WO2021179129A1 - 电芯及具有该电芯的电池 - Google Patents

电芯及具有该电芯的电池 Download PDF

Info

Publication number
WO2021179129A1
WO2021179129A1 PCT/CN2020/078449 CN2020078449W WO2021179129A1 WO 2021179129 A1 WO2021179129 A1 WO 2021179129A1 CN 2020078449 W CN2020078449 W CN 2020078449W WO 2021179129 A1 WO2021179129 A1 WO 2021179129A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery cell
current collector
electrode assembly
cell
thickness
Prior art date
Application number
PCT/CN2020/078449
Other languages
English (en)
French (fr)
Inventor
闫东阳
黄瑞
肖良针
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to CN202310748627.4A priority Critical patent/CN116706077A/zh
Priority to PCT/CN2020/078449 priority patent/WO2021179129A1/zh
Priority to CN202080005319.7A priority patent/CN112771697B/zh
Priority to EP20864325.4A priority patent/EP3907796A4/en
Publication of WO2021179129A1 publication Critical patent/WO2021179129A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This application relates to the field of electrochemistry, in particular to a battery cell and a battery with the battery cell.
  • the weight and volume of the battery cell have also increased in order to meet the user’s needs. Then, the risk of leakage, damage and fire during the fall of the battery cell is also great. Increase.
  • the conventional solution is to increase the thickness and strength of the outer packaging film of the battery cell to increase the life of the battery cell's external wear and fatigue resistance.
  • the disadvantage of this solution is the loss of the space utilization rate of the battery cell and the reduction of the energy density of the battery cell.
  • the embodiment of the present application provides a battery cell, which includes an electrode assembly, a packaging bag containing the electrode assembly, and an electrolyte.
  • the anode pole pieces are wound or stacked in sequence, the battery core includes a first sealing edge, part of the electrode assembly passes through the first sealing edge, and the cathode pole piece includes a first current collector and is arranged at
  • the first active material layer on the first current collector combines an anode electrode piece, a cathode electrode piece adjacent to the anode electrode piece, and the anode electrode piece or the cathode electrode piece
  • Two adjacent layers of diaphragm are defined as one layer in the electrode assembly, and the thickness a (unit: mm) of the first current collector satisfies the following formula: 0.02T/(L+2) ⁇ a ⁇ 0.06T/L +b ⁇ S/1000, calculated by the value of each parameter;
  • T is the thickness of the cell (in mm)
  • b is the content of the free electrolyte (in g/Ah)
  • S is the packaging strength of the first edge seal (in N/ m)
  • L is the number of layers of the electrode assembly.
  • the thickness of the battery core is 1 mm-12 mm.
  • the thickness of the first current collector is 0.005 mm to 0.03 mm.
  • the content of the free electrolyte is 0.05 g/Ah to 1.6 g/Ah.
  • the packaging strength of the first edge sealing is 0.5 N/m to 20 N/m.
  • the lateral strength of the first current collector is 50 MPa to 300 MPa.
  • the longitudinal strength of the first current collector is 50 MPa to 300 MPa.
  • the adhesive force between the diaphragm and the anode electrode piece is 0.5 N/m-40 N/m.
  • the adhesive force between the diaphragm and the cathode electrode piece is 0.5 N/m to 80 N/m.
  • the first current collector includes Al, Ni, Mn, Cr, Cu, Fe, Mg, Si, Ti, Zr, V, Zn, Pb, S, P, Sn, As, Bi, Sb. One or several elements.
  • the first active material layer includes a first active material and a first adhesive, the mass fraction of the first active material is 96% to 99%, and the mass of the first adhesive The score is 0.5% to 2%.
  • the first binder includes one or more of polyethylene oxide, polyvinylidene fluoride, styrene butadiene rubber, and a copolymer of vinylidene fluoride and hexafluoropropylene.
  • the monomer product of the first binder after the pyrolysis gas chromatography mass spectrometry (PY-GCMS) test includes butadiene, acrylonitrile, styrene, methyl methacrylate, and acrylic acid.
  • the first active material layer further includes a conductive agent, and the mass fraction of the conductive agent is 0.5%-2%.
  • the conductive agent includes one of acetylene black, carbon black, conductive carbon black (Super P), Ketjen black, single-walled carbon nanotubes, multi-walled carbon nanotubes, carbon nanofibers, and graphene. Or several.
  • the anode electrode piece includes a second current collector and a second active material layer disposed on the second current collector.
  • the second active material layer includes a second active material and a second adhesive, the mass fraction of the second active material is 97% to 99%, and the mass fraction of the second adhesive is 0.5% to 1.5 %.
  • the monomer product of the second binder after the pyrolysis gas chromatography mass spectrometry (PY-GCMS) test includes butadiene, acrylonitrile, styrene, methyl methacrylate, and acrylic acid.
  • the diaphragm includes one of polyethylene, polypropylene, polyvinylidene fluoride, modified polyvinylidene fluoride, polyacrylate, modified polyacrylate, modified polyethylene, and modified polypropylene. Kind or several kinds.
  • An embodiment of the present application also provides a battery, which includes a casing and the battery core as described above, and the battery core is accommodated in the casing.
  • the damage caused by the reverse erosion of the electrolyte to the internal structure of the cell is reduced, and at the same time, it combines the thickness T of the cell and the layer of the electrode assembly.
  • the number L and the packaging strength S of the first edge sealing limit the thickness a of the first current collector so that a certain relationship between b, T, L, S and a is satisfied, thereby ensuring that the battery core falls during the drop process.
  • the structural integrity of the battery can effectively prevent the battery from leaking, short-circuit and fire caused by falling or impact, and improve the safety of the battery.
  • FIG. 1 is a schematic diagram of the internal structure of a battery cell according to an embodiment of the application.
  • FIG. 2 is a schematic cross-sectional view of a battery cell according to an embodiment of the application.
  • FIG. 3 is a schematic cross-sectional view of a battery cell according to another embodiment of the application.
  • Fig. 4 is a schematic cross-sectional view of the battery cell shown in Fig. 1.
  • Fig. 5 is a schematic diagram of the battery cell shown in Fig. 1 in the process of being dropped.
  • FIG. 6 is a schematic diagram of a part of the structure of the battery shown in FIG. 1.
  • the first active material layer 1112 is the first active material layer 1112
  • the second active material layer 1132 is the second active material layer 1132
  • an embodiment of the present application provides a battery cell 10.
  • the battery cell 10 includes an electrode assembly 11, a packaging bag 12 containing the electrode assembly 11, and an electrolyte 13.
  • the electrolyte 13 is contained in the packaging bag 12.
  • the electrolyte 13 may include some common organic solvents, such as ethylene carbonate, propylene carbonate, ethyl methyl carbonate, diethyl carbonate, and the like.
  • the electrode assembly 11 is formed by winding or stacking a cathode electrode piece 111, a diaphragm 112, and an anode electrode piece 113 in sequence.
  • the cathode electrode piece 111 includes a first current collector 1111 and a first active material layer 1112 disposed on the first current collector 1111.
  • the battery core 10 further includes an adhesive member 14.
  • the adhesive member 14 is arranged between the packaging bag 12 and the electrode assembly 11 to connect the packaging bag 12 and the electrode assembly 11 together, which can increase the rigidity of the cell 10. In this way, even if the battery cell 10 is dropped or subjected to an impact, the packaging bag 12 and the electrode assembly 11 will not undergo relative displacement, so the packaging bag 12 will not be affected by the electrode assembly 11. The battery cell 10 leaks by breaking through the packaging bag 12 due to the impact of the battery.
