WO2021177790A1 - 차량용 공조장치 및 그 제어 방법 - Google Patents

차량용 공조장치 및 그 제어 방법 Download PDF

Info

Publication number
WO2021177790A1
WO2021177790A1 PCT/KR2021/002770 KR2021002770W WO2021177790A1 WO 2021177790 A1 WO2021177790 A1 WO 2021177790A1 KR 2021002770 W KR2021002770 W KR 2021002770W WO 2021177790 A1 WO2021177790 A1 WO 2021177790A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
heat exchanger
air conditioning
vehicle
conditioning case
Prior art date
Application number
PCT/KR2021/002770
Other languages
English (en)
French (fr)
Inventor
류재춘
민요찬
박태용
Original Assignee
한온시스템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200028160A external-priority patent/KR20210112740A/ko
Priority claimed from KR1020200028191A external-priority patent/KR20210112755A/ko
Application filed by 한온시스템 주식회사 filed Critical 한온시스템 주식회사
Priority to US17/909,275 priority Critical patent/US11884138B2/en
Priority to CN202180019346.4A priority patent/CN115279603A/zh
Priority to DE112021000495.6T priority patent/DE112021000495T5/de
Publication of WO2021177790A1 publication Critical patent/WO2021177790A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3227Cooling devices using compression characterised by the arrangement or the type of heat exchanger, e.g. condenser, evaporator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3233Cooling devices characterised by condensed liquid drainage means
    • B60H1/32331Cooling devices characterised by condensed liquid drainage means comprising means for the use of condensed liquid, e.g. for humidification or for improving condenser performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H1/00035Air flow details of HVAC devices for sending an air stream of uniform temperature into the passenger compartment
    • B60H1/00057Air flow details of HVAC devices for sending an air stream of uniform temperature into the passenger compartment the air being heated and cooled simultaneously, e.g. using parallel heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H3/00Other air-treating devices
    • B60H3/06Filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H2001/00078Assembling, manufacturing or layout details
    • B60H2001/00085Assembling, manufacturing or layout details of air intake
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H2001/00114Heating or cooling details
    • B60H2001/00135Deviding walls for separate air flows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00207Combined heating, ventilating, or cooling devices characterised by the position of the HVAC devices with respect to the passenger compartment
    • B60H2001/00214Devices in front of the passenger compartment

