WO2021179571A1 - 涡旋压缩机 - Google Patents

涡旋压缩机 Download PDF

Info

Publication number
WO2021179571A1
WO2021179571A1 PCT/CN2020/117274 CN2020117274W WO2021179571A1 WO 2021179571 A1 WO2021179571 A1 WO 2021179571A1 CN 2020117274 W CN2020117274 W CN 2020117274W WO 2021179571 A1 WO2021179571 A1 WO 2021179571A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid passage
scroll
valve seat
fluid
scroll compressor
Prior art date
Application number
PCT/CN2020/117274
Other languages
English (en)
French (fr)
Inventor
吴凌云
束宏飞
杨东辉
黄幼玲
Original Assignee
艾默生环境优化技术(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010175963.0A external-priority patent/CN113389723A/zh
Priority claimed from CN202020317139.XU external-priority patent/CN211975386U/zh
Application filed by 艾默生环境优化技术(苏州)有限公司 filed Critical 艾默生环境优化技术(苏州)有限公司
Publication of WO2021179571A1 publication Critical patent/WO2021179571A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Definitions

  • the present disclosure relates to the field of scroll compressors, and more specifically, to a scroll compressor with an improved air jet/liquid injection enthalpy increasing device.
  • a scroll compressor is a device used to compress refrigerant for cooling or heating.
  • the scroll compressor usually includes a scroll compression assembly or a scroll compression mechanism having a movable scroll and a fixed scroll.
  • the scroll of the movable scroll and the scroll of the static scroll cooperate to form a compression chamber, and the gas is compressed in the compression chamber through the translational movement of the movable scroll relative to the static scroll.
  • the enthalpy can be increased by spraying liquid or air jets into the intermediate pressure cavity of the compressor. That is, by injecting liquid or gaseous refrigerant into the intermediate pressure chamber of the compressor, the amount of gas in the compressor is increased, and the temperature in the compression chamber is reduced at the same time.
  • the enthalpy increasing fluid passage is usually not provided with a check valve.
  • the gas in the compression chamber of the compressor will flow into the outside of the intermediate pressure chamber of the compressor through the enthalpy-increasing fluid channel. This will cause the gas pressure in the intermediate pressure chamber of the compressor to fluctuate, which will reduce the compression performance of the compressor.
  • the present disclosure provides a check valve arranged in the enthalpy-increasing fluid passage of the compressor.
  • the setting of this check valve will prevent the gas in the intermediate pressure cavity of the compressor from flowing out of the enthalpy increasing fluid passage to the outside of the compressor when the enthalpy increasing gas/liquid is not fed into the intermediate pressure cavity, thereby preventing the gas in the intermediate pressure cavity from flowing out of the compressor.
  • Pressure fluctuations further improve the compression performance of the compressor.
  • a flexible connection duct is provided in the scroll compressor according to the present disclosure.
  • the two ends of the flexible connecting pipe are respectively arranged in the enthalpy-increasing fluid channel in the static scroll and the shell and are connected with the static scroll and the shell in a fluid-tight manner.
  • the flexible connecting pipe has a certain degree of flexibility. Due to the provision of the flexible connecting duct, the fixed scroll and the enthalpy-increasing fluid channel in the shell can be sealedly connected without affecting the relative movement of the static scroll with respect to the shell.
  • the scroll compressor includes: a housing provided with a first fluid passage for introducing and receiving fluid from an external pipeline; and a fixed scroll, the fixed scroll provided in the housing And it is configured to cooperate with the movable scroll to form a compression chamber for compressing the working fluid.
  • the fixed scroll is provided with a second fluid passage communicating with the compression chamber of the scroll compressor.
  • a connecting duct is provided between the casing and the static scroll.
  • the connecting duct is provided with a third fluid passage.
  • the third fluid passage connects the first fluid passage to the second fluid passage in a fluid-tight manner.
  • the first fluid channel, the second fluid channel, and the third fluid channel constitute a fluid channel for introducing fluid into the compression chamber.
  • a check valve is provided in the fluid channel. The check valve is used to prevent the working fluid in the compression chamber from flowing out of the compressor through the fluid passage.
  • the connecting duct enables the fixed scroll to float axially relative to the casing.
  • the connecting pipe has a first end and a second end, and a middle section connecting the first end and the second end.
  • the first end and the second end have a drum shape.
  • the maximum outer diameter of the middle section is smaller than the maximum outer diameters of the first end and the second end.
  • grooves are provided at the largest outer diameters of the first end and the second end.
  • a sealing ring is arranged in the groove to realize the sealing connection between the connecting pipe and the casing and the connecting pipe and the static scroll.
  • first fluid channel and the second fluid channel are provided with stoppers.
  • the stopper restricts the position of the connecting duct in the first fluid passage and in the second fluid passage.
  • the check valve is arranged in the first fluid passage.
  • the connecting pipe is arranged adjacent to the check valve.
  • the check valve includes a valve seat with a valve seat through hole, a valve plate for opening or closing the valve seat through hole, and a thrust member.
  • the valve plate is located between the valve seat and the thrust piece.
  • the thrust piece is arranged adjacent to the connecting duct and serves as a stopper for limiting the position of the connecting duct in the first fluid passage.
  • the check valve also includes a biasing member.
  • the biasing member is configured to urge the valve plate toward the valve seat.
  • the thrust member is configured to accommodate the biasing member and provide a guiding function for the biasing member.
  • valve seat and the thrust piece are arranged in the fluid channel in a threaded connection or interference fit.
  • the check valve is arranged in the third fluid passage in the connecting pipe.
  • the check valve includes a valve seat with a valve seat through hole, a valve plate for opening or closing the valve seat through hole, and a thrust member.
  • the valve seat is a separate component arranged in the third fluid passage in a threaded connection or interference fit or is a part of the connecting pipe.
  • the check valve is arranged in the second fluid passage of the static scroll.
  • the check valve includes a valve seat with a valve seat through hole, a valve plate for opening or closing the valve seat through hole, and a thrust piece, the valve plate being arranged between the valve seat and the thrust piece .
  • the valve seat is a separate component or a part of the second fluid passage that is arranged in the second fluid passage in a threaded connection or interference fit.
  • the static scroll includes a separate cover body and a main body.
  • the second fluid channel includes a section provided between the cover body part and the body part.
  • 1a-1c are respectively a plan view, a partial cross-sectional view, and a partial enlarged view showing the scroll compression assembly part of the scroll compressor according to the first embodiment;
  • Figures 2a-2c are respectively a perspective view, a top view and a cross-sectional view of a cover with a static scroll, a flexible connecting pipe and a check valve assembly;
  • Figures 3a-3b show a perspective view and a cross-sectional view of the structure of the compressor housing and cover, as well as the flexible connecting duct and the check valve in an exploded state;
  • Figures 4a-4b are respectively a perspective view and a cross-sectional view of a flexible connecting pipe without a sealing ring;
  • Figures 4c-4d are a front view and a cross-sectional view of a flexible connecting pipe with a sealing ring, respectively.
  • 5a-5c are respectively a plan view, a partial cross-sectional view and a partial enlarged view showing the scroll compression assembly part of the scroll compressor according to the second embodiment;
  • Figures 6a-6e are respectively two perspective views, a cross-sectional view, a perspective view in an exploded state, and a cross-sectional view in an exploded state of the flexible connecting conduit in which a check valve is provided;
  • 7a-7c are respectively a partial cross-sectional view, a partial enlarged view, and a top view of a main body portion of a fixed scroll showing a scroll compression assembly portion of a scroll compressor according to a third embodiment.
  • the enthalpy increasing fluid passage is usually not provided with a check valve, which is likely to cause the gas pressure in the intermediate pressure chamber of the compressor to fluctuate and reduce the compressor’s performance.