  • the battery cell 10 further includes a first edge sealing 15. Part of the electrode assembly 11 passes through the first sealing edge 15.
  • the electrode assembly 11 further includes a cathode lug 114 connected to the cathode electrode piece 111 and an anode lug 115 connected to the anode electrode piece 113.
  • the cathode tab 114 and the anode tab 115 are respectively penetrated by the first sealing edge 15.
  • the first sealing edge 15 extends from one side of the packaging bag 12.
  • the first sealing edge 15 belongs to a part of the packaging bag 12.
  • the lateral strength of the first current collector 1111 is 50Mpa ⁇ 300Mpa.
  • the longitudinal strength of the first current collector 1111 is 50-300Mpa.
  • the first current collector 1111 includes one of Al, Ni, Mn, Cr, Cu, Fe, Mg, Si, Ti, Zr, V, Zn, Pb, S, P, Sn, As, Bi, and Sb Or several elements. The elements in the first current collector 1111 are tested by inductively coupled plasma emission spectrometer.
  • the first active material layer 1112 includes a first active material and a first adhesive.
  • the mass fraction of the first active material is 96% to 99%.
  • the mass fraction of the first adhesive is 0.5%-2%.
  • the first adhesive may be selected from, but not limited to, one selected from polyethylene oxide, polyvinylidene fluoride, styrene butadiene rubber, copolymers of vinylidene fluoride and hexafluoropropylene, or Several kinds.
  • the monomer product of the first adhesive after the pyrolysis gas chromatography mass spectrometry (PY-GCMS) test includes butadiene, acrylonitrile, styrene, methyl methacrylate, butyl acrylate, and vinyl pyrrolidone , Isooctyl methacrylate, Isooctyl acrylate, polyvinylidene fluoride, 9-octadecene nitrile, propyl propionate, ethyl propionate, polyacrylic acid (PAA), N-methylpyrrolidone, 4- One or more of phenylcyclohexanone.
  • PY-GCMS pyrolysis gas chromatography mass spectrometry
  • the first active material layer 1112 further includes a conductive agent.
  • the mass fraction of the conductive agent is 0.5%-2%.
  • the conductive agent can be selected from, but not limited to, selected from acetylene black, carbon black, conductive carbon black (Super P), Ketjen black, single-walled carbon nanotubes, multi-walled carbon nanotubes, carbon nanofibers, graphene One or more of them.
  • a cathode electrode piece 111, an anode electrode piece 113 adjacent to the cathode electrode piece 111, and an anode electrode piece 113 adjacent to the cathode electrode piece 111 or the anode electrode piece 113 are combined.
  • the two-layer diaphragm 112 (refer to the K area in FIG. 2 or the K area in FIG. 3) is defined as one layer in the electrode assembly 11.
  • the thickness a (unit: mm) of the first current collector 1111 satisfies the following formula: 0.02T/(L+2) ⁇ a ⁇ 0.06T/L+b ⁇ S/1000, which is calculated based on the numerical value of each parameter.
  • T is the thickness of the cell 10 (unit: mm)
  • b is the content of the free electrolyte 13 (unit: g/Ah)
  • S is the packaging strength of the first edge seal 15 (The unit is N/m)
  • L is the number of layers of the electrode assembly 11.
  • the thickness T of the battery core 10 is 1 mm to 12 mm. In one embodiment, the thickness T of the battery core 10 is 3 mm to 6 mm. In another embodiment, the thickness T of the battery core 10 is 1 mm to 5 mm. In another embodiment, the thickness T of the battery core 10 is 2 mm-10 mm.
  • the thickness a of the first current collector 1111 is 0.005 mm to 0.03 mm. In one embodiment, the thickness a of the first current collector 1111 is 0.005 mm to 0.02 mm. In another embodiment, the thickness a of the first current collector 1111 is 0.008 mm to 0.14 mm.
  • the content b of the free electrolyte 13 is 0.05 g/Ah to 1.6 g/Ah. In one embodiment, the content b of the free electrolyte 13 is 0.05 g/Ah to 0.5 g/Ah. In another embodiment, the content b of the free electrolyte 13 is 0.05 g/Ah to 1.0 g/Ah. In another embodiment, the content b of the free electrolyte 13 is 0.05 g/Ah to 0.3 g/Ah.
  • the packaging strength S of the first edge seal 15 is 0.5 N/m to 20 N/m. In one embodiment, the encapsulation strength S of the first edge sealing 15 is 1N/m-10N/m. In another embodiment, the encapsulation strength S of the first edge sealing 15 is 2N/m-8N/m.
  • the packaging bag 12 and the electrode assembly 11 will be backwashed by the free electrolyte 13, which will damage the internal structure of the cell 10 (for example, the packaging bag 12 and the electrode assembly 11).
  • the battery cell 10 may have liquid leakage, short circuit and fire when it is dropped, thereby affecting the safety of the battery cell.
  • the content of the free electrolyte 13 is limited, which can reduce the impact of the free electrolyte 13 on the interior of the battery cell 10.
  • the reverse scouring of the structure improves the anti-drop performance of the battery core 10 in a disguised manner, and ensures the safety of the battery core 10 when it is dropped.
  • the reverse scouring of the free electrolyte 13 will also cause damage to the packaging area of the cell 10, such as the first edge sealing 15 area.
  • the bonding area of the electrode assembly 11 and the packaging bag 12 will be exposed to the free electrolyte during repeated drops of the battery cell 10. 13 continuous reverse scouring caused serious damage to the cathode electrode piece 111.
  • the thickness a of the current collector 1111 and the encapsulation strength S of the first sealing edge 15 ensure the structural integrity of the battery core 10 during the drop process, thereby effectively preventing the battery core 10 from being dropped or impacted. Problems such as leakage, short circuit and fire.
  • the anode pole piece 113 includes a second current collector 1131 and a second active material layer 1132 disposed on the second current collector 1131.
  • the second active material layer 1132 includes a second active material and a second adhesive.
  • the mass fraction of the second active material is 97%-99%.
  • the mass fraction of the second adhesive is 0.5% to 1.5%.
  • the monomer product of the second adhesive after the pyrolysis gas chromatography mass spectrometry (PY-GCMS) test includes butadiene, acrylonitrile, styrene, methyl methacrylate, butyl acrylate, ethylene Pyrrolidone, isooctyl methacrylate, isooctyl acrylate, polyvinylidene fluoride, 9-octadecenonitrile, propyl propionate, ethyl propionate, polyacrylic acid (PAA), N-methylpyrrolidone, One or more of 4-phenylcyclohexanone.
  • the diaphragm 112 includes polyethylene, polypropylene, polyvinylidene fluoride, modified polyvinylidene fluoride, polyacrylate, modified polyacrylate, modified polyethylene, and modified polypropylene.
  • the adhesive force between the diaphragm 112 and the cathode electrode piece 111 is 0.5 N/m to 80 N/m
  • the adhesive force between the diaphragm 112 and the anode electrode piece 113 is 0.5 N/m. m ⁇ 40N/m. In this way, the problem of exposure of the cathode electrode piece 111 and the anode electrode piece 113 caused by the free electrolyte 13 reversely flushing and destroying the diaphragm 112 can be effectively avoided.
  • the battery core 10 of the present application will be described in detail below through embodiments and comparative examples.
  • the battery cell 10 includes an electrode assembly 11, a packaging bag 12 containing the electrode assembly 11, an electrolyte 13, an adhesive 14 and a first edge sealing 15.
  • the electrolyte 13 is contained in the packaging bag 12.
  • the adhesive member 14 is disposed between the packaging bag 12 and the electrode assembly 11.
  • the first sealing edge 15 extends from one side of the packaging bag 12. Wherein, the first edge sealing 15 belongs to a part of the packaging bag 12.
  • the electrode assembly 11 is formed by winding a cathode electrode piece 111, a diaphragm 112, and an anode electrode piece 113 in sequence.
  • the cathode electrode piece 111 includes a first current collector 1111 and a first active material layer 1112 disposed on the first current collector 1111.
  • the electrode assembly 11 further includes a cathode lug 114 connected to the cathode electrode piece 111 and an anode lug 115 connected to the anode electrode piece 113.
