WO2021179536A1 - 一种适用于急速冷冻环境下的带辅助加热装置的雾化喷嘴 - Google Patents

一种适用于急速冷冻环境下的带辅助加热装置的雾化喷嘴 Download PDF

Info

Publication number
WO2021179536A1
WO2021179536A1 PCT/CN2020/109920 CN2020109920W WO2021179536A1 WO 2021179536 A1 WO2021179536 A1 WO 2021179536A1 CN 2020109920 W CN2020109920 W CN 2020109920W WO 2021179536 A1 WO2021179536 A1 WO 2021179536A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
hole
heating device
nozzle body
auxiliary heating
Prior art date
Application number
PCT/CN2020/109920
Other languages
English (en)
French (fr)
Inventor
张榛
陈君
汪旭东
汪凤山
Original Assignee
北京控制工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京控制工程研究所 filed Critical 北京控制工程研究所
Publication of WO2021179536A1 publication Critical patent/WO2021179536A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • B05B1/3405Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl
    • B05B1/341Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/02Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
    • B01J2/06Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops in a liquid medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B15/00Details of spraying plant or spraying apparatus not otherwise provided for; Accessories

Definitions

  • the invention relates to an atomizing nozzle with an auxiliary heating device suitable for a rapid freezing environment, and is suitable for freeze-drying preparation of ultra-fine aerosol particles such as biological samples and dry powder samples in an ultra-low temperature environment.
  • the spray ultra-low temperature quick freezing-vacuum freeze-drying cascade coupling aerosolized biological particle dry powder preparation technology is divided into two key steps: the liquid biological sample is atomized into fine droplets through the atomizing nozzle, and the mist is sprayed through the ultra-low temperature environment formed by liquid nitrogen Drop quick-freezing to form fine frozen particles; the frozen particles are vacuum freeze-dried through the principle of sublimation, and finally dried fine particles are obtained.
  • Liquid atomization refers to the process in which liquid becomes liquid mist or small droplets in a gas environment under the action of external energy.
  • the aerodynamic diameter of the atomized droplets needs to be controlled at 3 to 5 ⁇ m.
  • the existing nozzle scheme is difficult to achieve high-quality atomization under the conditions of small liquid flow and pressure supply. One is insufficient fineness, and the other is poor uniformity, which cannot meet the needs of biological sample preparation.
  • the spray flow and pressure are relatively low, and once the spray enters the cryogenic chamber, it must be rapidly frozen, and the low temperature range is -100°C to -194°C.
  • This ultra-low temperature environment will cause the nozzles that work at low flow and low pressure to experience freezing and condensation soon after operation, and the internal flow channel is blocked, making it impossible to continue the preparation of biological samples.
  • the technical solution of the present invention is to overcome the shortcomings of the prior art, provide an atomizing nozzle with auxiliary heating device suitable for a rapid freezing environment, and solve the problem of nozzle atomization quality that can cause low flow and low pressure in an ultra-low temperature environment. It is not good, and the problem of freezing and condensing occurs soon after work, causing the internal flow channel to be blocked.
  • the technical solution of the present invention is: an atomizing nozzle with auxiliary heating device suitable for rapid freezing environment, including: the nozzle includes a gas path joint, a nozzle body, a liquid path joint, a heating ring, a thermal control module, and a heat preservation Shell, cryogenic tank flange and spray head; wherein, the nozzle body is a revolving structure, and the nozzle body is provided with a first eccentric through circular hole, a second eccentric through circular hole and a central through hole, wherein, The first eccentric through hole and the second eccentric through hole are arranged in parallel, the second eccentric through hole is connected to the central through hole, and the central through hole is located at the lower part of the second eccentric through hole; the nozzle body
  • the upper part of the side wall is provided with a first cylindrical boss interface, the first cylindrical boss interface is butted with the gas circuit connector, and the channel opened inside the gas circuit connector is in communication with the first eccentric straight hole
  • the top end of the nozzle body is provided with a second cylindrical boss interface, the second cylindrical
  • the bottom end surface of the nozzle body is provided with a plurality of spiral grooves and truncated cone-shaped vortex devices.
  • the outer wall of one end of the gas path joint is provided with an external thread, and the other end of the gas path joint is a stepped first hollow cylinder, A first hexagonal convex step is provided in the middle of the gas path joint; wherein the first cylindrical boss interface is connected with the first hollow cylinder of the step.
  • one end of the liquid path joint is a joint with an inner cone, and the other end of the liquid path joint is a stepped second hollow cylinder
  • a second hexagonal convex step is provided in the middle of the liquid path joint; wherein the second cylindrical boss interface is connected with the second hollow cylinder of the step.
  • the nozzle is a hollow rotating body with a step, sleeved outside the cylindrical section of the bottom end of the nozzle body, and the bottom end of the nozzle is round
  • the mesa-shaped structure forms a gas jet flow channel with the nozzle body, and the outer surface of the top step of the nozzle is sleeved with an annular sealing ring, which is compressed by the threaded connection of the nozzle body and the heating ring to achieve sealing.
  • the heating ring is a hollow cylinder with a step.
  • the spiral groove of the vortexer is processed along the direction of the generatrix of the vortex trough, and the groove section can be triangular, rectangular or semicircular.
  • the thermal control module includes a thermally conductive shell, a heating wire, and a thermocouple; wherein the heating wire and the thermocouple are alternately wound around the thermally conductive shell The outer surface of the body.