Definitions

  • the present invention relates to an air conditioner for a vehicle and a method for controlling the same, and more particularly, air and condensed water passing through an evaporator blown through a supply unit are supplied to a heat exchanger side to improve supercooling and overall performance of the heat exchanger during cooling.
  • a typical vehicle air conditioner system includes a compressor for compressing and delivering a refrigerant, a condenser for condensing a high-pressure refrigerant sent from the compressor, an expansion means for throttling the refrigerant condensed in the condenser and liquefied, and the expansion means
  • An evaporator that cools the air discharged into the room due to the endothermic action by the latent heat of evaporation of the refrigerant by evaporating the low-pressure liquid refrigerant throttled by the
  • the evaporator is installed inside the air conditioning case installed inside the vehicle to play a cooling role, that is, the air blown by the blower is cooled by the latent heat of evaporation of the liquid refrigerant circulating in the evaporator while passing through the evaporator and cooled. This is accomplished by discharging into the interior of the vehicle.
  • the interior of the vehicle is heated using a heater core installed inside the air conditioning case and circulating engine coolant, or an electric heating type heater installed inside the air conditioning case.
  • the condenser is installed on the front side of the vehicle to radiate heat while exchanging heat with air.
  • FIG. 1 a cold air passage 11 and a hot air passage 12 inside one air conditioning case 10 ), an evaporator 4 for cooling is installed in the cold air passage 11, and a condenser 2 for heating is installed in the warm air passage 12.
  • an air outlet 15 for supplying air to the inside of the vehicle and an air outlet 16 for discharging air to the outside of the vehicle are formed on the outlet side of the air conditioning case 10 .
  • blowers 20 that operate individually are installed at each inlet side of the cold air passage 11 and the hot air passage 12 .
  • the cold air cooled while passing through the evaporator 4 of the cold air passage 11 is discharged into the vehicle interior through the air outlet 15 to be cooled, and at this time, the condenser ( 2) The warm air heated while passing through is discharged to the outside of the vehicle through the air outlet 16 .
  • the hot air heated while passing through the condenser 2 of the hot air passage 12 is discharged into the vehicle interior through the air outlet 15 to heat, and at this time, the evaporator 4 of the cold air passage 11 ), the cold air cooled while passing through the air outlet 16 is discharged to the outside of the vehicle.
  • the blower 20 is provided in the cold air passage 11 and the hot air passage 12, respectively, and in the air that has passed through the condenser 2 and the evaporator 4 according to the cooling and heating settings As one is to be discharged through the air outlet, there is a problem in that the air outlet 16 provided with the control door is inevitably formed in two places, respectively, and thus the overall size is inevitably increased.
  • the condenser 2 installed inside the air conditioning case has a small size, so the condensing performance is low, so there is a problem in the cooling performance.
  • Patent 1 Republic of Korea Patent Registration No. 10-1251206 (Title of the invention: air conditioner for automobiles)
  • the present invention has been devised to solve the above-described problems, and an object of the present invention is to reduce overall air conditioning consumption power by supplying air and condensed water passing through an evaporator blown through a supply unit to a heat exchanger side, and heat pump system performance An object of the present invention is to provide an air conditioner for a vehicle that can be improved.
  • an object of the present invention is to improve the supercooling and overall performance of the heat exchanger during cooling, so that the cooling performance can be further increased, and when heating, it can be used as an endothermic heat source to increase the heat absorption of the heat exchanger.
  • An object of the present invention is to provide an air conditioner for a vehicle capable of further improving heating performance.
  • the present invention can be utilized as an endothermic heat source during heating by selectively supplying air that has passed through the indoor heat exchanger to the variable heat exchanger side through the supply unit, and can prevent implantation of the variable heat exchanger, resulting in total air conditioning consumption power
  • An object of the present invention is to provide an air conditioner for a vehicle capable of reducing air pollution and improving performance of a heat pump system, and a method for controlling the same.
  • the vehicle air conditioner 1000 includes a compressor 200 , an indoor heat exchanger 120 , a first expansion means 300 , a variable heat exchanger 140 , a second expansion means 150 , and an evaporator 130 .
  • a compressor 200 for supplying the air that has passed through the evaporator 130 and the condensed water generated in the evaporator 130 to the variable heat exchanger 140 side.
  • the vehicle air conditioner 1000 is characterized in that a predetermined area of the variable heat exchanger 140 is positioned lower than the evaporator 130 in the height direction.
  • the vehicle air conditioner 1000 supplies condensed water and air to the side where the refrigerant of the variable heat exchanger 140 is discharged by the supply unit 500 .
  • the vehicle air conditioner 1000 includes a first air conditioning case 110a, the variable heat exchanger 140 provided inside the first air conditioning case 110a, and the first air conditioning case 110a.
  • a variable heat exchanger module (A1) including a fan assembly 161 that is mounted and transmits wind; and a second air conditioning case 110b in communication with the vehicle interior and through which wind for indoor air conditioning flows, a blower 162 provided inside the second air conditioning case 110b to transmit wind, and the evaporator 130 ) and the air conditioning module (A2) including the indoor heat exchanger (120) is characterized in that it is assembled and fixed to each other.
  • the first air conditioning case (110a) is characterized in that the variable heat exchanger (140) is formed in the lower side of the discharge portion 530 for discharging the condensed water.
  • the vehicle air conditioner 1000 is characterized in that the area in which the air blower 162 of the air conditioning module A2 is provided and the variable heat exchanger module A1 are mounted side by side in the vehicle width direction inside the engine room. do it with
  • the supply part 500 is formed from an extension part 510 extending from the second air conditioning case 110b to transport condensed water and air, and the first air conditioning case 110a and an extension part 510, respectively. It is characterized in that it is formed to include a first fastening part 521 and a second fastening part 522 fastened to each other.
  • the extension part 520 includes an inclined surface 511 extending from the second air conditioning case 110b under the evaporator 130 to be inclined downward in the vehicle height direction, and the inclined surface 511 protruding from the inclined surface 511.
  • a predetermined area of the first fastening part 521 is hollow, and the second fastening part 522 protrudes from the extension part 510 , and the first fastening part 521 is It is characterized in that it is inserted and fixed into the variable heat exchanger module (A1) through the.
  • first fastening portion 521 and the second fastening portion 522 is characterized in that a plurality of spaced apart formed in the vehicle width direction.
  • variable heat exchanger module A1 includes a first outdoor air inlet 116 through which outside air is introduced into the first air conditioning case 110a and an engine room air inlet 117 communicating with the engine room, and the first outdoor air It is characterized in that the first control door 191 for controlling the opening and closing of the inlet 116 and the engine room air inlet 117 is formed.
  • the air conditioning module (A2) may include a second outdoor air inlet 114 through which outside air is introduced into the second air conditioning case 110b and a bet inlet 115 through which bet air is introduced; It characterized in that it comprises a second control door (192) for controlling the opening and closing of the second outdoor air inlet (114) and the inside air inlet (115).
  • the air conditioning module (A2) is characterized in that the filter 180 is further provided on the downstream side of the second control door 192 in the air flow direction.
  • the air conditioning module (A2) is characterized in that the auxiliary heating heat exchanger (170) is further provided on the downstream side of the indoor heat exchanger (120) in the air flow direction.
  • the supply unit 500 selectively supplies the air that has passed through the indoor heat exchanger 120 to the variable heat exchanger 140 .
  • the vehicle air conditioner 1000 supplies air that has passed through the indoor heat exchanger 120 through the supply unit 500 and uses it as a heat sink when an idea occurs in the heating or variable heat exchanger 140 . do it with
  • the vehicle air conditioner 1000 includes a first air conditioning case 110a, the variable heat exchanger 140 provided inside the first air conditioning case 110a, and the first air conditioning case 110a.
  • the supply unit 500 includes a hollow hole 515 in which a predetermined area of the second air conditioning case 110b is hollow, and a third control door 530 for controlling the opening and closing of the hollow hole 515 .
  • a communication part 516 that communicates with the hollow hole 515 and through which the air that has passed through the indoor heat exchanger 120 is transferred, and is formed from the first air conditioning case 110a and the communication part 516, respectively. It is characterized in that it is formed to include a first fastening part 521 and a second fastening part 522 to be fastened.
  • control method using the vehicle air conditioner 1000 may include a determining step (S10) of determining whether the third control door 530 needs to be opened; and opening the third control door 530 (S20); It is characterized in that it includes.
  • the determination step (S10) is characterized in that it is determined that the opening of the third control door 530 is necessary when the heating setting is confirmed.
  • the determining step (S10) may include: checking whether the outside temperature is within a predetermined temperature range (S11); and confirming whether the measured humidity is above a certain humidity (S12); Including, characterized in that it is determined that the opening of the third control door (530) is necessary.
  • the air and condensed water passing through the evaporator blown through the supply unit are supplied to the heat exchanger side, thereby reducing the overall air conditioning consumption power and improving the performance of the heat pump system.
  • the air conditioner for a vehicle of the present invention can improve the supercooling and overall performance of the heat exchanger during cooling, thereby further enhancing the cooling performance, and can be used as a heat absorbing heat source during heating to reduce the heat absorption of the heat exchanger.
  • the heating performance can be further improved by raising it higher.
  • the supply unit supplies condensed water and air to the side where the refrigerant that has passed through the heat exchanger on the lower side of the heat exchanger is discharged to induce supercooling during cooling, and a plurality of fastening units are formed spaced apart in the vehicle width direction. Since condensed water and air can be uniformly supplied to the lower area of the heat exchanger, the effect of improving the heat pump system can be further increased.
  • the vehicle air conditioner of the present invention has an advantage of having a simple structure in which the coupling parts are assembled with each other through the assembly of the heat exchanger module and the air conditioning module.
  • the vehicle air conditioner and its control method of the present invention can be utilized as an endothermic heat source during heating by selectively supplying air that has passed through the indoor heat exchanger to the variable heat exchanger through a supply unit, and the idea of a variable heat exchanger This has the advantage of reducing the overall air conditioning consumption power and improving the performance of the heat pump system.
  • FIG. 1 is a view showing a conventional vehicle heat pump system.
  • FIG. 2 is a perspective view of an air conditioner for a vehicle according to a first embodiment of the present invention
  • 3 to 5 are exploded perspective views in different directions of the vehicle air conditioner according to the first embodiment of the present invention.
  • 6 and 7 are cross-sectional views in the AA' direction and the BB' direction shown in FIG. 2;
  • FIG. 8 is a partially cut-away perspective view illustrating a supply part of an air conditioner for a vehicle according to a first embodiment of the present invention
  • FIGS. 9A and 9B are views illustrating a heat exchanger of an air conditioner for a vehicle according to a first embodiment of the present invention
  • FIG. 10 is a view showing an example of application of the heat pump system of the vehicle air conditioner according to the first embodiment of the present invention.
  • FIG. 11A, 11B, and 12 are views illustrating a cooling state of an air conditioner for a vehicle according to a first embodiment of the present invention
  • FIG. 13 and 14 are views showing a heating state of the air conditioner for a vehicle according to the first embodiment of the present invention.
  • FIG. 15 is a cross-sectional view taken along AA′ of FIG. 2 showing an air conditioner for a vehicle according to a second embodiment of the present invention
  • 16 is a schematic view showing an air conditioner for a vehicle according to a second embodiment of the present invention.
  • FIG. 17 is a view showing a cooling state of an air conditioner for a vehicle according to a second embodiment of the present invention.
  • FIG. 18 is a view showing a heating state of an air conditioner for a vehicle according to a second embodiment of the present invention.
  • 19 and 20 are views each showing a method for controlling an air conditioner for a vehicle according to a second embodiment of the present invention.
  • FIGS. 3 to 5 are exploded perspective views in different directions of the air conditioner for a vehicle according to the first embodiment of the present invention
  • FIGS. 6 and 7 is a cross-sectional view in the AA' direction and BB' direction shown in FIG. 2
  • FIG. 8 is a partially cut-away perspective view showing the supply part of the vehicle air conditioner according to the first embodiment of the present invention
  • FIGS. 9A and 9B are views of the present invention It is a view showing a heat exchanger of the air conditioner for a vehicle according to the first embodiment
  • FIG. 10 is a view showing an application example of the heat pump system of the air conditioner for a vehicle according to the first embodiment of the present invention.
  • the vehicle air conditioner 1000 of the present invention includes a variable heat exchanger 140 , an evaporator 130 , an indoor heat exchanger 120 , and a supply unit 500 .
  • variable heat exchanger 140 condenses the refrigerant according to the cooling setting or evaporates the refrigerant according to the heating setting. That is, the variable heat exchanger 140 is not configured to cool or heat air for actual cooling and heating, but condenses the refrigerant supplied to the evaporator 130 according to the cooling setting or the indoor heat exchange according to the heating setting. The refrigerant supplied to the unit 120 is evaporated. The flow of the refrigerant according to the cooling and heating settings of the actual heat pump system and the change of the refrigerant as it passes through each configuration will be described again below.
  • the evaporator 130 cools the air discharged into the vehicle interior.
  • a refrigerant in a low-temperature, low-pressure, wet-saturated state is supplied to the evaporator 130 , and the air is cooled while passing through the evaporator 130 and discharged into the vehicle interior.
  • the refrigerant is not supplied to the evaporator 130 , so that the temperature does not change even if the air passes through the evaporator 130 .
  • the indoor heat exchanger 120 is provided at the rear side of the evaporator 130 in the air conditioning wind flow direction for indoor air conditioning to heat the air discharged into the vehicle interior. That is, the indoor heat exchanger 120 is a configuration for heating, and by controlling the flow of the air conditioning wind passing through the indoor heat exchanger 120 by the temp door 110d, cooling and heating are controlled.
  • variable heat exchanger 140, the evaporator 130, and the indoor heat exchanger 120 may be provided inside the air conditioning case for configuring the vehicle air conditioner 1000, and in particular, the present invention relates to the first air conditioning case ( 110a) and may have a form including the second air conditioning case 110b, a detailed description will be given later.
  • the supply unit 500 is configured to supply the air and condensed water that have passed through the evaporator 130 to the variable heat exchanger 140 .
  • the variable heat exchanger 140 has a "U"-shaped flow, and the supply unit 500 transfers the air and condensate that have passed through the evaporator 130 to a certain area below the variable heat exchanger 140 . It is preferable to be formed in a position to supply to. In other words, air and condensed water are supplied to the lower side of the variable heat exchanger 140 on the side where the refrigerant is discharged by the supply unit 500 and heat exchange with the refrigerant before it is discharged, so that the effect can be further enhanced. It is desirable to make it possible to further increase the supercooling.
  • FIG. 9A and 9B are views showing an example of the variable heat exchanger 140.
  • a pair of header tanks 143 are provided to be spaced apart from each other by a certain distance on the upper and lower sides, and a plurality of tubes ( 145) connects them, and a fin 146 is interposed therebetween, in which the refrigerant introduced through the upper inlet pipe 141 is moved downward through the plurality of tubes 145, and the lower outlet pipe ( 142) showed the form of discharge.
  • FIG. 9B shows an example in which a pair of header tanks 143 are provided to be spaced apart from each other by a predetermined distance on the left and right sides of the drawing.
  • the right header tank 143 in which the inlet pipe 141 and the outlet pipe 142 are formed is partitioned in the height direction by the baffle 144 .
  • the refrigerant introduced into the upper region of the right header tank 143 through the inlet pipe 141 is moved to the left header tank 143 through some of the tubes 145 , and then goes back to the right header tank through the remaining tubes 145 . (143) is moved to the lower region and discharged through the outlet pipe (142).
  • the reference numeral A140 in FIGS. 9A and 9B denotes a supply region to which the air and condensed water that have passed through the evaporator 130 through the supply unit 500 are supplied, and the supply region A140 of the supply unit 500 . is located below the variable heat exchanger (140). In this case, the supply region of the supply unit 500 may be formed in a range of 0 to 35% in the height direction of the entire variable heat exchanger 140 .
  • the vehicle air conditioner 1000 of the present invention uses condensed water generated in the evaporator 130 and discarded to the outside. through the variable heat exchanger 140, the efficiency of the entire heat pump system can be increased.
  • the cooling state it is possible to increase the degree of sub-cooling of the variable heat exchanger 140 by using low-temperature condensed water and air toward the variable heat exchanger 140 to increase the cooling performance, thereby reducing the cooling consumption power. can be lowered
  • the condensed water supplied through the supply unit 500 is 10° C. or less, and the air is 5° C. or less.
  • variable heat exchanger 140 In addition, in the heating state, air and condensed water of high temperature (higher than the outside temperature) are supplied to the variable heat exchanger 140 toward the variable heat exchanger 140 to be used as a heat source for absorbing heat of the variable heat exchanger 140 . have.
  • the air passing through the evaporator 130 is supplied with air (better) passing through the vehicle interior, the air passing through the evaporator 130 is usually 10°C higher than the outside temperature, and using this heat Heating performance may be improved by increasing the amount of heat absorbed by the variable heat exchanger 140 .
  • the vehicle air conditioner 1000 of the present invention uses the supply unit 500 to convert the air that has passed through the evaporator 130 and the condensed water generated in the evaporator 130 to the variable heat exchanger 140 . If supplied, various modifications can be made, and below, an example in which the entire vehicle air conditioner 1000 can be formed by assembling the variable heat exchanger module A1 and the air conditioning module A2 will be described.
  • variable heat exchanger module A1 includes a first air conditioning case 110a, the heat exchanger 140, and a fan assembly 161.
  • the first air conditioning case 110a is a body forming the variable heat exchanger module A1, the variable heat exchanger 140 is provided therein, and the fan assembly 161 is mounted on one side.
  • the first air conditioning case 110a includes a first outdoor air inlet 116 communicating with the outside in the first air conditioning case 110a, an engine room air inlet 117 communicating with the engine room, and the first outdoor air inlet ( 116) and a first control door 191 for controlling the opening and closing of the engine room air inlet 117 is formed.
  • the first control door 191 controls the air flow passing through the variable heat exchanger 140 by controlling the opening and closing of the first outdoor air inlet 116 and the engine room air inlet 117 according to cooling and heating settings. do.
  • variable heat exchanger module (A1) of the present invention supplies air inside the engine room to the inside of the first air conditioning case 110a by the operation of the first control door 191 during maximum heating to provide a variable heat exchanger ( 140) has an advantage in that the heating performance of the indoor heat exchanger 120 can be further improved by increasing the evaporation performance (heat absorption amount).
  • the condensed water supplied to the variable heat exchanger 140 through the supply unit 500 is discharged to the lower side of the region where the variable heat exchanger 140 is provided so that the condensed water is discharged.
  • a portion 530 is formed.
  • the fan assembly 161 is provided in the first air conditioning case 110a and is rotated according to the heating/cooling setting to form a flow passing through the variable heat exchanger 140.
  • the air conditioning module A2 includes a second air conditioning case 110b, a blower 162, the evaporator 130, and an indoor heat exchanger 120.
  • the second air conditioning case 110b is a body assembled with the first air conditioning case 110a to form the vehicle air conditioner 1000, and the blower unit 162, the evaporator 130, and the indoor heat exchanger 120 ) is built in.
  • the second air conditioning case 110b includes a second outdoor air inlet 114 through which outside air is introduced and a bet inlet 115 through which the bet is introduced; and a second control door 192 for controlling the opening and closing of the second outdoor air inlet 114 and the indoor air inlet 115 .
  • the inside of the second air conditioning case 110b is provided with a temp door 110d for mixing the air that has passed through the evaporator 130 through the indoor heat exchanger 120 according to the temperature setting, and is provided in the vehicle interior.
  • Vents 111, 112, and 113 through which air is discharged into the vehicle interior are formed on the side through which the air is discharged.
  • the vents 111, 112, and 113 on the side through which air is discharged are a face vent 111, a floor vent 113, a defrost vent whose opening degree is controlled by each door 111d, 112d, and 113d. (112).
  • the area in which the air blower 162 of the air conditioning module A2 is provided and the variable heat exchanger module A1 are mounted side by side in the vehicle width direction inside the engine room. do. That is, the region in which the air blower 162 of the air conditioning module A2 is provided and the air flows (the region in which the second outdoor air inlet 114 and the indoor air inlet 115 are formed) is the variable heat exchanger module A1. ) and it is desirable to be positioned side by side in the engine room.
  • the blower 162 is configured to be provided inside the second air conditioning case 110b, and blows air for indoor air conditioning of the vehicle.
  • a filter 180 may be further provided on the rear side of the second control door 192 in the air flow direction, which is preferably provided to be replaceable.
  • an auxiliary heating heat exchanger 170 may be further provided on the rear side of the indoor heat exchanger 120 in the air flow direction.
  • the auxiliary heating heat exchanger 170 is configured to perform heating together with the indoor heat exchanger 120 , and various forms including a positive temperature coefficient (PTC) heating means may be used.
  • PTC positive temperature coefficient
  • the supply part 500 includes an extension part 510 so as to facilitate manufacturing by assembling the first air conditioning case 110a of the variable heat exchanger module A1 and the second air conditioning case 110b of the air conditioning module A2. It may include a first fastening part 521 and a second fastening part 522 .
  • the extension part 510 and the second fastening part 522 may be formed in the second air conditioning case 110b, and the first fastening part 521 may be formed in the first air conditioning case 110a.
  • the extension portion 510 is a portion to which the air and condensed water that have passed through the evaporator 130 are transferred while extending under the second air conditioning case 110b.
  • the first fastening part 521 is formed in the first air conditioning case 110a, and the second fastening part 522 is formed in the extension part 510 of the second air conditioning case 110b and fastened to each other.
  • the condensed water and air transferred through the extension part 510 are supplied to the variable heat exchanger 140 side.
  • the first fastening part 521 has a hollow shape in a certain area of the first air conditioning case 110a
  • the second fastening part 522 has a shape that protrudes from the extended part 510 long. It has a form in which it is inserted and fixed into the first air conditioning case 110a through the first fastening part 521, and the supply part 500 by assembling the first air conditioning case 110a and the second air conditioning case 110b. ), it is desirable to make it easy to form.
  • the extension part 510 supports the evaporator 130 and the second air conditioning case 110b under the evaporator 130 so as to easily supply condensed water and air to the variable heat exchanger 140 side.
  • an inclined surface 511 extending from and inclined downward in the vehicle height direction; It is preferable to have a shape including a first inclined portion 513 and a second inclined portion 514 connecting the support portion 512 and the inclined surface 511 to be inclined on both sides of the 512, respectively.
  • the inclined surface 511 is a portion formed to be inclined downward in the direction in which the variable heat exchanger 140 is provided and in the vehicle height direction toward the lower side of the evaporator 130 .