  • the cathode tab 114 and the anode tab 115 are respectively penetrated by the first sealing edge 15.
  • the thickness T of the battery core 10 is 5.2 mm.
  • the number of layers L of the electrode assembly 11 is 15 layers.
  • the packaging strength S of the first edge sealing 15 is 4.2 N/m.
  • the content b of the free electrolyte 13 is 1.0 g/Ah.
  • the thickness a of the first current collector 1111 is 0.014 mm. In Embodiment 1, the thickness a of the first current collector 1111 satisfies the following formula: 0.02T/(L+2) ⁇ a ⁇ 0.06T/L+b ⁇ S/1000, which is calculated based on the values of various parameters.
  • the content b of the free electrolyte 13 is measured by the centrifugal differential gravimetric method.
  • the centrifugal weight difference method includes the following steps:
  • the packaging strength S of the battery core 10 in the embodiment 1 is tested, and the testing method of the packaging strength S of the first edge sealing 15 includes the following steps:
  • the battery cell 10 is disassembled, and five parts of the area of the first edge sealing 15 shown in FIG. 6 are taken to make samples, namely the sample I, the sample II, the sample III, the sample IV, and the sample V shown in FIG. 6.
  • samples namely the sample I, the sample II, the sample III, the sample IV, and the sample V shown in FIG. 6.
  • clamp the upper and lower surfaces of each sample with upper and lower clamps (not shown in the figure), and then stretch them using a tensile machine (not shown in the figure).
  • the tensile strength of the sample the tensile force when the sample breaks/the width of the sample.
  • the minimum value of the tensile strength among the five samples is taken as the encapsulation strength S of the first edge sealing 15.
  • the battery core 10 in Example 1 was subjected to a drop test (using a general test method).
  • the drop test includes the following steps:
  • the state of charge (SOC) of the battery cell 10 is fully charged to 100%.
  • the voltage of the battery cell 10 is 4.4V.
  • the top and bottom surfaces of the fixture with the battery cell 10 are numbered A and B, and the upper right, lower right, upper left and lower left corners of the fixture with the battery 10 are numbered C, D, E, and F.
  • the battery core 10 in Example 1 was subjected to a roller test.
  • the drum test includes the following steps:
  • the state of charge (SOC) of the battery cell 10 is fully charged to 100%.
  • the voltage of the battery cell 10 is 4.4V.
  • the fixture with the battery cell 10 is placed in a roller tester for testing, and the test is completed and left to stand for 24 hours.
  • the roller speed is 7 laps/min
  • the drop height is 1 meter
  • the roller is rolled 1000 times in total.
  • the pass rate of the battery cell 10 in the drum test was 100%.
  • Example 2 The difference between Example 2 and Example 1 is that the content b of the free electrolyte 13 in Example 2 is 0.8 g/Ah.
  • the thickness a of the first current collector 1111 is 0.012 mm. In Embodiment 2, the thickness a of the first current collector 1111 also satisfies the above formula.
  • Embodiment 3 The difference between Embodiment 3 and Embodiment 1 is that the number of layers L of the electrode assembly 11 in Embodiment 3 is 18 layers.
  • the packaging strength S of the first edge sealing 15 is 6.8 N/m.
  • the content b of the free electrolyte 13 is 0.6 g/Ah.
  • the thickness a of the first current collector 1111 is 0.006 mm. In Embodiment 3, the thickness a of the first current collector 1111 also satisfies the above formula.
  • the difference between the embodiment 4 and the embodiment 3 is that the number of layers L of the electrode assembly 11 in the embodiment 4 is 17 layers.
  • the thickness a of the first current collector 1111 is 0.014 mm. In Embodiment 4, the thickness a of the first current collector 1111 also satisfies the above formula.
  • the electrode assembly 11 in the fifth embodiment is formed by stacking a cathode electrode piece 111, a diaphragm 112, and an anode electrode piece 113 in sequence.
  • Embodiment 6 is formed by stacking a cathode electrode piece 111, a diaphragm 112, and an anode electrode piece 113 in sequence.
  • Embodiment 7 is formed by stacking a cathode electrode piece 111, a diaphragm 112, and an anode electrode piece 113 in sequence.
  • Embodiment 8 is formed by stacking a cathode electrode piece 111, a diaphragm 112, and an anode electrode piece 113 in sequence.
  • Comparative Example 1 The difference between Comparative Example 1 and Example 1 is that the packaging strength S of the first edge seal 15 in Example 1 is 1.7 N/m.
  • the thickness a of the first current collector 1111 is 0.005 mm. In Comparative Example 1, the thickness a of the first current collector 1111 does not satisfy the above formula.
  • the pass rate of the battery core 10 in the drop test was 30%, and the pass rate of the battery core 10 in the drum test was 60%.
  • Comparative Example 2 The difference between Comparative Example 2 and Example 5 is that the packaging strength S of the first edge seal 15 in Comparative Example 2 is 1.7 N/m.
  • the thickness a of the first current collector 1111 is 0.005 mm. In Comparative Example 2, the thickness a of the first current collector 1111 does not satisfy the above formula. In Comparative Example 2, the pass rate of the battery core 10 in the drop test was 30%, and the pass rate of the battery core 10 in the drum test was 60%.
  • Example 1 As can be seen from Table 1, comparing Example 1 and Comparative Example 1, the thickness a of the first current collector 1111 in Example 1 is thicker than that of Comparative Example 1, and the packaging strength S of the first edge seal 15 in Example 1 is higher than that of Comparative Example 1. 1 is enhanced, and the pass rate of the battery core 10 in the drop test in Example 1 is increased by 70% compared with that in the comparative example 1, and the pass rate of the battery cell 10 in the drum test in Example 1 is increased by 40% compared to that in the comparative example 1.
  • the pass rate of the cell 10 in the drop test and the pass rate in the roller test It is affected by the thickness a of the first current collector 1111 and the packaging strength S of the first edge seal 15.
  • Comparing Example 2 with Comparative Example 1 it can be seen that the thickness a of the first current collector 1111 in Example 2 is thicker than that of Comparative Example 1, and the packaging strength S of the first edge sealing 15 in Example 2 is stronger than that of Comparative Example 1.
  • the content b of the free electrolyte 13 in Example 2 is lower than that in Comparative Example 1, while the pass rate of the battery cell 10 in Example 2 in the drop test is 70% higher than that in Comparative Example 1.
  • the battery cell 10 in Example 2 is Compared with Comparative Example 1, the pass rate in the roller test increased by 40%.
  • Example 1 and Example 5 Comparing Example 1 and Example 5, Example 2 and Example 6, Example 3 and Example 7, and Example 4 and Example 8, it can be seen that the thickness T of the cell 10 and the electrode assembly 11 If the number of layers L, the packaging strength S of the first edge seal 15, the content b of the free electrolyte 13 and the thickness a of the first current collector 1111 are constant, changing the type of the cell 10 will not affect To the overall mechanical properties of the battery cell 10.
  • the damage caused by the reverse erosion of the internal structure of the cell 10 by the electrolyte 13 is reduced, and the thickness T of the cell 10 and the The number of layers L of the electrode assembly 11 and the encapsulation strength S of the first sealing edge 15 define the thickness a of the first current collector 1111, so that the relationship between b, T, L, S and a is satisfied, thereby The structural integrity of the battery cell 10 during the drop process is ensured, thereby effectively preventing the battery cell 10 from leaking, short-circuiting and catching fire due to falling or impact, so as to improve the safety of the battery cell.
  • the embodiment of the present application also provides a battery.
  • the battery includes a casing (not shown) and the battery cell 10.
  • the battery core 10 is housed in the housing.