  • the heating wire and the thermocouple are connected to a temperature controller, and the temperature controller performs temperature detection and feedback control through PID algorithm, and adjusts the heating The input voltage and power consumption of the wire make the nozzle work in the normal temperature range.
  • the external thread at one end of the gas connection is a taper thread, and the taper thread is connected with the upstream gas pipeline, and the working pressure is at Within 0.5MPa; the inner tapered joint of the fluid path joint is connected with the upstream fluid path pipeline, and the working pressure is within 0.3MPa.
  • the atomizing nozzle with auxiliary heating device proposed in the present invention is suitable for the rapid freezing environment, which is in great demand in the current pharmaceutical, medical and biological fields, and can be used to prepare stable and controllable bacteria in batches. , Viruses, spores, toxins and other pathogen samples, in order to conduct multi-modal spectroscopy analysis of various biological samples, and can also be used for various pharmaceutical preparations.
  • the atomizing nozzle with auxiliary heating device proposed in the present invention can use high-speed, stable and uniform rotating airflow to externally mix the jet of the liquid working medium under the condition of low flow and low pressure without damaging biological activity. Impact to obtain tiny uniform atomized droplets to meet the preparation requirements of 3 to 5 micron aerodynamic diameter atomization of bioaerosol samples.
  • the atomizing nozzle with auxiliary heating device proposed by the present invention is designed with a spiral groove vortex on the nozzle head, and through a tight fit with the inner wall of the nozzle, the pressurized airflow is forced to be ejected through the spiral groove. Obtaining multiple uniform rotating air streams to achieve the impact on the liquid jet is helpful to improve the uniformity and neutralization of atomization.
  • the atomization distribution and atomization fineness can be appropriately changed by adjusting the gas path pressure to adapt to a variety of different biological reagent preparation requirements.
  • the atomizing nozzle with auxiliary heating device proposed in the present invention can be adapted to the atomized injection requirements of biological reagents of different viscosities by changing the diameter of the center circular hole of the nozzle body.
  • the atomizing nozzle with auxiliary heating device proposed in the present invention performs auxiliary temperature control on the nozzle through a thermal control module that integrates heating and temperature measurement functions, and uses a PID controller for feedback control, so that the nozzle can work at an ideal long-term Within the scope of work.
  • the atomizing nozzle with auxiliary heating device proposed in the present invention uses gas swirling to assist with impinging liquid jets to achieve uniform and efficient atomization.
  • heating gas can also be used for auxiliary atomization to further improve the low-temperature environment. Atomization effect.
  • Figure 1 is a schematic diagram of the structure of an atomizing nozzle with an auxiliary heating device
  • Figure 2 is a schematic diagram of the gas path flow channel structure
  • Figure 3 is a schematic diagram of the structure of the fluid path
  • Figure 4 is a schematic diagram of external mixing impingement atomization
  • Figure 5 is a schematic diagram of the structure of the heating module
  • the present invention provides an atomizing nozzle with auxiliary heating device suitable for rapid freezing environment, including a gas path connector 1, a nozzle body 2, a liquid path connector 3, a heating ring 4, and a thermal control module 5.
  • a gas path connector 1 a gas path connector 1
  • a nozzle body 2 a liquid path connector 3
  • a heating ring 4 a heating ring 4
  • a thermal control module 5 a thermal control module 5.
  • the nozzle body 2 is a rotating body structure.
  • the inside of the nozzle body 2 is provided with a first eccentric through circular hole 21, a second eccentric through circular hole 22 and a central through hole 23, wherein the first eccentric through circular hole 21 and the second eccentric through circular hole 21
  • the eccentric through circular holes 22 are arranged in parallel, the second eccentric through circular hole 22 is connected to the central through hole 23, and the central through hole 23 is located at the lower part of the second eccentric through circular hole 22;
  • the upper part of the side wall of the nozzle body 2 is provided with
  • the first cylindrical boss interface 24, the first cylindrical boss interface 24 is butted with the gas circuit connector 1, and the channel opened in the gas circuit connector 1 communicates with the first eccentric through hole 21;
  • the top of the nozzle body 2 is provided with
  • the second cylindrical boss interface 25, the second cylindrical boss interface 25 is butted with the liquid path connector 3, the channel opened in the liquid path connector 3 communicates with the second eccentric straight hole 22;
  • the middle of the nozzle body 2 is provided with A step 26 with an external thread, the step
  • the nozzle body 2 is a revolving structure with an eccentric through hole on the outside of the sheet, an eccentric hole on the top, and a through hole at the bottom.
  • the eccentric hole on the inside and the center The through hole is connected; there is a cylindrical boss interface on the top side of the nozzle body 2 to connect with the air connection 1, wherein the circular hole of the cylindrical boss that is connected to the air connection 1 communicates with the outer eccentric through hole; the nozzle There is a cylindrical boss interface above the top of the main body 2 butting with the liquid connection 3; the middle of the nozzle main body 2 has a step with an external thread, which is screwed to the internal thread of the heating ring 4; below the thread step is a step Cylindrical section, with two to three raised guide sections on the outer wall, inserted into the inner hole of the nozzle 8.
  • the guide section is used for positioning on the one hand to ensure the alignment of the assembly, and on the other hand to leave a flow path for the gas to pass through ;
  • the bottom end of the nozzle body 2 is a vortex device with a truncated cone-shaped structure with a number of spiral grooves on the surface.
