃气体探测仪和煤气热值分析仪;所述热电偶、高温应力传感器、可燃气体探测器和煤气热值分析仪均与地面控制中心连接。
9.根据权利要求7或8所述的地下隔层式煤炭原位气化开采系统,其特征在于:所述集气巷道与煤炭层顶部的距离为2~5m,所述注液通道(14)与煤炭层顶部的距离小于1m。
10.一种地下隔层式煤炭原位气化开采系统的构造方法,其特征在于:包括以下步骤:
1)构建集气分系统;钻进一个进气竖井(7),待钻进到所在煤炭层上方2~5m时,退出钻进设备并对进气竖井进行加固;从进气竖井(7)的底部沿煤炭层的分布方向进行水平集气系统定向钻进作业,先钻进一个集气主巷道;且沿集气主巷道两侧每隔15~30m分别钻进两个集气支巷道,每个集气支巷道长15~18m;集气主巷道与集气支巷道的截面宽、高尺寸均为2~3m;在集气主巷道(9)和集气支巷道(10)中均每隔5~6m安设一个集气泵(11),在集气支巷道(10)上靠近集气主巷道(9)一端,设置一台防爆旋涡式鼓风机,同时在集气泵正下方钻孔通入煤炭层中形成集气导管(12),集气导管(12)与煤炭层夹角为30°;钻进一个回气竖井(8),使其与水平集气巷道贯通,对回气竖井(8)进行加固;
2)构建加热分系统;由地面向下钻进四个加热竖井(1),待钻进到煤炭层下方的下垫板岩层内后,退出钻进设备并对加热竖井(1)进行加固;对每个加热竖井(1)均水平定向钻进一个加热巷道(2);在加热巷道(2)末端进行二次扩孔形成燃烧室(3);在燃烧室(3)内安装燃烧加热装置;
3)构建预控分系统;钻进两个注液竖井(13),待钻进到距离煤炭层上方小于1m时,退出钻进设备并对注液竖井(13)进行加固;从每个注液竖井(13)的底部、沿煤炭层的分布方向钻进一个注液通道(14),注液通道(14)弯折形成直角边,两直角边的注液通道(14)合围构成120m*60m的四边形预控单元;向每一条注液通道(14)内通入化学阻燃剂,化学阻燃剂从水平注液通道向下方临近煤层自然渗透,进而润湿煤壁、形成耐高温的润湿煤壁;
4)构建监测分系统;在回气竖井(8)的地面出气口位置布置可燃气体探测仪和煤气热值分析仪;在集气主巷道(9)和集气支巷道(10)内、沿煤气易泄露处布置若干可燃气体探测器;在煤炭层顶面、底面以及岩层1/2高度处的热电偶;在煤炭层下方的下垫板岩层顶面、底面及岩层1/2高度位置设置高温应力传感器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011496551.3A CN112483063B (zh) | 2020-12-17 | 2020-12-17 | 一种地下隔层式煤炭原位气化开采系统及其构造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011496551.3A CN112483063B (zh) | 2020-12-17 | 2020-12-17 | 一种地下隔层式煤炭原位气化开采系统及其构造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112483063A true CN112483063A (zh) | 2021-03-12 |
CN112483063B CN112483063B (zh) | 2022-12-23 |
Family
ID=74917346
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011496551.3A Active CN112483063B (zh) | 2020-12-17 | 2020-12-17 | 一种地下隔层式煤炭原位气化开采系统及其构造方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112483063B (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113685161A (zh) * | 2021-09-14 | 2021-11-23 | 西安交通大学 | 一种富油煤原位热解的氮气电加热方法及系统 |
CN113803040A (zh) * | 2021-10-27 | 2021-12-17 | 西安科技大学 | 一种富油煤地下原位气化与热解一体化共采方法 |
CN116575900A (zh) * | 2023-07-07 | 2023-08-11 | 太原理工大学 | 一种原位煤体分区可控气化制氢及co2封存一体化方法 |
CN116904229A (zh) * | 2023-07-28 | 2023-10-20 | 中国矿业大学(北京) | 煤层等离子点火系统和方法 |
CN117165332A (zh) * | 2023-09-12 | 2023-12-05 | 中国矿业大学(北京) | 煤层原位生产绿氢系统和方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4356866A (en) * | 1980-12-31 | 1982-11-02 | Mobil Oil Corporation | Process of underground coal gasification |
CN101382061A (zh) * | 2007-09-07 | 2009-03-11 | 新奥科技发展有限公司 | 煤层气热采新工艺 |
CN107939370A (zh) * | 2017-12-11 | 2018-04-20 | 山东科技大学 | 一种条带式煤炭地下气化系统及生产方法 |
CN108825193A (zh) * | 2017-05-05 | 2018-11-16 | 中国石油化工股份有限公司 | 油页岩原位开采方法 |