Abstract

一种电芯(10),包括电极组件(11)、收容所述电极组件(11)的包装袋(12)及电解液(13),所述电解液(13)容纳于所述包装袋(12)内,所述电极组件(11)通过阴极极片(111)、隔膜(112)及阳极极片(113)依序卷绕或堆叠而成,所述电芯(10)包括第一封边(15),部分所述电极组件(11)从所述第一封边(15)穿出,所述阴极极片(111)包括第一集流体(1111)和第一活性物质层(1112)。第一集流体(1111)的厚度a满足以下公式:0.02T/(L+2)≤a≤0.06T/L+b×S/1000;式中,T为所述电芯(10)的厚度,b为游离的所述电解液(13)的含量,S为所述第一封边(15)的封装强度,L为所述电极组件(11)的层数。还提供了一种具有该电芯(10)的电池。

Description

电芯及具有该电芯的电池 技术领域
本申请涉及电化学领域,具体涉及一种电芯及具有该电芯的电池。
背景技术
随着用户对电芯容量需求的不断加大,为满足用户的需求,电芯的重量和体积也随之增大,那么,电芯在跌落过程中出现漏液、破损和起火的风险也大大增加。此外,内置有电芯的产品若在使用中从高处跌落,即使产品的保护外壳没有破损,其内置的电芯也有可能发生破损,严重时会发生起火爆炸,对用户的安全造成威胁。针对电芯在跌落时存在的安全问题,常规的解决方案是将电芯的外包装膜的厚度和强度提升,以此来提升电芯外部抗磨损疲劳的寿命。不过,这种解决方案的弊端是损失电芯的空间利用率,降低电芯的能量密度。
发明内容
有鉴于此,有必要提供一种电芯,以解决上述问题。
本申请实施例提供了一种电芯,包括电极组件、收容所述电极组件的包装袋及电解液,所述电解液容纳于所述包装袋内,所述电极组件通过阴极极片、隔膜及阳极极片依序卷绕或堆叠而成,所述电芯包括第一封边,部分所述电极组件从所述第一封边穿出,所述阴极极片包括第一集流体及设置于所述第一集流体上的第一活性物质层,将一所述阳极极片、与所述阳极极片相邻的一所述阴极极片和与所述阳极极片或所述阴极极片相邻的两层隔膜定义为所述电极组件中的一层,所述第一集流体的厚度a(单位为mm)满足以下公式:0.02T/(L+2)≤a≤0.06T/L+b×S/1000,以各参数的数值来计算;
其中,T为所述电芯的厚度(单位为mm),b为游离的所述电解 液的含量(单位为g/Ah),S为所述第一封边的封装强度(单位为N/m),L为所述电极组件的层数。
在一些实施例中,所述电芯的厚度为1mm~12mm。
在一些实施例中,所述第一集流体的厚度为0.005mm~0.03mm。
在一些实施例中,所述游离电解液的含量为0.05g/Ah~1.6g/Ah。
在一些实施例中,所述第一封边的封装强度为0.5N/m~20N/m。
在一些实施例中,所述第一集流体的横向强度为50MPa~300MPa。
在一些实施例中,所述第一集流体的纵向强度为50MPa~300MPa。
在一些实施例中,所述隔膜与阳极极片的粘接力为0.5N/m~40N/m。
在一些实施例中,所述隔膜与阴极极片的粘接力为0.5N/m~80N/m。
在一些实施例中,第一集流体中包括Al、Ni、Mn、Cr、Cu、Fe、Mg、Si、Ti、Zr、V、Zn、Pb、S、P、Sn、As、Bi、Sb中的一种或几种元素。
在一些实施例中,所述第一活性物质层包括第一活性物质和第一粘接剂,所述第一活性物质的质量分数为96%~99%,所述第一粘结剂的质量分数0.5%~2%。
在一些实施例中,所述第一粘结剂包括聚环氧乙烷、聚偏二氟乙烯、丁苯橡胶、偏二氟乙烯与六氟丙烯的共聚物中的一种或几种。
在一些实施例中,所述第一粘结剂经过裂解气相色谱质谱联用仪(PY-GCMS)测试后的单体产物包括丁二烯、丙烯腈、苯乙烯、甲基丙烯酸甲酯、丙烯酸丁酯、乙烯基吡咯烷酮、甲基丙烯酸异辛酯、丙烯酸异辛酯、聚偏二氟乙烯、9-十八烯腈、丙酸丙酯、丙酸乙酯、聚丙烯酸(PAA)、N-甲基吡咯烷酮、4-苯基环己酮中的一种或几种。
在一些实施例中,所述第一活性物质层还包括导电剂,所述导电剂的质量分数为0.5%~2%。
在一些实施例中,所述导电剂包括乙炔黑、炭黑、导电炭黑(Super P)、科琴黑、单壁碳纳米管、多壁碳纳米管、纳米碳纤维、石墨烯中的一种或几种。
在一些实施例中,所述阳极极片包括第二集流体及设置于所述第二集流体上的第二活性物质层。所述第二活性物质层包括第二活性物质和第二粘接剂,所述第二活性物质的质量分数为97%~99%,所述第二粘接剂的质量分数为0.5%~1.5%。
在一些实施例中,所述第二粘结剂经过裂解气相色谱质谱联用仪(PY-GCMS)测试后的单体产物包括丁二烯、丙烯腈、苯乙烯、甲基丙烯酸甲酯、丙烯酸丁酯、乙烯基吡咯烷酮、甲基丙烯酸异辛酯、丙烯酸异辛酯、聚偏二氟乙烯、9-十八烯腈、丙酸丙酯、丙酸乙酯、聚丙烯酸(PAA)、N-甲基吡咯烷酮、4-苯基环己酮中的一种或几种。
在一些实施例中,所述隔膜包括聚乙烯、聚丙烯、聚偏氟乙烯、改性聚偏氟乙烯、聚丙烯酸酯、改性聚丙烯酸酯、改性聚乙烯、改性聚丙烯中的一种或几种。
本申请实施例还提供了一种电池,该电池包括壳体及如上述所述的电芯,所述电芯收容于所述壳体内。
综上所述,通过限定游离的所述电解液的含量b,降低电解液对电芯的内部结构反向冲刷所造成的伤害,同时结合所述电芯的厚度T、所述电极组件的层数L、第一封边的封装强度S对所述第一集流体的厚度a进行限定,以使得b、T、L、S与a之间满足一定关系式,从而保证了电芯在跌落过程中的结构完整性,进而有效避免电芯因跌落或受到撞击等情况下发生漏液、短路起火等问题,提高电芯的使用安全性。
附图说明
图1为本申请一实施方式的电芯的内部结构示意图。
图2为本申请一实施方式的电芯的剖面示意图。
图3为本申请另一实施方式的电芯的剖面示意图。
图4为图1所示电芯的剖面示意图。
图5为图1所示电芯在跌落过程中的示意图。
图6为图1所示电池的部分结构示意图。