  • the outer wall of one end of the gas connection 1 is provided with an external thread, the other end of the gas connection 1 is a stepped first hollow cylinder, and the middle of the gas connection 1 is provided with a first hexagonal convex step; Wherein, the first cylindrical boss interface 24 is connected with the first hollow cylinder of the step.
  • the gas path connector 1 is a hollow cylinder with a thread at one end and a step at the other end, and a hexagonal convex step in the middle, which is used to fix the screw to tighten the screw; the gas path connector 1 is inserted into the cylindrical convex on the top side of the nozzle body 2. In the hole in the table, and connected and fixed by welding.
  • One end of the fluid path connector 3 is a joint with an inner cone, the other end of the fluid path connector 3 is a stepped second hollow cylinder, and the middle of the fluid path connector 3 is provided with a second hexagonal convex step Wherein, the second cylindrical boss interface 25 is connected with the second hollow cylinder of the step.
  • the fluid path connector 3 is a hollow cylinder with an inner taper quick connector at one end and a step at the other end, and a hexagonal convex step in the middle, which is used for wrench fixation, and is inserted into the inner hole of the cylindrical boss above the top of the nozzle body 2 , And connected and fixed by welding.
  • the spray head 8 is a hollow revolving body with steps, which is sleeved on the outside of the cylindrical section at the bottom end of the nozzle body 2, and is positioned in a tight fit with two to three protruding guide sections; the bottom end of the spray head 8 is a truncated cone structure, and 2 constitutes a gas jet flow channel, the outer side of the top step is sleeved with a ring-shaped sealing ring 9, which is compressed by the threaded connection of the nozzle body 2 and the heating ring 4 to achieve sealing.
  • the heating ring 4 is a hollow cylinder with steps, sleeved on the outside of the nozzle 8, and its external thread is butted with the internal thread of the cryogenic tank flange 7 to realize the connection between the nozzle and the cryogenic tank; the thermal control module 5 is sleeved on the heating ring 4 The outer side of the thermal control module 5 is tightly matched for effective heat transfer; the lead wires of the heater and the temperature measuring device are thrown out from the top; Module 5 leads can be drawn from it.
  • the auxiliary atomized gas enters the nozzle body 2 through the inner hole of the gas connection 1 and flows through the right-angled flow channel of the nozzle body 2, and then enters the inner cavity formed by the nozzle body 2 and the nozzle 8. Finally, it is ejected through the swirler channel of the nozzle body 2 to generate a swirling airflow with a circumferential velocity.
  • the liquid working fluid used to prepare the aerosol sample enters the nozzle body 2 from the inner hole of the liquid connection 3, flows through the eccentric through hole, and then enters the injection hole in the center of the nozzle. Ejected in the form of a shaped jet.
  • the liquid working fluid is ejected from the center hole at the bottom of the nozzle body 2 to form a single-hole jet, while the auxiliary atomization airflow is ejected from the spiral groove of the swirler of the nozzle body 2, and is rotated at the impact point.
  • the jet is crushed, broken and atomized to form uniform and fine droplets with an aerodynamic diameter of 3 ⁇ 5 ⁇ m and sprayed into the low-temperature freezing chamber, directly sprayed on the surface of liquid nitrogen at a distance of about 10cm, rapidly frozen into ice crystals, and then passed Sublimation completes the final dry powder sample preparation.
  • the thermal control module 5 includes a thermally conductive shell, a heating wire and a thermocouple; wherein the heating wire and the thermocouple are alternately wound on the outer surface of the thermally conductive shell.
  • the copper heat-conducting shell of the thermal control module 5 has good heat transfer capability.
  • a number of high-power heating wires and thermocouples can be evenly wound to make the thermal control Module 5 has both heating and temperature measurement functions.
  • the heating wire and the lead wire of the thermocouple are thrown out of the top cabin and connected to the temperature controller for PID feedback control and temperature adjustment.
  • the heating power of the heating wire is obtained according to the above formula, which can better efficiently transfer the heat of the heating wire to the vortex and the vicinity of the nozzle of the nozzle, so that the atomization quality of the nozzle is stable and guaranteed.
  • the gas connection 1, the nozzle body 2, the liquid connection 3, and the nozzle 8 are all made of titanium alloy, which has good biocompatibility.
  • the sealing ring 9 is made of polytetrafluoroethylene plastic, which has good biocompatibility and good sealing performance.
  • the heat conducting shells of the heating ring 4 and the thermal control module 5 should be processed with metal materials with good thermal conductivity to improve heat transfer efficiency, such as brass and copper.
  • the thermal insulation shell 6 should be processed with materials with good thermal insulation properties, such as Teflon materials.
  • the spiral groove of the swirler at the bottom end of the nozzle body 2 is processed along the direction of the generatrix of the swirler truncated cone, and the groove section can be triangular, rectangular or semicircular.
  • the number of spiral grooves is obtained according to the above formula, which can better obtain multiple uniform rotating airflows to realize the impact on the liquid jet, and better improve the uniformity and neutralization of atomization.
  • the tapered inner hole at the bottom end of the nozzle 8 is tightly fitted with the outer wall surface of the nozzle body 2 vortex to ensure that the main air flow is flowed along the spiral groove flow path.
  • the gas circuit joint 1 is generally connected to the upstream gas circuit pipeline with a taper thread, and the working pressure is generally within 0.5 MPa, and is connected to the nozzle body 2 by laser welding or electron beam welding.
  • the fluid path joint 3 is generally connected with the upstream fluid path pipeline by an inner cone quick joint, and the working pressure is generally within 0.3 MPa, and is connected to the nozzle body 2 by laser welding or electron beam welding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nozzles (AREA)

