WO2021176879A1 - Substrate processing device, jig, calibration method for substrate processing device, and method for manufacturing semiconductor device - Google Patents

Substrate processing device, jig, calibration method for substrate processing device, and method for manufacturing semiconductor device Download PDF

Info

Publication number
WO2021176879A1
WO2021176879A1 PCT/JP2021/002288 JP2021002288W WO2021176879A1 WO 2021176879 A1 WO2021176879 A1 WO 2021176879A1 JP 2021002288 W JP2021002288 W JP 2021002288W WO 2021176879 A1 WO2021176879 A1 WO 2021176879A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
jig
temperature measuring
measuring device
opening
Prior art date
Application number
PCT/JP2021/002288
Other languages
French (fr)
Japanese (ja)
Inventor
恵介 坂下
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Publication of WO2021176879A1 publication Critical patent/WO2021176879A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • the present disclosure relates to a substrate processing apparatus, a jig, a calibration method of the substrate processing apparatus, and a method of manufacturing a semiconductor device.
  • batch type vertical heat treatment devices are widely used to heat-treat substrates.
  • a boat with a plurality of wafers is inserted from below into a substantially cylindrical vertical reaction tube in which the upper end is closed and the lower end is open, and the reaction tube is used.
  • the wafer on the boat is heat-treated by a heater provided so as to surround the outside of the boat.
  • a plurality of wafers are stacked and held in multiple stages in a horizontal posture and with the centers of the wafers aligned with each other.
  • thermocouple configured to be housed in a protective tube is arranged inside the reaction tube to measure the temperature inside the reaction tube, and the heater is feedback-controlled based on the measured temperature.
  • the thermocouple arranged inside the reaction tube is inserted from below the port provided in the seal cap that closes the opening of the reaction tube, and is projected and fixed to the reaction tube.
  • thermocouple protection tube When inserting a thermocouple from the port provided on the seal cap, the tip and side of the thermocouple protection tube rub against the metal surface of the port, metal adheres to the protection tube, and metal contamination occurs due to the attached metal. There is a risk of
  • the subject of this disclosure is to provide a technique for reducing metal contamination of protective tubes.
  • a processing container for processing a substrate a port for forming an opening through which a temperature measuring device having a protective tube is inserted upward in the processing container, and an inner peripheral surface of the opening of the port are covered.
  • a technique configured to be movable up and down together with the temperature measuring device when the measuring device is attached.
  • FIG. 2B is a diagram illustrating an attachment portion of the profile thermocouple shown in FIG. It is a figure which shows the state which attached the jig shown in FIG. 3A to the attachment part shown in FIG. 3B. It is a figure which shows the state which started to insert the profile thermocouple shown in FIG. 2 into the attachment part shown in FIG. It is a figure which shows the state which attached the profile thermocouple shown in FIG. 2 to the attachment part shown in FIG.
  • the substrate processing apparatus 1 accommodates a substrate 100 such as a silicon wafer in a reaction tube 11 as a processing container provided inside the processing furnace 10, and heats the substrate 100 to a predetermined temperature in a predetermined atmosphere to form a thin film. do.
  • the processing furnace 10 includes a reaction tube 11 and a heater unit 12 as a heating unit provided on the outer periphery of the reaction tube 11 and divided into a plurality of parts in the furnace axis direction.
  • the reaction tube 11 has a hollow shape with one end open, and the furnace port 18 as the second opening is closed by the seal cap (base) 13 as the lid.
  • the substrate 100 to be processed is supported and housed in the reaction tube 11 by the boat 14, and is heated by the heater unit 12 under reduced pressure to form a thin film on the substrate 100.
  • the heater unit 12 is connected to the controller 17 and is controlled by the controller 17 to heat the inside of the reaction tube 11.
  • the heater unit 12 divided into a plurality of heating zones is provided with a heater thermocouple 15 as a temperature measuring device, and the seal cap 13 is provided with a profile thermocouple 20 as a temperature measuring device.
  • the thermocouple 20 is connected to the controller 17. Although not shown in FIG. 1, the above three heater thermocouples 15 are connected to the controller 17.
  • the thyristor 16 controlled by the controller 17 controls the power supply to each heating zone of the heater unit 12 according to the measured temperature near the heater unit 12 and the set temperature measured by the heater thermocouple 15, and the reaction tube.
  • the temperature distribution inside the 11 is made constant.