主要元件符号说明
电芯                        10
电极组件                    11
阴极极片                    111
第一集流体                  1111
第一活性物质层              1112
隔膜                        112
阳极极片                    113
第二集流体                  1131
第二活性物质层              1132
阴极极耳                    114
阳极极耳                    115
包装袋                      12
电解液                      13
粘接件                      14
第一封边                    15
地面                        200
如下具体实施方式将结合上述附图进一步说明本申请。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本 申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
参阅图1,本申请实施方式提供了一种电芯10。所述电芯10包括电极组件11、收容所述电极组件11的包装袋12及电解液13。所述电解液13容纳于所述包装袋12内。所述电解液13可包括一些常见的有机溶剂,例如:碳酸亚乙酯、碳酸丙烯酯、碳酸甲乙酯、碳酸二乙酯等。
参阅图2和图3,所述电极组件11通过阴极极片111、隔膜112及阳极极片113依序卷绕或堆叠形成。其中,所述阴极极片111包括第一集流体1111及设置于所述第一集流体1111上的第一活性物质层1112。
进一步地,参阅图4,所述电芯10还包括粘接件14。所述粘接件14设置于所述包装袋12与所述电极组件11之间,以将所述包装袋12和所述电极组件11连接在一起,能够增加电芯10的刚性。如此,即使在所述电芯10发生跌落或受到撞击等情况下,所述包装袋12和所述电极组件11也不会发生相对位移,那么,所述包装袋12就不会受到电极组件11的冲击而出现冲破包装袋12造成电芯10漏液的现象。
进一步地,请一并参阅图1,所述电芯10还包括第一封边15。部分所述电极组件11从所述第一封边15穿出。在本实施方式中,所述电极组件11还包括连接阴极极片111的阴极极耳114和连接阳极极片113的阳极极耳115。阴极极耳114和阳极极耳115分别由所述第一封边15穿出。其中,所述第一封边15由所述包装袋12的一侧延伸出。所述第一封边15属于所述包装袋12的一部分。
在一些实施例中,所述第一集流体1111的横向强度为50Mpa~300Mpa。所述第一集流体1111的纵向强度为50Mpa~300Mpa。其中,第一集流体1111中包括Al、Ni、Mn、Cr、Cu、Fe、Mg、Si、Ti、Zr、V、Zn、Pb、S、P、Sn、As、Bi、Sb 中的一种或几种元素。所述第一集流体1111中的元素经电感耦合等离子体发射光谱仪测试得到。
在一些实施例中,所述第一活性物质层1112包括第一活性物质和第一粘接剂。所述第一活性物质的质量分数为96%~99%。所述第一粘接剂的质量分数为0.5%~2%。其中,所述第一粘接剂可选自,但不限于选自聚环氧乙烷、聚偏二氟乙烯、丁苯橡胶、偏二氟乙烯与六氟丙烯的共聚物中的一种或几种。所述第一粘接剂经过裂解气相色谱质谱联用仪(PY-GCMS)测试后的单体产物包括丁二烯、丙烯腈、苯乙烯、甲基丙烯酸甲酯、丙烯酸丁酯、乙烯基吡咯烷酮、甲基丙烯酸异辛酯、丙烯酸异辛酯、聚偏二氟乙烯、9-十八烯腈、丙酸丙酯、丙酸乙酯、聚丙烯酸(PAA)、N-甲基吡咯烷酮、4-苯基环己酮中的一种或几种。
在一些实施例中,所述第一活性物质层1112还包括导电剂。所述导电剂的质量分数为0.5%~2%。其中,所述导电剂可选自,但不限于选自乙炔黑、炭黑、导电炭黑(Super P)、科琴黑、单壁碳纳米管、多壁碳纳米管、纳米碳纤维、石墨烯中的一种或几种。
在本实施方式中,将一所述阴极极片111、与所述阴极极片111相邻的一所述阳极极片113和与所述阴极极片111或所述阳极极片113相邻的两层隔膜112(参阅图2中的K区域,或参阅图3中的K区域)定义为所述电极组件11中的一层。所述第一集流体1111的厚度a(单位为mm)满足以下公式:0.02T/(L+2)≤a≤0.06T/L+b×S/1000,以各参数的数值来计算。该公式中,T为所述电芯10的厚度(单位为mm),b为游离的所述电解液13的含量(单位为g/Ah),S为所述第一封边15的封装强度(单位为N/m),L为所述电极组件11的层数。
在本实施方式中,所述电芯10的厚度T为1mm~12mm。在一实施方式中,所述电芯10的厚度T为3mm~6mm。在另一实施方式中,所述电芯10的厚度T为1mm~5mm。又一实施方式中,所述电芯10的厚度T为2mm~10mm。
在本实施方式中,所述第一集流体1111的厚度a为0.005mm~0.03mm。在一实施方式中,所述第一集流体1111的厚度 a为0.005mm~0.02mm。在另一实施方式中,所述第一集流体1111的厚度a为0.008mm~0.14mm。
在本实施方式中,游离的所述电解液13的含量b为0.05g/Ah~1.6g/Ah。在一实施方式中,游离的所述电解液13的含量b为0.05g/Ah~0.5g/Ah。在另一实施方式中,游离的所述电解液13的含量b为0.05g/Ah~1.0g/Ah。在又一实施方式中,游离的所述电解液13的含量b为0.05g/Ah~0.3g/Ah。