  • a check valve is provided in the enthalpy increasing device according to the present application. After the check valve is provided, when gas or liquid needs to be injected into the intermediate pressure chamber of the compressor, the check valve is opened. When there is no need to inject gas or liquid into the intermediate pressure cavity of the compressor, the check valve is closed, and the gas in the intermediate pressure cavity will not flow to the outside of the compressor through the enthalpy increasing fluid channel. Further mechanically, in order to still realize the axial flexibility of the static scroll in the compressor provided with the enthalpy-enhancing fluid channel, a flexible connecting duct is provided in the compressor.
  • the scroll compressor has a housing 2, a fixed scroll 3, a movable scroll 4, a top cover 5 and an enthalpy increasing fluid channel 12.
  • the scroll compressor also has the main bearing, main bearing housing, motor and other power parts of the scroll compressor not shown in the view.
  • the fixed scroll 3 may include a cover portion 31 and a body portion 32.
  • the cover portion 31 and the main body portion 32 may be separate parts, that is, the static scroll is a separate type.
  • the cover portion 31 and the main body portion 32 may also be integrated.
  • the cover portion 31 is located on the upper side of the main body portion 32 in the axial direction, and is provided between the main body portion 32 and the top cover 5.
  • a check valve 11 and a flexible connecting pipe 13 are provided in the enthalpy increasing fluid passage 12.
  • a part of the enthalpy-increasing fluid passage is provided in the compressor housing, and is called the first fluid passage 001.
  • a part of the enthalpy-enhancing fluid channel is arranged in the static vortex, and is called the second fluid channel 002.
  • the second fluid passage may include a section formed between the cover portion 31 and the body portion 32.
  • the first end 131 of the flexible connecting pipe 13 is arranged in the static scroll 3, which is located in the second fluid channel 002 in the static scroll and is connected to the second fluid channel in a fluid-tight manner.
  • the first end of the flexible connecting pipe 13 is provided in the cover portion 31, and it can also be directly provided in the body portion of the static scroll.
  • the second end 132 of the flexible connecting pipe 13 is arranged in the compressor housing 2, which is located in the first fluid passage 001 in the compressor housing 2 and is connected to the first fluid passage in a fluid-tight manner.
  • the flexible connecting conduit 13 realizes the flexible and sealed communication of the enthalpy increasing fluid passage from the compressor housing to the static scroll. Since the flexible connecting duct 13 has a certain degree of flexibility, the static scroll can float up and down relative to the compressor housing without affecting the sealing performance of the enthalpy-increasing fluid channel.
  • the cover portion 31 has a cylindrical shape with a bottom portion 311 and a cavity portion 312.
  • a discharge hole 315 is provided in the bottom 311 of the cover body.
  • the parts 124 and 125 of the enthalpy increasing fluid channel are provided in the side part 313 of the cover part 311.
  • the transverse enthalpy increasing fluid channel 124 extends in the radial direction and has a large diameter portion 1241 and a small diameter portion 1242 to form a stepped portion 1243.
  • the longitudinal enthalpy increasing fluid channel 125 extends in the axial direction.
  • the first end 131 of the flexible connecting pipe 13 is disposed in the large diameter portion 1241 and is restricted from moving in the radial direction toward the center of the cover portion by the step portion 1243.
  • the stepped portion 1243 serves as a stopper for restricting the position of the flexible connecting pipe in the second fluid passage.
  • the second end 132 of the flexible connecting pipe 13 is adjacent to the check valve 11.
  • the check valve 11 provides a thrust function for the flexible connecting pipe 13 and restricts the movement of the flexible connecting pipe 13 along the enthalpy-enhancing fluid channel.
  • 3a and 3b respectively show a perspective view and a cross-sectional view of the cover portion 31, the check valve 11 and the compressor housing 2.
  • valve disc 111 also called the valve core
  • spring 112 the thrust piece 113
  • the cover body is shown.
  • other parts are omitted from the view.
  • Figures 4a-4b show a perspective view and a cross-sectional view of the flexible connecting duct 13 without a sealing ring.
  • the flexible connecting catheter 13 is also called a "dog bone” because its shape is similar to that of a rod bone.
  • the flexible connecting pipe 13 has an axisymmetric shape, which includes a first end 131 and a second end 132 with a larger outer diameter and a middle section 136 with a smaller outer diameter.
  • the flexible connecting pipe 13 is provided with a central through hole 138 extending in the axial direction at its radial center portion.
  • the first end 131 and the second end 132 have a drum-shaped outer contour.
  • Grooves 133 and 135 are provided at the top ends on the outer peripheral surface of the first end 131 and the second end 132, respectively. These grooves 133, 135 are used to provide sealing rings 1331, 1351 therein.
  • Figures 4c and 4d respectively show a front view and a cross-sectional view of the flexible connecting pipe 13 provided with a sealing ring.
  • the sealing rings 1331 and 1351 are in contact with the inner surface of the enthalpy-increasing fluid channel in a sealed manner, thereby realizing a sealed connection between the flexible connecting conduit 13 and the enthalpy-increasing fluid channel .
  • the drum shape at both ends of the flexible connecting pipe 13 helps the sealing ring to contact the inner surface of the enthalpy increasing fluid channel.
  • this structure can still ensure that the sealing ring is in sealed contact with the inner surface of the enthalpy-enhancing fluid channel.
  • the check valve 11 has a valve plate 111, a spring 112, a thrust piece 113, and a valve seat 114.
  • the valve plate 111 is a disc-shaped structure with a central through hole 1112.
  • a middle hole 1131 is provided in the middle of the thrust member 113, and a bottom hole 1135 is provided at the bottom of the thrust member 113.
  • the middle hole 1131 communicates with the bottom hole 1135 to form a through hole, and the diameter of the middle hole 1131 is larger than the diameter of the bottom hole 1135.
  • the spring 112 is arranged in the middle hole 1131, and the middle hole provides a guiding function for the expansion and contraction of the spring 112.
  • One end of the spring 112 is connected to the bottom of the thrust member 113, and the other end is connected to the valve plate 111.
  • the spring 112 urges the valve plate 111 toward the valve seat 114.
  • the spring may not be provided.
  • a flange 1134 with a larger outer diameter is provided on the outer periphery of the thrust piece 113.
  • the flange 1134 cooperates with the step 211 in the enthalpy increasing fluid channel to determine the position of the thrust member in the enthalpy increasing fluid channel.
  • the thrust piece 113 is arranged in the enthalpy-increasing fluid channel by, for example, a threaded connection or an interference fit.
  • the outer end of the bottom of the thrust piece 113 provided with the bottom hole 1135 abuts against the second end 132 of the flexible connecting pipe 13 to limit the position of the flexible connecting pipe 13 in the enthalpy increasing fluid channel.
  • the thrust piece 113 serves as a stop piece that restricts the position of the flexible connecting pipe in the first fluid passage.
  • the valve seat 114 may be arranged in the enthalpy-increasing fluid passage in a manner of, for example, a threaded connection or an interference fit.
  • the valve seat 114 is provided with a plurality of through holes, such as through holes 1142, evenly arranged along the circumferential direction thereof. When the check valve is assembled in the enthalpy increasing fluid channel, the through hole 1142 of the valve seat 114 is not aligned with the central through hole 1112 of the valve plate 111.
  • the valve plate has a valve plate closed position and a valve plate open position.
  • valve plate 111 When the valve plate is in the valve plate closed position, that is, when the valve plate 111 is pressed against the valve seat 114, the valve plate 111 prevents the fluid from flowing through the enthalpy-enhancing fluid passage.
  • the pressure of the gas or liquid overcomes the elastic force of the spring 112 to make the valve plate 111 of the check valve leave the valve seat 114, thereby making the through hole 1142 of the valve seat 114 It communicates with the central through hole 1112 of the valve plate 111, that is, the valve plate is in the open position of the valve plate, so as to realize the communication of the enthalpy-increasing fluid channel.
  • the check valve is provided in the enthalpy increasing passage, the pressure fluctuation in the intermediate pressure cavity of the compressor can be avoided, and the performance of the compressor is further improved.