Abstract

一种适用于急速冷冻环境下的带辅助加热装置的雾化喷嘴,适用于在超低温环境下生物样品、干粉样品等超精细气溶胶颗粒的冷冻干燥制备,包括气路接头(1)、喷嘴主体(2)、液路接头(3)、加热环(4)、热控模块(5)、保温外壳(6)、低温罐法兰(7)、喷头(8)和密封圈(9),通过热控装置的辅助加热和温度控制使喷嘴能够顺利的实现超低温环境下的雾化,把液体生物样品雾化成细小雾滴,在液氮形成的超低温环境中把雾滴速冻形成细微的冻结冰晶,再经升华处理制备成干粉颗粒。

Description

一种适用于急速冷冻环境下的带辅助加热装置的雾化喷嘴
本申请要求于2020年3月13日提交中国专利局、申请号为202010176316.1、发明名称为“一种适用于急速冷冻环境下的带辅助加热装置的雾化喷嘴”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种适用于急速冷冻环境下的带辅助加热装置的雾化喷嘴,适用于在超低温环境下生物样品、干粉样品等超精细气溶胶颗粒的冷冻干燥制备。
背景技术
喷雾超低温速冻-真空冷冻干燥级联耦合可气溶胶化生物粒子干粉制备技术分为两个关键步骤:通过雾化喷头把液体生物样品雾化成细小雾滴,通过由液氮形成的超低温环境把雾滴速冻形成细微冻结颗粒;通过升华原理对冻结颗粒进行真空冷冻干燥,最终获得干燥的细颗粒物成品。
液体雾化是指在外加能量作用下,液体在气体环境中变成液雾或小液滴的过程。为了制备符合要求的病原体等生物样品,需要将雾化液滴的空气动力学直径控制在3~5μm。现有的喷嘴方案在较小的液体流量和压力供给条件下,难以实现高质量的雾化,一是细度不够,二是均匀性不好,无法满足生物样品制备的需求。
同时,由于为了保证生物样品的活性,喷雾的流量和压力都比较低,而一旦喷注进入低温舱内,就要对其进行急速冷冻,低温范围在-100℃~-194℃。这种超低温环境会导致低流量低压力工作的喷嘴在工作不久便出现 了冷冻凝结现象,内部流道被堵塞,无法继续进行生物样品的制备。
发明内容
本发明的技术解决问题是:克服现有技术的不足,提供一种适用于急速冷冻环境下的带辅助加热装置的雾化喷嘴,解决了超低温环境会导致低流量低压力工作的喷嘴雾化质量不佳,而且在工作不久便出现冷冻凝结现象导致内部流道被堵塞的问题。
本发明的技术方案是:一种适用于急速冷冻环境下的带辅助加热装置的雾化喷嘴,包括:所述喷嘴包括气路接头、喷嘴主体、液路接头、加热环、热控模块、保温外壳、低温罐法兰和喷头;其中,所述喷嘴主体为一个回转体结构,所述喷嘴主体的内部开设有第一偏心直通圆孔、第二偏心直通圆孔和中心直通小孔,其中,第一偏心直通圆孔和第二偏心直通圆孔并行排列,第二偏心直通圆孔和中心直通小孔相连通,所述中心直通小孔位于第二偏心直通圆孔的下部;所述喷嘴主体的侧壁的上部设置有第一圆柱形凸台接口,所述第一圆柱形凸台接口与所述气路接头对接,所述气路接头内部开设的通道与第一偏心直通圆孔相连通;所述喷嘴主体的顶端设置有第二圆柱形凸台接口,所述第二圆柱形凸台接口与所述液路接头对接,所述液路接头内部开设的通道与第二偏心直通圆孔相连通;所述喷嘴主体的中部设置有带有外螺纹的台阶,带有外螺纹的台阶与加热环的内螺纹通过螺纹旋紧连接;所述喷嘴主体的圆柱段设置于台阶的下部,所述圆柱段的外壁带设置有两至三个凸起导向段,插入喷头的内孔中;热控模块套设于加热环的外表面,保温外壳套设于热控模块的外表面进行保温,保温外壳的侧壁开有出线窗口,使热控模块的引线从中引出;所述加热环的外螺纹与低温罐法兰的内螺纹相连接。
上述适用于急速冷冻环境下的带辅助加热装置的雾化喷嘴中,所述喷嘴主体的底端面设置有若干个螺旋槽的圆台形结构的旋涡器。
上述适用于急速冷冻环境下的带辅助加热装置的雾化喷嘴中,所述气路接头的一端的外壁设置有外螺纹,所述气路接头的另一端为有台阶的第一中 空圆柱体,所述气路接头的中部设置有第一六角形外凸台阶;其中,所述第一圆柱形凸台接口与台阶的第一中空圆柱体相连接。
上述适用于急速冷冻环境下的带辅助加热装置的雾化喷嘴中,所述液路接头的一端为有内锥形的接头,所述液路接头的另一端为有台阶的第二中空圆柱体,所述液路接头的中部设置有第二六角形外凸台阶;其中,所述第二圆柱形凸台接口与台阶的第二中空圆柱体相连接。
上述适用于急速冷冻环境下的带辅助加热装置的雾化喷嘴中,所述喷头为一个带有台阶的中空回转体,套在喷嘴主体底端圆柱段的外侧,所述喷头的底端为圆台形结构,与喷嘴主体构成气路喷射流道,所述喷头的顶端台阶的外表面套有圆环形的密封圈,通过喷嘴主体与加热环的螺纹连接压紧,实现密封。
上述适用于急速冷冻环境下的带辅助加热装置的雾化喷嘴中,所述加热环为一个带有台阶的中空圆柱体。