  • the upper three heater units 12 are connected to a thyristor controlled by a controller 17 like the lowermost heater unit 12.
  • the profile thermocouple 20 is provided so as to penetrate the opening provided in the seal cap 13 and project into the reaction tube 11, and measures the temperature inside the reaction tube 11.
  • the profile thermocouple 20 is configured by, for example, arranging four pairs of thermocouple strands 22a and 22b protected by a plurality of insulating tubes in a protective tube 21, respectively.
  • the protective tube 21 is made of a highly heat-resistant material such as quartz, SiC (silicon carbide), alumina or ceramic.
  • the protective tube 21 is formed with the tip closed and the base end open. Further, a large diameter portion 21a having an enlarged outer diameter is provided on the base end side. Further, a small diameter portion 21b provided between the tip and the large diameter portion 21a, and a tapered portion 21c as a portion whose diameter gradually expands from the small diameter portion 21b to the large diameter portion 21a are formed. The base end opening is closed by the cap 25.
  • the reaction tube 11 is used under a considerably high temperature condition such that the temperature inside the reaction tube 11 is 1000 ° C. or higher, it is preferable to form the protective tube 21 with SiC or alumina having high heat resistance.
  • thermocouple strands 22a and 22b drawn out from the protective tube 21 are protected by a flexible insulating coating 28, relayed by a terminal block (connector) 27, and connected to the compensating conductor 29.
  • the compensating lead wire 29 is connected to the controller 17 by the terminal connector 26.
  • the profile thermocouple 20 configured in this way has its protective tube 21 inserted into the reaction tube 11 in the furnace axial direction from the metal port 19 provided on the seal cap 13, and is along the boat 14 in the reaction tube 11.
  • the lower part of the protective tube 21 is fixed at the port 19.
  • a plurality of sets of thermocouple strands 22a and 22b passed through the inside of the protection tube 21 have a plurality of zones in the vicinity of the boat 14 of the reaction tube 11 heated by the heater unit 12 provided outside the reaction tube 11. Measure every time.
  • a quartz boat 14 supporting the substrate 100 is carried into such a reaction tube 11.
  • a seal cap 13 provided at the lower part of the boat 14 and supporting the boat 14 closes the furnace opening 18 of the reaction tube 11 to make the inside of the reaction tube 11 airtight.
  • the substrate 100 inserted in the reaction tube 11 is heated for each zone by the heater unit 12 provided on the outside of the reaction tube 11, and the process gas is supplied from the gas supply port (not shown) to be circulated, and the exhaust port (not shown).
  • a film is formed on the substrate 100 by exhausting from (omitted).
  • the profile thermocouple 20 is for calibrating the temperature of each zone in the zone-divided reaction tube 11, and targets the temperature near the boat 14 in the reaction tube 11 during a manufacturing operation such as forming a thin film.
  • the set temperature to be compared with the measured temperature of each heater thermocouple 15 embedded in the heater unit 12 is adjusted.
  • the controller 17 can make each part execute the steps A) to E) (the step of the calibration method and one step of the manufacturing method of the semiconductor device). It is composed of.
  • A) The reaction tube 11 covers the inner peripheral surface of the opening of the port 19 at the port 19 which forms an opening through which the profile thermocouple 20 having the protective tube 21 is inserted upward inside the reaction tube 11 for processing the substrate 100.
  • the controller 17 controls the heater unit 12 for each zone by making all the target values (set temperature in the tube) corresponding to the measurement temperature of the profile thermocouple 20 the same in order to uniformly heat the inside of the reaction tube 11. Then, when the control converges and the steady state is reached, the temperature of the heater thermocouple 15 is acquired and stored as a target value (heater set temperature) corresponding to the heater thermocouple 15. When this is performed for a plurality of set temperatures, a table for converting the set temperature in the pipe into the set temperature of the heater is obtained. By using this table, the inside of the reaction tube 11 can be uniformly heated without the profile thermocouple 20 by controlling the temperature of the heater thermocouple 15 to be close to the heater set temperature.
  • the controller 17 can acquire the thermal characteristics of the processing furnace 10 such as the step response by using the profile thermocouple 20 in order to perform more advanced multivariate model prediction control.
  • Such measurements including the acquisition of conversion tables, are called calibration, and the data obtained by calibration is called calibration data.
  • the profile thermocouple 20 is removed to close the opening of the port 19 portion, and the temperature is measured only by the heater thermocouple 15. Then, the measured temperature of the heater thermocouple 15 is corrected to the temperature data inside the reaction tube 11 based on the calibration data, and the heater unit 12 is controlled by the corrected data. Calibration is often done exhaustively during installation and maintenance of the equipment, but partial calibration can also be done during operation.
  • the seal cap 13 has a quartz disc-shaped cap (protective plate) 13a and a metal cap receiver 13b that contacts and holds the bottom surface of the cap 13a.
  • the cap 13a is provided with a circular hole 13c as an opening, and the cap receiver 13b is provided with a metal port 19.
  • the port 19 is composed of a pipe portion 19a extending in the vertical direction and having one end connected to the lower surface of the cap receiver 13b, and a joint 19b as a fastening portion provided on one end side of the pipe portion 19a.
  • the space inside the pipe portion 19a communicates with the upper surface side of the cap receiver 13b.
  • the hole 13c is provided in the cap 13a at a position corresponding to the port 19. Specifically, it is formed concentrically with the tube portion 19a, and constitutes an opening 19c through which the profile thermocouple 20 is inserted upward in the reaction tube 11.
  • the tube portion 19a is a circular tube having a constant diameter in the insertion direction.
  • the inner diameter of the pipe portion 19a is smaller than the diameter of the hole 13c.
  • the hole 13c is formed by a hole larger than the diameter of the locking portion 31b described later.
  • a male screw, a flange, or the like to be fastened to a bag nut (union nut) may be provided on the outer peripheral portion of the joint 19b in order to fasten the profile thermocouple 20.
  • the inner circumference of the joint 19b may be provided with a tapered surface or a step corresponding to the O-ring 32 described later for hermetically sealing the profile thermocouple 20.
  • the jig 31 is formed in a tubular shape, covers the inner surface of the opening 19c of the port 19, and is on the reaction tube 11 side above the seal cap 13 as shown in FIG. 3B. Can be attached to port 19 from.
  • the jig 31 is made of non-metal.
  • the non-metal means a material different from that of the seal cap 13, and is a material such as quartz or alumina.
  • the jig 31 has a tubular portion 31a that is gap-fitted inside the pipe portion 19a, and a locking portion 31b that is formed at one end of the tubular portion 31a to be larger than the inner shape of the pipe portion 19a.
  • the tubular portion 31a is a circular tube having a constant diameter in the insertion direction, and the outer diameter of the tubular portion 31a is smaller than the inner diameter of the tube portion 19a.
  • the locking portion 31b is a circular tube having a constant diameter in the insertion direction, and the outer diameter of the locking portion 31b is larger than the inner diameter of the tube portion 19a.
  • the lower surface of the locking portion 31b is configured to be in contact with the upper surface of the cap receiver 13b or the port 19. As a result, the jig 31 does not fall down.
  • the length of the tubular portion 31a of the jig 31 is about the same as that of the pipe portion 19a of the port 19.
  • the inner diameters of the tubular portion 31a and the locking portion 31b of the jig 31 are larger than the outer diameter of the small diameter portion 21b of the protective tube 21 and smaller than the outer diameter of the large diameter portion 21a of the protective tube 21.
  • the length of the locking portion 31b in the insertion direction is longer than the length of the cap 13a in the insertion direction. If there is a risk that the locking portion 31b will come into contact with the reaction tube 11, a part of the locking portion 31b may be cut out.
  • the jig 31 is inserted into the port 19 from above the hole 13c of the cap 13a.
  • the inner surface of the opening 19c (tube portion 19a) is covered with the jig 31.
  • the tip (lower end) of the tubular portion 31a on the side to be inserted into the port 19 is in the vertical direction. Is the same as or below the lower end of the pipe portion 19a of the port 19 (that is, the connection position between the pipe portion 19a and the joint 19b).
  • the protective tube 21 is inserted into the tubular portion 31a of the jig 31 from below the port 19 and pushed upward so as to protrude into the reaction tube 11. At this time, since the inner surface of the tube portion 19a of the port 19 and the hole 13c of the seal cap 13 is covered with the jig 31, the protective tube 21 does not rub against the port 19 and the seal cap 13.
  • the jig 31 inserted into the port 19 is attached to the tapered portion 21c in which the thickness of the protective tube 21 continuously increases when the profile thermocouple 20 is attached to the port 19.
  • the locking portion 31b of the jig 31 is disengaged from the hole 13c, and a part of the tubular portion 31a is disengaged from the inner surface of the pipe portion 19a of the port 19.
  • the profile thermocouple 20 inserted to the fixed position is fastened to the port 19 by the joint 19b.
  • the profile thermocouple 20 is maintained in a fixed position by a cap nut or the like, the inner circumference of the large diameter portion 21a and the joint 19b is gap-fitted, and the O-ring 32 provided in the tapered portion 21c is a tapered surface provided in the joint 19b.
  • the airtightness between the profile thermocouple 20 and the joint 19b can be maintained by abutting against.
  • the tapered surface provided on the O-ring 32 and the joint 19b is not essential, and the large diameter portion 21a and the joint 19b can be brought into contact with each other and fastened.
  • the pushing-up of the jig 31 includes a method in which the jig 31 directly abuts on the tapered portion 21c and a method in which the jig 31 abuts with an O-ring 32 interposed therebetween.
  • the jig 31 is separated from the inner surface of the tube portion 19a of the port 19 in which a part of the tubular portion 31a is an opening, and the other one. The portion stays on the inner surface of the pipe portion 19a.
  • the jig 31 is sufficiently shorter than the profile thermocouple 20, and the upper end of the locking portion 31b is sufficiently lower than the temperature measuring point of the lowest thermocouple. Therefore, the jig 31 does not affect the measured temperature.
  • the jig inserted into the port is configured to be movable up and down together with the temperature measuring device when the profile thermocouple 20 as the temperature measuring device is attached.
  • a cap having no hole 13c can be used, whereby the exposure of metal at the furnace opening can be completely eliminated.
  • a non-metal stopper that closes the hole 13c may be attached.
  • the seal cap 13 is not limited to a cap that maintains airtightness and a cap receiver that ensures mechanical strength, and may be integrally formed of metal. In that case, the port 19 welded to the seal cap 13 can be completely closed by the airtight lid attached to the joint 19b.
  • the large-diameter portion 21a and the tapered portion 21c are not limited to those formed integrally with the small-diameter portion 21b (profile thermocouple 20), and include those prepared separately in the form of a ferrule or the like.
  • a ferrule that functions similarly to the large diameter portion 21a when attached to the port 19 and is integrally fixed with the profile thermocouple 20 can be considered to constitute the large diameter portion 21a.
  • the profile thermocouple 20 is not limited to the one removed during operation, but is left in the reaction tube 11 together with the jig 31 during operation, and the internal temperature measured by the profile thermocouple 20 is used for highly accurate temperature control. May be good.
  • the processing target may be a substrate other than the wafer, and may be a photomask, a printed wiring board, a liquid crystal panel, a compact disk, a magnetic disk, or the like.
  • the present disclosure can be applied not only to a semiconductor manufacturing apparatus but also to an apparatus for processing a glass substrate such as an LCD manufacturing apparatus and other substrate processing apparatus.
  • the processing content of the substrate processing may be not only a film forming process for forming a CVD, PVD, oxide film, nitride film, metal-containing film, etc., but also an exposure process, lithography, coating process, and the like.
  • Substrate processing device 11 Reaction tube (processing container) 19: Port 20: Profile thermocouple (temperature measuring instrument) 21: Protective tube 31: Jig

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Provided is an invention that has: a processing container in which a substrate is processed; a port that, inside the processing container, forms an opening through which a temperature-measuring instrument having a protective tube is inserted facing upward; and a non-metal jig that covers the inner surface of the opening of the port, and is formed in a cylindrical shape that can be mounted in the port from inside the processing container. The jig inserted in the port is configured to be able to move up and down together with the temperature-measuring instrument when the temperature-measuring instrument is mounted in the port.

Description

基板処理装置、治具、基板処理装置の校正方法および半導体装置の製造方法Calibration method for substrate processing equipment, jigs, substrate processing equipment, and manufacturing method for semiconductor equipment
 本開示は、基板処理装置、治具、基板処理装置の校正方法および半導体装置の製造方法に関する。 The present disclosure relates to a substrate processing apparatus, a jig, a calibration method of the substrate processing apparatus, and a method of manufacturing a semiconductor device.