  • the support part 512 may protrude from the inclined surface 511 to support the evaporator 130 and may be formed in plurality in the vehicle width direction.
  • the first inclined part 513 and the second inclined part 514 support both sides of the support part 512 in the vehicle width direction, and connect the support part 512 and the inclined surface 511 to be inclined, respectively, so that the evaporator ( 130) is configured to transfer the condensed water generated in the variable heat exchanger 140 to the side.
  • a plurality of the first fastening parts 521 and the second fastening parts 522 may be formed in the vehicle width direction according to the number of the support parts 512 , and accordingly, the variable heat exchanger 140 in the vehicle width direction. ) condensed water and the air passing through the evaporator 130 can be easily supplied to the entire area of the lower side.
  • FIG. 10 is a view showing an example of application of the heat pump system of the vehicle air conditioner according to the first embodiment of the present invention.
  • the heat pump system 1000 includes the indoor heat exchanger 120, the evaporator 130, the variable heat exchanger 140, the blower 161 and the bidirectional fan 162 together with the compressor 200, the first It includes a first expansion means 300 and a second expansion means 150 .
  • the compressor 200 is installed on the refrigerant circulation line (L1) through which the refrigerant is circulated to compress and discharge the refrigerant.
  • the indoor heat exchanger 120 is installed inside the second air conditioning case 110b to exchange heat with the air inside the air conditioning case 110, that is, the air conditioning wind and the refrigerant discharged from the compressor 200, and condensed. Heating is performed by supplying air conditioning air heated as a result of this into the room.
  • the evaporator 130 is installed inside the second air conditioning case 110b to exchange heat between the air inside the second air conditioning case 110b and the refrigerant supplied to the compressor 200, and to provide a low-pressure liquid refrigerant. Cooling is performed by heating the air supplied to the room by evaporation.
  • variable heat exchanger 140 is installed inside the first air conditioning case 110a to exchange heat with the refrigerant circulating in the refrigerant circulation line L1 and air.
  • the variable heat exchanger 140 condenses the refrigerant according to cooling or evaporates the refrigerant according to heating.
  • the first expansion means 300 is installed in the refrigerant circulation line L1 at the outlet side of the indoor heat exchanger 120 to selectively expand the refrigerant discharged from the indoor heat exchanger 120.
  • the refrigerant is condensed in the indoor heat exchanger (120), and the variable heat exchanger (140) operates to evaporate the refrigerant, thereby throttling the refrigerant in a low-temperature and low-pressure state.
  • the first expansion means 300 bypasses the refrigerant without throttling.
  • the second expansion means 150 is installed in the refrigerant circulation line L1 at the inlet side of the evaporator 130 to expand the refrigerant supplied to the evaporator 130 .
  • the second expansion means 150 throttles the refrigerant condensed while passing through the variable heat exchanger 140 to a low-temperature and low-pressure state, and is supplied to the evaporator 130 .
  • the second expansion means 150 bypasses the refrigerant during heating without throttling.
  • the vehicle heat pump system 1000 is installed in the refrigerant circulation line L1 at the inlet side of the first expansion means 300 from the outside of the first air conditioning case 110a and the second air conditioning case 110b to install the battery.
  • a water-cooled condenser 400 that exchanges heat with cooling water for cooling may be further provided.
  • the water-cooled condenser 400 is a part where the cooling water flows along the cooling water circulation line (L2) and heat exchange occurs during cooling. 130) condenses the refrigerant supplied to it.
  • a radiator 3000 for cooling the cooling water and a cooling water pump (not shown) for circulating the cooling water are provided in the cooling water circulation line L2, and air is blown to the radiator 3000 adjacent to the radiator 3000
  • a cooling fan 4000 is provided.
  • the water-cooled condenser 400 includes a gas-liquid separator 410 .
  • the refrigerant is condensed by the water-cooled condenser 400
  • the liquid refrigerant separated by the gas-liquid separator 410 is the variable heat exchanger. It can be supercooled by 140, thereby increasing the condensing performance to further increase the cooling performance of the evaporator 130.
  • a bypass line L3 is formed on the refrigerant circulation line L1 to bypass the second expansion means 150 and the evaporator 130 , and the bypass line L3 is formed.
  • a non-return valve V for preventing a reverse flow of the refrigerant may be further provided on the line L3.
  • the bypass line L3 is a configuration in which the refrigerant passing through the variable heat exchanger 140 without passing through the second expansion means 150 and the evaporator 130 is supplied to the compressor 200 during heating. . That is, unnecessary components (the second expansion means 150 and the evaporator 130) are omitted during heating to prevent unnecessary flow rate reduction and pressure drop.
  • 11A, 11B, and 12 are views showing a cooling state of an air conditioner for a vehicle according to a first embodiment of the present invention and a view showing a state of a heat pump system;
  • the refrigerant compressed by the compressor 200 passes through the indoor heat exchanger 120 without heat exchange (the temp door 110d blocks the flow through the indoor heat exchanger 120) and condenses the high-pressure refrigerant discharged from the compressor 200 while passing through the water-cooled condenser 400 and the variable heat exchanger 140 .
  • the first expansion means 300 bypasses the refrigerant.
  • the condensed refrigerant is throttled by the second expansion means 150 and supplied to the evaporator 130, and as the low-pressure liquid refrigerant throttled in the evaporator 130 exchanges heat with air, heat absorption action by latent heat of evaporation of the refrigerant to cool the air discharged into the room.
  • FIG. 13 and 14 are views showing a heating state of the vehicle air conditioner 100 according to the first embodiment of the present invention and a view showing a state of a heat pump system.
  • the water-cooled condenser 400 also does not flow along the cooling water circulation line L2, so the refrigerant moves without change, and is throttled by the first expansion means 300 and supplied to the variable heat exchanger 140 and evaporated. .
  • the refrigerant evaporated while passing through the variable heat exchanger 140 is supplied to the compressor 200 through the bypass line L3 without passing through the second expansion means 150 and the evaporator 130 .
  • the vehicle air conditioner 100 of the present invention is an air conditioner 100 used in a heat pump system, that is, an air conditioning system capable of cooling and heating with one refrigerant line. Heating uses a high-temperature refrigerant compressed by the compressor 200, and cooling uses evaporation of the refrigerant. At this time, the deterioration of the condensing performance during cooling, which is a chronic problem of the heat pump system, is solved by the variable heat exchanger 140 condensing the refrigerant together with the indoor heat exchanger 120 .
  • the variable heat exchanger 140 is mounted on the first air conditioning case 110a.
  • FIG. 15 is a cross-sectional view illustrating an air conditioner for a vehicle according to a second embodiment of the present invention, and is a cross-sectional view taken in the AA′ direction of FIG. 2 .
  • FIG. 16 is a schematic diagram showing an air conditioner for a vehicle according to a second embodiment of the present invention.
  • a perspective view, an exploded perspective view, a schematic view, a cross-sectional view of a variable heat exchanger, and a heat pump system application example of the vehicle air conditioner according to the second embodiment of the present invention are shown in Figs. 10 may be the same.
  • the vehicle air conditioner according to the second embodiment of the present invention includes a variable heat exchanger 140 , an evaporator 130 , an indoor heat exchanger 120 , and a supply unit 500 .
  • variable heat exchanger 140 condenses the refrigerant according to the cooling setting or evaporates the refrigerant according to the heating setting. That is, the variable heat exchanger 140 is not configured to cool or heat air for actual cooling and heating, but condenses the refrigerant supplied to the evaporator 130 according to the cooling setting or the indoor heat exchange according to the heating setting. The refrigerant supplied to the unit 120 is evaporated. The flow of the refrigerant according to the cooling and heating settings of the actual heat pump system and the change of the refrigerant as it passes through each configuration will be described again below.
  • the evaporator 130 cools the air discharged into the vehicle interior.
  • a refrigerant in a low-temperature, low-pressure, wet-saturated state is supplied to the evaporator 130 , and the air is cooled while passing through the evaporator 130 and discharged into the vehicle interior.
  • the refrigerant is not supplied to the evaporator 130 , so that the temperature does not change even if the air passes through the evaporator 130 .
  • the indoor heat exchanger 120 is provided at the rear side of the evaporator 130 in the air conditioning wind flow direction for indoor air conditioning to heat the air discharged into the vehicle interior. That is, the indoor heat exchanger 120 is a configuration for heating, and by controlling the flow of the air conditioning wind passing through the indoor heat exchanger 120 by the temp door 110d, cooling and heating are controlled.
  • variable heat exchanger 140, the evaporator 130, and the indoor heat exchanger 120 may be provided inside an air conditioning case for constituting an air conditioner for a vehicle. And it may have a form including the second air conditioning case (110b), a detailed description will be described later.
  • the supply unit 500 is configured to selectively supply the air that has passed through the indoor heat exchanger 120 to the variable heat exchanger 140 .
  • the variable heat exchanger 140 has a “U”-shaped flow, and the supply unit 500 supplies air that has passed through the indoor heat exchanger 120 to a predetermined area below the variable heat exchanger 140 . It is preferable to be formed in a position to supply to. In other words, the air is supplied to the lower side of the variable heat exchanger 140 , which is the side where the refrigerant is discharged, by the supply unit 500 , and heat exchange with the refrigerant before being discharged can further enhance the effect.
  • variable heat exchanger 140 for example, a pair of header tanks 143 are provided to be spaced apart from each other by a predetermined distance on the upper side and the lower side, and a plurality of tubes 145 connect them, and a fin 146 is interposed therebetween.
  • the refrigerant introduced through the upper inlet pipe 141 may be moved downward through the plurality of tubes 145 , and may be discharged through the lower outlet pipe 142 .
  • a pair of header tanks 143 may be provided to be spaced apart by a predetermined distance to the left and right sides of the drawing, and at this time, the right side in which the inlet pipe 141 and the outlet pipe 142 are formed.
  • the header tank 143 is partitioned in the height direction by the baffle 144 .
  • the refrigerant introduced into the upper region of the right header tank 143 through the inlet pipe 141 moves to the left header tank 143 through some of the tubes 145 and goes back to the right header tank through the remaining tubes 145 . (143) is moved to the lower region and discharged through the outlet pipe (142).
  • the reference numeral A140 denotes a supply region to which air that has passed through the indoor heat exchanger 120 through the supply unit 500 is supplied, and the supply region A140 of the supply unit 500 is a variable heat exchanger 140 . ) is located below the In this case, the supply region of the supply unit 500 may be formed in a range of 0 to 35% in the height direction of the entire variable heat exchanger 140 .
  • a high temperature (higher than the outside temperature) toward the variable heat exchanger 140 . of air may be supplied to the variable heat exchanger 140 to be used as a heat source for absorbing heat of the variable heat exchanger 140 .
  • the air passing through the indoor heat exchanger 120 is supplied with air that has passed through the vehicle interior, the air passing through the indoor heat exchanger 120 is usually 10°C higher than the outside temperature, and this Heating performance can be improved by increasing the amount of heat absorbed by the variable heat exchanger 140 using heat.
  • the air conditioner for a vehicle of the present invention can be variously modified and implemented if the air that has passed through the indoor heat exchanger 120 is supplied to the variable heat exchanger 140 using the supply unit 500 in any form.
  • the entire vehicle air conditioner can be formed by assembling the variable heat exchanger 140 module A1 and the air conditioning module A2 will be described.
  • variable heat exchanger 140 module A1 includes a first air conditioning case 110a, the variable heat exchanger 140, and a fan assembly 161.
  • the first air conditioning case 110a is a body forming the variable heat exchanger 140 module A1, the variable heat exchanger 140 is provided therein, and the fan assembly 161 is mounted on one side.
  • the first air conditioning case 110a includes a first outdoor air inlet 116 communicating with the outside in the first air conditioning case 110a, an engine room air inlet 117 communicating with the engine room, and the first outdoor air inlet ( 116) and a first control door 191 for controlling the opening and closing of the engine room air inlet 117 is formed.
  • the first control door 191 controls the air flow passing through the variable heat exchanger 140 by controlling the opening and closing of the first outdoor air inlet 116 and the engine room air inlet 117 according to cooling and heating settings. do.
  • variable heat exchanger 140 module (A1) of the present invention is variable by supplying air inside the engine room to the inside of the first air conditioning case 110a by the operation of the first control door 191 during maximum heating.
  • the heating performance of the indoor heat exchanger 120 can be further improved by increasing the evaporation performance (heat absorption amount) of the heat exchanger 140 .
  • the fan assembly 161 is provided in the first air conditioning case 110a and is rotated according to the heating/cooling setting to form a flow passing through the variable heat exchanger 140.
  • the air conditioning module A2 includes a second air conditioning case 110b, a blower 162, the evaporator 130, and an indoor heat exchanger 120.
  • the second air conditioning case 110b is a body that is assembled with the first air conditioning case 110a to form an air conditioner for a vehicle.
  • the blower 162, the evaporator 130, and the indoor heat exchanger 120 are is built-in
  • the second air conditioning case (110b) includes a second outdoor air inlet 114 through which the outside air is introduced and a bet inlet 115 through which the bet is introduced; and a second control door 192 for controlling the opening and closing of the second outdoor air inlet 114 and the inside air inlet 115 .
  • the inside of the second air conditioning case 110b is provided with a temp door 110d for mixing the air that has passed through the evaporator 130 through the indoor heat exchanger 120 according to the temperature setting, and is provided in the vehicle interior.
  • Vents 111, 112, and 113 through which air is discharged into the vehicle interior are formed on the side through which the air is discharged.
  • the vents 111, 112, and 113 on the side through which the air is discharged are a face vent 111, a floor vent 113, and a defrost vent whose opening degree is controlled by each door 111, 112d, 113d. (112).
  • the area in which the fan assembly 161 of the air conditioning module A2 is provided and the variable heat exchanger 140 module A1 are mounted side by side in the vehicle width direction inside the engine room. do. That is, the region in which the air blower 162 of the air conditioning module A2 is provided to flow air (the region in which the second outdoor air inlet 114 and the internal air inlet 115 are formed) is the variable heat exchanger 140 . ) It is preferable to be positioned side by side with the module (A1) inside the engine room.
  • the blower 162 is configured to be provided inside the second air conditioning case 110b, and blows air for indoor air conditioning of the vehicle.
  • a filter 180 may be further provided on the rear side of the second control door 192 in the air flow direction, which is preferably provided to be replaceable.
  • an auxiliary heating heat exchanger 170 may be further provided on the rear side of the indoor heat exchanger 120 in the air flow direction.
  • the auxiliary heating heat exchanger 170 is configured to perform heating together with the indoor heat exchanger 120 , and various forms including a positive temperature coefficient (PTC) heating means may be used.
  • PTC positive temperature coefficient
  • the supply unit 500 has a hollow hole ( 511 ), a third control door 530 , an extension part, a first fastening part 521 , and a second fastening part 522 may be included.
  • the hollow hole 511, the third control door 530, the extension and the second fastening part 522 are formed in the second air conditioning case 110b, and the first fastening part 521 is the first air conditioning unit. It may be formed in the case 110a.
  • the hollow hole 511 is a part in which a predetermined area of the second air conditioning case 110b on the rear side of the indoor heat exchanger 120 is hollow, and the third control door 530 ) is a part formed in the hollow hole 511 to control the opening and closing of the hollow hole 511, and the extension part extends below the second air conditioning case 110b and the air that has passed through the indoor heat exchanger 120 is the transferred part.
  • the first fastening part 521 is formed on the first air conditioning case 110a, and the second fastening part 522 is formed on the extension part 510 of the second air conditioning case 110b, respectively.
  • the air that is fastened and transferred through the hollow hole 511 and the extension is supplied to the variable heat exchanger 140 side.
  • the first fastening part 521 has a hollow shape in a predetermined area of the first air conditioning case 110a
  • the second fastening part 522 has a shape elongated from the extension and protrudes from the extension.
  • the supply unit 500 is formed by assembling the first air conditioning case 110a and the second air conditioning case 110b by being inserted and fixed into the first air conditioning case 110a through the fastening part 521. It is desirable to make this easy.
  • a plurality of the first fastening parts 521 and the second fastening parts 522 may be formed in the vehicle width direction. Accordingly, the indoor heat exchanger is provided in the entire area under the variable heat exchanger 140 in the vehicle width direction. Air passing through 120 can be easily supplied.
  • the air conditioner 100 can be applied to a vehicle heat pump system, and the heat pump system includes the indoor heat exchanger 120 , the evaporator 130 , and the variable heat exchange as described above. It includes a compressor 200 , a first expansion means 300 , and a second expansion means 150 together with the machine 140 , the blower 161 , and the bidirectional fan 162 .
  • the compressor 200 is installed on the refrigerant circulation line (L1) through which the refrigerant is circulated to compress and discharge the refrigerant.
  • the indoor heat exchanger 120 is installed inside the second air conditioning case 110b to exchange heat with the air inside the air conditioning case 110, that is, the air conditioning wind and the refrigerant discharged from the compressor 200, and condensed. Heating is performed by supplying air conditioning air heated as a result of this into the room.
  • the evaporator 130 is installed inside the second air conditioning case 110b to exchange heat between the air inside the second air conditioning case 110b and the refrigerant supplied to the compressor 200, and to provide a low-pressure liquid refrigerant. Cooling is performed by heating the air supplied to the room by evaporation.
  • variable heat exchanger 140 is installed inside the first air conditioning case 110a to exchange heat with the refrigerant circulating in the refrigerant circulation line L1 and air.
  • the variable heat exchanger 140 condenses the refrigerant according to cooling or evaporates the refrigerant according to heating.
  • the first expansion means 300 is installed in the refrigerant circulation line L1 at the outlet side of the indoor heat exchanger 120 to selectively expand the refrigerant discharged from the indoor heat exchanger 120.
  • the refrigerant is condensed in the indoor heat exchanger (120), and the variable heat exchanger (140) operates to evaporate the refrigerant, thereby throttling the refrigerant in a low-temperature and low-pressure state.
  • the first expansion means 300 bypasses the refrigerant without throttling.
  • the second expansion means 150 is installed in the refrigerant circulation line L1 at the inlet side of the evaporator 130 to expand the refrigerant supplied to the evaporator 130 .
  • the second expansion means 150 throttles the refrigerant condensed while passing through the variable heat exchanger 140 to a low-temperature and low-pressure state, and is supplied to the evaporator 130 .
  • the second expansion means 150 bypasses the refrigerant during heating without throttling.
  • the vehicle heat pump system 1000 is installed in the refrigerant circulation line L1 at the inlet side of the first expansion means 300 from the outside of the first air conditioning case 110a and the second air conditioning case 110b to install the battery.
  • a water-cooled condenser 400 that exchanges heat with cooling water for cooling may be further provided.
  • the water-cooled condenser 400 is a part where the cooling water flows along the cooling water circulation line (L2) and heat exchange occurs during cooling. 130) condenses the refrigerant supplied to it.
  • a radiator 3000 for cooling the cooling water and a cooling water pump (not shown) for circulating the cooling water are provided in the cooling water circulation line L2, and air is blown to the radiator 3000 adjacent to the radiator 3000
  • a cooling fan 4000 is provided.
  • the water-cooled condenser 400 includes a gas-liquid separator 410 .
  • the refrigerant is condensed by the water-cooled condenser 400
  • the liquid refrigerant separated by the gas-liquid separator 410 is the variable heat exchanger. It can be supercooled by 140, thereby increasing the condensing performance to further increase the cooling performance of the evaporator 130.
  • a bypass line L3 is formed on the refrigerant circulation line L1 to bypass the second expansion means 150 and the evaporator 130 , and the bypass line L3 is formed.
  • a non-return valve V for preventing a reverse flow of the refrigerant may be further provided on the line L3.
  • the bypass line L3 is a configuration in which the refrigerant passing through the variable heat exchanger 140 without passing through the second expansion means 150 and the evaporator 130 is supplied to the compressor 200 during heating. . That is, unnecessary components (the second expansion means 150 and the evaporator 130) are omitted during heating to prevent unnecessary flow rate reduction and pressure drop.
  • FIG. 17 is a view showing a cooling state of an air conditioner for a vehicle according to a second embodiment of the present invention and a view showing a state of a heat pump system.
  • the refrigerant compressed by the compressor 200 passes through the indoor heat exchanger 120 without heat exchange (the temp door 110d blocks the flow through the indoor heat exchanger 120) and condenses the high-pressure refrigerant discharged from the compressor 200 while passing through the water-cooled condenser 400 and the variable heat exchanger 140 .
  • the first expansion means 300 bypasses the refrigerant.
  • the condensed refrigerant is throttled by the second expansion means 150 and supplied to the evaporator 130, and as the low-pressure liquid refrigerant throttled in the evaporator 130 exchanges heat with air, heat absorption action by latent heat of evaporation of the refrigerant to cool the air discharged into the room.
  • the temp door 110d is controlled to a position that blocks air movement toward the indoor heat exchanger 100b and the third control door 530 is opened.
  • the third The control door 530 may be closed.
  • FIG. 18 is a view showing a heating state of the vehicle air conditioner 100 according to the second embodiment of the present invention and a view showing the state of the heat pump system.
  • the water-cooled condenser 400 also does not flow along the cooling water circulation line L2, so the refrigerant moves without change, and is throttled by the first expansion means 300 and supplied to the variable heat exchanger 140 and evaporated. .
  • the refrigerant evaporated while passing through the variable heat exchanger 140 is supplied to the compressor 200 through the bypass line L3 without passing through the second expansion means 150 and the evaporator 130 .
  • the vehicle air conditioner 100 of the present invention is an air conditioner 100 used in a heat pump system, that is, an air conditioning system capable of cooling and heating with one refrigerant line. Heating uses a high-temperature refrigerant compressed by the compressor 200, and cooling uses evaporation of the refrigerant. At this time, the deterioration of the condensing performance during cooling, which is a chronic problem of the heat pump system, is solved by the variable heat exchanger 140 condensing the refrigerant together with the indoor heat exchanger 120 .
  • the variable heat exchanger 140 is mounted on the first air conditioning case 110a.
  • FIG. 19 and 20 are views each showing a control method of an air conditioner for a vehicle according to a second embodiment of the present invention.
  • the vehicle air conditioner control method of the present invention has the characteristics of the vehicle air conditioner as described above, and a determination step of determining whether the third control door 530 needs to be opened (S10); and opening the third control door 530 (S20).
  • the determining step it is determined that the opening of the body 3 control door is necessary when the heating setting is confirmed. That is, in the method of controlling the air conditioner for a vehicle of the present invention, the air that has passed through the indoor heat exchanger 120 is selectively supplied to the variable heat exchanger 140 side during heating to be utilized as a heat absorbing heat source.
  • the determining step for determining the possibility of implantation of the variable heat exchanger 140 includes: S11) checking whether the outside temperature is within a predetermined temperature range; and S12) confirming whether the measured humidity is equal to or greater than a certain humidity.
  • the third control door 530 is opened and the indoor heat exchanger 120 is passed through.
  • An example of preventing implantation of the variable heat exchanger 140 using air is shown.
  • A1 variable heat exchanger module
  • A2 air conditioning module
  • 110a first air conditioning case
  • 110b second air conditioning case
  • 112 defrost vent
  • 112d defrost vent door
  • 113 floor vent
  • 113d floor vent door
  • 140 variable heat exchanger
  • 141 inlet pipe
  • 142 outlet pipe
  • header tank 144: baffle, 145: tube, 146: fin,
  • A140 supply region of the supply unit
  • 150 second expansion means
  • 161 fan assembly
  • 162 blower
  • 170 auxiliary heating heat exchanger

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

본 발명은 차량용 공조장치에 관한 것으로서, 더욱 상세하게는 공급부를 통해 송풍되는 증발기를 통과한 공기 및 응축수가 가변열교환기 측으로 공급되어 냉방 시, 가변열교환기의 과냉각 및 전체 성능을 향상시킬 수 있어 냉방 성능을 보다 높일 수 있고, 난방 시, 흡열 열원으로 활용될 수 있어 가변열교환기의 흡열량을 보다 높여 난방 성능을 보다 높일 수 있어 전체 공조 소비 동력을 저감하고 히트 펌프 시스템 성능 향상을 도모할 수 있는 차량용 공조장치에 관한 것이다.

Description

차량용 공조장치 및 그 제어 방법
본 발명은 차량용 공조장치 및 그 제어 방법에 관한 것으로서, 더욱 상세하게는 공급부를 통해 송풍되는 증발기를 통과한 공기 및 응축수가 열교환기 측으로 공급되어 냉방 시, 열교환기의 과냉각 및 전체 성능을 향상시킬 수 있어 냉방 성능을 보다 높일 수 있고, 난방 시, 흡열 열원으로 활용될 수 있어 열교환기의 흡열량을 보다 높여 난방 성능을 보다 높일 수 있어 전체 공조 소비 동력을 저감하고 히트 펌프 시스템 성능 향상을 도모할 수 있는 차량용 공조장치에 관한 것이다.
일반적인 차량용 에어컨 시스템은 냉매를 압축하여 송출하는 압축기(Compressor), 압축기에서 송출되는 고압의 냉매를 응축하는 응축기(Condenser), 응축기에서 응축되어 액화된 냉매를 교축하는 팽창수단, 그리고, 상기 팽창수단에 의해 교축된 저압의 액상 냉매를 차량 실내 측으로 송풍되는 공기와 열교환하여 증발시킴으로써 냉매의 증발잠열에 의한 흡열작용으로 실내에 토출되는 공기를 냉각하는 증발기(Evaporator) 등이 냉매 배관으로 연결되어 이루어진다.
상기 증발기는 차량 실내측에 설치된 공조케이스의 내부에 설치되어 냉방 역할을 하게 되는데, 즉, 블로어가 송풍하는 공기가 상기 증발기를 거치면서 증발기 내를 순환하는 액상 냉매의 증발 잠열로 냉각되어 차가워진 상태로 차량 실내에 토출됨으로써 이루어진다.
또한, 차량 실내의 난방은, 상기 공조케이스의 내부에 설치되어 엔진 냉각수가 순환하는 히터코어를 이용하거나 또는 상기 공조케이스의 내부에 설치되는 전기가열식히터를 이용하게 된다.
한편, 상기 응축기는 차량의 전방측에 설치되어 공기와 열교환하면서 방열을 하게 된다.
최근에는, 냉동사이클만을 이용하여 냉,난방을 수행하는 히트 펌프 시스템이 개발되고 있는바, 도 1에 도시된 바와 같이, 하나의 공조케이스(10) 내부에 냉풍통로(11)와 온풍통로(12)를 구획되게 형성하고, 상기 냉풍통로(11)에는 냉방을 위한 증발기(4)를 설치하며, 상기 온풍통로(12)에는 난방을 위한 응축기(2)를 설치한 구조이다. 이때, 상기 공조케이스(10)의 출구측에는 차실내로 공기를 공급하는 공기토출구(15)와, 차실외로 공기를 방출하는 공기방출구(16)가 형성된다. 또한, 상기 냉풍통로(11)와 온풍통로(12)의 각 입구측에는 개별작동하는 블로어(20)가 각각 설치된다.
따라서, 냉방모드시에는 상기 냉풍통로(11)의 증발기(4)를 통과하면서 냉각된 냉풍이 공기토출구(15)를 통해 차실내로 토출되어 냉방하게 되고, 이때 상기 온풍통로(12)의 응축기(2)를 통과하면서 가열된 온풍은 공기방출구(16)를 통해 차실외로 배출되게 된다.
난방모드시에는 상기 온풍통로(12)의 응축기(2)를 통과하면서 가열된 온풍이 상기 공기토출구(15)를 통해 차실내로 토출되어 난방하게 되고, 이때 상기 냉풍통로(11)의 증발기(4)를 통과하면서 냉각된 냉풍은 공기방출구(16)를 통해 차실외로 배출되게 된다.
그러나, 상기 종래기술은, 블로어(20)가 냉풍통로(11) 및 온풍통로(12)에 각각 구비되는 형태이고, 냉방 및 난방 설정에 따라 응축기(2) 및 증발기(4)를 통과한 공기 중 하나는 공기방출구를 통해 방출되어야 함에 따라 조절도어가 구비된 공기방출구(16)가 2곳에 각각 형성될 수밖에 없어 전체 크기가 커질 수밖에 없는 문제점이 있다.
더불어, 공조 케이스 내부에 설치된 응축기(2)는 크기가 작을 수밖에 없어서 응축 성능이 낮아서, 냉방 성능에 문제가 있다.
[선행기술문헌]
[특허문헌]
특허1) 대한민국 등록특허 10-1251206호(발명의 명칭 : 차량용 무시동 에어컨)
본 발명은 상술한 바와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 공급부를 통해 송풍되는 증발기를 통과한 공기 및 응축수가 열교환기 측으로 공급되어 전체 공조 소비 동력을 저감하고 히트 펌프 시스템 성능 향상을 도모할 수 있는 차량용 공조장치를 제공하는 것이다.
더욱 상세하게, 본 발명의 목적은 냉방 시, 열교환기의 과냉각 및 전체 성능을 향상시킬 수 있어 냉방 성능을 보다 높일 수 있고, 난방 시, 흡열 열원으로 활용될 수 있어 열교환기의 흡열량을 보다 높여 난방 성능을 보다 높일 수 있는 차량용 공조장치를 제공하는 것이다.
또한, 본 발명은 공급부를 통해 상기 실내열교환기를 통과한 공기를 선택적으로 상기 가변열교환기 측으로 공급하여 난방 시, 흡열 열원으로 활용될 수 있고, 가변열교환기의 착상을 방지할 수 있어 전체 공조 소비 동력을 저감하고 히트 펌프 시스템 성능 향상을 도모할 수 있는 차량용 공조장치 및 그 제어 방법을 제공하는 것이다.
본 발명에 따른 차량용 공조장치(1000)는 압축기(200), 실내열교환기(120), 제1팽창수단(300), 가변열교환기(140), 제2팽창수단(150) 및 증발기(130)로 이뤄진 냉매 루프에서, 난방을 위한 실내열교환기(120), 냉방 시 냉매를 응축시키고 난방 시 냉매를 기화시키는 가변열교환기(140) 및 냉방을 위한 증발기(130)를 내장하는 공조 장치이되, 상기 증발기(130)를 통과한 공기 및 상기 증발기(130)에서 생성된 응축수를 상기 가변열교환기(140) 측으로 공급하는 공급부(500)를 포함하는 것을 특징으로 하는 한다.
또한, 상기 차량용 공조장치(1000)는 높이방향으로 상기 가변열교환기(140)의 일정영역이 상기 증발기(130)보다 하측에 위치되는 것을 특징으로 한다.
또, 상기 차량용 공조장치(1000)는 상기 공급부(500)에 의해 상기 가변열교환기(140)의 냉매가 배출되는 측에 응축수 및 공기를 공급하는 것을 특징으로 한다.
아울러, 상기 차량용 공조장치(1000)는, 제1공조케이스(110a)와, 상기 제1공조케이스(110a) 내부에 구비되는 상기 가변열교환기(140)와, 상기 제1공조케이스(110a)에 장착되어 바람을 전달하는 팬조립체(161)를 포함하는 가변열교환기모듈(A1); 및 차량 실내와 연통되어 실내 공조를 위한 바람이 유동하는 제2공조케이스(110b)와, 상기 제2공조케이스(110b) 내부에 구비되어 바람을 전달하는 송풍부(162)와, 상기 증발기(130)와 실내열교환기(120)를 포함하는 공조모듈(A2)이 서로 조립 고정되는 것을 특징으로 한다.
또한, 상기 제1공조케이스(110a)는 가변열교환기(140) 하측에 응축수가 배출되는 배출부(530)가 형성되는 것을 특징으로 한다.
또, 상기 차량용 공조장치(1000)는 상기 공조모듈(A2)의 송풍부(162)가 구비되는 영역과 상기 가변열교환기모듈(A1)이 엔진룸 내부에서 차량 폭방향으로 나란하게 장착되는 것을 특징으로 한다.
아울러, 상기 공급부(500)는 상기 제2공조케이스(110b)로부터 연장되어 응축수 및 공기가 이송되는 연장부(510)와, 상기 제1공조케이스(110a) 및 연장부(510)로부터 각각 형성되어 서로 체결되는 제1체결부(521) 및 제2체결부(522)를 포함하여 형성되는 것을 특징으로 한다.
또한, 상기 연장부(520)는 상기 증발기(130) 하측의 상기 제2공조케이스(110b)로부터 연장되어 차량 높이방향 하측으로 경사지게 형성되는 경사면(511)과, 상기 경사면(511)으로부터 돌출되어 상기 증발기(130) 하측을 지지하는 지지부(512)와, 차량 폭방향으로 상기 지지부(512)의 양측에 각각 경사지게 상기 지지부(512)와 경사면(511)을 연결하는 제1경사부(513) 및 제2경사부(514)를 포함하는 것을 특징으로 한다.
또, 상기 공급부(500)는 상기 제1체결부(521)의 일정 영역이 중공되고, 상기 제2체결부(522)가 연장부(510)로부터 돌출된 형태로 상기 제1체결부(521)를 통해 상기 가변열교환기모듈(A1) 내측으로 삽입 고정되는 것을 특징으로 한다.
또한, 상기 제1체결부(521) 및 제2체결부(522)는 차량 폭방향으로 복수개가 이격 형성되는 것을 특징으로 한다.
아울러, 상기 가변열교환기모듈(A1)은 상기 제1공조케이스(110a)에 외기가 유입되는제1외기유입구(116) 및 엔진룸과 연통되는 엔진룸공기유입구(117)와, 상기 제1외기유입구(116) 및 엔진룸공기유입구(117)의 개폐를 조절하는 제1조절도어(191)가 형성되는 것을 특징으로 한다.
또한, 상기 공조모듈(A2)은 상기 제2공조케이스(110b)에 외기가 유입되는 제2외기유입구(114) 및 내기가 유입되는 내기유입구(115); 상기 제2외기유입구(114) 및 내기유입구(115)의 개폐를 조절하는 제2조절도어(192)를 포함하는 것을 특징으로 한다.
또한, 상기 공조모듈(A2)은 공기 흐름 방향으로 상기 제2조절도어(192)의 하류 측에 필터(180)가 더 구비되는 것을 특징으로 한다.
아울러, 상기 공조모듈(A2)은 공기 흐름 방향으로 상기 실내열교환기(120)의 하류 측에 보조난방열교환기(170)가 더 구비되는 것을 특징으로 한다.
또한, 상기 공급부(500)는 실내열교환기(120)를 통과한 공기를 선택적으로 상기 가변열교환기(140) 측으로 공급하는 것을 특징으로 한다.
또한, 상기 차량용 공조장치(1000)는 난방 또는 가변열교환기(140)에 착상 발생 시, 상기 공급부(500)를 통해 상기 실내열교환기(120)를 통과한 공기를 공급하여 흡열원으로 이용하는 것을 특징으로 한다.
또한, 상기 차량용 공조장치(1000)는, 제1공조케이스(110a)와, 상기 제1공조케이스(110a) 내부에 구비되는 상기 가변열교환기(140)와, 상기 제1공조케이스(110a)에 장착되어 바람을 전달하는 팬조립체(161)를 포함하는 가변열교환기모듈(A1); 및 차량 실내와 연통되어 실내 공조를 위한 바람이 유동하는 제2공조케이스(110b)와, 상기 제2공조케이스(110b) 내부에 구비되어 바람을 전달하는 송풍부(162)와, 상기 증발기(130)와 실내열교환기(120)를 포함하는 공조모듈(A2); 이 서로 조립 고정되며, 상기 공급부(500)는 상기 제2공조케이스(110b) 일정영역이 중공되는 중공홀(515)과, 상기 중공홀(515)의 개폐를 조절하는 제3조절도어(530)와, 상기 중공홀(515)과 연통되어 실내열교환기(120)를 통과한 공기가 이송되는 연통부(516)와, 상기 제1공조케이스(110a) 및 연통부(516)로부터 각각 형성되어 서로 체결되는 제1체결부(521) 및 제2체결부(522)를 포함하여 형성되는 것을 특징으로 한다.
또한, 상기 차량용 공조장치(1000)를 이용한 제어 방법은, 상기 제3조절도어(530)의 개방이 필요한지 판단하는 판단 단계(S10); 및 상기 제3조절도어(530)를 개방하는 단계(S20); 를 포함하는 것을 특징으로 한다.
또한, 상기 판단 단계(S10)는 난방 설정 확인 시 상기 제3조절도어(530)의 개방이 필요한 것으로 판단하는 것을 특징으로 한다.
또한, 상기 판단 단계(S10)는, 외기온도가 일정 온도 범위 내인지 확인하는 단계(S11); 및 측정 습도가 일정 습도 이상인지 확인하는 단계(S12); 를 포함하여 상기 제3조절도어(530)의 개방이 필요한 것으로 판단하는 것을 특징으로 한다.
이에 따라, 본 발명의 차량용 공조장치는 공급부를 통해 송풍되는 증발기를 통과한 공기 및 응축수가 열교환기 측으로 공급되어 전체 공조 소비 동력을 저감하고 히트 펌프 시스템 성능 향상을 도모할 수 있는 장점이 있다.
더욱 상세하게, 본 발명의 차량용 공조장치는 냉방 시, 열교환기의 과냉각 및 전체 성능을 향상시킬 수 있어 냉방 성능을 보다 높일 수 있고, 난방 시, 흡열 열원으로 활용될 수 있어 열교환기의 흡열량을 보다 높여 난방 성능을 보다 높일 수 있는 장점이 있다.
특히, 본 발명의 차량용 공조장치는 공급부가 열교환기의 하측의 열교환기를 통과한 냉매가 배출되는 측으로 응축수 및 공기를 공급하여 냉방 시 과냉각을 유도할 수 있으며, 차량 폭방향으로 체결부가 복수개 이격형성되어 열교환기 하측 영역에 고르게 응축수 및 공기를 공급할 수 있어 히트 펌프 시스템 향상 효과를 보다 높일 수 있는 장점이 있다.
또한, 본 발명의 차량용 공조장치는 열교환기모듈과 공조모듈의 조립을 통해, 체결부가 서로 조립되는 간단한 구조를 갖는 장점이 있다.
또한, 본 발명의 차량용 공조장치 및 그 제어 방법은 공급부를 통해 상기 실내열교환기를 통과한 공기를 선택적으로 상기 가변열교환기 측으로 공급하여 난방 시, 흡열 열원으로 활용될 수 있고, 가변열교환기의 착상을 방지할 수 있어 전체 공조 소비 동력을 저감하고 히트 펌프 시스템 성능 향상을 도모할 수 있는 장점이 있다.
도 1은 종래의 차량용 히트 펌프 시스템을 나타낸 도면.
도 2는 본 발명의 제1실시예에 따른 차량용 공조장치의 사시도.
도 3 내지 도 5는 본 발명의 제1실시예에 따른 차량용 공조장치의 서로 다른 방향 분해사시도.
도 6 및 도 7은 상기 도 2에 표시한 AA'방향 및 BB'방향 단면도.
도 8은 본 발명의 제1실시예에 따른 차량용 공조장치의 공급부를 나타낸 부분 절개 사시도.
도 9a 및 도 9b는 본 발명의 제1실시예에 따른 차량용 공조장치의 열교환기를 나타낸 도면.
도 10은 본 발명의 제1실시예에 따른 차량용 공조장치의 히트 펌프 시스템 적용예를 나타낸 도면.
도 11a, 도 11b 및 도 12는 본 발명의 제1실시예에 따른 차량용 공조장치의 냉방 상태를 나타낸 도면.
도 13 및 도 14는 본 발명의 제1실시예에 따른 차량용 공조장치의 난방 상태를 나타낸 도면.
도 15는 본 발명의 제2실시예에 따른 차량용 공조장치를 나타낸 도 2의 AA'방향 단면도.
도 16은 본 발명의 제2실시예에 따른 차량용 공조장치를 나타낸 개략도.
도 17은 본 발명의 제2실시예에 따른 차량용 공조장치의 냉방 상태를 나타낸 도면.
도 18은 본 발명의 제2실시예에 따른 차량용 공조장치의 난방 상태를 나타낸 도면.
도 19 및 도 20은 각각 본 발명의 제2실시예에 따른 차량용 공조장치 제어 방법을 나타낸 도면.
이하, 상기한 바와 같은 구성을 갖는 차량용 공조장치(1000)를 첨부된 도면을 참조로 상세히 설명한다.
<실시예 1>
도 2는 본 발명의 제1실시예에 따른 차량용 공조장치의 사시도이고, 도 3 내지 도 5는 본 발명의 제1실시예에 따른 차량용 공조장치의 서로 다른 방향 분해사시도이며, 도 6 및 도 7은 상기 도 2에 표시한 AA'방향 및 BB'방향 단면도이며, 도 8은 본 발명의 제1실시예에 따른 차량용 공조장치의 공급부를 나타낸 부분 절개 사시도이며, 도 9a 및 도 9b는 본 발명의 제1실시예에 따른 차량용 공조장치의 열교환기를 나타낸 도면이며, 도 10은 본 발명의 제1실시예에 따른 차량용 공조장치의 히트 펌프 시스템 적용예를 나타낸 도면이다.
본 발명의 차량용 공조장치(1000)는 가변열교환기(140), 증발기(130), 실내열교환기(120) 및 공급부(500)를 포함한다.
상기 가변열교환기(140)는 냉방설정에 따라 냉매를 응축하거나, 난방설정에 따라 냉매를 증발한다. 즉, 상기 가변열교환기(140)는 실제 냉방 및 난방을 위하여 공기를 냉각하거나 가열하는 구성이 아니라, 냉방설정에 따라 상기 증발기(130)로 공급되는 냉매를 응축하거나, 난방설정에 따라 상기 실내열교환기(120)로 공급되는 냉매를 증발한다. 실제 히트 펌프 시스템의 냉방 및 난방 설정에 따른 냉매의 흐름 및 각 구성을 통과함에 따른 냉매의 변화는 아래에서 다시 설명한다.
상기 증발기(130)는 차량 실내로 토출되는 공기를 냉각한다. 이 때, 냉방이 수행되는 경우, 상기 증발기(130)에 저온 저압의 습포화 상태의 냉매가 공급되어 공기가 증발기(130)를 통과하면서 냉각되어 차량 실내로 토출된다. 또한, 난방이 수행되는 경우, 상기 증발기(130)에는 냉매가 공급되지 않아 공기가 증발기(130)를 통과하더라도 온도가 변화되지 않는다.
상기 실내열교환기(120)는 실내 공조를 위한 공조풍 흐름방향으로 상기 증발기(130) 후측에 구비되어 차량 실내로 토출되는 공기를 가열한다. 즉, 상기 실내열교환기(120)는 난방을 수행하기 위한 구성으로서, 템프도어(110d)에 의해 공조풍이 상기 실내열교환기(120)를 통과하는 흐름을 조절하여 냉방 및 난방을 조절한다.
상기 가변열교환기(140), 증발기(130), 및 실내열교환기(120)는 차량용 공조장치(1000)를 구성하기 위한 공조케이스 내부에 구비될 수 있으며, 본 발명은 특히, 제1공조케이스(110a) 및 제2공조케이스(110b)를 포함하는 형태를 가질 수 있으며, 구체적인 설명은 후술한다.
상기 공급부(500)는 상기 증발기(130)를 통과한 공기 및 응축수를 상기 가변열교환기(140) 측으로 공급하기 위한 구성이다. 이 때, 상기 가변열교환기(140)는 "U"자형 흐름을 갖는 형태로, 상기 공급부(500)가 상기 증발기(130)를 통과한 공기 및 응축수를 상기 가변열교환기(140) 하측의 일정 영역으로 공급하는 위치에 형성되는 것이 바람직하다. 다시 말해, 상기 공급부(500)에 의해 상기 가변열교환기(140)의 냉매가 배출되는 측인 하측에 공기 및 응축수가 공급되어 배출되기 전 냉매와 열교환되어 그 효과를 보다 높일 수 있으며, 특히, 냉방 시 과냉각을 더욱 높일 수 있도록 하는 것이 바람직하다.
도 9a 및 도 9b는 가변열교환기(140)의 예를 나타낸 도면으로, 도 9a에 도시한 형태는 한 쌍의 헤더탱크(143)가 상측 및 하측에 일정거리 이격되게 구비되고, 복수개의 튜브(145)가 이를 연결하며, 그 사이에 핀(146)이 개재된 형태로서, 상측 입구파이프(141)를 통해 유입된 냉매가 복수개의 튜브(145)를 통해 하측방향으로 이동되고, 하측 출구파이프(142)를 통해 배출되는 형태를 나타내었다. 도 9b에 도시한 형태는 한 쌍의 헤더탱크(143)가 도면 좌측 및 우측으로 일정거리 이격되게 구비되는 예를 나타내었다. 이 때, 입구파이프(141) 및 출구파이프(142)가 형성되는 우측 헤더탱크(143)는 배플(144)에 의해 높이방향으로 구획된다. 상기 입구파이프(141)를 통해 우측 헤더탱크(143) 상부 영역으로 유입된 냉매는 상기 튜브(145) 중 일부를 통해 좌측 헤더탱크(143)로 이동되고 나머지 튜브(145)를 통해 다시 우측 헤더탱크(143) 하부 영역으로 이동되어 출구파이프(142)를 통해 배출된다. 상기 도 9a 및 도 9b에 도번 A140으로 표시한 것은 공급부(500)를 통해 상기 증발기(130)를 통과한 공기 및 응축수가 공급되는 공급 영역을 의미하는 것으로 상기 공급부(500)의 공급 영역(A140)은 가변열교환기(140)의 하측에 위치된다. 이 때, 상기 공급부(500)의 공급 영역은 전체 가변열교환기(140)의 높이방향으로 0 ~ 35% 영역 내의 범위로 형성될 수 있다.
상술한 바와 같이, 본 발명의 차량용 공조장치(1000)는 상기 증발기(130)에서 발생되어 외부로 버려지는 응축수를 이용한 것으로, 상기 증발기(130)를 통과한 공기 및 응축수가 상기 공급부(500)를 통해 상기 가변열교환기(140) 측으로 이동되어 전체 히트 펌프 시스템의 효율을 높일 수 있다. 특히, 냉방 상태에서, 상기 가변열교환기(140) 측으로 저온의 응축수 및 공기를 이용하여 가변열교환기(140) 과냉각(Sub-Cooling) 정도를 높여 냉방 성능을 높일 수 있으며, 이에 따라 냉방 소비 동력을 낮출 수 있다. 실제로, 냉방상태에서 상기 공급부(500)를 통해 공급되는 응축수는 10℃ 이하이고, 공기는 5℃ 이하이다.
또한, 난방 상태에서, 상기 가변열교환기(140) 측으로 고온(외기온 대비 높은)의 공기 및 응축수를 가변열교환기(140)로 공급하여 상기 가변열교환기(140)의 흡열을 위한 열원으로 이용될 수 있다. 이 때, 상기 증발기(130)를 통과하는 공기는 차량 실내를 통과한 공기(내기)가 공급되는 경우, 상기 증발기(130)를 통과한 공기는 보통 외기온 대비 10℃ 이상 높으며, 이 열을 이용하여 상기 가변열교환기(140)를 흡열량을 높여 난방 성능을 높일 수 있다.
본 발명의 차량용 공조장치(1000)는 어떠한 형태라도, 상기 공급부(500)를 이용하여 상기 증발기(130)를 통과한 공기 및 상기 증발기(130)에서 발생된 응축수를 상기 가변열교환기(140)로 공급한다면 다양하게 변형 실시될 수 있으며, 아래에서는 가변열교환기모듈(A1) 및 공조모듈(A2)의 조립에 의해 전체 차량용 공조장치(1000)를 형성할 수 있는 예를 설명한다.
먼저, 상기 가변열교환기모듈(A1)은 제1공조케이스(110a), 상기 열교환기(140), 팬조립체(161)를 포함한다.
상기 제1공조케이스(110a)는 가변열교환기모듈(A1)을 형성하는 몸체로, 내부에 상기 가변열교환기(140)가 구비되고, 일측에 상기 팬조립체(161)가 장착된다. 상기 제1공조케이스(110a)는 상기 제1공조케이스(110a)에 외부와 연통되는 제1외기유입구(116) 및 엔진룸과 연통되는 엔진룸공기유입구(117)와, 상기 제1외기유입구(116) 및 엔진룸공기유입구(117)의 개폐를 조절하는 제1조절도어(191)가 형성된다. 상기 제1조절도어(191)는 냉방 및 난방 설정에 따라 상기 제1외기유입구(116) 및 엔진룸공기유입구(117)의 개폐를 조절하여 상기 가변열교환기(140)를 통과하는 공기 흐름을 제어한다. 특히, 실외 온도가 낮은 겨울의 경우, 엔진룸 내부는 다양한 전장부품의 작동에 의해 가열된 상태로, 실외 온도보다 높게 유지된다. 본 발명의 가변열교환기모듈(A1)(은 최대 난방 시, 상기 제1조절도어(191)의 작동에 의해 엔진룸 내부의 공기를 상기 제1공조케이스(110a) 내부로 공급하여 가변열교환기(140)의 증발성능(흡열량)을 높여 실내열교환기(120)의 난방성능을 보다 높일 수 있는 장점이 있다.
또한, 상기 제1공조케이스(110a)는 상기 공급부(500)를 통해 상기 가변열교환기(140) 측으로 공급된 응축수가 배출되도록 상기 가변열교환기(140)가 구비되는 영역 하측에 응축수가 배출되는 배출부(530)가 형성된다.
상기 팬조립체(161)는 상기 제1공조케이스(110a)에 구비되어 냉난방 설정에 따라 회전되어 상기 가변열교환기(140)를 통과하는 흐름을 형성하는 부분으로, 회전날개를 포함하는 팬부와, 상기 팬부의 작동을 조절하는 모터를 포함할 수 있다.
상기 공조모듈(A2)은 제2공조케이스(110b)와, 송풍부(162)와, 상기 증발기(130) 및 실내열교환기(120)를 포함한다.
상기 제2공조케이스(110b)는 상기 제1공조케이스(110a)와 조립되어 차량용 공조장치(1000)를 형성하는 몸체로, 상기 송풍부(162), 증발기(130), 및 실내열교환기(120)가 내장된다. 이 때, 상기 제2공조케이스(110b)는 외기가 유입되는 제2외기유입구(114) 및 내기가 유입되는 내기유입구(115); 상기 제2외기유입구(114) 및 내기유입구(115)의 개폐를 조절하는 제2조절도어(192)를 포함한다.
또한, 상기 제2공조케이스(110b) 내부에는 온도 설정에 따라 상기 증발기(130)를 통과한 공기가 상기 실내열교환기(120)를 통과하여 믹싱하기 위한 템프도어(110d)가 구비되며, 차량 실내로 공기가 배출되는 측에 차량 실내로 공기가 배출되는 벤트(111, 112, 113)들이 형성된다. 더욱 상세하게, 공기가 배출되는 측의 벤트(111, 112, 113)들은 각각의 도어(111d, 112d, 113d)에 의해 개도가 조절되는 페이스 벤트(111), 플로어 벤트(113), 디프로스트 벤트(112)를 포함한다.
본 발명의 차량용 공조장치(1000)는 상기 공조모듈(A2)의 송풍부(162)가 구비되는 영역과 상기 가변열교환기모듈(A1)이 엔진룸 내부에서 차량 폭방향으로 나란하게 장착되는 것이 바람직하다. 즉, 상기 공조모듈(A2)의 상기 송풍부(162)가 구비되어 공기가 유동되는 영역(제2외기유입구(114) 및 내기유입구(115)가 형성되는 영역)이 상기 가변열교환기모듈(A1)과 엔진룸 내부에서 나란하게 위치되는 것이 바람직하다.
상기 송풍부(162)는 상기 제2공조케이스(110b) 내부에 구비되는 구성으로, 차량 실내 공조를 위한 공기를 송풍한다.
또한, 본 발명의 차량용 공조장치(1000)는 공기 흐름 방향으로 상기 제2조절도어(192) 후측에 필터(180)가 더 구비될 수 있으며, 이는 교체 가능하게 구비되는 것이 바람직하다.
또한, 본 발명의 차량용 공조장치(1000)는 공기 흐름 방향으로 상기 실내열교환기(120) 후측에 보조난방열교환기(170)가 더 구비될 수 있다. 상기 보조난방열교환기(170)는 상기 실내열교환기(120)와 함께 난방을 수행하는 구성으로, 피티씨(PTC, Positive Temperature Coefficient) 가열수단을 포함하여 다양한 형태가 이용될 수 있다.
상기 가변열교환기모듈(A1)의 제1공조케이스(110a)와 공조모듈(A2)의 제2공조케이스(110b)의 조립에 의해 제조가 용이하도록 상기 공급부(500)는 연장부(510), 제1체결부(521), 및 제2체결부(522)를 포함할 수 있다.
상기 연장부(510) 및 제2체결부(522)는 상기 제2공조케이스(110b)에 형성되고, 상기 제1체결부(521)는 제1공조케이스(110a)에 형성될 수 있는데, 먼저, 상기 연장부(510)는 상기 제2공조케이스(110b)하측에 연장되어 상기 증발기(130)를 통과한 공기 및 응축수가 이송되는 부분이다.
상기 제1체결부(521)는 상기 제1공조케이스(110a)에 형성되고, 상기 제2체결부(522)는 상기 제2공조케이스(110b)의 연장부(510)에 형성되어, 서로 체결되어 상기 연장부(510)를 통해 이송되는 응축수 및 공기가 가변열교환기(140) 측으로 공급된다.
이 때, 상기 제1체결부(521)는 상기 제1공조케이스(110a)의 일정 영역이 중공된 형태이고, 상기 제2체결부(522)는 상기 연장부(510)로부터 길게 돌출된 형태로 상기 제1체결부(521)를 통해 상기 제1공조케이스(110a)로 삽입고정되는 형태를 가져, 상기 제1공조케이스(110a) 및 제2공조케이스(110b)의 조립에 의해 상기 공급부(500)의 형성이 용이하게 이루어지도록 하는 것이 바람직하다.
또한, 상기 연장부(510)는 상기 증발기(130)를 지지하면서도, 응축수 및 공기를 상기 가변열교환기(140) 측으로 용이하게 공급할 수 있도록 상기 증발기(130) 하측의 상기 제2공조케이스(110b)로부터 연장되어 차량 높이방향 하측으로 경사지게 형성되는 경사면(511)과, 상기 경사면(511)으로부터 차량 폭방향으로 돌출되어 상기 증발기(130) 하측을 지지하는 지지부(512)와, 차량 폭방향으로 상기 지지부(512)의 양측에 각각 경사지게 상기 지지부(512)와 경사면(511)을 연결하는 제1경사부(513) 및 제2경사부(514)를 포함하는 형태인 것이 바람직하다.
상기 경사면(511)은 상기 증발기(130) 하측으로, 상기 가변열교환기(140)가 구비되는 방향 및 차량 높이방향 하측으로 경사지게 형성되는 부분이다.
상기 지지부(512)는 상기 경사면(511)으로부터 상기 증발기(130)를 지지하도록 돌출되는 형태로, 차량 폭방향으로 복수개가 형성될 수 있다.
상기 제1경사부(513) 및 제2경사부(514)는 차량 폭방향으로 상기 지지부(512)의 양측면을 지지하되, 각각 경사지게 상기 지지부(512)와 경사면(511)을 연결하여 상기 증발기(130)에서 발생된 응축수를 상기 가변열교환기(140) 측으로 전달하는 구성이다.
상기 제1체결부(521) 및 제2체결부(522)는 상기 지지부(512)의 형성 개수에 맞추어 차량 폭방향으로 복수개가 형성될 수 있으며, 이에 따라 차량 폭방향으로 상기 가변열교환기(140) 하측의 전체 영역에 응축수 및 증발기(130)를 통과한 공기가 용이하게 공급될 수 있다.