上述适用于急速冷冻环境下的带辅助加热装置的雾化喷嘴中,旋涡器的螺旋槽沿旋涡器圆台母线方向进行加工,槽截面可以为三角形、矩形或者半圆形。
上述适用于急速冷冻环境下的带辅助加热装置的雾化喷嘴中,所述热控模块包括导热壳体、加热丝和热电偶;其中,所述加热丝和所述热电偶交替缠绕在导热壳体的外表面。
上述适用于急速冷冻环境下的带辅助加热装置的雾化喷嘴中,所述加热丝和所述热电偶均与温度控制器相连接,温度控制器通过PID算法进行温度检测和反馈控制,调整加热丝的输入电压及功耗,使喷嘴工作在正常的温度范围内。
上述适用于急速冷冻环境下的带辅助加热装置的雾化喷嘴中,所述气路接头的一端的外螺纹为一分锥螺纹,一分锥螺纹与上游气路管路进行连接,工作压力在0.5MPa以内;所述液路接头的内锥形的接头与上游液路管路进 行连接,工作压力在0.3MPa以内。
上述适用于急速冷冻环境下的带辅助加热装置的雾化喷嘴中,螺旋槽的槽数如下:n=2Q g/Q L;其中,Q g为助力雾化气体的体积流量,Q L为液体介质的体积流量。
本发明与现有技术相比的有益效果是:
(1)本发明提出的适用于急速冷冻环境下的带辅助加热装置的雾化喷嘴,在目前的制药、医疗以及生物领域中均有很大的需求,可以用于批量制备稳定可控的细菌、病毒、芽孢、毒素等多种病原体样品,以进行各生物样品的多模态光谱学分析,也可以用于各种药品制剂。
(2)本发明提出的带辅助加热装置的雾化喷嘴,可以在不损害生物活性的低流量低压力条件下,利用高速、稳定、均匀的旋转气流,对液体工质的射流进行外混式撞击,以获得微小的均匀的雾化液滴,满足生物气溶胶样品3~5微米空气动力学直径雾化的制备要求。
(3)本发明提出的带辅助加热装置的雾化喷嘴,通过在喷嘴头部设计带有螺旋槽的旋涡器,并通过与喷口内壁的紧配合,强迫带压气流通过螺旋槽喷出,以获得多股均匀的旋转气流实现对液体射流的冲击,有助于提高雾化的均匀性和对中性。
(4)本发明提出的带辅助加热装置的雾化喷嘴,其雾化分布和雾化细度可以通过调整气路压力进行适当改变,以适应于多种不同的生物试剂制备需求。
(5)本发明提出的带辅助加热装置的雾化喷嘴,可以通过改变喷嘴主体的中心圆孔直径,以适应于不同粘度的生物试剂的雾化喷注需求。
(6)本发明提出的带辅助加热装置的雾化喷嘴,通过集成了加热和测温功能的热控模块对喷嘴进行辅助控温,利用PID控制器进行反馈控制,使喷嘴长期工作于理想的工作范围内。
(7)本发明提出的带辅助加热装置的雾化喷嘴,通过高导热加热环和 外层的保温外壳,将加热丝的热量高效集中传递到喷嘴的旋涡器和喷口附近,令喷嘴的雾化质量得到稳定保障。
(8)本发明提出的带辅助加热装置的雾化喷嘴,利用气体旋流辅助撞击液体射流实现均匀高效雾化,在特定情况下也可以使用加热气体进行辅助雾化,进一步提高低温环境下的雾化效果。
附图说明
图1为带辅助加热装置的雾化喷嘴的结构示意图;
图2为气路流道结构示意图;
图3为液路流道结构示意图;
图4为外混撞击式雾化示意图;
图5为加热模块结构示意图;
具体实施方式
下面结合附图对本发明的具体实施方式进行进一步的详细描述。
如图1所示,本发明提供了一种适用于急速冷冻环境下的带辅助加热装置的雾化喷嘴,包括气路接头1、喷嘴主体2、液路接头3、加热环4、热控模块5、保温外壳6、低温罐法兰7、喷头8和密封圈9;其中,
喷嘴主体2为一个回转体结构,喷嘴主体2的内部开设有第一偏心直通圆孔21、第二偏心直通圆孔22和中心直通小孔23,其中,第一偏心直通圆孔21和第二偏心直通圆孔22并行排列,第二偏心直通圆孔22和中心直通小孔23相连通,中心直通小孔23位于第二偏心直通圆孔22的下部;喷嘴主体2的侧壁的上部设置有第一圆柱形凸台接口24,第一圆柱形凸台接口24与气路接头1对接,气路接头1内部开设的通道与第一偏心直通圆孔21相连通;喷嘴主体2的顶端设置有第二圆柱形凸台接口25,第二圆柱形凸台接口25与液路接头3对接,液路接头3内部开设的通道与第二偏心直通圆孔22相连通;喷嘴主体2的中部设置有带有外螺纹的台阶26,带有外 螺纹的台阶26与加热环4的内螺纹通过螺纹旋紧连接;喷嘴主体2的圆柱段27设置于台阶26的下部,圆柱段27的外壁带设置有两至三个凸起导向段,插入喷头8的内孔中;热控模块5套设于加热环4的外表面,保温外壳6套设于热控模块5的外表面进行保温,保温外壳6的侧壁开有出线窗口,使热控模块5的引线从中引出;加热环4的外螺纹与低温罐法兰7的内螺纹相连接。
具体的,喷嘴主体2为一个回转体结构,内部有一个片外侧的偏心直通圆孔、顶部有一个偏内侧的偏心圆孔,底部有一个中心直通小孔,其中偏内侧的偏心圆孔与中心直通小孔相连通;喷嘴主体2顶端侧方有一个圆柱形凸台接口与气路接头1对接,其中与气路接头1对接的圆柱形凸台的圆孔与外侧偏心直通圆孔连通;喷嘴主体2顶端上方有一个圆柱形凸台接口与液路接头3对接;喷嘴主体2中部有一个带有外螺纹的台阶,与加热环4的内螺纹通过螺纹旋紧连接;该螺纹台阶下方有一个圆柱段,其外壁带有两至三个凸起导向段,插入喷头8的内孔中,该导向段一方面用于定位,保证装配的对中性,另一方面留出气体通过的流道;喷嘴主体2底端为表面加工有若干个螺旋槽的圆台形结构的旋涡器。
气路接头1的一端的外壁设置有外螺纹,所述气路接头1的另一端为有台阶的第一中空圆柱体,所述气路接头1的中部设置有第一六角形外凸台阶;其中,第一圆柱形凸台接口24与台阶的第一中空圆柱体相连接。
具体的,气路接头1为一端有螺纹一端有台阶的中空圆柱体,中间有六角形外凸台阶,用于扳手固定来拧紧螺纹;气路接头1插入喷嘴主体2顶端一侧的圆柱形凸台内孔中,并通过焊接方法连接固定。
液路接头3的一端为有内锥形的接头,所述液路接头3的另一端为有台阶的第二中空圆柱体,所述液路接头3的中部设置有第二六角形外凸台阶;其中,所述第二圆柱形凸台接口25与台阶的第二中空圆柱体相连接。
具体的,液路接头3为一端有内锥形快速接头一端有台阶的中空圆柱 体,中间有六角形外凸台阶,用于扳手固定,插入喷嘴主体2顶端上方的圆柱形凸台内孔中,并通过焊接方法连接固定。
喷头8为一个带有台阶的中空回转体,套在喷嘴主体2底端圆柱段的外侧,与两至三个凸起导向段实现紧配合定位;喷头8底端为圆台形结构,与喷嘴主体2构成气路喷射流道,其顶端台阶外侧套有圆环形的密封圈9,通过喷嘴主体2与加热环4的螺纹连接压紧,实现密封。
加热环4为一个带有台阶的中空圆柱体,套在喷头8外侧,其外螺纹与低温罐法兰7的内螺纹对接,实现喷嘴与低温罐的连接;热控模块5套在加热环4的外侧,紧配合接触,进行有效的热量传递;加热器和测温装置的引线从顶端甩出;保温外壳6则套在热控模块5外侧进行保温,一侧开有出线窗口,使热控模块5引线可以从中引出。
如图2所示,辅助雾化的气体通过气路接头1的内孔进入喷嘴主体2中,流经喷嘴主体2的直角流道之后,进入由喷嘴主体2与喷口8构成的内腔里,最终通过喷嘴主体2的旋涡器流道喷出,产生均有周向速度的旋转气流。
如图3所示,用于制备气溶胶样品的液体工质从液路接3的内孔进入喷嘴主体2中,流经偏心的直通孔之后,进入喷嘴正中心的喷注小孔,以圆柱形射流的形式喷出。
如图4所示,液体工质从喷嘴主体2底部的中心孔喷出形成单孔射流,而辅助雾化的气流则从喷嘴主体2的旋涡器螺旋槽喷出,经旋转之后在撞击点位置将射流击碎,使之破碎和雾化,形成3~5μm空气动力学直径的均匀细小液滴喷入低温冷冻舱内,直接喷注在距离10cm左右液氮表面,急速冷冻成为冰晶,再通过升华作用完成最终的干粉样品制备。
如图5所示,热控模块5包括导热壳体、加热丝和热电偶;其中,所述加热丝和所述热电偶交替缠绕在导热壳体的外表面。具体的,热控模块5的铜制导热壳体具有较好的传热能力,在其壳体内部的绕线窗口里,可以均匀 绕制数圈的大功率加热丝和热电偶,使热控模块5同时具备加热和测温功能,加热丝和热电偶的引线向顶端舱外甩出,接入温度控制器,进行PID反馈控制和温度调节。
加热丝的加热功率为P 加热=A·C·d·Δt m;其中,P加热为加热功率,A为有效换热面积,C为加热效率,d为材料比热,△t m为对数平均温差。加热丝的加热功率根据以上公式得出,能够更好的将加热丝的热量高效集中传递到喷嘴的旋涡器和喷口附近,令喷嘴的雾化质量得到稳定保障。
气路接头1、喷嘴主体2、液路接头3、喷头8均采用钛合金加工,具有良好的生物兼容性。
密封圈9采用聚四氟乙烯塑料加工,具有良好的生物兼容性,而且密封性良好。
加热环4和热控模块5的导热壳体应采用导热性好的金属材料进行加工,提高传热效率,比如黄铜、紫铜。
保温外壳6应采用绝热性好的材料进行加工,如特氟龙材料等。
喷嘴主体2底端旋涡器的螺旋槽沿旋涡器圆台母线方向进行加工,槽截面可以为三角形、矩形或者半圆形。
螺旋槽的槽数如下:n=2Q g/Q L;其中,Q g为助力雾化气体的体积流量,Q L为液体介质的体积流量。螺旋槽的槽数根据以上公式得出,能够更好的获得多股均匀的旋转气流实现对液体射流的冲击,更好的提高雾化的均匀性和对中性。
喷头8底端的锥形内孔与喷嘴主体2旋涡器外壁面进行紧配合,以保证主要的气流都是沿着螺旋槽流道进行流动喷射。
气路接头1一般采用一分锥螺纹与上游气路管路进行连接,工作压力一般在0.5MPa以内,并通过激光焊或者电子束焊与喷嘴主体2连接。
液路接头3一般采用内锥式快速接头与上游液路管路进行连接,工作压 力一般在0.3MPa以内,并通过激光焊或者电子束焊与喷嘴主体2连接。
本发明说明书中未作详细描述的内容属于本领域专业技术人员的公知技术。

Claims (10)

  1. 一种适用于急速冷冻环境下的带辅助加热装置的雾化喷嘴,其特征在于包括:所述喷嘴包括气路接头(1)、喷嘴主体(2)、液路接头(3)、加热环(4)、热控模块(5)、保温外壳(6)、低温罐法兰(7)和喷头(8);其中,
    所述喷嘴主体(2)为一个回转体结构,所述喷嘴主体(2)的内部开设有第一偏心直通圆孔(21)、第二偏心直通圆孔(22)和中心直通小孔(23),其中,第一偏心直通圆孔(21)和第二偏心直通圆孔(22)并行排列,第二偏心直通圆孔(22)和中心直通小孔(23)相连通,所述中心直通小孔(23)位于第二偏心直通圆孔(22)的下部;
    所述喷嘴主体(2)的侧壁的上部设置有第一圆柱形凸台接口(24),所述第一圆柱形凸台接口(24)与所述气路接头(1)对接,所述气路接头(1)内部开设的通道与第一偏心直通圆孔(21)相连通;
    所述喷嘴主体(2)的顶端设置有第二圆柱形凸台接口(25),所述第二圆柱形凸台接口(25)与所述液路接头(3)对接,所述液路接头(3)内部开设的通道与第二偏心直通圆孔(22)相连通;
    所述喷嘴主体(2)的中部设置有带有外螺纹的台阶(26),带有外螺纹的台阶(26)与加热环(4)的内螺纹通过螺纹旋紧连接;
    所述喷嘴主体(2)的圆柱段(27)设置于台阶(26)的下部,所述圆柱段(27)的外壁带设置有两至三个凸起导向段,插入喷头(8)的内孔中;
    热控模块(5)套设于加热环(4)的外表面,保温外壳(6)套设于热控模块(5)的外表面进行保温,保温外壳(6)的侧壁开有出线窗口,使热控模块(5)的引线从中引出;
    所述加热环(4)的外螺纹与低温罐法兰(7)的内螺纹相连接。
  2. 根据权利要求1所述的适用于急速冷冻环境下的带辅助加热装置的雾化喷嘴,其特征在于:所述喷嘴主体(2)的底端面设置有若干个螺旋槽 的圆台形结构的旋涡器。
  3. 根据权利要求1所述的适用于急速冷冻环境下的带辅助加热装置的雾化喷嘴,其特征在于:所述气路接头(1)的一端的外壁设置有外螺纹,所述气路接头(1)的另一端为有台阶的第一中空圆柱体,所述气路接头(1)的中部设置有第一六角形外凸台阶;其中,所述第一圆柱形凸台接口(24)与台阶的第一中空圆柱体相连接。
  4. 根据权利要求1所述的适用于急速冷冻环境下的带辅助加热装置的雾化喷嘴,其特征在于:所述液路接头(3)的一端为有内锥形的接头,所述液路接头(3)的另一端为有台阶的第二中空圆柱体,所述液路接头(3)的中部设置有第二六角形外凸台阶;其中,所述第二圆柱形凸台接口(25)与台阶的第二中空圆柱体相连接。
  5. 根据权利要求1所述的适用于急速冷冻环境下的带辅助加热装置的雾化喷嘴,其特征在于:所述喷头(8)为一个带有台阶的中空回转体,套在喷嘴主体(2)底端圆柱段的外侧,所述喷头(8)的底端为圆台形结构,与喷嘴主体(2)构成气路喷射流道,所述喷头(8)的顶端台阶的外表面套有圆环形的密封圈(9),通过喷嘴主体(2)与加热环(4)的螺纹连接压紧,实现密封。
  6. 根据权利要求2所述的适用于急速冷冻环境下的带辅助加热装置的雾化喷嘴,其特征在于:旋涡器的螺旋槽沿旋涡器圆台母线方向进行加工,槽截面可以为三角形、矩形或者半圆形。
  7. 根据权利要求1所述的适用于急速冷冻环境下的带辅助加热装置的雾化喷嘴,其特征在于:所述热控模块(5)包括导热壳体、加热丝和热电偶;其中,所述加热丝和所述热电偶交替缠绕在导热壳体的外表面。
  8. 根据权利要求7所述的适用于急速冷冻环境下的带辅助加热装置的雾化喷嘴,其特征在于:所述加热丝和所述热电偶均与温度控制器相连接,温度控制器通过PID算法进行温度检测和反馈控制,调整加热丝的输入电压 及功耗,使喷嘴工作在正常的温度范围内。
  9. 根据权利要求3所述的适用于急速冷冻环境下的带辅助加热装置的雾化喷嘴,其特征在于:所述气路接头(1)的一端的外螺纹为一分锥螺纹,一分锥螺纹与上游气路管路进行连接,工作压力在0.5MPa以内;所述液路接头(3)的内锥形的接头与上游液路管路进行连接,工作压力在0.3MPa以内。
  10. 根据权利要求6所述的应用于喷雾冷冻干燥装置的超细雾化喷嘴,其特征在于:螺旋槽的槽数如下:n=2Q g/Q L;其中,Q g为助力雾化气体的体积流量,Q L为液体介质的体积流量。
PCT/CN2020/109920 2020-03-13 2020-08-19 一种适用于急速冷冻环境下的带辅助加热装置的雾化喷嘴 WO2021179536A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010176316.1A CN111250283B (zh) 2020-03-13 2020-03-13 一种适用于急速冷冻环境下的带辅助加热装置的雾化喷嘴
CN202010176316.1 2020-03-13

Publications (1)

Publication Number Publication Date
WO2021179536A1 true WO2021179536A1 (zh) 2021-09-16

Family

ID=70942425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109920 WO2021179536A1 (zh) 2020-03-13 2020-08-19 一种适用于急速冷冻环境下的带辅助加热装置的雾化喷嘴

Country Status (2)

Country Link
CN (1) CN111250283B (zh)
WO (1) WO2021179536A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111250283B (zh) * 2020-03-13 2021-06-11 北京控制工程研究所 一种适用于急速冷冻环境下的带辅助加热装置的雾化喷嘴

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4893754A (en) * 1987-11-13 1990-01-16 Francisco Ruiz Generation of flat liquid sheet and sprays by means of simple cylindrical orifices
CN1094660A (zh) * 1993-02-09 1994-11-09 埃尔赫南·塔沃尔 雾化器
DE102006011391A1 (de) * 2006-03-09 2007-09-20 Glatt Gmbh Anlagen mit beschichteten Sprühdüsen
US20080308245A1 (en) * 2004-07-30 2008-12-18 Metso Automation Oy Moistening Nozzle of a Paper Web
CN102089607A (zh) * 2008-07-10 2011-06-08 株式会社爱发科 冷冻干燥装置
CN205146480U (zh) * 2015-12-09 2016-04-13 荣昌精密机械(苏州)有限公司 一种注塑机用过滤型喷嘴
JP2017064663A (ja) * 2015-10-01 2017-04-06 第一高周波工業株式会社 温度制御された吹付け塗装装置
EP3330007A1 (en) * 2016-11-30 2018-06-06 SUPSI (Scuola Universitaria Della Svizzera Italiana) Nozzle apparatus for direct energy deposition
CN111250283A (zh) * 2020-03-13 2020-06-09 北京控制工程研究所 一种适用于急速冷冻环境下的带辅助加热装置的雾化喷嘴

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5622139B2 (ja) * 2009-02-04 2014-11-12 国立大学法人東北大学 噴霧ノズル及びミスト帯電防止方法
US9332776B1 (en) * 2010-09-27 2016-05-10 ZoomEssence, Inc. Methods and apparatus for low heat spray drying
US10864457B2 (en) * 2014-11-28 2020-12-15 Chr. Hansen A/S Spray freezing
CN106268503B (zh) * 2015-06-29 2020-01-17 南京邮电大学 一种液氮喷雾冷冻造粒真空干燥装置和工作方法
CN106732172A (zh) * 2016-12-09 2017-05-31 华东理工大学 基于喷雾冷冻技术的生物活性试剂固化装置及使用方法
CN108709369A (zh) * 2018-04-20 2018-10-26 大连工业大学 一种超声波喷雾冷冻干燥装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4893754A (en) * 1987-11-13 1990-01-16 Francisco Ruiz Generation of flat liquid sheet and sprays by means of simple cylindrical orifices
CN1094660A (zh) * 1993-02-09 1994-11-09 埃尔赫南·塔沃尔 雾化器
US20080308245A1 (en) * 2004-07-30 2008-12-18 Metso Automation Oy Moistening Nozzle of a Paper Web
DE102006011391A1 (de) * 2006-03-09 2007-09-20 Glatt Gmbh Anlagen mit beschichteten Sprühdüsen
CN102089607A (zh) * 2008-07-10 2011-06-08 株式会社爱发科 冷冻干燥装置
JP2017064663A (ja) * 2015-10-01 2017-04-06 第一高周波工業株式会社 温度制御された吹付け塗装装置
CN205146480U (zh) * 2015-12-09 2016-04-13 荣昌精密机械(苏州)有限公司 一种注塑机用过滤型喷嘴
EP3330007A1 (en) * 2016-11-30 2018-06-06 SUPSI (Scuola Universitaria Della Svizzera Italiana) Nozzle apparatus for direct energy deposition
CN111250283A (zh) * 2020-03-13 2020-06-09 北京控制工程研究所 一种适用于急速冷冻环境下的带辅助加热装置的雾化喷嘴

Also Published As

Publication number Publication date
CN111250283A (zh) 2020-06-09
CN111250283B (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
CN111299001B (zh) 一种应用于喷雾冷冻干燥装置的超细雾化喷嘴
US4702799A (en) Dryer and drying method
US6861101B1 (en) Plasma spray method for applying a coating utilizing particle kinetics
US9206085B2 (en) Method for densification and spheroidization of solid and solution precursor droplets of materials using microwave generated plasma processing
CN100374212C (zh) 雾化液体介质的方法和装置
US10406543B2 (en) Spraying apparatus
US20090014562A1 (en) Spray Nozzle Apparatus and Method of Use
CN110052340B (zh) 一种多级超声波雾化喷射装置
WO2015174949A1 (en) Method for the densification and spheroidization of solid and solution precursor droplets of materials using plasma
EP0408801B1 (en) Spray drying apparatus
WO2021179536A1 (zh) 一种适用于急速冷冻环境下的带辅助加热装置的雾化喷嘴
CN204671913U (zh) 喷雾干燥机喷头
CN105618773B (zh) 一种用于制备3d打印金属粉末的气雾化装置
CN2474220Y (zh) 旋涡压力喷嘴
CN108553929B (zh) 一种气流式喷雾干燥器用雾化喷嘴
US10272456B2 (en) Spraying apparatus
CN206276527U (zh) 可实现多种喷雾功能的喷嘴装置
RU2795476C1 (ru) Распылительная форсунка с дополнительным нагревательным устройством, подходящая для использования в условиях быстрого замерзания
WO2023216291A1 (zh) 一种气体辅助雾化喷嘴及其喷雾器
CN207806635U (zh) 一种拉瓦尔管、喷嘴结构及tc4合金粉末的制备装置
CN215278010U (zh) 一种用于光刻胶喷涂的喷嘴装置
JP2001137747A (ja) 微粒化ノズル
RU119264U1 (ru) Пневматический распылитель
JP2004292223A (ja) 粉体製造装置
CN204619406U (zh) 循环冷却的离心式喷雾干燥机喷头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20924350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20924350

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20924350

Country of ref document: EP

Kind code of ref document: A1