在本实施方式中,所述第一封边15的封装强度S为0.5N/m~20N/m。在一实施方式中,所述第一封边15的封装强度S为1N/m~10N/m。在另一实施方式中,所述第一封边15的封装强度S为2N/m~8N/m。
其中,参阅图5,当电芯10由高处跌落时,在跌落的过程中,游离的电解液13、包装袋12及电极组件11的速度方向与电芯10的跌落方向一致,而在电芯10接触地面200的瞬间,电芯10会反弹,如此通过粘接件14连接为一体的包装袋12及电极组件11则在接触地面200的瞬间,包装袋12及电极组件11的速度方向改变为与电芯10的跌落方向相反的方向。不过,游离的电解液13则由于惯性作用,其速度方向依然与电芯10的跌落方向保持一致。那么,包装袋12及电极组件11就会受到游离的所述电解液13的反向冲刷,该反向冲刷会对电芯10的内部结构(例如:包装袋12及电极组件11)造成破坏,从而导致电芯10在跌落时出现漏液、短路起火等问题,进而影响电芯的使用安全性。如此,在保证电芯10在长时间循环使用过程中有足够的电解液13的前提下,限定游离的所述电解液13的含量,可减轻游离的所述电解液13对电芯10的内部结构的反向冲刷,从而变相提高所述电芯10的抗跌落性能,保证电芯10在跌落时的安全性。另外,游离的所述电解液13的反向冲刷还会对电芯10的封装区域,例如:第一封边15区域,造成破坏。此外,由于电极组件11和包装袋12之间通过粘接件14连接,所述电极组件11和所述包装袋12的粘接区域在电芯10的反复跌落中会受 到游离的所述电解液13不断的反向冲刷而对阴极极片111造成严重的破坏,如此,在限定游离的所述电解液13的含量的前提下,在保证电芯10厚度及能量密度的同时,进一步限定第一集流体1111的厚度a及第一封边15的封装强度S,来保证所述电芯10在跌落过程中的结构完整性,从而能够有效避免电芯10因跌落或受到撞击等情况下所发生的漏液、短路起火等问题。
参阅图2和图3,所述阳极极片113包括第二集流体1131及设置于所述第二集流体1131上的第二活性物质层1132。
在一些实施例中,所述第二活性物质层1132包括第二活性物质和第二粘接剂。所述第二活性物质的质量分数为97%~99%。所述第二粘接剂的质量分数0.5%~1.5%。其中,所述第二粘接剂经过裂解气相色谱质谱联用仪(PY-GCMS)测试后的单体产物包含丁二烯、丙烯腈、苯乙烯、甲基丙烯酸甲酯、丙烯酸丁酯、乙烯基吡咯烷酮、甲基丙烯酸异辛酯、丙烯酸异辛酯、聚偏二氟乙烯、9-十八烯腈、丙酸丙酯、丙酸乙酯、聚丙烯酸(PAA)、N-甲基吡咯烷酮、4-苯基环己酮中的一种或几种。
在一些实施例中,所述隔膜112包括聚乙烯、聚丙烯、聚偏氟乙烯、改性聚偏氟乙烯、聚丙烯酸酯、改性聚丙烯酸酯、改性聚乙烯、改性聚丙烯中的一种或几种。在一些实施例中,所述隔膜112与所述阴极极片111的粘接力为0.5N/m~80N/m,所述隔膜112与所述阳极极片113的粘接力为0.5N/m~40N/m。如此,可有效避免因游离的所述电解液13反向冲刷破坏隔膜112所导致的阴极极片111和阳极极片113暴露的问题。
下面通过实施例及对比例对本申请的电芯10进行具体说明。
实施例1
参阅图1和图4,所述电芯10包括电极组件11、收容所述电极组件11的包装袋12、电解液13、粘接件14及第一封边15。所述电解液13容纳于所述包装袋12内。所述粘接件14设置于所述包装袋12与所述电极组件11之间。所述第一封边15由所述包装袋12的一侧延伸出。其中,所述第一封边15属于所述包装袋12的一部分。
所述电极组件11通过阴极极片111、隔膜112及阳极极片113依序卷绕形成。所述阴极极片111包括第一集流体1111及设置于所述第一集流体1111上的第一活性物质层1112。在实施例1中,所述电极组件11还包括连接所述阴极极片111的阴极极耳114和连接所述阳极极片113的阳极极耳115。所述阴极极耳114和所述阳极极耳115分别由所述第一封边15穿出。
在本实施方式中,所述电芯10的厚度T为5.2mm。所述电极组件11的层数L为15层。所述第一封边15的封装强度S为4.2N/m。游离的所述电解液13的含量b为1.0g/Ah。所述第一集流体1111的厚度a为0.014mm。在实施例1中,所述第一集流体1111的厚度a满足以下公式:0.02T/(L+2)≤a≤0.06T/L+b×S/1000,以各参数的数值来计算。
其中,游离的所述电解液13的含量b通过离心差重法测得。所述离心差重法包括如下步骤:
首先,在电芯10顶部的封装区域上剪一个孔,并倒置于离心管(图未示)中;再以3000rpm/min的速率离心20min。接着,不断重复以上离心操作步骤至紧邻两次离心操作后电芯10的重量损失小于0.01g时,停止离心操作步骤。最后,将离心管中得到的所有电解液13进行测量,测得重量为m。其中,将所述电芯10的实际容量定义为n,则游离的所述电解液的含量b=m/n。
对实施例1中的电芯10进行封装强度S的测试,所述第一封边15的封装强度S的测试方法包括如下步骤:
首先,将电芯10拆解,并取图6所示第一封边15区域的五个部分制作样品,即图6所示的样品Ⅰ、样品Ⅱ、样品Ⅲ、样品Ⅳ及样品Ⅴ。接着,用上下夹具(图未示)分别夹住每个样品的上下表面,再使用拉力机(图未示)进行拉伸。然后,记录每个样品拉伸断裂时的拉力。其中,样品的拉伸强度=样品断裂时的拉力/样品的宽度。最后,取五个样品中拉伸强度的最小值作为所述第一封边15的封装强度S。
对实施例1中的电芯10进行跌落测试(采用通用的测试方法)。其中,所述跌落测试包括如下步骤:
首先,于常温(25摄氏度)下,将所述电芯10的荷电状态(State of Charge,SOC)满充至100%。所述电芯10的电压为4.4V。接着,将所述电芯10放置于夹具(图未示)中,并利用胶纸将电芯10的背部粘接至所述夹具,再拧紧夹具上的螺丝。其中,将装有电芯10的夹具的顶面和底面编号为A和B,将装有电芯10的夹具的右上角、右下角、左上角及左下角依次编号为C、D、E和F。然后,将装有电芯10的夹具从高度为1.8m的测试台(图未示)上,按照编号A至F的顺序依次跌落到花岗岩表面上,共循环五次,即为30次(角度45度±15度)的跌落。最后,静置24小时后观察电芯10的情况。其中,经跌落测试后的电芯10若未出现漏液、起火、爆炸等现象,则判定电芯10通过跌落测试。在实施例1中,所述电芯10在跌落测试中的通过率为100%。
对实施例1中的电芯10进行滚筒测试。其中,所述滚筒测试包括如下步骤:
首先,于常温(25摄氏度)下,将所述电芯10的荷电状态(State of Charge,SOC)满充至100%。所述电芯10的电压为4.4V。接着,将所述电芯10放置于夹具(图未示)中,并利用胶纸将电芯10的背部粘接至所述夹具,再拧紧夹具上的螺丝。然后,将装有电芯10的夹具置于滚筒测试机中进行测试,测试完成后静置24h。其中,滚筒速度为7圈/分钟,跌落高度为1米,共滚1000次。其中,经滚筒测试后的电芯10若未出现漏液、起火、爆炸等现象,则判定电芯10通过跌落测试。在实施例1中,所述电芯10在滚筒测试中的通过率为100%。
实施例2
实施例2与实施例1的区别在于,实施例2中的游离的所述电解液13的含量b为0.8g/Ah。所述第一集流体1111的厚度a为0.012mm。在实施例2中,所述第一集流体1111的厚度a也满足上述公式。
实施例3
实施例3与实施例1的区别在于,实施例3中的所述电极组件11的层数L为18层。所述第一封边15的封装强度S为6.8N/m。游离的所述电解液13的含量b为0.6g/Ah。所述第一集流体1111的厚度a为0.006mm。在实施例3中,所述第一集流体1111的厚度a也满足上述公式。
实施例4
实施例4与实施例3的区别在于,实施例4中的所述电极组件11的层数L为17层。所述第一集流体1111的厚度a为0.014mm。在实施例4中,所述第一集流体1111的厚度a也满足上述公式。
实施例5
实施例5与实施例1的区别在于,实施例5中的所述电极组件11通过阴极极片111、隔膜112及阳极极片113依序堆叠形成。
实施例6
实施例6与实施例2的区别在于,实施例6中的所述电极组件11通过阴极极片111、隔膜112及阳极极片113依序堆叠形成。
实施例7
实施例7与实施例3的区别在于,实施例7中的所述电极组件11通过阴极极片111、隔膜112及阳极极片113依序堆叠形成。
实施例8
实施例8与实施例4的区别在于,实施例8中的所述电极组件11通过阴极极片111、隔膜112及阳极极片113依序堆叠形成。
对比例1
对比例1与实施例1的区别在于,实施例1中的所述第一封边15的封装强度S为1.7N/m。所述第一集流体1111的厚度a为0.005mm。在对比例1中,所述第一集流体1111的厚度a不满足上述公式。在对比例1中,所述电芯10在跌落测试中的通过率为30%,所述电芯10在滚筒测试中的通过率为60%。
对比例2
对比例2与实施例5的区别在于,对比例2中的所述第一封边 15的封装强度S为1.7N/m。所述第一集流体1111的厚度a为0.005mm。在对比例2中,所述第一集流体1111的厚度a不满足上述公式。在对比例2中,所述电芯10在跌落测试中的通过率为30%,所述电芯10在滚筒测试中的通过率为60%。
将实施例1-8及对比例1-2的制备条件及相对应的测试结果列于下表1中。
表1实施例1-8及对比例1-2的制备条件及对应的测试结果
Figure PCTCN2020078449-appb-000001
由表1可知,比对实施例1与对比例1可知,实施例1中第一集流体1111的厚度a较对比例1厚,实施例1中第一封边15的封装强度S较对比例1增强,而实施例1中电芯10在跌落测试中的通过率较对比例1增加70%,实施例1中电芯10在滚筒测试中的通过率较对比例1增加40%。由此可知,在电芯10的厚度T、电极组件11的层数L及游离的所述电解液13的含量b一定时,电芯10在跌落测试中的通过率及滚筒测试中的通过率受到第一集流体1111的厚度a及第一封边15的封装强度S的影响。
比对实施例2与对比例1可知,实施例2中第一集流体1111的厚度a较对比例1增厚,实施例2中第一封边15的封装强度S较对比例1增强,实施例2中游离的所述电解液13的含量b较对比例1降低,而实施例2中电芯10在跌落测试中的通过率较对比例1增加70%,实施例2中电芯10在滚筒测试中的通过率较对比例1增加40%。由此可知,在电芯10的厚度T及电极组件11的层数L一定时,电芯10在跌落测试中的通过率及滚筒测试中的通过率受到第一集流体1111的厚度a、第一封边15的封装强度S及游离的所述电解液13的含量b的影响。
比对实施例1和实施例5、实施例2和实施例6、实施例3和实施例7以及实施例4和实施例8可知,在所述电芯10的厚度T、所述电极组件11的层数L、第一封边15的封装强度S、游离的所述电解液13的含量b以及所述第一集流体1111的厚度a一定的情况下,改变电芯10的类型不会影响到电芯10整体的机械性能。
综上所述,通过限定游离的所述电解液13的含量b,降低电解液13对电芯10的内部结构反向冲刷所造成的伤害,同时结合所述电芯10的厚度T、所述电极组件11的层数L、第一封边15的封装强度S对所述第一集流体1111的厚度a进行限定,以使得b、T、L、S与a之间满足该关系式,从而保证了电芯10在跌落过程中的结构完整性,进而有效避免电芯10因跌落或受到撞击等情况下发生漏液、短路起火等问题,以提高电芯的使用安全性。
另外,本申请实施例还提供了一种电池。所述电池包括壳体(未示出)及所述电芯10。所述电芯10收容于所述壳体内。
以上实施例仅用以说明本申请的技术方案而非限制,尽管参照较佳实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换,而不脱离本申请技术方案的精神和实质。

Claims (10)

  1. 一种电芯,包括电极组件、收容所述电极组件的包装袋及电解液,所述电解液容纳于所述包装袋内,所述电极组件通过阴极极片、隔膜及阳极极片依序卷绕或堆叠而成,所述电芯包括第一封边,部分所述电极组件从所述第一封边穿出,所述阴极极片包括第一集流体及设置于所述第一集流体上的第一活性物质层,其特征在于,
    将一所述阳极极片、与所述阳极极片相邻的一所述阴极极片和与所述阳极极片或所述阴极极片相邻的两层隔膜定义为所述电极组件中的一层,所述第一集流体的厚度a(单位为mm)满足以下公式:
    0.02T/(L+2)≤a≤0.06T/L+b×S/1000,以各参数的数值来计算;
    式中,T为所述电芯的厚度(单位为mm),b为游离的所述电解液的含量(单位为g/Ah),S为所述第一封边的封装强度(单位为N/m),L为所述电极组件的层数。
  2. 如权利要求1所述的电芯,其特征在于,所述电芯的厚度为1mm~12mm。
  3. 如权利要求1所述的电芯,其特征在于,所述第一集流体的厚度为0.005mm~0.03mm。
  4. 如权利要求1所述的电芯,其特征在于,所述游离电解液的含量为0.05g/Ah~1.6g/Ah。
  5. 如权利要求1所述的电芯,其特征在于,所述第一封边的封装强度为0.5N/m~20N/m。
  6. 如权利要求1所述的电芯,其特征在于,所述第一集流体的横向强度为50MPa~300MPa。
  7. 如权利要求1所述的电芯,其特征在于,所述第一集流体的纵向强度为50MPa~300MPa。
  8. 如权利要求1所述的电芯,其特征在于,所述隔膜与阳极极片的粘接力为0.5N/m~40N/m。
  9. 如权利要求1所述的电芯,其特征在于,所述隔膜与阴极极片的粘接力为0.5N/m~80N/m。
  10. 一种电池,包括壳体,其特征在于,所述电池包括如权利要 求1-9中任一项所述的电芯,所述电芯收容于所述壳体内。
PCT/CN2020/078449 2020-03-09 2020-03-09 电芯及具有该电芯的电池 WO2021179129A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202310748627.4A CN116706077A (zh) 2020-03-09 2020-03-09 电芯及具有该电芯的电池
PCT/CN2020/078449 WO2021179129A1 (zh) 2020-03-09 2020-03-09 电芯及具有该电芯的电池
CN202080005319.7A CN112771697B (zh) 2020-03-09 2020-03-09 电芯及具有该电芯的电池
EP20864325.4A EP3907796A4 (en) 2020-03-09 2020-03-09 CELL AND BATTERY WITH THIS CELL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/078449 WO2021179129A1 (zh) 2020-03-09 2020-03-09 电芯及具有该电芯的电池

Publications (1)

Publication Number Publication Date
WO2021179129A1 true WO2021179129A1 (zh) 2021-09-16

Family

ID=75699550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078449 WO2021179129A1 (zh) 2020-03-09 2020-03-09 电芯及具有该电芯的电池

Country Status (3)

Country Link
EP (1) EP3907796A4 (zh)
CN (2) CN112771697B (zh)
WO (1) WO2021179129A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023045100A1 (en) * 2021-09-27 2023-03-30 Medtrum Technologies Inc. Highly integrated analyte detection device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113875083A (zh) * 2020-12-24 2021-12-31 宁德新能源科技有限公司 电池以及应用所述电池的电子装置
CN116111244B (zh) * 2023-04-10 2023-07-14 宁德新能源科技有限公司 电化学装置以及用电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012095A (ja) * 1998-06-19 2000-01-14 Japan Storage Battery Co Ltd 非水電解質電池
JP2000100396A (ja) * 1998-09-18 2000-04-07 Fujimori Kogyo Co Ltd 二次電池
JP2002042775A (ja) * 2000-07-28 2002-02-08 Toshiba Corp 非水電解質二次電池
CN1350342A (zh) * 2000-10-06 2002-05-22 索尼株式会社 非水电解质二次电池
US20120141849A1 (en) * 2010-12-07 2012-06-07 E-One Moli Energy (Canada) Limited Drop and Vibration Resistant Lithium-Ion Battery
CN103094603A (zh) * 2006-08-14 2013-05-08 索尼株式会社 非水电解质二次电池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4297166B2 (ja) * 2006-08-14 2009-07-15 ソニー株式会社 非水電解質二次電池
JP4741526B2 (ja) * 2006-08-14 2011-08-03 ソニー株式会社 非水電解質二次電池
KR20170050884A (ko) * 2015-11-02 2017-05-11 주식회사 코캄 파우치 타입 이차전지
CN106784549A (zh) * 2016-12-20 2017-05-31 上海恩捷新材料科技股份有限公司 一种隔离膜及其制备的抗重物冲击的电化学装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012095A (ja) * 1998-06-19 2000-01-14 Japan Storage Battery Co Ltd 非水電解質電池
JP2000100396A (ja) * 1998-09-18 2000-04-07 Fujimori Kogyo Co Ltd 二次電池
JP2002042775A (ja) * 2000-07-28 2002-02-08 Toshiba Corp 非水電解質二次電池
CN1350342A (zh) * 2000-10-06 2002-05-22 索尼株式会社 非水电解质二次电池
CN103094603A (zh) * 2006-08-14 2013-05-08 索尼株式会社 非水电解质二次电池
US20120141849A1 (en) * 2010-12-07 2012-06-07 E-One Moli Energy (Canada) Limited Drop and Vibration Resistant Lithium-Ion Battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023045100A1 (en) * 2021-09-27 2023-03-30 Medtrum Technologies Inc. Highly integrated analyte detection device

Also Published As

Publication number Publication date
EP3907796A4 (en) 2022-04-06
EP3907796A1 (en) 2021-11-10
CN112771697A (zh) 2021-05-07
CN116706077A (zh) 2023-09-05
CN112771697B (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
WO2021179129A1 (zh) 电芯及具有该电芯的电池
US20220093933A1 (en) Electrode plate, electrochemical apparatus, and apparatus thereof
KR101187767B1 (ko) 세퍼레이터 및 이를 구비한 전기화학소자
CN211700428U (zh) 电芯及具有该电芯的电池
TW523952B (en) Solid electrolyte cell
US10763492B2 (en) Integrated electrode assembly and electrochemical device comprising same
US20190097228A1 (en) Nonaqueous electrolyte secondary battery
US20200303782A1 (en) Nonaqueous electrolyte secondary battery
US10290848B2 (en) Lithium secondary battery
AU2015313241A1 (en) Wound electrode group, electrode group, and non-aqueous electrolyte battery
KR20190021698A (ko) 전극 제조용 슬롯 다이
KR101834035B1 (ko) 전극 조립체, 이를 포함하는 전지셀 및 디바이스
ES2930342T3 (es) Placa de electrodo positivo y dispositivo electroquímico
WO2023028918A1 (zh) 电化学装置及包含该电化学装置的电子装置
WO2021179172A1 (zh) 电芯及具有该电芯的电池
US20230178843A1 (en) Secondary Battery
EP3933968B1 (en) Winding-type nonaqueous electrolyte secondary battery
WO2022224872A1 (ja) リチウム二次電池
WO2022209601A1 (ja) リチウム二次電池
CN211858799U (zh) 电芯及具有该电芯的电池
KR20100032064A (ko) 이차전지용 파우치 및 파우치형 이차전지
KR20150041486A (ko) 전극조립체 및 이를 포함하는 이차전지
JP2017050064A (ja) 非水電解液二次電池の電極積層体
JP2018049758A (ja) 二次電池
CN220400662U (zh) 锂二次电池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020864325

Country of ref document: EP

Effective date: 20210326

NENP Non-entry into the national phase

Ref country code: DE