CN212027764U (zh) * | 2020-03-09 | 2020-11-27 | 山东科技大学 | 一种地下气化炉的预控结构及气化炉 |
-
2020
- 2020-12-17 CN CN202011496551.3A patent/CN112483063B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4356866A (en) * | 1980-12-31 | 1982-11-02 | Mobil Oil Corporation | Process of underground coal gasification |
CN101382061A (zh) * | 2007-09-07 | 2009-03-11 | 新奥科技发展有限公司 | 煤层气热采新工艺 |
CN108825193A (zh) * | 2017-05-05 | 2018-11-16 | 中国石油化工股份有限公司 | 油页岩原位开采方法 |
CN107939370A (zh) * | 2017-12-11 | 2018-04-20 | 山东科技大学 | 一种条带式煤炭地下气化系统及生产方法 |
CN212027764U (zh) * | 2020-03-09 | 2020-11-27 | 山东科技大学 | 一种地下气化炉的预控结构及气化炉 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113685161A (zh) * | 2021-09-14 | 2021-11-23 | 西安交通大学 | 一种富油煤原位热解的氮气电加热方法及系统 |
CN113803040A (zh) * | 2021-10-27 | 2021-12-17 | 西安科技大学 | 一种富油煤地下原位气化与热解一体化共采方法 |
CN116575900A (zh) * | 2023-07-07 | 2023-08-11 | 太原理工大学 | 一种原位煤体分区可控气化制氢及co2封存一体化方法 |
CN116575900B (zh) * | 2023-07-07 | 2023-09-15 | 太原理工大学 | 一种原位煤体分区可控气化制氢及co2封存一体化方法 |
CN116904229A (zh) * | 2023-07-28 | 2023-10-20 | 中国矿业大学(北京) | 煤层等离子点火系统和方法 |
CN117165332A (zh) * | 2023-09-12 | 2023-12-05 | 中国矿业大学(北京) | 煤层原位生产绿氢系统和方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112483063B (zh) | 2022-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112483063B (zh) | 一种地下隔层式煤炭原位气化开采系统及其构造方法 | |
Perkins | Underground coal gasification–Part I: Field demonstrations and process performance | |
CN112483062B (zh) | 一种地下隔层式煤炭原位气化开采方法及系统 | |
CN103670338B (zh) | 一种煤层气与煤共采方法 | |
CN107939370B (zh) | 一种条带式煤炭地下气化系统及生产方法 | |
CN102606128B (zh) | 油页岩开采方法及装置 | |
WO2013026421A1 (zh) | 一种地下煤炭气化的方法 | |
WO2021128933A1 (zh) | 一种高瓦斯煤层原位热解瓦斯流态化开采方法 | |
CN102418476A (zh) | 深层煤炭和煤层气联合开采技术 | |
CN103670357A (zh) | 地下含碳有机矿物储层的裂隙沟通、通道加工及地下气化方法 | |
CN101864941A (zh) | 超深层煤炭地下气化技术 | |
CN109339788B (zh) | 一种控制地下煤自燃并开发利用的方法 | |
WO2022262261A1 (zh) | 煤层气煤气矿井 | |
CN110159245A (zh) | 分布式注排气通道窄条带煤炭地下气化炉生产系统及方法 | |
CN112196505A (zh) | 一种油藏原位转化制氢系统及其制氢工艺 | |
CN117052366B (zh) | 一种深部有机岩矿层原位开采及能量高效利用的方法 | |
CN212027764U (zh) | 一种地下气化炉的预控结构及气化炉 | |
Alabyev et al. | Prospects for industrial methane production in the mine na VM Bazhanov using vertical surface wells | |
CN113803048A (zh) | 一种基于热解的煤炭原位分选开采方法 | |
WO2021179684A1 (zh) | 一种地下气化炉的预控结构、气化炉及气化方法 | |
CN110185425A (zh) | 一种页岩气的开采方法及系统 | |
CN102562025A (zh) | 一种煤炭地下气化炉及其制备方法 | |
CN106437673B (zh) | 用于煤炭地下气化工艺的线性气化炉与操作方法 | |
CN214464158U (zh) | 一种楔形煤炭地下气化炉炉身结构 | |
CN104653167B (zh) | 一种地下气化炉及其气化方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |