WO2021177222A1 - 防振用ゴム組成物 - Google Patents

防振用ゴム組成物 Download PDF

Info

Publication number
WO2021177222A1
WO2021177222A1 PCT/JP2021/007679 JP2021007679W WO2021177222A1 WO 2021177222 A1 WO2021177222 A1 WO 2021177222A1 JP 2021007679 W JP2021007679 W JP 2021007679W WO 2021177222 A1 WO2021177222 A1 WO 2021177222A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
rubber composition
tangent tan
loss tangent
vibration
Prior art date
Application number
PCT/JP2021/007679
Other languages
English (en)
French (fr)
Inventor
広行 丸子
Original Assignee
ヤマウチ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマウチ株式会社 filed Critical ヤマウチ株式会社
Publication of WO2021177222A1 publication Critical patent/WO2021177222A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08L23/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • C08L23/22Copolymers of isobutene; Butyl rubber ; Homo- or copolymers of other iso-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/08Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with rubber springs ; with springs made of rubber and metal

Definitions

  • the present invention relates to a rubber composition for vibration isolation.
  • Anti-vibration rubber which exhibits stable anti-vibration properties in a wide temperature range and frequency range, can be used in various applications such as building anti-vibration, vehicle or automobile anti-vibration, precision equipment anti-vibration, and household electrical appliances. It is required for vibration isolation of (for example, washing machines, refrigerators, air conditioners, etc.).
  • Patent Document 1 describes a highly dampened rubber composition containing a halogenated butyl rubber as a main component and a non-polar alicyclic saturated hydrocarbon resin and a reactive alkylphenol resin. Disclose.
  • Patent Document 2 contains a butyl rubber as a main component, a non-polar alicyclic saturated hydrocarbon resin, a predetermined liquid polymer, and a predetermined nitrogen adsorption specific surface area of 50 m 2 / g or less. Discloses a high damping rubber composition containing an inorganic filler of the above and a component of a vulcanizing agent.
  • Patent Document 3 describes (A) butyl rubber, (B) other elastomers, (C) tackifier resin, (D) vulcanizing agent and / or cross-linking agent, and (E) vulcanization. It contains an accelerator and / or an activator as a main component, and the content of the component (A) is 50 to 100 parts by weight, the content of the component (B) is 0 to 50 parts by weight, and the content of the component (C) is. Disclosed is a rubber composition having 1 to 50 parts by weight (here, the total amount of the component (A) and the component (B) is 100 parts by weight).
  • Patent Document 4 describes 100 parts by mass of the polymer (A) having a glass transition temperature in the range of ⁇ 80 to 0 ° C. and a solubility parameter in the range of 7.5 to 8.5.
  • the glass transition temperature is in the range of 10 to 60 ° C.
  • the solubility parameter is 8.5 or more
  • the melting point is in the range of 50 to 160 ° C.
  • the solubility parameter is 8.
  • a rubber composition for vibration isolation which comprises 5 to 50 parts by mass of a polymer (C) having 5 or more as an essential component.
  • Patent Document 5 describes a structural unit (i) derived from 15 to 75 mol% of 4-methyl-pentene and 25 to 85 mol% of ⁇ -olefin (where 4-methyl). It consists of the proportion of the structural unit (ii) derived from -1--pentene), and the ultimate viscosity measured at 135 ° C. in decalin is in the range of 0.1-5.0 dL / g, and gel permission chromatography.
  • 4-Methyl-1-pentene ⁇ in the range of 1.0 to 3.5 in the ratio (molecular weight distribution; Mw / Mn) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) measured by -Disclosure of anti-vibration materials containing at least an olefin copolymer.
  • a method of shifting the glass transition temperature of the rubber composition to around room temperature for example, 25 ° C.
  • a wide temperature range of 0 to 40 ° C. is used.
  • the change in the loss tangent tan ⁇ is large and it is difficult to exhibit the anti-vibration performance except at a limited temperature.
  • the value of the loss tangent tan ⁇ is large and its change (that is, the difference between the loss tangent tan ⁇ ) over a wide temperature range.
  • the present invention has a loss tangent tan ⁇ of 0.40 obtained by dynamic viscoelasticity measurement in a wide temperature range of 0 ° C., 20 ° C., and 40 ° C. even at a low frequency of 5 Hz. It is an object of the present invention to provide a rubber composition for vibration isolation which exhibits a high and stable damping performance in which the difference between the loss tangent tan ⁇ under these conditions is 0.40 or less.
  • the anti-vibration rubber composition comprises an A component composed of a butyl rubber, a B component composed of an amorphous ⁇ -olefin copolymer, a hydrogenated non-polar hydrocarbon resin and a terpene-based carbonized product. It contains a C component composed of at least one of hydrogen resins, and the mass ratio A: B of the A component and the B component is in the range of 90:10 to 65:35.
  • the anti-vibration rubber composition has a loss tangent tan ⁇ of 0.40 or more and a loss tangent tan ⁇ obtained by dynamic viscoelasticity measurement in a wide temperature range of 0 ° C., 20 ° C., and 40 ° C. even at a low frequency of 5 Hz. It is possible to provide a rubber composition for vibration isolation showing a high and stable damping performance in which the difference between the loss tangent tan ⁇ under these conditions is 0.40 or less.
  • the anti-vibration rubber composition of the present embodiment comprises an A component composed of a butyl rubber, a B component composed of an amorphous ⁇ -olefin copolymer, and a hydrogenated non-polar hydrocarbon resin and a terpene hydrocarbon resin. It contains at least one C component, and the mass ratio A: B of the A component and the B component is in the range of 90:10 to 65:35.
  • the anti-vibration rubber composition of the present embodiment has a high loss tangent tan ⁇ of 0.40 or more obtained by dynamic viscoelasticity measurement in a wide temperature range of 0 ° C., 20 ° C., and 40 ° C. even at a low frequency of 5 Hz. Shows damping performance.
  • the notation of "X to Y" indicating a range means that the value of X and Y is included.
  • the anti-vibration rubber composition of the present embodiment contains an A component made of a butyl rubber from the viewpoint of good damping characteristics at low temperatures.
  • Butyl-based rubber has good damping characteristics even at low temperatures because the peak of its loss tangent tan ⁇ exists in the temperature range of 0 ° C. or lower.
  • the "butyl rubber” refers to a rubber composed of butyl and a butyl derivative, and from the above viewpoint, butyl rubber (hereinafter, also referred to as IIR), halogenated butyl rubber (hereinafter, also referred to as X-IIR) and the like are preferable. Can be mentioned.
  • halogenated butyl rubber examples include chlorinated butyl rubber (hereinafter, also referred to as Cl-IIR) and brominated butyl rubber (hereinafter, also referred to as Br-IIR).
  • Cl-IIR chlorinated butyl rubber
  • Br-IIR brominated butyl rubber
  • IIR and X-IIR may be used alone or in combination depending on the purpose and use of the anti-vibration rubber composition.
  • the peak of the loss tangent tan ⁇ is in the temperature range of 0 ° C. or lower (that is, on the low temperature side), and in the temperature range of 0 to 60 ° C. (that is, on the high temperature side).
  • B composed of an amorphous ⁇ -olefin copolymer from the viewpoint of increasing the loss tangent tan ⁇ in a wide temperature range of 0 ° C., 20 ° C., and 40 ° C. by combining the B component in which the peak of the loss tangent tan ⁇ exists. Contains ingredients.
  • the component B is composed of an amorphous ⁇ -olefin copolymer, that is, because it is an ⁇ -olefin copolymer, it is highly compatible with the component A composed of butyl rubber, which is an olefin rubber, and is non-component. Since it is crystalline, it is easily mixed with the A component. Since the crystalline ⁇ -olefin has a melting point even if it is an ⁇ -olefin, the mixture is poorly mixed unless it is kneaded at a temperature equal to or higher than the melting point, and the compression set of the obtained vibration-proof rubber composition becomes large.
  • amorphous ⁇ -olefin copolymer means that there is no crystallinity, which is confirmed by the absence of a clear melting point.
  • the absence of a clear melting point means that no melting peak is observed when the temperature is raised at 10 ° C./min in a nitrogen gas atmosphere in differential scanning calorimetry (hereinafter, also referred to as DSC).
  • DSC differential scanning calorimetry
  • 7 mg of the sample is heated at 10 ° C./min from room temperature (25 ° C.) to 200 ° C. in a nitrogen gas stream (40 mL / min) atmosphere.
  • ⁇ -olefin copolymer refers to a copolymer of two or more types of ⁇ -olefins.
  • ⁇ -olefin is a general term for aliphatic unsaturated hydrocarbons in which a double bond is located between the terminal carbon C 1 and the adjacent carbon C 2.
  • the ⁇ -olefin copolymer is one of two or more types of ⁇ -olefins that are copolymerized from the viewpoint of increasing the loss positive tan ⁇ in a wide temperature range of 0 ° C, 20 ° C, and 40 ° C.
  • olefin is a 4-methyl-1-pentene / ⁇ -olefin (excluding 4-methyl-1-pentene) copolymer in which 4-methyl-1-pentene is used.
  • Mass ratio of component A and component B A: B adjusts the ratio of the combination of the peak of the tangent tan ⁇ on the low temperature side derived from the component A and the peak of the tangent tan ⁇ on the high temperature side derived from the component B. Therefore, from the viewpoint of increasing the loss tangent tan ⁇ in a wide temperature range of 0 ° C., 20 ° C., and 40 ° C., the range is 90:10 to 65:35, preferably 90:10 to 70:30. ..
  • the anti-vibration rubber composition of the present embodiment shifts the peak of the loss tangent tan ⁇ on the low temperature side derived from the component A to the high temperature side, and increases the loss tangent tan ⁇ on the high temperature side derived from the component B. , 0 ° C., 20 ° C., and 40 ° C., from the viewpoint of increasing the loss tangent tan ⁇ , contains a C component consisting of at least one of a hydrogenated non-polar hydrocarbon resin and a terpene-based hydrocarbon resin.
  • hydrogenated non-polar hydrocarbon resin “hydrogenated” means that hydrogen is added.
  • Non-polar is a synonym for “polar” and does not mean that it has no polarity. Specifically, polar functional groups (polar functional groups such as hydroxy groups, carbonyls). It means that it does not include the group.
  • Hydrocarbon resin refers to a resin composed only of carbon and hydrogen. Preferable examples of the hydrogenated non-polar hydrocarbon resin include an alicyclic saturated hydrocarbon resin and a hydrogenated alicyclic / aromatic copolymer resin.
  • the "terpene-based hydrocarbon resin” refers to a hydrocarbon resin containing "terpene”, which is a hydrocarbon having isoprene as a constituent unit.
  • the hydrogenated non-polar hydrocarbon resin and the terpene-based hydrocarbon resin may be used alone or in combination.
  • the hydrogenated non-polar hydrocarbon resin and the terpene-based hydrocarbon resin are not particularly limited, and commercially available ones having a melting point of about 90 to 150 ° C. are preferably used.
  • the anti-vibration rubber composition of the present embodiment has a loss in a wide temperature range of 0 ° C., 20 ° C., and 40 ° C. by shifting the peak of the loss tangent tan ⁇ on the low temperature side derived from the component A to the high temperature side.
  • the content of the C component is preferably 10 parts by mass or more and 50 parts by mass or less with respect to the total content of the A component and the B component of 100 parts by mass.
  • the content of the C component is preferably 10 parts by mass or more, more preferably 15 parts by mass or more, from the viewpoint of enhancing the effect of shifting the peak of the loss tangent tan ⁇ on the low temperature side to the high temperature side. Further, from the viewpoint of suppressing the hardness at low temperature from becoming too high by setting the position of the peak temperature of the loss tangent tan ⁇ to 0 ° C. or lower, 50 parts by mass or less is preferable, and 40 parts by mass or less is more preferable.
  • the anti-vibration rubber composition of the present embodiment has a filler, a vulcanizing agent, a processing aid, and a plasticizer generally used in the rubber composition as other components other than the A component, the B component, and the C component.
  • Agents, softeners, anti-aging agents, coupling agents, colorants, heat radiating materials, conductive materials and the like can be included.
  • the filler is not particularly limited, but carbon black, calcined clay and the like are preferably mentioned from the viewpoint of high reinforcing property and small compression set.
  • the vulcanizing agent is not particularly limited, but in the case of X-IIR, zinc oxide, dithiocarbamic acid-based vulcanization accelerator and the like are preferably mentioned from the viewpoint of good balance of strength, compression infinite strain, vulcanization rate and the like. Be done. For the same reason, in the case of IIR, low sulfur vulcanization, sulfur-free vulcanization (sulfur donor vulcanization) and the like are preferably mentioned. As the processing aid, stearic acid or the like is preferably mentioned from the viewpoint that it is effective in a small amount and has little influence on the physical properties.
  • the anti-viscoelastic rubber composition of the present embodiment contains the above-mentioned A component, B component, and C component, and the mass ratio A: B of the A component and the B component is in the range of 90:10 to 65:35. Therefore, the loss tangent tan ⁇ obtained in the dynamic viscoelasticity measurement under the three conditions of 0 ° C. and 5 Hz, 20 ° C. and 5 Hz, and 40 ° C. and 5 Hz is 0.40 or more, and all of them are 0. It is preferably 50 or more.
  • the anti-vibration rubber composition of the present embodiment has a loss tangent tan ⁇ of 0.40 or more, preferably 0.40 or more, in a wide temperature range of 0 ° C., 20 ° C., and 40 ° C. even at a low frequency of 5 Hz. Both show high damping performance of 0.50 or more.
  • the anti-vibration rubber composition of the present embodiment has a difference between the loss tangent tan ⁇ obtained in the dynamic viscoelasticity measurement under the three conditions of 0 ° C. and 5 Hz, 20 ° C. and 5 Hz, and 40 ° C. and 5 Hz. Is 0.40 or less, and it is preferable that both are 0.30 or less.
  • the difference between the loss tangent tan ⁇ is 0.40 or less, preferably any of them, in a wide temperature range of 0 ° C., 20 ° C., and 40 ° C. even at a low frequency of 5 Hz. It shows stable damping performance of 0.30 or less.
  • the difference between the loss tangent tan ⁇ is any means the difference in the loss tangent tan ⁇ between the two conditions of all combinations selected from the above three conditions (that is, the number of differences in the loss tangent tan ⁇ ). Means all of 3). That is, the difference between the maximum value and the minimum value of the loss tangent tan ⁇ under the above three conditions is 0.40 or less, and preferably 0.30 or less.
  • the anti-vibration rubber composition of the present embodiment has dynamic viscoelasticity under four conditions in which the conditions of 0 ° C. and 5 Hz, 20 ° C. and 5 Hz, and 40 ° C. and 5 Hz are further added to the conditions of 20 ° C. and 100 Hz.
  • the loss tangent tan ⁇ obtained in the viscoelasticity measurement is preferably 0.40 or more, more preferably 0.50 or more, and the difference between the loss tangent tan ⁇ under the above four conditions is any. Is preferably 0.40 or less, and more preferably 0.30 or less in each case.
  • Such a vibration-proof rubber composition has a loss tangent tan ⁇ of 0.40 or more, preferably 0, in a wide low frequency range of 5 Hz and 100 Hz and a wide temperature range of 0 ° C., 20 ° C., and 40 ° C. It exhibits a higher damping performance of .50 or more, and a more stable damping performance with a difference between the loss tangents tan ⁇ of 0.40 or less, preferably 0.30 or less.
  • the difference between the loss tangent tan ⁇ is any means the difference in the loss tangent tan ⁇ between the two conditions of all combinations selected from the above four conditions (that is, the number of differences in the loss tangent tan ⁇ ). Means all of 6). That is, the difference between the maximum value and the minimum value of the loss tangent tan ⁇ under the above four conditions is preferably 0.40 or less, and more preferably 0.30 or less.
  • the anti-viscoelastic rubber composition of the present embodiment has four conditions of 0 ° C. and 5 Hz, 20 ° C. and 5 Hz, 40 ° C. and 5 Hz, and 20 ° C. and 100 Hz, and further added conditions of ⁇ 10 ° C. and 5 Hz 5
  • the loss tangent tan ⁇ obtained in the dynamic viscoelasticity measurement under one condition is more preferably 0.40 or more, further preferably 0.50 or more, and the loss tangent tan ⁇ under the above five conditions is more preferable.
  • the difference between the two is more preferably 0.40 or less, and further preferably 0.30 or less.
  • the anti-vibration rubber composition has a loss tangent tan ⁇ of 0.40 or more in a wide low frequency range of 5 Hz and 100 Hz and a wider temperature range of ⁇ 10 ° C., 0 ° C., 20 ° C., and 40 ° C.
  • a loss tangent tan ⁇ of 0.40 or more in a wide low frequency range of 5 Hz and 100 Hz and a wider temperature range of ⁇ 10 ° C., 0 ° C., 20 ° C., and 40 ° C.
  • all of them show a higher damping performance of 0.50 or more
  • the difference between the loss tangents tan ⁇ is 0.40 or less, preferably 0.30 or less, and more stable damping performance is shown.
  • the difference between the loss tangent tan ⁇ is any means the difference in the loss tangent tan ⁇ between the two conditions of all combinations selected from the above five conditions (that is, the number of differences in the loss tangent tan ⁇ ). Means all of 10). That is, the difference between the maximum value and the minimum value of the loss tangent tan ⁇ under the above five conditions is more preferably 0.40 or less, and further preferably 0.30 or less.
  • the anti-vibration rubber composition of the present embodiment contains the above-mentioned A component, B component, and C component, and the mass ratio A: B of the A component and the B component is in the range of 90:10 to 65:35. Therefore, the permanent compression strain after 25% compression at 70 ° C. and 24 hours is 30% or less, and the vibration isolation performance (damping performance) has high stability over a long period of time.
  • the anti-vibration rubber composition of the present embodiment has a permanent compression strain of 30% or less, preferably 20% or less, after 25% compression, from the viewpoint of maintaining high stability of damping performance over a long period of time. ..
  • the method for producing the anti-vibration rubber composition of the present embodiment is not particularly limited, and a general method for producing the anti-vibration rubber composition is used.
  • a predetermined amount of A component, B component, C component, and other components are sequentially added to an open roll or a closed kneader (for example, Banbury mixer, kneader, etc.). Add and mix.
  • a closed kneader for example, Banbury mixer, kneader, etc.
  • Add and mix At this time, it is preferable to raise the temperature of the rubber dough composed of the A component and the B component to be equal to or higher than the melting point of the C component so that the C component is sufficiently melted.
  • the rubber composition for kneading and vibration isolation obtained by lowering the rubber temperature so as not to react during kneading, adding a vulcanizing agent and a vulcanization accelerator as appropriate, and mixing with an open roll or the like.
  • a rubber composition for cross-linking vibration isolation is obtained by vulcanizing the product at 140 to 190 ° C. for 1 to 30 minutes.
  • Example 1 Preparation of Anti-Vibration Rubber Composition
  • the parts A, processing aid, B component, C component, and filler shown in Table 1 are sequentially added to a 10 L (liter) kneader, kneaded until the temperature of the rubber composition reaches 110 ° C., and A kneaded.
  • the composition was obtained.
  • the obtained A kneading composition is put into a 12-inch open roll, a vulcanizing agent and a vulcanization accelerator are put into it, and then kneaded at about 50 ° C. for 10 minutes to prepare a rubber composition for vibration isolation. bottom.
  • the obtained anti-vibration rubber composition was vulcanized at 160 ° C. for 20 minutes to prepare a cross-linked anti-vibration rubber composition.
  • Examples 2 to 19, Comparative Examples 1 to 11 As shown in Tables 1 to 6, the rubber composition was prepared according to Example 1 except that the blending amount of each component was changed and the discharge temperature of the kneader kneading was set to be equal to or higher than the melting point of each C component. Made. As for the comparative example containing no C component, it was kneaded until the temperature reached 110 ° C. in the same manner as in Example 1 to obtain an A kneading composition. Next, the obtained anti-vibration rubber composition was vulcanized in the same manner as in Example 1 to prepare a cross-linked anti-vibration rubber composition. However, Examples 2 and 16 and Comparative Examples 1 and 2 were vulcanized at 170 ° C. for 30 minutes.
  • CIIR chlorinated butyl rubber
  • IIR indicates butyl rubber
  • EPDM is It indicates ethylene propylene diene rubber (EP-33 manufactured by JSR Corporation)
  • NBR indicates acrylonitrile butadiene rubber (N230 manufactured by JSR Corporation, acrylonitrile content is 35% by mass).
  • acrystalline ⁇ -olefin copolymer is an amorphous 4-methyl-1-pentene / ⁇ -olefin copolymer (EP1001, manufactured by Mitsui Chemicals, Inc., clear).
  • the "crystalline ⁇ -olefin copolymer” is a crystalline 4-methyl-1-pentene / ⁇ -olefin copolymer (EP1013 manufactured by Mitsui Chemicals Co., Ltd., melting point 121 ° C. and 134 ° C.).
  • Hydrohydrated styrene-butadiene copolymer indicates an amorphous styrene-butadiene copolymer (SOE1605 manufactured by Asahi Kasei Co., Ltd., no definite melting point exists), and "polyethylene” indicates crystalline polyethylene (Sumitomo Sei). Frosen UF manufactured by Ka Co., Ltd. has a melting point of 104 ° C.).
  • hydrocarbon non-polar hydrocarbon resin a indicates an alicyclic saturated hydrocarbon resin (Arcon P90 manufactured by Arakawa Chemical Industry Co., Ltd., melting point 90 ° C.), and "hydrocarbonation”.
  • Non-polar hydrocarbon resin b indicates an alicyclic saturated hydrocarbon resin (Arcon P100 manufactured by Arakawa Chemical Industry Co., Ltd., melting point is 100 ° C.), and "hydrogenated non-polar hydrocarbon resin c" is an alicyclic saturated hydrocarbon.
  • the resin (Arcon P140 manufactured by Arakawa Chemical Industry Co., Ltd., melting point 140 ° C.) is shown, and the "hydrocarbon nonpolar hydrocarbon resin d" is a hydrogenated hydrocarbon resin (T-REZ manufactured by JXTG Holdings Co., Ltd., melting point 103 ° C.).
  • "Terpen-based resin a” indicates an aromatic-modified terupene resin (YS Polystar TO-125 manufactured by Yasuhara Chemical Co., Ltd., melting point 125 ° C.)
  • terpene-based resin b indicates a terpen resin (YS manufactured by Yasuhara Chemical Co., Ltd.).
  • "non-hydrocarbon resin a” indicates C5-C9 hydrocarbon resin (Petrotac 100V manufactured by Toso Co., Ltd., melting point 96 ° C)
  • "non-hydrocarboned” indicates a C9-based hydrocarbon resin (Petcol 100T manufactured by Toso Co., Ltd., melting point 95 ° C.)
  • “Rodin ester resin” refers to Pine Crystal KE-100 (melting point 100 ° C.) manufactured by Arakawa Chemical Industry Co., Ltd. show.
  • SRF soft carbon type medium reinforcing carbon black (Seast S manufactured by Tokai Carbon Co., Ltd.) having low particle hardness
  • HAF particle hardness
  • It refers to hard carbon type carbon black with high abrasion resistance (Seast 3H manufactured by Tokai Carbon Co., Ltd.)
  • did clay refers to Burgess KE manufactured by Shiraishi Calcium Co., Ltd.
  • zinc oxide indicates one kind of zinc oxide manufactured by Sakai Chemical Co., Ltd.
  • sulfur indicates Sarfax A manufactured by Tsurumi Chemical Industry Co., Ltd.
  • ZDEC indicates diethyl.
  • Zinc oxide dithiocarbamate Noxeller Ez manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.
  • DTDM indicates 4,4'-dithiodimorpholin
  • CBS indicates N-cyclohexyl-2-benzothiazolyl vulcanamide (Noxeller Cz manufactured by Ouchi Shinko Co., Ltd.) is shown
  • dicumyl peroxide is Park Mill D manufactured by Nichiyu Co., Ltd.
  • Examples 1 and 2 show A component composed of chlorinated butyl rubber or butyl rubber which is a butyl rubber, B component composed of an amorphous ⁇ -olefin copolymer, and hydrogenated non-polar hydrocarbon. Since it is a rubber composition for vibration isolation having a C component made of a resin and having a mass ratio A: B of the A component and the B component in the range of 90:10 to 65:35, the target characteristics (0 ° C. and The loss tangent tan ⁇ under the three conditions of 5 Hz, 20 ° C. and 5 Hz, and 40 ° C.
  • the loss tangent tan ⁇ at 40 ° C. and 5 Hz is less than 0.4, and the loss tangent tan ⁇ at 0 ° C. and 5 Hz and 40 ° C. Moreover, the difference in loss tangent tan ⁇ from the condition of 5 Hz was extremely large.
  • Example 1 comprises component A composed of chlorinated butyl rubber, which is a butyl rubber, component B composed of an amorphous ⁇ -olefin copolymer, and C composed of a hydrogenated non-polar hydrocarbon resin. Since the rubber composition for vibration isolation has components and the mass ratio A: B of component A and component B is in the range of 90:10 to 65:35, the target characteristics could be achieved. The anti-vibration rubber compositions of Comparative Examples 5 to 7 could not achieve the target characteristics because the B component was not an amorphous ⁇ -olefin copolymer.
  • Examples 1 and 3 to 5 show A component composed of chlorinated butyl rubber which is a butyl rubber, B component composed of an amorphous ⁇ -olefin copolymer, and hydrogenated non-polar hydrocarbon. Since it is a rubber composition for vibration isolation having a C component made of a resin and having a mass ratio A: B of the A component and the B component in the range of 90:10 to 65:35, the target characteristics could be achieved. ..
  • Examples 6 and 7 have an A component made of chlorinated butyl rubber, which is a butyl rubber, a B component made of an amorphous ⁇ -olefin copolymer, and a C component made of a terpene resin, and the A component and the B component. Since the rubber composition for vibration isolation has a mass ratio A: B with the component in the range of 90:10 to 65:35, the target characteristics could be achieved.
  • Example 8 has a component A made of chlorinated butyl rubber which is a butyl rubber, a component B made of an amorphous ⁇ -olefin copolymer, and a component C made of a hydrogenated non-polar hydrocarbon resin and a terpene resin.
  • the rubber composition for vibration isolation has a mass ratio A: B of component A and component B in the range of 90:10 to 65:35, the target characteristics could be achieved.
  • the anti-vibration rubber compositions of Comparative Examples 8 to 10 could not achieve the target characteristics because the C component was neither a hydrogenated non-polar hydrocarbon resin nor a terpene resin.
  • Examples 1, 9 and 10 show A component composed of chlorinated butyl rubber which is a butyl rubber, B component composed of an amorphous ⁇ -olefin copolymer, and hydrogenated non-polar hydrocarbon. Since it is a rubber composition for vibration isolation having a C component made of a resin and having a mass ratio A: B of the A component and the B component in the range of 90:10 to 65:35, carbon black (as a filler) The target characteristics could be achieved regardless of whether the SRF and HAF) or the calcined clay was used. Here, carbon black was suitable as the filler from the viewpoint of high hardness and breaking characteristics.
  • Examples 1 and 11 to 15 show A component composed of chlorinated butyl rubber which is a butyl rubber, B component composed of an amorphous ⁇ -olefin copolymer, and hydrogenated non-polar hydrocarbon. It has a C component made of resin, and the mass ratio A: B of the A component and the B component is in the range of 90:10 to 65:35, and the total content of the A component and the B component is 100 parts by mass.
  • the rubber composition for vibration isolation has a C component content of 10 parts by mass or more and 50 parts by mass or less, the target characteristics could be achieved.
  • Examples 1 and 16 to 19 show A component composed of chlorinated butyl rubber or butyl rubber which is a butyl rubber, B component composed of an amorphous ⁇ -olefin copolymer, and hydrogenated non-polarity. Since it has a C component made of a hydrocarbon resin and the mass ratio A: B of the A component and the B component is in the range of 90:10 to 65:35, the target characteristics could be achieved.
  • the anti-vibration rubber composition of Comparative Example 11 could not achieve the target characteristics because the mass ratio A: B of the component A and the component B was out of the range of 90:10 to 65:35.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

防振用ゴム組成物は、ブチル系ゴムからなるA成分と、非晶性α-オレフィン共重合体からなるB成分と、水添非極性炭化水素樹脂およびテルペン系炭化水素樹脂の少なくとも1つからなるC成分と、を含有し、A成分とB成分との質量比率A:Bが90:10から65:35までの範囲にある。

Description

防振用ゴム組成物
 本発明は、防振用ゴム組成物に関する。
 広い温度領域および周波数領域において、安定した防振性を発揮する防振ゴムが、様々な用途、たとえば、建築物の防振、車両または自動車の防振、精密機器の防振、家庭用電気機器(たとえば、洗濯機、冷蔵庫、エアコンなど)の防振などで要求されている。
 たとえば、特開2009-173906号公報(特許文献1)は、ハロゲン化ブチルゴムを主成分とし、非極性の脂環族飽和炭化水素樹脂および反応型アルキルフェノール樹脂の成分を含有する高減衰ゴム組成物を開示する。
 特開2010-144142号公報(特許文献2)は、ブチル系ゴムを主成分とし、非極性の脂環族飽和炭化水素樹脂、所定の液状ポリマー、窒素吸着比表面積が50m2/g以下の所定の無機フィラー、および加硫剤の成分を含有する高減衰ゴム組成物を開示する。
 特開2002-187987号公報(特許文献3)は、(A)ブチルゴム、(B)その他のエラストマー、(C)粘着付与樹脂、(D)加硫剤および/または架橋剤、(E)加硫促進剤および/または活性剤を主成分として含有し、(A)成分の含有量が50~100重量部、(B)成分の含有量が0~50重量部、(C)成分の含有量が1~50重量部である(ここで、(A)成分、(B)成分の合計量を100重量部とする)ゴム組成物を開示する。
 特開2005-179525号公報(特許文献4)は、ガラス転移温度が-80~0℃の範囲内、溶解度パラメータが7.5~8.5の範囲内であるポリマー(A)の100質量部と、ガラス転移温度が10~60℃の範囲内、溶解度パラメータが8.5以上であるポリマー(B)の5~150質量部と、融点が50~160℃の範囲内、溶解度パラメータが8.5以上であるポリマー(C)の5~50質量部と、が必須の成分として配合されてなる防振用ゴム組成物を開示する。
 特開2012-82388号公報(特許文献5)は、15~75モル%の4-メチル-ペンテンから導かれる構成単位(i)と、25~85モル%のα-オレフィン(ただし、4-メチル-1-ペンテンを除く。)から導かれる構成単位(ii)の割合とからなり、デカリン中135℃で測定した極限粘度が0.1~5.0dL/gの範囲にあり、ゲルパーミッションクロマトグラフィーにより測定される重量平均分子量(Mw)と数平均分子量(Mn)との割合(分子量分布;Mw/Mn)が1.0~3.5の範囲にある、4-メチル-1-ペンテン・α-オレフィン共重合体を少なくとも含有する防振材を開示する。
特開2009-173906号公報 特開2010-144142号公報 特開2002-187987号公報 特開2005-179525号公報 特開2012-82388号公報
 従来の防振用ゴム組成物では、動的粘弾性測定において、周波数が低いほど損失正接tanδが低下し、また、高温であるほど損失正接tanδが低下するため、低周波数かつ広い温度範囲において高い防振性能(減衰性能)を有することは困難であるという問題があった。また、高温における損失正接tanδを高く保持するため、ゴム組成物のガラス転移温度を室温(たとえば25℃)付近にシフトさせる手法が用いられるが、かかる手法では、たとえば0~40℃の広い温度範囲において損失正接tanδの変化が大きく、限定された温度以外で防振性能を発揮することが困難であるという問題があった。
 たとえば0~40℃の広い温度範囲における損失正接tanδの変化が大きいと、外的環境の変化(季節変化など)あるいは機器内部の発熱などによる温度変化により防振性能が変化するという問題があった。このため、建築物、車両または自動車、精密機器、および家庭用電気機器などの設計を容易にするため、広い温度範囲において損失正接tanδの値が大きくかつその変化(すなわち損失正接tanδ間の差)が小さい防振ゴム組成物の開発が求められている。
 しかしながら、特許文献1~5のいずれにおいても、低周波数(たとえば5Hz)においても広い温度範囲(たとえば0℃、20℃、および40℃)の条件において高い減衰性能(たとえば、動的粘弾性測定において得られる損失正接tanδがいずれも0.40以上、かつ、それらの条件における損失正接tanδの間の差がいずれも0.40以下)を示すゴム組成物は得られていない。
 そこで、本発明は、上記問題を解決するため、5Hzの低周波数においても0℃、20℃、および40℃の広い温度範囲において動的粘弾性測定により得られる損失正接tanδがいずれも0.40以上、かつ、それらの条件における損失正接tanδの間の差がいずれも0.40以下の高く安定した減衰性能を示す防振用ゴム組成物を提供することを目的とする。
 本発明の一態様にかかる防振用ゴム組成物は、ブチル系ゴムからなるA成分と、非晶性α-オレフィン共重合体からなるB成分と、水添非極性炭化水素樹脂およびテルペン系炭化水素樹脂の少なくとも1つからなるC成分と、を含有し、A成分とB成分との質量比率A:Bが90:10から65:35までの範囲にある。
 上記防振用ゴム組成物は、5Hzの低周波数においても0℃、20℃、および40℃の広い温度範囲において動的粘弾性測定により得られる損失正接tanδがいずれも0.40以上、かつ、それらの条件における損失正接tanδの間の差がいずれも0.40以下の高く安定した減衰性能を示す防振用ゴム組成物を提供できる。
 [防振用ゴム組成物]
 本実施形態の防振用ゴム組成物は、ブチル系ゴムからなるA成分と、非晶性α-オレフィン共重合体からなるB成分と、水添非極性炭化水素樹脂およびテルペン系炭化水素樹脂の少なくとも1つからなるC成分と、を含有し、A成分とB成分との質量比率A:Bが90:10から65:35までの範囲にある。本実施形態の防振用ゴム組成物は、5Hzの低周波数においても0℃、20℃、および40℃の広い温度範囲において動的粘弾性測定により得られる損失正接tanδが0.40以上の高い減衰性能を示す。なお、本明細書において、範囲を示す「X~Y」の表記は、XおよびYの値を含むことを意味する。
 (A成分)
 本実施形態の防振用ゴム組成物は、低温における減衰特性が良好である観点から、ブチル系ゴムからなるA成分を含む。ブチル系ゴムは、その損失正接tanδのピークが0℃以下の温度範囲に存在するため、低温においても減衰特性が良好である。ここで、「ブチル系ゴム」とは、ブチルおよびブチル誘導体からなるゴムをいい、上記観点から、ブチルゴム(以下、IIRともいう)およびハロゲン化ブチルゴム(以下、X-IIRともいう)などが好適に挙げられる。さらに、ハロゲン化ブチルゴムとして、塩素化ブチルゴム(以下、Cl-IIRともいう)、臭素化ブチルゴム(以下、Br-IIRともいう)などが挙げられる。なお、加硫時間の短縮を図る観点から、X-IIRがより好ましい。また、IIRおよびX-IIRは、防振用ゴム組成物の使用目的および使用用途により、それぞれ単独で用いても、併用して用いてもよい。
 (B成分)
 本実施形態の防振用ゴム組成物は、損失正接tanδのピークが0℃以下の温度範囲(すなわち低温側)に存在するA成分に、0~60℃の温度範囲(すなわち高温側に)に損失正接tanδのピークが存在するB成分を組み合わせることにより、0℃、20℃、および40℃の広い温度範囲において損失正接tanδを高くする観点から、非晶性α-オレフィン共重合体からなるB成分を含む。B成分は、非晶性α-オレフィン共重合体からなること、すなわち、α-オレフィン共重合体であることからオレフィン系ゴムであるブチル系ゴムからなるA成分と相溶性が高く、かつ、非晶性であるため、A成分と混ざり易い。結晶性α-オレフィンは、α-オレフィンであっても融点が存在するため、融点以上の温度で混練しないと混ざりが悪くなり、得られる防振ゴム組成物の圧縮永久歪みが大きくなる。
 「非晶性α-オレフィン共重合体」について、「非晶性」とは、結晶性がないことをいい、明確な融点が存在しないことにより確認される。明確な融点が存在しないとは、示差走査熱量測定(以下、DSCともいう)において、窒素ガス雰囲気中で10℃/minで昇温させたときに融解ピークが認められないことをいう。具体的には、DSC(たとえば、Mettler-Toledo社製DSC822)を用いて、試料7mgを窒素ガス気流(40mL/min)雰囲気中、室温(25℃)から200℃まで10℃/minで昇温させ、試料を完全融解させるために5分間保持し、次いで、200℃から-50℃まで10℃/minで降温させ、-50℃で5分間保持した後、-50℃から200℃まで10℃/minで再び昇温させたとき(すなわち2回目の昇温のとき)に現れる融解ピークの温度を融点と定義するときに、その融解ピークが認められないことをいう。
 「α-オレフィン共重合体」とは、2種類以上のα-オレフィンが共重合されたものをいう。ここで、「α-オレフィン」とは、末端炭素Cと隣接炭素Cとの間に二重結合が位置する脂肪族不飽和炭化水素の総称である。α-オレフィン共重合体は、0℃、20℃、および40℃の広い温度範囲において損失正接tanδを高くする観点から、共重合されている2種類以上のα-オレフィンのうち、1種類のα-オレフィンが4-メチル-1-ペンテンである4-メチル-1-ペンテン・α-オレフィン(ただし、4-メチル-1-ペンテンを除く)共重合体であることが好ましい。
 (A成分とB成分との質量比率)
 A成分とB成分との質量比率A:Bは、A成分に由来する低温側の損失正接tanδのピークとB成分に由来する高温側の損失正接tanδのピークとの組み合わせの比率を調整することにより、0℃、20℃、および40℃の広い温度範囲において損失正接tanδを高くする観点から、90:10から65:35までの範囲であり、90:10から70:30までの範囲が好ましい。
 (C成分)
 本実施形態の防振用ゴム組成物は、A成分に由来する低温側の損失正接tanδのピークを高温側にシフトさせ、かつ、B成分に由来する高温側の損失正接tanδを上昇させることにより、0℃、20℃、および40℃の広い温度範囲において損失正接tanδを高くする観点から、水添非極性炭化水素樹脂およびテルペン系炭化水素樹脂の少なくとも1つからなるC成分を含む。
 「水添非極性炭化水素樹脂」について、「水添」とは水素が添加されていることをいう。「非極性」とは、「極性を有する」の対語であり、全く極性を有しないことを意味するものでなく、具体的には、極性官能基(極性を有する官能基、たとえばヒドロキシ基、カルボニル基などをいう)を含まないことをいう。「炭化水素樹脂」とは炭素および水素のみで構成されている樹脂をいう。水添非極性炭化水素樹脂としては、脂環族飽和炭化水素樹脂、水添脂環族/芳香族共重合系炭化水素樹脂などが好適に挙げられる。「テルペン系炭化水素樹脂」とは、イソプレンを構成単位とする炭化水素である「テルペン」を含む炭化水素樹脂をいう。水添非極性炭化水素樹脂およびテルペン系炭化水素樹脂は、それぞれ単独で用いても、併用して用いてもよい。水添非極性炭化水素樹脂およびテルペン系炭化水素樹脂は、特に制限はなく、市販されている融点90~150℃程度のものが好適に用いられる。
 (C成分の含有量)
 本実施形態の防振用ゴム組成物は、A成分に由来する上記低温側の損失正接tanδのピークを高温側にシフトさせることにより、0℃、20℃、および40℃の広い温度範囲において損失正接tanδを高くする観点から、A成分およびB成分の合計含有量100質量部に対して、C成分の含有量が10質量部以上50質量部以下であることが好ましい。具体的には、上記低温側の損失正接tanδのピークを高温側にシフトさせる効果を高める観点から、C成分の含有量は、10質量部以上が好ましく、15質量部以上がより好ましい。また、損失正接tanδのピーク温度の位置を好ましくは0℃以下とすることにより低温時の硬度が高くなり過ぎるのを抑制する観点から、50質量部以下が好ましく、40質量部以下がより好ましい。
 (その他の成分)
 本実施形態の防振用ゴム組成物は、A成分、B成分、およびC成分以外のその他の成分として、一般的にゴム組成物に使用される充填剤、加硫剤、加工助剤、可塑剤、軟化剤、老化防止剤、カップリング剤、着色剤、放熱材、導電材などを含むことができる。充填剤としては、特に制限はないが、補強性が高く圧縮永久歪みが小さくなる観点から、カーボンブラック、焼成クレーなどが好適に挙げられる。加硫剤としては、特に制限はないが、X-IIRの場合、強度、圧縮永久歪み、加硫速度等のバランスが良い観点から、酸化亜鉛、ジチオカルバミン酸系加硫促進剤などが好適に挙げられる。同様の理由から、IIRの場合は、低硫黄加硫、または無硫黄加硫(サルファードナー加硫)などが好適に挙げられる。加工助剤としては、少量で効果があり、物性への影響が少ない観点から、ステアリン酸などが好適に挙げられる。
 [防振用ゴム組成物の特性]
 (動的粘弾性測定における損失正接tanδ)
 本実施形態の防振用ゴム組成物は、上記のA成分、B成分、およびC成分を含有し、A成分とB成分との質量比率A:Bが90:10から65:35までの範囲にあるため、0℃かつ5Hz、20℃かつ5Hz、および40℃かつ5Hzの3つの条件における動的粘弾性測定において得られる損失正接tanδが、いずれも0.40以上であり、いずれも0.50以上であることが好ましい。このため、本実施形態の防振用ゴム組成物は、5Hzの低周波数においても0℃、20℃、および40℃の広い温度範囲において、損失正接tanδが、いずれも0.40以上、好ましくはいずれも0.50以上の高い減衰性能を示す。
 本実施形態の防振用ゴム組成物は、0℃かつ5Hz、20℃かつ5Hz、および40℃かつ5Hzの3つの条件における動的粘弾性測定において得られる損失正接tanδの間の差が、いずれも0.40以下であり、いずれも0.30以下であることが好ましい。かかる防振用ゴム組成物は、5Hzの低周波数においても0℃、20℃、および40℃の広い温度範囲において、損失正接tanδの間の差が、いずれも0.40以下、好ましくはいずれも0.30以下の安定した減衰性能を示す。ここで、「損失正接tanδの間の差が、いずれも」とは、上記3つの条件から選ばれる全ての組合せの2つの条件の間の損失正接tanδの差(すなわち損失正接tanδの差の個数は3個)の全てを意味する。すなわち、上記3つの条件における損失正接tanδの最大値と最小値との差が0.40以下であり、0.30以下であることが好ましい。
 本実施形態の防振用ゴム組成物は、0℃かつ5Hz、20℃かつ5Hz、および40℃かつ5Hzの3つの条件に、さらに20℃かつ100Hzの条件を加えた4つの条件における動的粘弾性測定において得られる損失正接tanδが、いずれも0.40以上であることが好ましく、いずれも0.50以上であることがより好ましく、上記4つの条件における損失正接tanδの間の差が、いずれも0.40以下であることが好ましく、いずれも0.30以下であることがより好ましい。かかる防振用ゴム組成物は、5Hzおよび100Hzの広い低周波範囲かつ0℃、20℃、および40℃の広い温度範囲において、損失正接tanδが、いずれも0.40以上、好ましくはいずれも0.50以上のより高い減衰性能を示すとともに、損失正接tanδの間の差が、いずれも0.40以下、好ましくはいずれも0.30以下のより安定した減衰性能を示す。ここで、「損失正接tanδの間の差が、いずれも」とは、上記4の条件から選ばれる全ての組合せの2つの条件の間の損失正接tanδの差(すなわち損失正接tanδの差の個数は6個)の全てを意味する。すなわち、上記4つの条件における損失正接tanδの最大値と最小値との差が0.40以下であることが好ましく、0.30以下であることがより好ましい。
 本実施形態の防振用ゴム組成物は、0℃かつ5Hz、20℃かつ5Hz、40℃かつ5Hz、および20℃かつ100Hzの4つの条件に、さらに-10℃かつ5Hzの条件を加えた5つの条件における動的粘弾性測定において得られる損失正接tanδが、いずれも0.40以上であることがより好ましく、いずれも0.50以上であることがさらに好ましく、上記5つの条件における損失正接tanδの間の差が、いずれも0.40以下であることがより好ましく、いずれも0.30以下であることがさらに好ましい。かかる防振用ゴム組成物は、5Hzおよび100Hzの広い低周波範囲かつ-10℃、0℃、20℃、および40℃のさらに広い温度範囲において、損失正接tanδが、いずれも0.40以上、好ましくはいずれも0.50以上のさらに高い減衰性能を示すとともに、損失正接tanδの間の差が、いずれも0.40以下、好ましくはいずれも0.30以下のさらに安定した減衰性能を示す。ここで、「損失正接tanδの間の差が、いずれも」とは、上記5つの条件から選ばれる全ての組合せの2つの条件の間の損失正接tanδの差(すなわち損失正接tanδの差の個数は10個)の全てを意味する。すなわち、上記5つの条件における損失正接tanδの最大値と最小値との差が0.40以下であることがより好ましく、0.30以下であることがさらに好ましい。
 (圧縮永久歪み)
 本実施形態の防振用ゴム組成物は、上記のA成分、B成分、およびC成分を含有し、A成分とB成分との質量比率A:Bが90:10から65:35までの範囲にあるため、70℃かつ24時間で25%圧縮後の永久圧縮歪みが30%以下であり、防振性能(減衰性能)について長期期間に亘って高い安定性を有する。本実施形態の防振用ゴム組成物は、減衰性能の長期間に亘る高い安定性を保持する観点から、上記25%圧縮後の永久圧縮歪みが、30%以下であり、20%以下が好ましい。
 [防振用ゴム組成物の製造方法]
 本実施形態の防振用ゴム組成物の製造方法は、特に制限はなく、防振用ゴム組成物の一般的な製造方法が用いられる。たとえば、所定量のA成分、B成分、C成分、その他の成分(充填剤、加工助剤、加硫剤など)を、順次、オープンロールや密閉式混練機(たとえば、バンバリーミキサ、ニーダなど)投入して混合する。このとき、C成分が十分溶融するように、A成分およびB成分からなるゴム生地温度をC成分の融点以上に上昇させることが好ましい。次に、混練り中に反応しないよう、ゴム温度を低下させてから、加硫剤、加硫促進剤を適宜投入し、オープンロールなどで混合することにより得られた混練り防振用ゴム組成物を、140~190℃で1~30分間加硫することにより架橋防振用ゴム組成物が得られる。
 1.防振用ゴム組成物の作製
 [実施例1]
 表1に示す質量部のA成分、加工助剤、B成分、C成分、充填剤を10L(リットル)ニーダーに順次投入し、ゴム組成物の温度が110℃になるまで混練りし、A練り組成物を得た。得られたA練り組成物を12インチのオープンロールに投入し、加硫剤、加硫促進剤を投入した後、約50℃で10分間混練りすることにより、防振用ゴム組成物を作製した。次に、得られた防振用ゴム組成物を160℃で20分間加硫することにより、架橋防振用ゴム組成物を作製した。
 [実施例2~19、比較例1~11]
 表1~表6に示すように、各成分の配合量を変更すること、および、ニーダー練りの排出温度を各C成分の融点以上にすること以外は、実施例1に準じてゴム組成物を作製した。C成分を含まない比較例に関しては、実施例1と同様に110℃になるまで混練りしA練り組成物を得た。次に得られた防振用ゴム組成物を、実施例1と同様に加硫し架橋防振用ゴム組成物を作製した。ただし、実施例2、16、比較例1、2は170℃で30分間加硫した。
 ここで、表1~6におけるA成分について、「CIIR」は塩素化ブチルゴム(JSR株式会社製クロロブチル1066)を示し、「IIR」はブチルゴム(JSR株式会社製ブチル268)を示し、「EPDM」はエチレンプロピレンジエンゴム(JSR株式会社製EP-33)を示し、「NBR」はアクリロニトリルブタジエンゴム(JSR株式会社製N230、アクリロニトリル含有量が35質量%)を示す。
 また、表1~6におけるB成分について、「非晶性α-オレフィン共重合体」は非晶性4-メチル-1-ペンテン・α-オレフィン共重合体(三井化学株式会社製EP1001、明確な融点が存在しない)を示し、「結晶性α-オレフィン共重合体」は結晶性4-メチル-1-ペンテン・α-オレフィン共重合体(三井化学株式会社製EP1013、融点が121℃および134℃)を示し、「水添スチレンブタジエン共重合体」は非晶性スチレン・ブタジエン共重合体(旭化成株式会社製SOE1605、明確な融点が存在しない)を示し、「ポリエチレン」は結晶性ポリエチレン(住友精化株式会社製フローセンUF、融点が104℃)を示す。
 また、表1~6におけるC成分について、「水添非極性炭化水素樹脂a」は脂環式飽和炭化水素樹脂(荒川化学工業株式会社製アルコンP90、融点が90℃)を示し、「水添非極性炭化水素樹脂b」は脂環式飽和炭化水素樹脂(荒川化学工業株式会社製アルコンP100、融点が100℃)を示し、「水添非極性炭化水素樹脂c」は脂環式飽和炭化水素樹脂(荒川化学工業株式会社製アルコンP140、融点が140℃)を示し、「水添非極性炭化水素樹脂d」は水添炭化水素樹脂(JXTGホーディングス株式会社製T-REZ、融点が103℃)を示し、「テルペン系樹脂a」は芳香族変性テルペン樹脂(ヤスハラケミカル株式会社製YSポリスターTO-125、融点が125℃)を示し、「テルペン系樹脂b」はテルペン樹脂(ヤスハラケミカル株式会社製YSレジンPX1000、融点が100℃)を示し、「非水添炭化水素樹脂a」はC5-C9系炭化水素樹脂(東ソー株式会社製ペトロタック100V、融点が96℃)を示し、「非水添炭化水素樹脂b」はC9系炭化水素樹脂(東ソー株式会社製ペトコール100T、融点が95℃)を示し、「ロジンエステル樹脂」は荒川化学工業株式会社製パインクリスタルKE-100(融点が100℃)を示す。
 また、表1~6における充填剤について、「SRF」は粒子の硬さが低いソフトカーボンタイプの中補強性のカーボンブラック(東海カーボン株式会社製シーストS)を示し、「HAF」は粒子の硬さが高いハードカーボンタイプの高耐摩耗性のカーボンブラック(東海カーボン株式会社製シースト3H)をいい、「焼成クレー」は白石カルシウム株式会社製バーゲスKEを示す。
 また、表1~6における加工助剤について、「ステアリン酸」は花王株式会社製ルナックS-70Vを示す。
 また、表1~6における加硫剤について、「酸化亜鉛」は堺化学株式会社製亜鉛華1種を示し、「硫黄」は鶴見化学工業株式会社製サルファックスAを示し、「ZDEC」はジエチルジチオカルバミン酸亜鉛(大内新興化学工業株式会社製ノクセラーEz)を示し、「DTDM」は4,4’-ジチオジモルホリン(大内新興株化学工業式会社製バルノックR)を示し、「CBS」はN-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(大内新興株式会社製ノクセラーCz)を示し、「ジクミルペルオキシド」は日油株式会社製パークミルDを示す。
 2.防振用ゴム組成物の特性評価
 上記により得られた架橋防振用ゴム組成物の特性として、硬度、破断強度、圧縮永久歪み、および損失正接tanδを以下の要領で測定して、結果を表1~6にまとめた。
 (硬度)
 JIS K6253:2012に準拠した要領で、タイプAデュロメータ(高分子計器株式会社製P-2A)を用いて、押針から3秒後の指示値を読み取った。
 (破断強度)
 厚さ2mmのシートを成形し、打ち抜きによりJIS3号ダンベルを作製して、測定サンプルとした。JIS K6251:2017に準拠した要領で、引張試験機(株式会社島津製作所製オートグラフAG-1)を用いて、引張速度500mm/minで引張って測定サンプルが破断したときの強度(破断強度:単位MPa)を測定した。
 (圧縮永久歪み)
 直径29mm×厚さ12.5mmの測定サンプルを作製した。JIS K6262:2013に準拠した要領で、70℃で24時間、測定サンプルを厚さ方向に25%の圧縮率で圧縮した後、室温(25℃)の室内に取り出し30分放置した後の測定サンプルの厚さを測定し、以下の式(1)により、
  CS=100×(t-t)/(t-t)   ・・・(1)
  式(1)において、
  CS:圧縮永久歪み(%)
  t:測定サンプルの元の厚さ(mm)
  t:測定サンプルの圧縮時の厚さ(mm)
  t:測定サンプルの室温放置30分後の厚さ(mm)
圧縮永久歪みを算出した。
 (損失正接tanδ)
 基本的にJIS K6394:2007に準拠した要領で、測定サンプルの動的粘弾性を測定した。詳細な測定条件は、
  測定サンプル:長さ20mm×幅5mm×厚さ2mm
  チャック間距離:15mm
  測定モード:引張り
  初期歪み:12.5%伸長
  振幅:±2μm(0.013%)
  昇温速度:3℃/分
  測定温度・周波数:0℃・5Hz、20℃・5Hz、40℃・5Hz、20℃・100hz、または-10℃・5Hz
  測定機:株式会社ユービーエム製Rheogel-E4000
とした。
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000002

 
Figure JPOXMLDOC01-appb-T000003

 
Figure JPOXMLDOC01-appb-T000004

 
Figure JPOXMLDOC01-appb-T000005

 
Figure JPOXMLDOC01-appb-T000006
 表1を参照して、実施例1および2は、ブチル系ゴムである塩素化ブチルゴムまたはブチルゴムからなるA成分、非晶性α-オレフィン共重合体からなるB成分、および水添非極性炭化水素樹脂からなるC成分を有し、A成分とB成分との質量比率A:Bが90:10から65:35までの範囲にある防振用ゴム組成物であるため、目標特性(0℃かつ5Hz、20℃かつ5Hz、および40℃かつ5Hzの3つの条件における損失正接tanδがいずれも0.4以上であり、損失正接tanδの間の差がいずれも0.4以下、以下同じ。)を達成できた。比較例1および2の防振用ゴム組成物は、A成分がブチル系ゴムでないため、上記3つの条件における損失正接tanδがいずれも0.4未満であった。比較例3の防振用ゴム組成物は、C成分を有していないため、0℃かつ5Hzおよび20℃かつ5Hzの条件における損失正接tanδが0.4未満であった。比較例4の防振用ゴム組成物は、B成分を有していないため、40℃かつ5Hzの条件における損失正接tanδが0.4未満であり、また、0℃かつ5Hzの条件と40℃かつ5Hzの条件とにおける損失正接tanδの差が極めて大きかった。
 表2を参照して、実施例1は、ブチル系ゴムである塩素化ブチルゴムからなるA成分、非晶性α-オレフィン共重合体からなるB成分、および水添非極性炭化水素樹脂からなるC成分を有し、A成分とB成分との質量比率A:Bが90:10から65:35までの範囲にある防振用ゴム組成物であるため、目標特性を達成できた。比較例5~7の防振用ゴム組成物は、B成分が非晶性α-オレフィン共重合体でないため、目標特性を達成できなかった。
 表3を参照して、実施例1および3~5は、ブチル系ゴムである塩素化ブチルゴムからなるA成分、非晶性α-オレフィン共重合体からなるB成分、および水添非極性炭化水素樹脂からなるC成分を有し、A成分とB成分との質量比率A:Bが90:10から65:35までの範囲にある防振用ゴム組成物であるため、目標特性を達成できた。実施例6および7は、ブチル系ゴムである塩素化ブチルゴムからなるA成分、非晶性α-オレフィン共重合体からなるB成分、およびテルペン系樹脂からなるC成分を有し、A成分とB成分との質量比率A:Bが90:10から65:35までの範囲にある防振用ゴム組成物であるため、目標特性を達成できた。実施例8は、ブチル系ゴムである塩素化ブチルゴムからなるA成分、非晶性α-オレフィン共重合体からなるB成分、ならびに水添非極性炭化水素樹脂およびテルペン系樹脂からなるC成分を有し、A成分とB成分との質量比率A:Bが90:10から65:35までの範囲にある防振用ゴム組成物であるため、目標特性を達成できた。比較例8~10の防振用ゴム組成物は、C成分が水添非極性炭化水素樹脂およびテルペン系樹脂のいずれでもないため、目標特性を達成できなかった。
 表4を参照して、実施例1、9および10は、ブチル系ゴムである塩素化ブチルゴムからなるA成分、非晶性α-オレフィン共重合体からなるB成分、および水添非極性炭化水素樹脂からなるC成分を有し、A成分とB成分との質量比率A:Bが90:10から65:35までの範囲にある防振用ゴム組成物であるため、充填剤としてカーボンブラック(SRFおよびHAF)および焼成クレーのいずれを有していても、目標特性を達成できた。ここで、硬度および破断特性が高い観点から、充填剤としてカーボンブラックが好適であった。
 表5を参照して、実施例1および11~15は、ブチル系ゴムである塩素化ブチルゴムからなるA成分、非晶性α-オレフィン共重合体からなるB成分、および水添非極性炭化水素樹脂からなるC成分を有し、A成分とB成分との質量比率A:Bが90:10から65:35までの範囲にあり、かつ、A成分およびB成分の合計含有量100質量部に対して、C成分の含有量が10質量部以上50質量部以下である防振用ゴム組成物であるため、目標特性を達成できた。
 表6を参照して、実施例1および16~19は、ブチル系ゴムである塩素化ブチルゴムまたはブチルゴムからなるA成分、非晶性α-オレフィン共重合体からなるB成分、および水添非極性炭化水素樹脂からなるC成分を有し、A成分とB成分との質量比率A:Bが90:10から65:35までの範囲にあるため、目標特性を達成できた。比較例11の防振用ゴム組成物は、A成分とB成分との質量比率A:Bが90:10から65:35までの範囲外であるため、目標特性を達成できなかった。
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。

Claims (5)

  1.  ブチル系ゴムからなるA成分と、非晶性α-オレフィン共重合体からなるB成分と、水添非極性炭化水素樹脂およびテルペン系炭化水素樹脂の少なくとも1つからなるC成分と、を含有し、
     前記A成分と前記B成分との質量比率A:Bが90:10から65:35までの範囲にある防振用ゴム組成物。
  2.  0℃かつ5Hz、20℃かつ5Hz、および40℃かつ5Hzの3つの条件における動的粘弾性測定において得られる損失正接tanδがいずれも0.40以上であり、前記損失正接tanδの間の差がいずれも0.40以下である請求項1に記載の防振用ゴム組成物。
  3.  前記A成分がブチルゴムおよびハロゲン化ブチルゴムの少なくとも1つである請求項1または請求項2に記載の防振用ゴム組成物。
  4.  前記A成分および前記B成分の合計含有量100質量部に対して、前記C成分の含有量が10質量部以上50質量部以下である請求項1から請求項3のいずれか1項に記載の防振用ゴム組成物。
  5.  70℃かつ24時間で25%圧縮後の圧縮永久歪みが30%以下である請求項1から請求項4のいずれか1項に記載の防振用ゴム組成物。
PCT/JP2021/007679 2020-03-06 2021-03-01 防振用ゴム組成物 WO2021177222A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020039141A JP2021138877A (ja) 2020-03-06 2020-03-06 防振用ゴム組成物
JP2020-039141 2020-03-06

Publications (1)

Publication Number Publication Date
WO2021177222A1 true WO2021177222A1 (ja) 2021-09-10

Family

ID=77613337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007679 WO2021177222A1 (ja) 2020-03-06 2021-03-01 防振用ゴム組成物

Country Status (2)

Country Link
JP (1) JP2021138877A (ja)
WO (1) WO2021177222A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105328A (ja) * 2000-09-29 2002-04-10 Sekisui Chem Co Ltd 耐火性遮音制振性樹脂組成物
WO2003060005A1 (fr) * 2001-12-27 2003-07-24 Cci Corporation Composition et structure servant a amortir des vibrations
JP2004301299A (ja) * 2003-04-01 2004-10-28 Kureha Elastomer Co Ltd 制振性複合シート
JP2005179525A (ja) * 2003-12-19 2005-07-07 Yamauchi Corp 防振用ゴム組成物
JP2010144142A (ja) * 2008-12-22 2010-07-01 Tokai Rubber Ind Ltd 高減衰ゴム組成物
JP2014009601A (ja) * 2012-06-28 2014-01-20 Yamauchi Corp 緩衝ゴム部材
JP2017110094A (ja) * 2015-12-16 2017-06-22 三井化学株式会社 ゴム組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105328A (ja) * 2000-09-29 2002-04-10 Sekisui Chem Co Ltd 耐火性遮音制振性樹脂組成物
WO2003060005A1 (fr) * 2001-12-27 2003-07-24 Cci Corporation Composition et structure servant a amortir des vibrations
JP2004301299A (ja) * 2003-04-01 2004-10-28 Kureha Elastomer Co Ltd 制振性複合シート
JP2005179525A (ja) * 2003-12-19 2005-07-07 Yamauchi Corp 防振用ゴム組成物
JP2010144142A (ja) * 2008-12-22 2010-07-01 Tokai Rubber Ind Ltd 高減衰ゴム組成物
JP2014009601A (ja) * 2012-06-28 2014-01-20 Yamauchi Corp 緩衝ゴム部材
JP2017110094A (ja) * 2015-12-16 2017-06-22 三井化学株式会社 ゴム組成物

Also Published As

Publication number Publication date
JP2021138877A (ja) 2021-09-16

Similar Documents

Publication Publication Date Title
US6723776B2 (en) Low-modulus polymer composition and sealant using the same
JP5130195B2 (ja) 高減衰ゴム組成物
US6800691B2 (en) Blend of EPDM and SBR using an EPDM of different origin as a compatibilizer
JP7124698B2 (ja) インナーライナー用ゴム組成物及び空気入りタイヤ
JP3428092B2 (ja) 熱可塑性エラストマー組成物
JP5130198B2 (ja) 高減衰ゴム組成物
WO2021177222A1 (ja) 防振用ゴム組成物
JP5313224B2 (ja) 免震・制振装置
JPWO2018008630A1 (ja) ゴム組成物
JP2008226850A (ja) 難燃性熱可塑性エラストマー樹脂組成物およびその製造方法
JP5621183B2 (ja) 免震構造体用ゴム組成物
JP5562181B2 (ja) 高減衰ゴム組成物及びその用途
JP3740776B2 (ja) 制振材用組成物
JP5489448B2 (ja) 改良されたポリマー加硫物およびそれを製造する方法
JP6787022B2 (ja) 空気入りタイヤ
WO2020230393A1 (ja) 高減衰性ゴム組成物
El-Sabbagh et al. Investigation of natural rubber compatibility with different types of butyl rubber
JP2009173906A (ja) 高減衰ゴム組成物
JP3480022B2 (ja) 熱可塑性エラストマー組成物
JP6369167B2 (ja) ゴム組成物、及びそれを用いたゴム製品
JPWO2019188339A1 (ja) ゴム組成物およびそれを用いた混練機表面への粘着性の低減方法
JPH1180471A (ja) ゴム組成物
JP7288305B2 (ja) 難燃性エチレン系共重合体組成物および鉄道用製品
JP2001354828A (ja) 低弾性率高分子組成物およびそれを用いたシール材
JP2010272531A (ja) 難燃性熱可塑性エラストマー樹脂組成物およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21764313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21764313

Country of ref document: EP

Kind code of ref document: A1