도 10은 본 발명의 제1실시예에 따른 차량용 공조장치의 히트 펌프 시스템 적용예를 나타낸 도면이다.
상기 히트 펌프 시스템(1000)은 상술한 바와 같은 실내열교환기(120), 증발기(130), 가변열교환기(140), 송풍부(161) 및 양방향팬(162)과 함께 압축기(200), 제1팽창수단(300) 및 제2팽창수단(150)을 포함한다.
먼저, 상기 압축기(200)는 냉매가 순환되는 냉매순환라인(L1) 상에 설치되어 냉매를 압축하여 배출한다.
상기 실내열교환기(120)는 상기 제2공조케이스(110b) 내부에 설치되어 상기 공조케이스(110) 내부의 공기, 즉 공조풍과 상기 압축기(200)에서 배출된 냉매를 열교환시키는 구성으로, 응축의 결과로 가열된 공조풍을 실내로 공급하여 난방을 수행한다.
상기 증발기(130)는 상기 제2공조케이스(110b) 내부에 설치되어 상기 제2공조케이스(110b) 내부의 공기와 상기 압축기(200)로 공급되는 냉매를 열교환시키는 구성으로, 저압의 액상 냉매를 증발시킴으로써 실내로 공급되는 공기를 가열하여 냉각을 수행한다.
상기 가변열교환기(140)는 상기 제1공조케이스(110a) 내부에 설치되어 상기 냉매순환라인(L1)을 순환하는 냉매와 공기를 열교환시킨다. 상기 가변열교환기(140)는 냉방에 따라 냉매를 응축하거나, 난방에 따라 냉매를 증발한다.
상기 제1팽창수단(300)은 상기 실내열교환기(120)의 출구측 냉매순환라인(L1)에 설치되어 상기 실내열교환기(120)에서 배출된 냉매를 선택적으로 팽창시키는 구성으로서, 난방 시, 상기 실내열교환기(120)에서 냉매가 응축되고, 상기 가변열교환기(140)에서 냉매가 증발되도록 작동되어 저온 저압의 상태로 냉매를 교축한다. 또한, 냉방 시, 상기 제1팽창수단(300)은 냉매를 교축하지 않고 바이패스 시킨다.
상기 제2팽창수단(150)은 상기 증발기(130)의 입구측 냉매순환라인(L1)에 설치되어 상기 증발기(130)로 공급되는 냉매를 팽창시킨다. 상기 제2팽창수단(150)은 냉방 시, 상기 가변열교환기(140)를 통과하면서 응축된 냉매를 저온 저압의 상태로 교축하여 상기 증발기(130)로 공급된다. 또, 상기 제2팽창수단(150)은 난방 시, 냉매를 교축하지 않고 바이패스 시킨다.
또한, 상기 차량 히트 펌프 시스템(1000)은 상기 제1공조케이스(110a) 및 제2공조케이스(110b) 외부에서 상기 제1팽창수단(300)의 입구측 냉매순환라인(L1)에 설치되어 배터리를 냉각하기 위한 냉각수와 열교환되는 수냉식응축기(400)가 더 구비될 수 있다. 상기 수냉식응축기(400)는 냉방 시, 냉각수순환라인(L2)을 따라 냉각수가 유동되어 열교환이 이루어지는 부분으로, 상기 실내열교환기(120), 가변열교환기(140)와 함께 냉방 설정에 따라 증발기(130)로 공급되는 냉매를 응축한다. 상기 냉각수순환라인(L2)에는 냉각수를 냉각하기 위한 라디에이터(3000), 및 냉각수를 순환시키는 냉각수펌프(미도시)가 구비되며, 상기 라디에이터(3000)에 인접하여 상기 라디에이터(3000)로 공기를 송풍하는 냉각팬(4000)이 구비된다. 상기 수냉식응축기(400)는 기액분리기(410)를 포함하는 것으로, 이 경우, 상기 수냉식응축기(400)에 의해 냉매가 응축되고, 상기 기액분리기(410)에 의해 분리된 액상 냉매가 상기 가변열교환기(140)에 의해 과냉각될 수 있어 응축성능을 높여 상기 증발기(130)의 냉방성능을 보다 높일 수 있다.
또, 상기 차량 히트 펌프 시스템(1000)은 상기 냉매순환라인(L1) 상에 상기 제2팽창수단(150) 및 증발기(130)를 바이패스하도록 바이패스라인(L3)이 형성되고, 상기 바이패스라인(L3) 상에는 냉매 역류 방지를 위한 역류방지밸브(V)가 더 구비될 수 있다. 상기 바이패스라인(L3)은 난방 시, 냉매가 상기 제2팽창수단(150) 및 증발기(130)를 통과하지 않고 가변열교환기(140)를 통과한 냉매가 압축기(200)로 공급되는 구성이다. 즉, 난방 시 불필요한 구성(제2팽창수단(150) 및 증발기(130))을 생략하여 불필요한 유속 저하 및 압력 강하를 방지한다.
도 11a, 도 11b 및 도 12는 본 발명의 제1실시예에 따른 차량용 공조장치의 냉방 상태를 나타낸 도면 및 히트 펌프 시스템의 상태를 나타낸 도면이다.
먼저, 최대 냉방 시, 상기 압축기(200)에 의해 압축된 냉매는 상기 실내열교환기(120)를 열교환없이 통과(템프도어(110d)가 상기 실내열교환기(120)를 통과하는 흐름을 차단함)되고, 상기 수냉식응축기(400) 및 가변열교환기(140)를 통과하면서 상기 압축기(200)에서 송출되는 고압의 냉매를 응축한다. 이 때, 상기 제1팽창수단(300)은 냉매를 바이패스 한다. 응축된 냉매는 상기 제2팽창수단(150)에서 교축되어 상기 증발기(130)로 공급되고, 상기 증발기(130)에서 교축된 저압의 액상 냉매와 공기가 열교환됨에 따라 냉매의 증발잠열에 의한 흡열작용으로 실내에 토출되는 공기를 냉각한다.
도 13 및 도 14는 본 발명의 제1실시예에 따른 차량용 공조장치(100)의 난방 상태를 나타낸 도면 및 히트 펌프 시스템의 상태를 나타낸 도면이다.
먼저, 최대 난방 시, 상기 압축기(200)에 의해 압축된 냉매는 상기 실내열교환기(120)를 통과하면서 제2공조케이스(110b)를 통과하는 공기가 열교환됨에 따라 응축에 의한 방열작용으로 실내에 토출되는 공기를 가열한다. 한편, 상기 제2공조케이스(110b)로 유입된 공기는 상기 증발기(130)를 통과한 후, 전량 상기 실내열교환기(120)를 통과하도록 상기 템프도어(110d)가 작동되며, 이 때, 상기 증발기(130)에는 냉매가 공급되지 않는 상태로 공기가 증발기(130)와 열교환없이 통과된다. 상기 수냉식응축기(400) 역시 냉각수순환라인(L2)을 따라 냉각수가 유동되지 않아 냉매는 변화없이 이동되고, 상기 제1팽창수단(300)에서 교축되어 상기 가변열교환기(140)로 공급되어 증발된다. 상기 가변열교환기(140)를 통과하면서 증발된 냉매는 제2팽창수단(150) 및 증발기(130)를 통과하지 않고 상기 바이패스라인(L3)을 통해 상기 압축기(200)로 공급된다.
정리해 보면, 본 발명의 차량용 공조장치(100)는 히트펌프 시스템, 즉 1라인의 냉매라인으로 냉방과 난방이 가능한 공조 시스템에 이용되는 공조장치(100)이다. 난방은 압축기(200)에 의해 압축된 고온의 냉매를 이용하고, 냉방은 냉매의 증발을 이용한다. 이때, 히트펌프 시스템의 고질적인 문제점인 냉방시 응축성능의 저하는 실내열교환기(120)와 함께 냉매를 응축하는 가변열교환기(140)로 해결한다. 상기 가변열교환기(140)는 제1공조케이스(110a)에 실장된다.
<실시예 2>
도 15는 본 발명의 제2실시예에 따른 차량용 공조장치를 나타낸 단면도이며, 도 2의 AA'방향 단면도이다. 그리고 도 16은 본 발명의 제2실시예에 따른 차량용 공조장치를 나타낸 개략도이다. 또한, 본 발명의 제2실시예에 따른 차량용 공조장치의 사시도, 분해사시도, 개략도, 가변열교환기의 단면도 및 히트펌프 시스템 적용예는 상기한 제1실시예의 도 2 내지 도 5, 도 7 내지 도 10과 동일할 수 있다.
본 발명의 제2실시예에 따른 차량용 공조장치는 가변열교환기(140), 증발기(130), 실내열교환기(120) 및 공급부(500)를 포함한다.
상기 가변열교환기(140)는 냉방설정에 따라 냉매를 응축하거나, 난방설정에 따라 냉매를 증발한다. 즉, 상기 가변열교환기(140)는 실제 냉방 및 난방을 위하여 공기를 냉각하거나 가열하는 구성이 아니라, 냉방설정에 따라 상기 증발기(130)로 공급되는 냉매를 응축하거나, 난방설정에 따라 상기 실내열교환기(120)로 공급되는 냉매를 증발한다. 실제 히트 펌프 시스템의 냉방 및 난방 설정에 따른 냉매의 흐름 및 각 구성을 통과함에 따른 냉매의 변화는 아래에서 다시 설명한다.
상기 증발기(130)는 차량 실내로 토출되는 공기를 냉각한다. 이 때, 냉방이 수행되는 경우, 상기 증발기(130)에 저온 저압의 습포화 상태의 냉매가 공급되어 공기가 증발기(130)를 통과하면서 냉각되어 차량 실내로 토출된다. 또한, 난방이 수행되는 경우, 상기 증발기(130)에는 냉매가 공급되지 않아 공기가 증발기(130)를 통과하더라도 온도가 변화되지 않는다.
상기 실내열교환기(120)는 실내 공조를 위한 공조풍 흐름방향으로 상기 증발기(130) 후측에 구비되어 차량 실내로 토출되는 공기를 가열한다. 즉, 상기 실내열교환기(120)는 난방을 수행하기 위한 구성으로서, 템프도어(110d)에 의해 공조풍이 상기 실내열교환기(120)를 통과하는 흐름을 조절하여 냉방 및 난방을 조절한다.
상기 가변열교환기(140), 증발기(130), 및 실내열교환기(120)는 차량용 공조장치.를 구성하기 위한 공조케이스 내부에 구비될 수 있으며, 본 발명은 특히, 제1공조케이스(110a) 및 제2공조케이스(110b)를 포함하는 형태를 가질 수 있으며, 구체적인 설명은 후술한다.
상기 공급부(500)는 상기 실내열교환기(120)를 통과한 공기를 선택적으로 상기 가변열교환기(140) 측으로 공급하기 위한 구성이다. 이 때, 상기 가변열교환기(140)는 "U"자형 흐름을 갖는 형태로, 상기 공급부(500)가 상기 실내열교환기(120)를 통과한 공기를 상기 가변열교환기(140) 하측의 일정 영역으로 공급하는 위치에 형성되는 것이 바람직하다. 다시 말해, 상기 공급부(500)에 의해 상기 가변열교환기(140)의 냉매가 배출되는 측인 하측에 공기가 공급되어 배출되기 전 냉매와 열교환되어 그 효과를 보다 높일 수 있다.
가변열교환기(140)는 일례로 한 쌍의 헤더탱크(143)가 상측 및 하측에 일정거리 이격되게 구비되고, 복수개의 튜브(145)가 이를 연결하며, 그 사이에 핀(146)이 개재된 형태일 수 있으며, 상측 입구파이프(141)를 통해 유입된 냉매가 복수개의 튜브(145)를 통해 하측방향으로 이동되고, 하측 출구파이프(142)를 통해 배출되는 형태일 수 있다. 가변열교환기(140)는 다른 예로 한 쌍의 헤더탱크(143)가 도면 좌측 및 우측으로 일정거리 이격되게 구비될 수 있으며, 이 때, 입구파이프(141) 및 출구파이프(142)가 형성되는 우측 헤더탱크(143)는 배플(144)에 의해 높이방향으로 구획된다. 상기 입구파이프(141)를 통해 우측 헤더탱크(143) 상부 영역으로 유입된 냉매는 상기 튜브(145) 중 일부를 통해 좌측 헤더탱크(143)로 이동되고 나머지 튜브(145)를 통해 다시 우측 헤더탱크(143) 하부 영역으로 이동되어 출구파이프(142)를 통해 배출된다. 상기 도번 A140으로 표시한 것은 공급부(500)를 통해 상기 실내열교환기(120)를 통과한 공기가 공급되는 공급 영역을 의미하는 것으로 상기 공급부(500)의 공급 영역(A140)은 가변열교환기(140)의 하측에 위치된다. 이 때, 상기 공급부(500)의 공급 영역은 전체 가변열교환기(140)의 높이방향으로 0 ~ 35% 영역 내의 범위로 형성될 수 있다.
상술한 바와 같이, 본 발명의 제2실시예에 따른 차량용 공조장치는 난방 상태 또는 가변열교환기(140) 착상이 유발될 수 있는 상황에서, 상기 가변열교환기(140) 측으로 고온(외기온 대비 높은)의 공기를 가변열교환기(140)로 공급하여 상기 가변열교환기(140)의 흡열을 위한 열원으로 이용될 수 있다. 이 때, 상기 실내열교환기(120)를 통과하는 공기는 차량 실내를 통과한 공기(내기)가 공급되는 경우, 상기 실내열교환기(120)를 통과한 공기는 보통 외기온 대비 10℃ 이상 높으며, 이 열을 이용하여 상기 가변열교환기(140)를 흡열량을 높여 난방 성능을 높일 수 있다.
본 발명의 차량용 공조장치는 어떠한 형태라도, 상기 공급부(500)를 이용하여 상기 실내열교환기(120)를 통과한 공기를 상기 가변열교환기(140)로 공급한다면 다양하게 변형 실시될 수 있으며, 아래에서는 가변열교환기(140)모듈(A1) 및 공조모듈(A2)의 조립에 의해 전체 차량용 공조장치를 형성할 수 있는 예를 설명한다.
먼저, 상기 가변열교환기(140)모듈(A1)은 제1공조케이스(110a), 상기 가변열교환기(140), 팬조립체(161)를 포함한다.
상기 제1공조케이스(110a)는 가변열교환기(140)모듈(A1)을 형성하는 몸체로, 내부에 상기 가변열교환기(140)가 구비되고, 일측에 상기 팬조립체(161)가 장착된다. 상기 제1공조케이스(110a)는 상기 제1공조케이스(110a)에 외부와 연통되는 제1외기유입구(116) 및 엔진룸과 연통되는 엔진룸공기유입구(117)와, 상기 제1외기유입구(116) 및 엔진룸공기유입구(117)의 개폐를 조절하는 제1조절도어(191)가 형성된다. 상기 제1조절도어(191)는 냉방 및 난방 설정에 따라 상기 제1외기유입구(116) 및 엔진룸공기유입구(117)의 개폐를 조절하여 상기 가변열교환기(140)를 통과하는 공기 흐름을 제어한다. 특히, 실외 온도가 낮은 겨울의 경우, 엔진룸 내부는 다양한 전장부품의 작동에 의해 가열된 상태로, 실외 온도보다 높게 유지된다. 본 발명의 가변열교환기(140)모듈(A1)(은 최대 난방 시, 상기 제1조절도어(191)의 작동에 의해 엔진룸 내부의 공기를 상기 제1공조케이스(110a) 내부로 공급하여 가변열교환기(140)의 증발성능(흡열량)을 높여 실내열교환기(120)의 난방성능을 보다 높일 수 있는 장점이 있다.
상기 팬조립체(161)는 상기 제1공조케이스(110a)에 구비되어 냉난방 설정에 따라 회전되어 상기 가변열교환기(140)를 통과하는 흐름을 형성하는 부분으로, 회전날개를 포함하는 팬부와, 상기 팬부의 작동을 조절하는 모터를 포함할 수 있다.
상기 공조모듈(A2)은 제2공조케이스(110b)와, 송풍부(162)와, 상기 증발기(130) 및 실내열교환기(120)를 포함한다.
상기 제2공조케이스(110b)는 상기 제1공조케이스(110a)와 조립되어 차량용 공조장치.를 형성하는 몸체로, 상기 송풍부(162), 증발기(130), 및 실내열교환기(120)가 내장된다. 이 때, 상기 제2공조케이스(110b)는 외기가 유입되는 제2외기규입구(114) 및 내기가 유입되는 내기유입구(115); 상기 제2외기규입구(114) 및 내기유입구(115)의 개폐를 조절하는 제2조절도어(192)를 포함한다.
또한, 상기 제2공조케이스(110b) 내부에는 온도 설정에 따라 상기 증발기(130)를 통과한 공기가 상기 실내열교환기(120)를 통과하여 믹싱하기 위한 템프도어(110d)가 구비되며, 차량 실내로 공기가 배출되는 측에 차량 실내로 공기가 배출되는 벤트(111, 112, 113)들이 형성된다. 더욱 상세하게, 공기가 배출되는 측의 벤트(111, 112, 113)들은 각각의 도어(111, 112d, 113d)에 의해 개도가 조절되는 페이스 벤트(111), 플로어 벤트(113), 디프로스트 벤트(112)를 포함한다.
본 발명의 차량용 공조장치는 상기 공조모듈(A2)의 팬조립체(161)가 구비되는 영역과 상기 가변열교환기(140)모듈(A1)이 엔진룸 내부에서 차량 폭방향으로 나란하게 장착되는 것이 바람직하다. 즉, 상기 공조모듈(A2)의 상기 송풍부(162)가 구비되어 공기가 유동되는 영역{제2외기규입구(114) 및 내기유입구(115)가 형성되는 영역}이 상기 가변열교환기(140)모듈(A1)과 엔진룸 내부에서 나란하게 위치되는 것이 바람직하다.
상기 송풍부(162)는 상기 제2공조케이스(110b) 내부에 구비되는 구성으로, 차량 실내 공조를 위한 공기를 송풍한다.
또한, 본 발명의 차량용 공조장치는 공기 흐름 방향으로 상기 제2조절도어(192) 후측에 필터(180)가 더 구비될 수 있으며, 이는 교체 가능하게 구비되는 것이 바람직하다.
또한, 본 발명의 차량용 공조장치는 공기 흐름 방향으로 상기 실내열교환기(120) 후측에 보조난방열교환기(170)가 더 구비될 수 있다. 상기 보조난방열교환기(170)는 상기 실내열교환기(120)와 함께 난방을 수행하는 구성으로, 피티씨(PTC, Positive Temperature Coefficient) 가열수단을 포함하여 다양한 형태가 이용될 수 있다.
상기 가변열교환기(140)모듈(A1)의 제1공조케이스(110a)와 공조모듈(A2)의 제2공조케이스(110b)의 조립에 의해 제조가 용이하도록 상기 공급부(500)는 중공홀(511)과, 제3조절도어(530)와, 연장부, 제1체결부(521), 및 제2체결부(522)를 포함할 수 있다.
상기 중공홀(511), 제3조절도어(530), 연장부 및 제2체결부(522)는 상기 제2공조케이스(110b)에 형성되고, 상기 제1체결부(521)는 제1공조케이스(110a)에 형성될 수 있는데, 먼저, 상기 중공홀(511)은 상기 실내열교환기(120) 후측의 제2공조케이스(110b) 일정영역이 중공되는 부분이고, 상기 제3조절도어(530)는 상기 중공홀(511)에 형성되어 중공홀(511)의 개폐를 조절하는 부분이며, 상기 연장부는 상기 제2공조케이스(110b) 하측에 연장되어 상기 실내열교환기(120)를 통과한 공기가 이송되는 부분이다.
상기 제1체결부(521)는 상기 제1공조케이스(110a)에 형성되고, 상기 제2체결부(522)는 상기 제2공조케이스(110b)의 연장부(510)에 각각 형성되어, 서로 체결되어 상기 중공홀(511) 및 연장부를 통해 이송되는 공기가 가변열교환기(140) 측으로 공급된다.
이 때, 상기 제1체결부(521)는 상기 제1공조케이스(110a)의 일정 영역이 중공된 형태이고, 상기 제2체결부(522)는 상기 연장부로부터 길게 돌출된 형태로 상기 제1체결부(521)를 통해 상기 제1공조케이스(110a)로 삽입고정되는 형태를 가져, 상기 제1공조케이스(110a) 및 제2공조케이스(110b)의 조립에 의해 상기 공급부(500)의 형성이 용이하게 이루어지도록 하는 것이 바람직하다.
상기 제1체결부(521) 및 제2체결부(522)는 차량 폭방향으로 복수개가 형성될 수 있으며, 이에 따라 차량 폭방향으로 상기 가변열교환기(140) 하측의 전체 영역에 상기 실내열교환기(120)를 통과한 공기가 용이하게 공급될 수 있다.
또한, 본 발명의 제2실시예에 따른 공조장치(100)를 차량용 히트펌프 시스템에 적용할 수 있으며, 상기 히트 펌프 시스템은 상술한 바와 같은 실내열교환기(120), 증발기(130), 가변열교환기(140), 송풍부(161) 및 양방향팬(162)과 함께 압축기(200), 제1팽창수단(300) 및 제2팽창수단(150)을 포함한다.
먼저, 상기 압축기(200)는 냉매가 순환되는 냉매순환라인(L1) 상에 설치되어 냉매를 압축하여 배출한다.
상기 실내열교환기(120)는 상기 제2공조케이스(110b) 내부에 설치되어 상기 공조케이스(110) 내부의 공기, 즉 공조풍과 상기 압축기(200)에서 배출된 냉매를 열교환시키는 구성으로, 응축의 결과로 가열된 공조풍을 실내로 공급하여 난방을 수행한다.
상기 증발기(130)는 상기 제2공조케이스(110b) 내부에 설치되어 상기 제2공조케이스(110b) 내부의 공기와 상기 압축기(200)로 공급되는 냉매를 열교환시키는 구성으로, 저압의 액상 냉매를 증발시킴으로써 실내로 공급되는 공기를 가열하여 냉각을 수행한다.
상기 가변열교환기(140)는 상기 제1공조케이스(110a) 내부에 설치되어 상기 냉매순환라인(L1)을 순환하는 냉매와 공기를 열교환시킨다. 상기 가변열교환기(140)는 냉방에 따라 냉매를 응축하거나, 난방에 따라 냉매를 증발한다.
상기 제1팽창수단(300)은 상기 실내열교환기(120)의 출구측 냉매순환라인(L1)에 설치되어 상기 실내열교환기(120)에서 배출된 냉매를 선택적으로 팽창시키는 구성으로서, 난방 시, 상기 실내열교환기(120)에서 냉매가 응축되고, 상기 가변열교환기(140)에서 냉매가 증발되도록 작동되어 저온 저압의 상태로 냉매를 교축한다. 또한, 냉방 시, 상기 제1팽창수단(300)은 냉매를 교축하지 않고 바이패스 시킨다.
상기 제2팽창수단(150)은 상기 증발기(130)의 입구측 냉매순환라인(L1)에 설치되어 상기 증발기(130)로 공급되는 냉매를 팽창시킨다. 상기 제2팽창수단(150)은 냉방 시, 상기 가변열교환기(140)를 통과하면서 응축된 냉매를 저온 저압의 상태로 교축하여 상기 증발기(130)로 공급된다. 또, 상기 제2팽창수단(150)은 난방 시, 냉매를 교축하지 않고 바이패스 시킨다.
또한, 상기 차량 히트 펌프 시스템(1000)은 상기 제1공조케이스(110a) 및 제2공조케이스(110b) 외부에서 상기 제1팽창수단(300)의 입구측 냉매순환라인(L1)에 설치되어 배터리를 냉각하기 위한 냉각수와 열교환되는 수냉식응축기(400)가 더 구비될 수 있다. 상기 수냉식응축기(400)는 냉방 시, 냉각수순환라인(L2)을 따라 냉각수가 유동되어 열교환이 이루어지는 부분으로, 상기 실내열교환기(120), 가변열교환기(140)와 함께 냉방 설정에 따라 증발기(130)로 공급되는 냉매를 응축한다. 상기 냉각수순환라인(L2)에는 냉각수를 냉각하기 위한 라디에이터(3000), 및 냉각수를 순환시키는 냉각수펌프(미도시)가 구비되며, 상기 라디에이터(3000)에 인접하여 상기 라디에이터(3000)로 공기를 송풍하는 냉각팬(4000)이 구비된다. 상기 수냉식응축기(400)는 기액분리기(410)를 포함하는 것으로, 이 경우, 상기 수냉식응축기(400)에 의해 냉매가 응축되고, 상기 기액분리기(410)에 의해 분리된 액상 냉매가 상기 가변열교환기(140)에 의해 과냉각될 수 있어 응축성능을 높여 상기 증발기(130)의 냉방성능을 보다 높일 수 있다.
또, 상기 차량 히트 펌프 시스템(1000)은 상기 냉매순환라인(L1) 상에 상기 제2팽창수단(150) 및 증발기(130)를 바이패스하도록 바이패스라인(L3)이 형성되고, 상기 바이패스라인(L3) 상에는 냉매 역류 방지를 위한 역류방지밸브(V)가 더 구비될 수 있다. 상기 바이패스라인(L3)은 난방 시, 냉매가 상기 제2팽창수단(150) 및 증발기(130)를 통과하지 않고 가변열교환기(140)를 통과한 냉매가 압축기(200)로 공급되는 구성이다. 즉, 난방 시 불필요한 구성(제2팽창수단(150) 및 증발기(130))을 생략하여 불필요한 유속 저하 및 압력 강하를 방지한다.
도 17은 본 발명의 제2실시예에 따른 차량용 공조장치의 냉방 상태를 나타낸 도면 및 히트 펌프 시스템의 상태를 나타낸 도면이다.
먼저, 최대 냉방 시, 상기 압축기(200)에 의해 압축된 냉매는 상기 실내열교환기(120)를 열교환없이 통과(템프도어(110d)가 상기 실내열교환기(120)를 통과하는 흐름을 차단함)되고, 상기 수냉식응축기(400) 및 가변열교환기(140)를 통과하면서 상기 압축기(200)에서 송출되는 고압의 냉매를 응축한다. 이 때, 상기 제1팽창수단(300)은 냉매를 바이패스 한다. 응축된 냉매는 상기 제2팽창수단(150)에서 교축되어 상기 증발기(130)로 공급되고, 상기 증발기(130)에서 교축된 저압의 액상 냉매와 공기가 열교환됨에 따라 냉매의 증발잠열에 의한 흡열작용으로 실내에 토출되는 공기를 냉각한다.
이 때, 상기 템프도어(110d)가 상기 실내열교환기(100b) 측으로의 공기 이동을 차단하는 위치로 제어되어 상기 제3조절도어(530)가 개방된 예를 나타내었으나, 냉방 시, 상기 제3조절도어(530)는 폐쇄될 수 있다.
도 18은 본 발명의 제2실시예에 따른 차량용 공조장치(100)의 난방 상태를 나타낸 도면 및 히트 펌프 시스템의 상태를 나타낸 도면이다.
먼저, 최대 난방 시, 상기 압축기(200)에 의해 압축된 냉매는 상기 실내열교환기(120)를 통과하면서 제2공조케이스(110b)를 통과하는 공기가 열교환됨에 따라 응축에 의한 방열작용으로 실내에 토출되는 공기를 가열한다. 한편, 상기 제2공조케이스(110b)로 유입된 공기는 상기 증발기(130)를 통과한 후, 전량 상기 실내열교환기(120)를 통과하도록 상기 템프도어(110d)가 작동되며, 이 때, 상기 증발기(130)에는 냉매가 공급되지 않는 상태로 공기가 증발기(130)와 열교환없이 통과된다. 상기 수냉식응축기(400) 역시 냉각수순환라인(L2)을 따라 냉각수가 유동되지 않아 냉매는 변화없이 이동되고, 상기 제1팽창수단(300)에서 교축되어 상기 가변열교환기(140)로 공급되어 증발된다. 상기 가변열교환기(140)를 통과하면서 증발된 냉매는 제2팽창수단(150) 및 증발기(130)를 통과하지 않고 상기 바이패스라인(L3)을 통해 상기 압축기(200)로 공급된다.
정리해 보면, 본 발명의 차량용 공조장치(100)는 히트펌프 시스템, 즉 1라인의 냉매라인으로 냉방과 난방이 가능한 공조 시스템에 이용되는 공조장치(100)이다. 난방은 압축기(200)에 의해 압축된 고온의 냉매를 이용하고, 냉방은 냉매의 증발을 이용한다. 이때, 히트펌프 시스템의 고질적인 문제점인 냉방시 응축성능의 저하는 실내열교환기(120)와 함께 냉매를 응축하는 가변열교환기(140)로 해결한다. 상기 가변열교환기(140)는 제1공조케이스(110a)에 실장된다.
도 19 및 도 20은 각각 본 발명의 제2실시예에 따른 차량용 공조장치의 제어 방법을 나타낸 도면이다. 본 발명의 차량용 공조장치 제어 방법은 상술한 바와 같은 차량용 공조장치의 특징을 가지되, 상기 제3조절도어(530)의 개방이 필요한지 판단하는 판단 단계(S10) ; 및 상기 제3조절도어(530)를 개방하는 단계(S20)를 포함할 수 있다.
먼저, 상기 도 19에 도시한 경우, 상기 판단 단계는 난방 설정 확인 시 상기 체3조절도어 개방이 필요한 것으로 판단한다. 즉, 본 발명의 차량용 공조장치 제어 방법은 난방 시, 상기 실내열교환기(120)를 통과한 공기를 선택적으로 상기 가변열교환기(140) 측으로 공급하여 흡열 열원으로 활용한다.
또, 상기 도 20에 도시한 경우, 상기 가변열교환기(140)의 착상 가능성을 판단하여 상기 공급부(500)를 통해 공급되는 열원에 의해 가변열교환기(140)의 착상을 방지한다. 더욱 상세하게, 상기 가변열교환기(140)의 착상 가능성을 판단하기 위한 판단 단계는, S11) 외기온도가 일정 온도 범위 내인지 확인하는 단계; 및 S12) 측정 습도가 일정 습도 이상인지 확인하는 단계를 포함한다. 상기 일정 온도 범위는 설정된 온도로, 예를 들어, T1 = -5℃, T2=5℃일 수 있고, 상기 일정 습도 역시 설정된 습도범위이다.
즉, 상기 도 20에 도시한 본 발명의 차량용 공조장치 제어 방법은 착상이 유발될 수 있다고 판단되는 경우에, 상기 제3조절도어(530)를 개방하여, 상기 실내열교환기(120)를 통과한 공기를 이용하여 가변열교환기(140)의 착상을 방지할 수 있는 예를 나타내었다.
본 발명은 상기한 실시예에 한정되지 아니하며, 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이다.
[부호의 설명]
100 : 차량용 공조장치
A1 : 가변열교환기모듈, A2: 공조모듈,
110a : 제1공조케이스, 110b : 제2공조케이스,
110d : 템프도어, 111: 페이스 벤트, 111d : 페이스 벤트 도어,
112 : 디프로스트 벤트, 112d : 디프로스트 벤트 도어,
113 : 플로어 벤트, 113d : 플로어 벤트 도어,
114 : 제2외기유입구, 115 : 내기유입구, 116 : 제1외기유입구,
117 : 엔진룸공기유입구, 120 : 실내열교환기, 130 : 증발기,
140 : 가변열교환기, 141 : 입구파이프, 142 : 출구파이프,
143 : 헤더탱크, 144 : 배플, 145 : 튜브, 146 : 핀,
A140 : 공급부의 공급 영역, 150 : 제2팽창수단,
161 : 팬조립체, 162 : 송풍부, 170 : 보조난방열교환기,
180 : 필터, 191 : 제1조절도어, 192 : 제2조절도어,
200 : 압축기, 300 : 제1팽창수단, 400 : 수냉식응축기,
410 : 기액분리기, 500 : 공급부, 510 : 연장부,
511 : 경사면, 512 : 지지부, 513 : 제1경사부,
514 : 제2경사부, 515 : 중공홀, 516 : 연통부,
521 : 제1체결부, 522 : 제2체결부, 530 : 배출부,
540 : 제3조절도어, 3000 : 라디에이터, 4000 : 냉각팬