  • the air-tight communication of the enthalpy-increasing fluid channel from the compressor housing to the fixed scroll is realized and the shaft of the fixed scroll can be ensured. To float.
  • the scroll compressor has a housing 2', a fixed scroll 3', a movable scroll 4', a top cover 5', and an enthalpy-increasing fluid passage 12'.
  • the scroll compressor also has the main bearing, main bearing housing, motor and other power parts of the scroll compressor not shown in the view.
  • the difference between the scroll compressor according to this embodiment and the scroll compressor of FIGS. 1a-1c is that the check valve is not directly arranged in the enthalpy-enhancing fluid passage in the housing or the fixed scroll, but is arranged in a flexible connection Inside the duct, a combined check valve is formed.
  • a first fluid channel 001' is provided in the housing 2'.
  • a second fluid channel 002' is provided in the static scroll.
  • the second fluid passage may include a section formed between the cover portion 31 ′ and the body portion 32 ′.
  • the flexible connecting pipe 13' connects the static scroll and the housing and is provided with a check valve 11' therein.
  • a stopper 16' is provided in the first fluid passage 001'.
  • the first end 131 ′ of the flexible connecting pipe 13 ′ is arranged in the enthalpy-increasing fluid passage portion 1242 ′ of the cover portion 31 ′ and is connected to the enthalpy-increasing fluid passage in a sealed manner.
  • the second end 132' of the flexible connecting pipe 13' is arranged in the enthalpy-increasing fluid passage portion 122' in the compressor housing 2'and is connected to the enthalpy-increasing fluid passage in a sealed manner.
  • the flexible connecting conduit 13' realizes the flexible and sealed communication of the enthalpy increasing fluid passage from the compressor housing 2'to the static scroll 3'.
  • the stopper 16' is provided in the enthalpy-increasing fluid passage portion 123'.
  • the diameter of the enthalpy increasing fluid passage portion 123' may be greater than the diameter of the enthalpy increasing fluid passage portion 122' to form a step.
  • the stopper 16' may be fixed in the enthalpy-increasing fluid passage portion 123' in a threaded manner.
  • the small diameter portion 1241' and the large diameter portion 1242' in the enthalpy increasing fluid channel 124' form a stepped portion 1246', and the stepped portion 1246' and the stopper 16' together limit the flexible connecting duct 13 in which the check valve 11' is provided ′The position in the enthalpy-increasing fluid channel.
  • the port on the outside of the housing of the enthalpy-increasing fluid channel is provided with an adapter 19', which can be used to connect with an external conveying pipeline.
  • the check valve 11' has a valve plate 111', a thrust piece 113', and a valve seat 114'.
  • the check valve may also have a spring 112'.
  • the valve plate 111', the spring 112', the thrust piece 113', and the valve seat 114' are all arranged in the through hole 138' of the flexible connecting pipe 13'.
  • the through hole 138' provides a guiding function for the spring.
  • the valve plate 111' is a disc-shaped structure with a central through hole 1112'.
  • a middle hole 1131' is provided in the middle of the thrust member 113'.
  • the thrust piece 113' is provided in the through hole 138' by, for example, a threaded connection.
  • the valve seat 114' may be provided in the through hole 138' in a manner of, for example, a threaded connection or an interference fit.
  • the valve seat 114' is provided with a plurality of through holes 1142' uniformly arranged in the circumferential direction. In the drawing, 6 through holes are shown. Those skilled in the art should understand that other numbers of through holes can be provided.
  • the spring 112' is arranged between the valve plate 111' and the thrust member 113'.
  • the working principle of the check valve 11' is similar to the working principle of the above-mentioned check valve 11, and will not be repeated here.
  • the valve seat of the check valve may be a small diameter part in the through hole 138' integrated with the flexible connecting pipe.
  • the flexible connecting duct 13' has an axisymmetric shape, which includes a first end 131' and a second end 132' having a larger outer diameter and a larger outer diameter. Middle section 136' of small outer diameter.
  • the flexible connecting pipe 13' is provided with a central through hole 138' extending in its own axial direction at its radial center portion.
  • the first end 131' and the second end 132' have a drum-shaped outer contour.
  • Grooves 133' and 135' are provided at the top ends on the outer peripheral surface of the first end 131' and the second end 132', respectively. These grooves 133', 135' are used to set sealing rings 1331', 1351' therein.
  • the enthalpy increasing device of this embodiment not only can the gas in the pressure chamber of the compressor be prevented from flowing through the booster passage to the outside of the compressor, but also the enthalpy increasing passage can be made more compact.
  • FIG. 7a and 7b show a partial cross-sectional view and a partial enlarged view of the scroll compression assembly 100" of the scroll compressor of the third embodiment.
  • the scroll compression assembly according to this embodiment has a housing 2" and a fixed scroll 3", orbiting scroll 4", top cover 5" and enthalpy increasing fluid channel 12".
  • the feature of this embodiment is that the check valve 11" is provided in the enthalpy-increasing fluid passage portion 323" in the body portion 32" of the static scroll.
  • the first end of the flexible connecting pipe 13" is arranged in the enthalpy increasing fluid channel 002" of the cover portion 31" and is connected in a sealed manner with the enthalpy increasing fluid channel.
  • the second end of the flexible connecting pipe 13" The enthalpy-increasing fluid passage 001" is arranged in the compressor housing 2" and is connected to the enthalpy-increasing fluid passage in a sealed manner.
  • the flexible connecting conduit 13" realizes the flexible and sealed communication of the enthalpy-increasing fluid channel from the compressor housing to the cover.
  • the enthalpy-increasing fluid channel 001" is provided with a stopper 16", and the stopper 16" is arranged at Enthalpy increasing fluid passage part 123".
  • the diameter of enthalpy increasing fluid passage part 123" may be larger than the diameter of enthalpy increasing fluid passage part 122" to form a step.
  • the stopper 16" may be fixed to the enthalpy increasing fluid in a threaded connection In the channel portion 123".
  • the port on the outside of the housing of the enthalpy-increasing fluid channel is provided with an adapter 19", and the adapter 19" can be used to connect with an external conveying pipeline.
  • the check valve 11 has a valve plate 111", a spring 112", a thrust member 113" and a valve seat 114".
  • the valve plate 111", the spring 112", the thrust member 113", the valve The seats 114" are all arranged in the enthalpy-increasing fluid channel part 323" in the static vortex.
  • the valve plate 111" is a disc-shaped structure with a central through hole 1112".
  • the middle part of the thrust piece 113" is provided with a middle hole 1131".
  • the thrust piece 113" is provided in the enthalpy-increasing fluid passage portion 323" by, for example, a threaded connection or an interference fit.
  • the valve seat 114" may be provided in the enthalpy-increasing fluid passage portion 323" in a manner of, for example, a threaded connection or an interference fit.
  • the valve seat 114" is provided with a plurality of through holes 1142" evenly arranged in the circumferential direction.
  • the spring 112" is arranged between the valve plate 111" and the thrust piece 113". In the assembled state, the valve plate has a closed position and an open position. At the closed position, the through hole 1142" of the valve seat 114" and the valve plate 111 "The central through hole 1112" is not aligned.
  • valve plate 111 when the valve plate 111" is pressed against the valve seat 114", the valve plate 111" prevents fluid from flowing through the enthalpy-enhancing fluid passage.
  • the pressure of the gas or liquid overcomes the elastic force of the spring 112" to make the valve plate 111 of the check valve "leave the valve seat 114" and be in the open position, thereby The through hole of the valve seat 114" is communicated with the central through hole 1112" of the valve plate 111" to realize the communication of the enthalpy increasing fluid channel.
  • Fig. 7c shows a top view of the stationary scroll of the third embodiment.
  • the valve seat of the check valve may be a small-diameter part in the enthalpy-increasing fluid passage part 323" integrated with the static scroll.
  • the check valve is vertically arranged in the fluid passage on the static scroll, making the entire enthalpy-enhancing fluid passage more compact.
  • axial direction refers to the direction in which the main shaft of the compressor extends
  • lateral refers to the direction perpendicular to the axial direction of the compressor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

一种涡旋压缩机,包括:壳体(2),壳体中设置有用于从外部管路中引入并接收流体的第一流体通道(001);和静涡旋(3),静涡旋中设置有连通至压缩腔的第二流体通道(002)。壳体与静涡旋之间设置有具有第三流体通道的连接导管(13),第三流体通道以流体密封的方式将第一流体通道连通至第二流体通道。第一、第二和第三流体通道构成将流体引入至压缩腔的流体通道。在流体通道中设置有止回阀(11),阻止压缩腔中的工作流体经由流体通道流出至压缩机外部。

Description

涡旋压缩机
本申请要求以下中国专利申请的优先权:于2020年3月13日提交中国专利局的申请号为202010175963.0、发明创造名称为“涡旋压缩机”的中国专利申请、以及于2020年3月13日提交中国专利局的申请号为202020317139.X、发明创造名称为“涡旋压缩机”的中国专利申请。上述专利申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及涡旋压缩机领域,更具体地,涉及一种具有改进的喷气/喷液增焓装置的涡旋压缩机。
背景技术
本部分的内容仅提供了与本公开相关的背景信息,其可能并不构成现有技术。
通常,涡旋压缩机是一种用来压缩制冷剂以用来进行制冷或制热的设备。涡旋压缩机通常包括具有动涡旋和静涡旋的涡旋压缩组件或涡旋压缩机构。动涡旋的涡卷与静涡旋的涡卷配合以形成压缩腔,通过动涡旋相对于静涡旋的平动运动在压缩腔内实现对气体的压缩。在某些情况下,特别是在室外温度较低的情况下,蒸发压力下降,压缩机的吸气比容增加、压缩比就会比较大,容易造成压缩机内的温度过高的情况。为了进一步提高压缩机的性能,可以通过向压缩机的中压腔喷液或喷气的方式来增焓。即,通过向压缩机的中压腔喷射液态或气态制冷剂,来增加压缩机内的气体量,同时降低压缩腔内的温度。
然而,在现有技术的设置有喷液或喷气增焓流体通道的涡旋压缩机中,其增焓流体通道上通常不设置有止回阀。在不向压缩机进行喷液或喷气增焓时,压缩机的压缩腔的气体会通过增焓流体通道的流入到压缩机的中压腔的外部。这将导致压缩机的中压腔中的气体压力产生波动,使得压缩机的压缩性能下降。
因此,仍需要对现有技术的压缩机中的喷气或喷液增焓装置进行进一步的改进,以进一步提高压缩机的性能。
发明内容
为了解决或减轻现有技术中的上述问题中的至少一部分,本公开提供了一种设置在压缩机的增焓流体通道中的止回阀。设置这种止回阀将避免压缩机的中压腔中的气体在不向中压腔中输送增焓气体/液体时从增焓流体通道流出至压缩机外部,从而防止了中压腔中的压力波动,进一步提高了压缩机的压缩性能。此外,根据本公开的涡旋压缩机中设置有柔性连接导管。该柔性连接导管的两端分别设置在静涡旋和壳体中的增焓流体通道中并且与静涡旋和壳体以流体密封的方式连接。该柔性连接导管具有一定的柔性。由于设置了该柔性连接导管,能够在不影响静涡旋相对于壳体的相对运动的同时,保证静涡旋和壳体中的增焓流体通道密封连接。
具体地,根据本公开的涡旋压缩机包括:壳体,壳体中设置有用于从外部管路中引入并接收流体的第一流体通道;和静涡旋,静涡旋设置在壳体中并且构造成与动涡旋配合以形成对工作流体进行压缩的压缩腔。静涡旋中设置有连通至涡旋压缩机的压缩腔的第二流体通道。其中,在壳体与静涡旋之间设置有连接导管。连接导管设置有第三流体通道。第三流体通道以流体密封的方式将第一流体通道连通至第二流体通道。第一流体通道、第二流体通道和第三流体通道构成将流体引入至压缩腔的流体通道。其中,在流体通道中设置有止回阀。止回阀用于阻止压缩腔中的工作流体经由流体通道流出至压缩机外部。
其中,连接导管使得静涡旋能够相对于壳体进行轴向浮动。
其中,连接导管具有第一端和第二端以及连接第一端和第二端的中部段。其中,第一端和第二端具有鼓形形状。中部段的最大外直径小于第一端和第二端的最大外直径。
其中,第一端和第二端的最大外直径处设置有凹槽。凹槽中设置有密封圈以实现连接导管与壳体以及连接导管与静涡旋的密封连接。
其中,第一流体通道中和第二流体通道中设置有止挡件。止挡件限制连接导管在第一流体通道中和第二流体通道中的位置。
其中,止回阀设置在第一流体通道中。连接导管与止回阀相邻地设置。
其中,止回阀包括具有阀座通孔的阀座、用于打开或关闭阀座通孔的阀片以及止推件。阀片位于阀座与止推件之间。
其中,止推件与连接导管相邻地设置并且用作限制连接导管在第一流体通道中的位置的止挡件。
其中,止回阀还包括偏置件。偏置件构造成将阀片朝向阀座推压。止推件构造成容置偏置件并且为偏置件提供导向功能。
其中,阀座和止推件以螺纹连接或过盈配合的方式设置在流体通道内。
其中,止回阀设置在连接导管内的第三流体通道中。其中,止回阀包括具有阀座通孔的阀座、用于打开或关闭阀座通孔的阀片以及止推件。阀座是以螺纹连接或过盈配合的方式设置在第三流体通道内的单独的部件或者是连接导管的一部分。
其中,止回阀设置在静涡旋的第二流体通道中。其中,止回阀包括具有阀座通孔的阀座、用于打开或关闭阀座通孔的阀片以及止推件,所述阀片设置在所述阀座与所述止推件之间。阀座是以螺纹连接或过盈配合的方式设置在第二流体通道内的单独的部件或者是第二流体通道的一部分。
其中,静涡旋包括分体式的盖体部和本体部。第二流体通道包括设置在所述盖体部与所述本体部之间的部段。
附图说明
本文中所描述的附图仅出于对示例性的结构的说明性目的而并非意在限制本公开的范围,其中:
图1a-1c分别是示出了根据第一实施方式的涡旋压缩机的涡旋压缩组件部分的俯视图、局部剖视图和局部放大图;
图2a-2c分别是具有静涡旋的盖体部、柔性连接导管和止回阀的组件的立体图、俯视图和剖视图;
图3a-3b示出了压缩机壳体和盖体部结构的立体图和剖视图以及分解状态的柔性连接导管和止回阀;
图4a-4b分别是不带密封圈的柔性连接导管的立体图、剖视图;图4c-4d分别是带有密封圈的柔性连接导管的主视图和剖视图。
图5a-5c分别是示出了根据第二实施方式的涡旋压缩机的涡旋压缩组件部分的俯视图、局部剖视图和局部放大图;
图6a-6e分别是其中设置有止回阀的柔性连接导管的两个立体图、剖视 图、分解状态立体图以及分解状态剖视图;
图7a-7c分别是示出了根据第三实施方式的涡旋压缩机的涡旋压缩组件部分的局部剖视图、局部放大图以及静涡旋的本体部的俯视图。
具体实施方式
如背景技术中所介绍的,在现有技术的压缩机中,其增焓流体通道中通常不设置有止回阀,这容易造成压缩机的中压腔中的气体压力波动,降低压缩机的性能。为了解决这一问题,根据本申请的增焓装置中设置有止回阀。设置有止回阀之后,在需要向压缩机的中压腔中喷射气体或液体时,止回阀打开。在不需要向压缩机的中压腔中喷射气体或液体时,止回阀关闭,中压腔中的气体不会通过增焓流体通道流动至压缩机的外部。进一步机地,为了在设置有增焓流体通道的压缩机中仍能够实现静涡旋的轴向柔性,在压缩机中设置有柔性连接导管。
下面将参考附图,对根据本公开的具有新型止回阀和柔性连接导管的压缩机进行详细的介绍。
图1a-1c示出了根据本公开的第一实施方式的涡旋压缩机的涡旋压缩组件部分100的俯视图、局部剖视图和局部放大图。如图所示,该涡旋压缩机具有壳体2、静涡旋3、动涡旋4、顶盖5以及增焓流体通道12。该涡旋压缩机还具有视图中未示出的涡旋压缩机的主轴承、主轴承座、电机等动力部分。其中,静涡旋3可以包括盖体部31和本体部32。其中,盖体部31和本体部32可以是分离的部件,即静涡旋是分体式的。盖体部31和本体部32也可以是一体的。盖体部31在轴向方向上位于本体部32的上侧,设置在本体部32与顶盖5之间。
根据本公开的涡旋压缩机,在增焓流体通道12中设置有止回阀11和柔性连接导管13。一部分增焓流体通道设置在压缩机壳体中,被称为第一流体通道001。一部分增焓流体通道设置在静涡旋中,被称为第二流体通道002。在静涡旋是分体式的情况下,第二流体通道可以包括形成在盖体部31与本体部32之间的部段。增焓流体通道的一端与压缩机的中压腔连通,增焓流体通道的另一端与待输送至中压腔的气体或液体的源相连通。其中,柔性连接导管13的第一端131设置在静涡旋3中,其位于静涡旋中的第二流体通道内002 并与第二流体通道以流体密封的方式连接。示例性地,如图1c所示,柔性连接导管13的第一端设置在盖体部31中,其也可以直接设置在静涡旋的本体部中。柔性连接导管13的第二端132设置在压缩机壳体2中,其位于压缩机壳体2中的第一流体通道内001并且与第一流体通道以流体密封的方式连接。柔性连接导管13实现了增焓流体通道从压缩机壳体至静涡旋的柔性的且密封的连通。由于柔性连接导管13具有一定柔性,因此,静涡旋能够相对于压缩机壳体上下浮动而不影响增焓流体通道的密封性能。
图2a、2b和2c分别示出了止回阀11、柔性连接导管13和盖体部31的组件的立体图、俯视图以及剖视图。如图所示,盖体部31呈具有底部311和凹腔部312的筒形形状。盖体部的底部311中设置有排出孔315。增焓流体通道的一部分124、125设置在盖体部311的侧部313中。该横向增焓流体通道124沿径向延伸,并且具有大直径部1241和小直径部1242从而形成台阶部1243。纵向增焓流体通道125沿轴向延伸。柔性连接导管13的第一端131设置在大直径部1241中并且通过台阶部1243限制其朝向盖体部中心的径向移动。在此,台阶部1243用作限制柔性连接导管在第二流体通道中的位置的止挡件。柔性连接导管13的第二端132与止回阀11相邻。止回阀11为柔性连接导管13提供了止推功能,限制了柔性连接导管13沿增焓流体通道的移动。图3a和3b分别示出了盖体部31、止回阀11和压缩机壳体2的立体图和剖视图。在这些图中,以分解状态的形式示出了止回阀11的阀片111(也称为阀芯)、弹簧112、止推件113以及阀座114等各个部件,并且示出了盖体部31设置在压缩机壳体2中时的状态。为了清楚起见,视图中省略了其他部件。
图4a-4b示出了不带有密封圈时的柔性连接导管13的立体图和剖视图。柔性连接导管13因为其外形与棒骨相似,因此又称为“狗骨头”。如图所示,柔性连接导管13具有轴对称的形状,其包括具有较大外直径的第一端部131和第二端部132以及具有较小的外直径的中部段136。柔性连接导管13在其径向中心部处设置有沿其轴向延伸的中心通孔138。在将柔性连接导管13设置在增焓流体通道中时,用于输送至压缩机的中压腔中的液体或气体穿过该中心通孔138被输送。其第一端部131和第二端部132具有鼓形的外轮廓。第一端部131和第二端部132的外周表面上的顶端处分别设置有凹槽133和135。这些凹槽133、135用于在其中设置密封圈1331、1351。图4c和4d分别示出 了设置有密封圈的柔性连接导管13的主视图和剖视图。在将柔性连接导管13设置在增焓流体通道中时,这些密封圈1331、1351与增焓流体通道的内表面以密封的方式接触,从而实现了柔性连接导管13与增焓流体通道的密封连接。将柔性连接导管13设置在增焓流体通道中时,柔性连接导管13的两端的这种鼓形形状有助于密封圈与增焓流体通道的内表面接触。特别是在静涡旋相对于壳体移动式,这种结构仍能够确保密封圈与增焓流体通道的内表面密封接触。
下面将结合图1c和图2c详细地介绍止回阀11设置在增焓流体通道时的结构以及工作原理。如图1c和图2c所示,根据本公开的止回阀具有阀片111、弹簧112、止推件113以及阀座114。其中,阀片111为具有中央通孔1112的圆板状结构。止推件113的中部设置有中部孔1131,其底部设置有底部孔1135。中部孔1131与底部孔1135连通以形成通孔,中部孔1131的直径大于底部孔1135的直径。弹簧112设置在中部孔1131中,中部孔为弹簧112的伸缩提供导向功能。弹簧112的一端与止推件113的底部连接,另一端与阀片111连接。弹簧112将阀片111朝向阀座114推压。本领域的技术人员能够理解的是,在其他的实施方式中也可以不设置有弹簧。止推件113的外周缘上设置有较大外直径的凸缘1134。该凸缘1134与增焓流体通道中的台阶部211配合,用以确定止推件在增焓流体通道中的位置。止推件113通过例如螺纹连接或过盈配合的方式设置在增焓流体通道中。止推件113的设置有底部孔1135的底部的外端抵接柔性连接导管13的第二端132,以限制柔性连接导管13在增焓流体通道中的位置。在此,止推件113用作限制柔性连接导管在第一流体通道中的位置的止挡件。
阀座114可以以例如螺纹连接或过盈配合的方式设置在增焓流体通道中。阀座114设置有沿其周向均匀地布置的多个通孔,例如通孔1142。当止回阀组装在增焓流体通道中时,阀座114的通孔1142与阀片111的中央通孔1112不对准。阀片具有阀片关闭位置和阀片打开位置。当阀片处于阀片关闭位置,即,当阀片111压靠在阀座114上时,阀片111阻止流体流动通过增焓流体通道。当需要向压缩机的中压腔中输入增焓气体或液体时,气体或液体的压力克服弹簧112的弹力使止回阀的阀片111离开阀座114,从而使阀座114的通孔1142与阀片111的中央通孔1112连通,即阀片处于阀片打开位置,以实现增焓流体通道的连通。
根据本公开的上述压缩机,由于在增焓通道中设置了止回阀,能够避免压缩机的中压腔中的压力波动,进一步提高了压缩机的性能。此外,通过在压缩机的壳体与静涡旋之间设置了柔性连接导管,实现了增焓流体通道从压缩机壳体至静涡旋的气密性的连通并且能够确保静涡旋的轴向浮动。
图5a-5c示出了根据本公开的第二实施方式的涡旋压缩机的涡旋压缩组件100′的俯视图、局部剖视图和局部放大图。如图所示,该涡旋压缩机具有壳体2′、静涡旋3′、动涡旋4′、顶盖5′以及增焓流体通道12′。该涡旋压缩机还具有视图中未示出的涡旋压缩机的主轴承、主轴承座、电机等动力部分。根据该实施方式的涡旋压缩机与图1a-1c的涡旋压缩机的区别在于,止回阀没有直接设置在壳体或静涡旋中的增焓流体通道中,而是设置在柔性连接导管内,从而形成了组合式的止回阀。
根据该实施方式,壳体2′中设置有第一流体通道001′。静涡旋中设置有第二流体通道002′。在静涡旋是分体式的情况下,第二流体通道可以包括形成在盖体部31′与本体部32′之间的部段。柔性连接导管13′连接静涡旋和壳体并且其中设置有止回阀11′。第一流体通道001′中设置有止挡件16′。柔性连接导管13′的第一端131′设置盖体部31′的增焓流体通道部分1242′内并与增焓流体通道以密封的方式连接。柔性连接导管13′的第二端132′设置在压缩机壳体2′中的增焓流体通道部分122′内并且与增焓流体通道以密封的方式连接。柔性连接导管13′实现了增焓流体通道从压缩机壳体2′至静涡旋3′的柔性的且密封的连通。该止挡件16′设置在增焓流体通道部分123′中。增焓流体通道部分123′的直径可以大于增焓流体通道部分122′的直径以形成台阶部。止挡件16′可以以螺纹连接的方式固定在增焓流体通道部分123′内。增焓流体通道124′内的小直径部1241′和大直径部1242′形成台阶部1246′,台阶部1246′和止挡件16′一起限制其中设置有止回阀11′的柔性连接导管13′在增焓流体通道内的位置。增焓流体通道的壳体外侧的端口处设置有转接件19′,该转接件19′可以用于与外部输送管道连接。
如图5c以及图6a-6e所示,止回阀11′具有阀片111′、止推件113′以及阀座114′。止回阀还可以具有弹簧112′。其中,阀片111′、弹簧112′、止推件113′、阀座114′均设置在柔性连接导管13′的通孔138′中。通孔138′为弹簧提供导向功能。其中,阀片111′为具有中央通孔1112′的圆板状结构。止推件113′的中 部设置有中部孔1131′。止推件113′通过例如螺纹连接的方式设置在通孔138′中。阀座114′可以以例如螺纹连接或过盈配合的方式设置在通孔138′中。阀座114′设置有沿周向均匀地布置的多个通孔1142′。在附图中示出了6个通孔。本领域的技术人员应当理解的是,可以设置其他数量的通孔。弹簧112′设置在阀片111′与止推件113′之间。该止回阀11′的工作原理与上述止回阀11的工作原理相似,在此不再赘述。此外,该止回阀的阀座可以是与柔性连接导管一体的、通孔138′中的小直径部分。
与图1c所示的实施方式的柔性连接导管13相似,柔性连接导管13′具有轴对称的形状,其包括具有较大外直径的第一端部131′和第二端部132′以及具有较小的外直径的中部段136′。柔性连接导管13′在其径向中心部处设置有沿其自身的轴向延伸的中心通孔138′。第一端部131′和第二端部132′具有鼓形的外轮廓。第一端部131′和第二端部132′的外周表面上的顶端处分别设置有凹槽133′和135′。这些凹槽133′、135′用于在其中设置密封圈1331′、1351′。在将柔性连接导管13′设置在增焓流体通道中时,这些密封圈1331′、1351′与增焓流体通道的内表面以密封的方式接触,从而实现了柔性连接导管13′与增焓流体通道12′的密封连接。
根据这一实施方式的增焓装置,不但能够防止压缩机中压腔中的气体流动穿过增压通道流动至压缩机的外侧,而且使得增焓通道更加紧凑。
图7a和图7b示出了第三实施方式的涡旋压缩机的涡旋压缩组件100"的局部剖视图和局部放大图。根据该实施方式的涡旋压缩组件具有壳体2"、静涡旋3"、动涡旋4"、顶盖5"以及增焓流体通道12"。该实施方式的特点在于,止回阀11"设置在静涡旋的本体部32"中的增焓流体通道部分323"中。
根据该实施方式,柔性连接导管13"的第一端设置在盖体部31"的增焓流体通道002"中并与增焓流体通道以密封的方式连接。柔性连接导管13"的第二端设置在压缩机壳体2"中的增焓流体通道001"中并且与增焓流体通道以密封的方式连接。柔性连接导管13"实现了增焓流体通道从压缩机壳体至盖体部的柔性且密封的连通。增焓流体通道001"中设置有止挡件16",该止挡件16"设置在增焓流体通道部分123"中。增焓流体通道部分123"的直径可以大于增焓流体通道部分122"的直径以形成台阶部。止挡件16"可以以螺纹连接的方式固定在增焓流体通道部分123"内。在盖体部31"侧的增焓流体通道内的大直径部 1241"和小直径部1242"形成的台阶部与止挡件16"一起限制柔性连接导管13"在增焓流体通道内的位置。增焓流体通道的壳体外侧的端口处设置有转接件19",该转接件19"可以用于与外部输送管道连接。
如图7b所示,止回阀11"具有阀片111"、弹簧112"、止推件113"以及阀座114"。其中,阀片111"、弹簧112"、止推件113"、阀座114"均设置在静涡旋中的增焓流体通道部分323"中。其中,阀片111"为具有中央通孔1112"的圆板状结构。止推件113"的中部设置有中部孔1131"。止推件113"通过例如螺纹连接或过盈配合的方式设置在增焓流体通道部分323"中。阀座114"可以以例如螺纹连接或过盈配合的方式设置在增焓流体通道部分323"中。阀座114"设置有沿周向均匀地布置的多个通孔1142"。弹簧112"设置在阀片111"与止推件113"之间。在组装状态下,阀片具有关闭位置和打开位置。在关闭位置处,阀座114"的通孔1142"与阀片111"的中央通孔1112"不对准。即,当阀片111"压靠在阀座114"上时,阀片111"阻止流体流动通过增焓流体通道。当需要向压缩机的中压腔中输入增焓气体或液体时,气体或液体的压力克服弹簧112"的弹力使止回阀的阀片111"离开阀座114"而处于打开位置处,从而使阀座114"的通孔与阀片111"的中央通孔1112"连通,以实现增焓流体通道的连通。图7c示出了第三实施方式的静涡旋的俯视图。此外,根据另外的实施方式,该止回阀的阀座可以是与静涡旋一体的、增焓流体通道部分323"中的小直径部分。
根据该实施方式的涡旋压缩机,其止回阀竖向地设置在静涡旋上的流体通道中,使得整个增焓流体通道更紧凑。
在本文中,“轴向”是指压缩机的主轴延伸的方向,“横向”为与压缩机的轴向垂直的方向。
虽然已经具体描述了本公开的一些实施方式和变型,但是本领域技术人员应该理解,本公开并不局限于上面描述和附图所示的实施方式和变型而是可以包括其他各种可能的变型和组合。在不偏离本公开的实质和范围的情况下可由本领域的技术人员实现其它的变型和变体。所有这些变型和变体都落入本公开的范围内。而且,所有在此描述的构件都可以由其他技术性上等同的构件来代替。

Claims (14)

  1. 一种涡旋压缩机,所述涡旋压缩机包括:
    壳体(2,2′,2"),所述壳体中设置有用于从外部管路中引入并接收流体的第一流体通道(001,001′,001");和
    静涡旋(3,3′,3"),所述静涡旋设置在所述壳体中并且构造成与动涡旋配合以形成对工作流体进行压缩的压缩腔,所述静涡旋中设置有连通至所述涡旋压缩机的所述压缩腔的第二流体通道(002,002′,002"),
    其中,在所述壳体与所述静涡旋之间设置有连接导管(13,13′,13"),
    所述连接导管设置有第三流体通道(003,003′,003"),所述第三流体通道以流体密封的方式将所述第一流体通道连通至所述第二流体通道,
    所述第一流体通道、所述第二流体通道和所述第三流体通道构成将流体引入至所述压缩腔的流体通道,其中,在所述流体通道中设置有止回阀(11,11′,11"),所述止回阀用于阻止所述压缩腔中的工作流体经由所述流体通道流出至所述压缩机的外部。
  2. 根据权利要求1所述的涡旋压缩机,其中,所述连接导管使得所述静涡旋能够相对于所述壳体进行轴向浮动。
  3. 根据权利要求2所述的涡旋压缩机,其中,所述连接导管(13,13′,13")具有第一端(131,131′,131")和第二端(132,132′,132")以及连接所述第一端和所述第二端的中部段(136,136′,136"),其中,所述第一端和所述第二端具有鼓形形状,所述中部段的最大外直径小于所述第一端和所述第二端的最大外直径。
  4. 根据权利要求3所述的涡旋压缩机,其中,所述第一端和所述第二端的最大外直径处设置有凹槽,所述凹槽中设置有密封圈以实现所述连接导管与所述壳体以及所述连接导管与所述静涡旋的密封连接。
  5. 根据权利要求1至4中任一项所述的涡旋压缩机,其中,所述第一流 体通道中和所述第二流体通道中设置有止挡件,所述止挡件限制所述连接导管在所述第一流体通道中和所述第二流体通道中的位置。
  6. 根据权利要求5所述的涡旋压缩机,其中,所述止回阀(11,11′,11")设置在所述第一流体通道中,所述连接导管(13,13′,13")与所述止回阀相邻地设置。
  7. 根据权利要求6所述的涡旋压缩机,其中,所述止回阀包括具有阀座通孔的阀座、用于打开或关闭所述阀座通孔的阀片以及止推件,所述阀片位于所述阀座与所述止推件之间,其中,所述阀座和所述止推件以螺纹连接或过盈配合的方式设置在所述第一流体通道内。
  8. 根据权利要求7所述的涡旋压缩机,其中,所述止推件与所述连接导管相邻地设置并且用作限制所述连接导管在所述第一流体通道中的位置的所述止挡件。
  9. 根据权利要求8所述的涡旋压缩机,其中,所述止回阀还包括偏置件(112,112′,112"),所述偏置件构造成将所述阀片朝向所述阀座推压,所述止推件构造成容置所述偏置件并且为所述偏置件提供导向功能。
  10. 根据权利要求5所述的涡旋压缩机,其中,所述止回阀(11,11′,11")设置在所述连接导管(13,13′,13")内的所述第三流体通道中。
  11. 根据权利要求10所述的涡旋压缩机,其中,所述止回阀包括具有阀座通孔的阀座、用于打开或关闭所述阀座通孔的阀片以及止推件,所述阀片设置在所述阀座与所述止推件之间,所述阀座是以螺纹连接或过盈配合的方式设置在所述第三流体通道内的单独的部件或者是所述连接导管的一部分。
  12. 根据权利要求5所述的涡旋压缩机,其中,所述止回阀(11,11′,11")设置在所述静涡旋的所述第二流体通道中。
  13. 根据权利要求12所述的涡旋压缩机,其中,所述止回阀包括具有阀座通孔的阀座、用于打开或关闭所述阀座通孔的阀片以及止推件,所述阀片设置在所述阀座与所述止推件之间,所述阀座是以螺纹连接或过盈配合的方式设置在所述第二流体通道内的单独的部件或者是所述第二流体通道的一部分。
  14. 根据权利要求1至4中任一项所述的涡旋压缩机,其中,所述静涡旋包括分体式的盖体部和本体部,所述第二流体通道包括设置在所述盖体部与所述本体部之间的部段。
PCT/CN2020/117274 2020-03-13 2020-09-24 涡旋压缩机 WO2021179571A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010175963.0 2020-03-13
CN202010175963.0A CN113389723A (zh) 2020-03-13 2020-03-13 涡旋压缩机
CN202020317139.XU CN211975386U (zh) 2020-03-13 2020-03-13 涡旋压缩机
CN202020317139.X 2020-03-13

Publications (1)

Publication Number Publication Date
WO2021179571A1 true WO2021179571A1 (zh) 2021-09-16

Family

ID=77670869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117274 WO2021179571A1 (zh) 2020-03-13 2020-09-24 涡旋压缩机

Country Status (1)

Country Link
WO (1) WO2021179571A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117606161A (zh) * 2023-12-31 2024-02-27 青岛奥利凯中央空调有限公司 超低温空气源热泵装置及其控制方法
US12116999B2 (en) * 2022-12-30 2024-10-15 Hangzhou Lvneng New Energy Vehicle Parts Co., LTD. Compressor with improved structure for easy installation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004143951A (ja) * 2002-10-22 2004-05-20 Tokyo Gas Co Ltd スクロール圧縮機
CN202971187U (zh) * 2012-11-23 2013-06-05 艾默生环境优化技术(苏州)有限公司 涡旋压缩机
CN103195709A (zh) * 2013-04-02 2013-07-10 上海本菱涡旋压缩机有限公司 一种补气增焓涡旋压缩机
CN103541901A (zh) * 2012-07-10 2014-01-29 艾默生环境优化技术(苏州)有限公司 压力控制阀和涡旋压缩机
CN105570127A (zh) * 2016-02-16 2016-05-11 珠海格力节能环保制冷技术研究中心有限公司 压缩机及具有其的空调器
CN109441803A (zh) * 2018-11-19 2019-03-08 珠海格力节能环保制冷技术研究中心有限公司 一种涡旋盘组件及涡旋压缩机
CN209838684U (zh) * 2019-04-26 2019-12-24 艾默生环境优化技术(苏州)有限公司 一种涡旋压缩机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004143951A (ja) * 2002-10-22 2004-05-20 Tokyo Gas Co Ltd スクロール圧縮機
CN103541901A (zh) * 2012-07-10 2014-01-29 艾默生环境优化技术(苏州)有限公司 压力控制阀和涡旋压缩机
CN202971187U (zh) * 2012-11-23 2013-06-05 艾默生环境优化技术(苏州)有限公司 涡旋压缩机
CN103195709A (zh) * 2013-04-02 2013-07-10 上海本菱涡旋压缩机有限公司 一种补气增焓涡旋压缩机
CN105570127A (zh) * 2016-02-16 2016-05-11 珠海格力节能环保制冷技术研究中心有限公司 压缩机及具有其的空调器
CN109441803A (zh) * 2018-11-19 2019-03-08 珠海格力节能环保制冷技术研究中心有限公司 一种涡旋盘组件及涡旋压缩机
CN209838684U (zh) * 2019-04-26 2019-12-24 艾默生环境优化技术(苏州)有限公司 一种涡旋压缩机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12116999B2 (en) * 2022-12-30 2024-10-15 Hangzhou Lvneng New Energy Vehicle Parts Co., LTD. Compressor with improved structure for easy installation
CN117606161A (zh) * 2023-12-31 2024-02-27 青岛奥利凯中央空调有限公司 超低温空气源热泵装置及其控制方法

Similar Documents

Publication Publication Date Title
WO2021179571A1 (zh) 涡旋压缩机
US9360012B2 (en) Differential pressure regulating valve and motor-driven compressor having differential pressure regulating valve
JPH0270985A (ja) マフラー/分離板組立体
WO2009048447A1 (en) Slide valve system for a screw compressor
US10844856B2 (en) Scroll compressor
JP2000087826A (ja) 燃料噴射弁およびその製造方法
JP2023513744A (ja) 蒸気噴射二重リードバルブ
CN110454300A (zh) 用于液体火箭发动机的阀门结构及液体发动机
JP2018536821A (ja) スプリング式ゲートバルブ
JP2020522653A (ja) 気体状の媒体を制御および排出するためのガス圧力制限弁
WO2024098057A1 (en) Balanced pneumatic regulator
CN108240337B (zh) 阀组件和涡旋压缩机
EP3696398A1 (en) Regulator
CN211975386U (zh) 涡旋压缩机
WO2022112341A1 (en) Scroll compressor with discharge check valve
JPH0154554B2 (zh)
CN113389723A (zh) 涡旋压缩机
WO2020238825A1 (zh) 涡旋压缩机
US11761683B2 (en) Linear compressor
CN105275804B (zh) 涡旋压缩机的变容机构及涡旋压缩机
CN114576161A (zh) 设有排放端口偏转器的涡旋压缩机
CN108692070B (zh) 压缩机
CN219492577U (zh) 流体输送装置以及包括该流体输送装置的压缩机
CN113074256A (zh) 电磁阀
CN110608300A (zh) 一种单向更换接口气路装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20924547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20924547

Country of ref document: EP

Kind code of ref document: A1