Claims (20)

  1. 압축기(200), 실내열교환기(120), 제1팽창수단(300), 가변열교환기(140), 제2팽창수단(150) 및 증발기(130)로 이뤄진 냉매 루프에서,
    난방을 위한 실내열교환기(120), 냉방 시 냉매를 응축시키고 난방 시 냉매를 기화시키는 가변열교환기(140) 및 냉방을 위한 증발기(130)를 내장하는 공조 장치이되,
    상기 증발기(130)를 통과한 공기 및 상기 증발기(130)에서 생성된 응축수를 상기 가변열교환기(140) 측으로 공급하는 공급부(500)를 포함하는 것을 특징으로 하는 차량용 공조장치.
  2. 제1항에 있어서,
    상기 차량용 공조장치(1000)는 높이방향으로 상기 가변열교환기(140)의 일정영역이 상기 증발기(130)보다 하측에 위치되는 것을 특징으로 하는 차량용 공조장치.
  3. 제2항에 있어서,
    상기 차량용 공조장치(1000)는 상기 공급부(500)에 의해 상기 가변열교환기(140)의 냉매가 배출되는 측에 응축수 및 공기를 공급하는 것을 특징으로 하는 차량용 공조장치.
  4. 제1항에 있어서,
    상기 차량용 공조장치(1000)는,
    제1공조케이스(110a)와, 상기 제1공조케이스(110a) 내부에 구비되는 상기 가변열교환기(140)와, 상기 제1공조케이스(110a)에 장착되어 바람을 전달하는 팬조립체(161)를 포함하는 가변열교환기모듈(A1); 및
    차량 실내와 연통되어 실내 공조를 위한 바람이 유동하는 제2공조케이스(110b)와, 상기 제2공조케이스(110b) 내부에 구비되어 바람을 전달하는 송풍부(162)와, 상기 증발기(130)와 실내열교환기(120)를 포함하는 공조모듈(A2)이 서로 조립 고정되는 것을 특징으로 하는 차량용 공조장치.
  5. 제4항에 있어서,
    상기 제1공조케이스(110a)는 가변열교환기(140) 하측에 응축수가 배출되는 배출부(530)가 형성되는 것을 특징으로 하는 차량용 공조장치.
  6. 제4항에 있어서,
    상기 차량용 공조장치(1000)는 상기 공조모듈(A2)의 송풍부(162)가 구비되는 영역과 상기 가변열교환기모듈(A1)이 엔진룸 내부에서 차량 폭방향으로 나란하게 장착되는 것을 특징으로 하는 차량용 공조장치.
  7. 제4항에 있어서,
    상기 공급부(500)는 상기 제2공조케이스(110b)로부터 연장되어 응축수 및 공기가 이송되는 연장부(510)와, 상기 제1공조케이스(110a) 및 연장부(510)로부터 각각 형성되어 서로 체결되는 제1체결부(521) 및 제2체결부(522)를 포함하여 형성되는 것을 특징으로 하는 차량용 공조장치.
  8. 제7항에 있어서,
    상기 연장부(520)는 상기 증발기(130) 하측의 상기 제2공조케이스(110b)로부터 연장되어 차량 높이방향 하측으로 경사지게 형성되는 경사면(511)과, 상기 경사면(511)으로부터 돌출되어 상기 증발기(130) 하측을 지지하는 지지부(512)와, 차량 폭방향으로 상기 지지부(512)의 양측에 각각 경사지게 상기 지지부(512)와 경사면(511)을 연결하는 제1경사부(513) 및 제2경사부(514)를 포함하는 것을 특징으로 하는 차량용 공조장치.
  9. 제7항에 있어서,
    상기 공급부(500)는 상기 제1체결부(521)의 일정 영역이 중공되고, 상기 제2체결부(522)가 연장부(510)로부터 돌출된 형태로 상기 제1체결부(521)를 통해 상기 가변열교환기모듈(A1) 내측으로 삽입 고정되는 것을 특징으로 하는 차량용 공조장치.
  10. 제9항에 있어서,
    상기 제1체결부(521) 및 제2체결부(522)는 차량 폭방향으로 복수개가 이격 형성되는 것을 특징으로 하는 차량용 공조장치.
  11. 제5항에 있어서,
    상기 가변열교환기모듈(A1)은 상기 제1공조케이스(110a)에 외기가 유입되는제1외기유입구(116) 및 엔진룸과 연통되는 엔진룸공기유입구(117)와, 상기 제1외기유입구(116) 및 엔진룸공기유입구(117)의 개폐를 조절하는 제1조절도어(191)가 형성되는 것을 특징으로 하는 차량용 공조장치.
  12. 제5항에 있어서,
    상기 공조모듈(A2)은 상기 제2공조케이스(110b)에 외기가 유입되는 제2외기유입구(114) 및 내기가 유입되는 내기유입구(115); 상기 제2외기유입구(114) 및 내기유입구(115)의 개폐를 조절하는 제2조절도어(192)를 포함하는 것을 특징으로 하는 차량용 공조장치.
  13. 제12항에 있어서,
    상기 공조모듈(A2)은 공기 흐름 방향으로 상기 제2조절도어(192)의 하류 측에 필터(180)가 더 구비되는 것을 특징으로 하는 차량용 공조장치.
  14. 제5항에 있어서,
    상기 공조모듈(A2)은 공기 흐름 방향으로 상기 실내열교환기(120)의 하류 측에 보조난방열교환기(170)가 더 구비되는 것을 특징으로 하는 차량용 공조장치.
  15. 제1항에 있어서,
    상기 공급부(500)는 실내열교환기(120)를 통과한 공기를 선택적으로 상기 가변열교환기(140) 측으로 공급하는 것을 특징으로 하는 차량용 공조장치.
  16. 제15항에 있어서,
    상기 차량용 공조장치(1000)는 난방 또는 가변열교환기(140)에 착상 발생 시, 상기 공급부(500)를 통해 상기 실내열교환기(120)를 통과한 공기를 공급하여 흡열원으로 이용하는 것을 특징으로 하는 차량용 공조장치.
  17. 제15항에 있어서,
    상기 차량용 공조장치(1000)는,
    제1공조케이스(110a)와, 상기 제1공조케이스(110a) 내부에 구비되는 상기 가변열교환기(140)와, 상기 제1공조케이스(110a)에 장착되어 바람을 전달하는 팬조립체(161)를 포함하는 가변열교환기모듈(A1); 및
    차량 실내와 연통되어 실내 공조를 위한 바람이 유동하는 제2공조케이스(110b)와, 상기 제2공조케이스(110b) 내부에 구비되어 바람을 전달하는 송풍부(162)와, 상기 증발기(130)와 실내열교환기(120)를 포함하는 공조모듈(A2); 이 서로 조립 고정되며,
    상기 공급부(500)는 상기 제2공조케이스(110b) 일정영역이 중공되는 중공홀(515)과, 상기 중공홀(515)의 개폐를 조절하는 제3조절도어(530)와, 상기 중공홀(515)과 연통되어 실내열교환기(120)를 통과한 공기가 이송되는 연통부(516)와, 상기 제1공조케이스(110a) 및 연통부(516)로부터 각각 형성되어 서로 체결되는 제1체결부(521) 및 제2체결부(522)를 포함하여 형성되는 것을 특징으로 하는 차량용 공조장치.
  18. 제15항 내지 제17항 중 선택되는 어느 한 항의 차량용 공조장치(1000)를 이용한 제어 방법에 있어서,
    상기 차량용 공조장치 제어 방법은,
    상기 제3조절도어(530)의 개방이 필요한지 판단하는 판단 단계(S10); 및
    상기 제3조절도어(530)를 개방하는 단계(S20); 를 포함하는 것을 특징으로 하는 차량용 공조장치 제어 방법.
  19. 제18항에 있어서,
    상기 판단 단계(S10)는 난방 설정 확인 시 상기 제3조절도어(530)의 개방이 필요한 것으로 판단하는 것을 특징으로 하는 차량용 공조장치.
  20. 제18항에 있어서,
    상기 판단 단계(S10)는,
    외기온도가 일정 온도 범위 내인지 확인하는 단계(S11); 및
    측정 습도가 일정 습도 이상인지 확인하는 단계(S12); 를 포함하여 상기 제3조절도어(530)의 개방이 필요한 것으로 판단하는 것을 특징으로 하는 차량용 공조장치.
PCT/KR2021/002770 2020-03-06 2021-03-05 차량용 공조장치 및 그 제어 방법 WO2021177790A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/909,275 US11884138B2 (en) 2020-03-06 2021-03-05 Vehicle air conditioner and control method thereof
CN202180019346.4A CN115279603A (zh) 2020-03-06 2021-03-05 车辆空调机及其控制方法
DE112021000495.6T DE112021000495T5 (de) 2020-03-06 2021-03-05 Fahrzeugklimaanlage und verfahren zur steuerung derselben

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020200028160A KR20210112740A (ko) 2020-03-06 2020-03-06 차량용 공조장치
KR10-2020-0028191 2020-03-06
KR10-2020-0028160 2020-03-06
KR1020200028191A KR20210112755A (ko) 2020-03-06 2020-03-06 차량용 공조장치 및 그 제어 방법

Publications (1)

Publication Number Publication Date
WO2021177790A1 true WO2021177790A1 (ko) 2021-09-10

Family

ID=77613499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/002770 WO2021177790A1 (ko) 2020-03-06 2021-03-05 차량용 공조장치 및 그 제어 방법

Country Status (4)

Country Link
US (1) US11884138B2 (ko)
CN (1) CN115279603A (ko)
DE (1) DE112021000495T5 (ko)
WO (1) WO2021177790A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220126647A1 (en) * 2020-10-28 2022-04-28 Hyundai Motor Company Air conditioner apparatus for electric vehicles and air conditioning system for electric vehicles using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005238875A (ja) * 2004-02-24 2005-09-08 Denso Corp 車両用空調装置
JP2006232164A (ja) * 2005-02-25 2006-09-07 Denso Corp 車両用空調装置
US20100212347A1 (en) * 2009-02-26 2010-08-26 Halla Climate Control Corp. Air conditioner for a vehicle
JP6488737B2 (ja) * 2015-02-04 2019-03-27 株式会社デンソー 車両用空調装置
KR20200021198A (ko) * 2018-08-20 2020-02-28 한온시스템 주식회사 차량용 공조장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101251206B1 (ko) 2011-01-17 2013-04-08 갑을오토텍(주) 차량용 무시동 에어컨
JP6432339B2 (ja) * 2014-12-25 2018-12-05 株式会社デンソー 冷凍サイクル装置
JP2018192938A (ja) * 2017-05-18 2018-12-06 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005238875A (ja) * 2004-02-24 2005-09-08 Denso Corp 車両用空調装置
JP2006232164A (ja) * 2005-02-25 2006-09-07 Denso Corp 車両用空調装置
US20100212347A1 (en) * 2009-02-26 2010-08-26 Halla Climate Control Corp. Air conditioner for a vehicle
JP6488737B2 (ja) * 2015-02-04 2019-03-27 株式会社デンソー 車両用空調装置
KR20200021198A (ko) * 2018-08-20 2020-02-28 한온시스템 주식회사 차량용 공조장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220126647A1 (en) * 2020-10-28 2022-04-28 Hyundai Motor Company Air conditioner apparatus for electric vehicles and air conditioning system for electric vehicles using the same
US11850909B2 (en) * 2020-10-28 2023-12-26 Hyundai Motor Company Air conditioner apparatus for electric vehicles and air conditioning system for electric vehicles using the same

Also Published As

Publication number Publication date
US11884138B2 (en) 2024-01-30
US20230086817A1 (en) 2023-03-23
DE112021000495T5 (de) 2022-11-03
CN115279603A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
WO2021215695A1 (ko) 자동차용 히트 펌프 시스템
WO2016017939A1 (ko) 차량용 히트 펌프 시스템
WO2016114448A1 (en) Heat pump system for vehicle
WO2018012818A1 (ko) 차량용 히트 펌프 시스템
WO2019212275A1 (ko) 차량용 열관리 시스템
WO2015111847A1 (ko) 차량용 히트 펌프 시스템
WO2016148476A1 (ko) 차량용 히트 펌프 시스템
WO2011062348A1 (en) Heat pump
WO2020071803A1 (ko) 열관리 시스템
WO2019160294A1 (ko) 차량용 열관리 시스템
WO2018124788A1 (ko) 자동차용 히트펌프
WO2020040418A1 (ko) 열관리 시스템
WO2020080760A1 (ko) 열관리 시스템
WO2011149152A1 (en) Hot water supply device associated with heat pump
WO2016017927A1 (ko) 차량용 에어컨시스템
WO2020145527A1 (ko) 열관리 시스템
WO2020071801A1 (ko) 열관리 시스템
WO2016036079A1 (ko) 차량용 히트 펌프 시스템
WO2018016902A1 (ko) 차량용 공조 시스템 및 그 제어방법
WO2019208942A1 (ko) 차량용 열교환 시스템
WO2016182165A1 (ko) 에어컨 시스템
WO2020045878A1 (ko) 차량용 공조장치
WO2021177790A1 (ko) 차량용 공조장치 및 그 제어 방법
WO2022050586A1 (ko) 베이퍼 인젝션 모듈 및 이를 이용하는 히트펌프 시스템
WO2016163771A1 (ko) 차량용 공조 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21763847

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21763847

Country of ref document: EP

Kind code of ref document: A1