 半導体装置(IC等)の製造において、基板を熱処理するため、バッチ式縦形熱処理装置が広く使用されている。従来のこの種の熱処理装置の処理炉においては、上端が閉塞し下端が開放された略円筒形の縦型反応管の内部に、複数枚のウエハを搭載したボートを下方から挿入し、反応管の外側を囲むように設けられたヒータにより、ボート上のウエハを熱処理する。ボート上において、複数枚のウエハは、水平姿勢、かつ互いにウエハの中心を揃えた状態で多段に積層されて保持される。 In the manufacture of semiconductor devices (ICs, etc.), batch type vertical heat treatment devices are widely used to heat-treat substrates. In a conventional processing furnace of this type of heat treatment apparatus, a boat with a plurality of wafers is inserted from below into a substantially cylindrical vertical reaction tube in which the upper end is closed and the lower end is open, and the reaction tube is used. The wafer on the boat is heat-treated by a heater provided so as to surround the outside of the boat. On a boat, a plurality of wafers are stacked and held in multiple stages in a horizontal posture and with the centers of the wafers aligned with each other.
 また、上述の熱処理装置においては、反応管の内部に保護管に収納して構成される熱電対を配置して反応管内部の温度を計測し、その計測温度に基づいてヒータをフィードバック制御している。反応管の内部に配置される熱電対は、反応管の開口を閉じるシールキャップに設けられたポートの下方から挿入して、反応管に突出して固定される。 Further, in the above-mentioned heat treatment apparatus, a thermocouple configured to be housed in a protective tube is arranged inside the reaction tube to measure the temperature inside the reaction tube, and the heater is feedback-controlled based on the measured temperature. There is. The thermocouple arranged inside the reaction tube is inserted from below the port provided in the seal cap that closes the opening of the reaction tube, and is projected and fixed to the reaction tube.
特開2014-67766号公報Japanese Unexamined Patent Publication No. 2014-67766
 シールキャップに設けられたポートから熱電対を挿入する際に、熱電対の保護管の先端や側面とポートの金属面とが擦れ、保護管に金属が付着し、付着した金属により金属汚染が発生するおそれがある。 When inserting a thermocouple from the port provided on the seal cap, the tip and side of the thermocouple protection tube rub against the metal surface of the port, metal adheres to the protection tube, and metal contamination occurs due to the attached metal. There is a risk of
 本開示の課題は、保護管の金属汚染を低減する技術を提供することである。 The subject of this disclosure is to provide a technique for reducing metal contamination of protective tubes.
 本開示によれば、基板を処理する処理容器と、前記処理容器内に、保護管を有する温度測定器を上向きに挿通させる開口を形成するポートと、前記ポートの前記開口の内周面を覆い、且つ、前記処理容器の内側から前記ポートに装着可能な筒形状に形成される、非金属製の治具と、を有し、前記ポートに挿入された前記治具は、前記ポートに前記温度測定器が装着されるときに、前記温度測定器とともに上下移動可能に構成された技術が提供される。 According to the present disclosure, a processing container for processing a substrate, a port for forming an opening through which a temperature measuring device having a protective tube is inserted upward in the processing container, and an inner peripheral surface of the opening of the port are covered. A non-metal jig formed in a tubular shape that can be attached to the port from the inside of the processing container, and the jig inserted into the port has the temperature at the port. Provided is a technique configured to be movable up and down together with the temperature measuring device when the measuring device is attached.
 本開示によれば、保護管の金属汚染を低減することが可能である。 According to the present disclosure, it is possible to reduce metal contamination of the protective tube.
本開示の実施形態における基板処理装置の垂直断面図である。It is a vertical cross-sectional view of the substrate processing apparatus in embodiment of this disclosure. 本開示の実施形態におけるプロフィール熱電対を示す縦断面図である。It is a vertical sectional view which shows the profile thermocouple in embodiment of this disclosure. (a)本開示の実施形態における治具を示す斜視図である。(b)は図2に示すプロフィール熱電対の取付部を説明する図である。(A) It is a perspective view which shows the jig in embodiment of this disclosure. FIG. 2B is a diagram illustrating an attachment portion of the profile thermocouple shown in FIG. 図3(a)に示す治具を図3(b)に示す取付部に装着した状態を示す図である。It is a figure which shows the state which attached the jig shown in FIG. 3A to the attachment part shown in FIG. 3B. 図4に示す取付部に図2に示すプロフィール熱電対を挿入開始した状態を示す図である。It is a figure which shows the state which started to insert the profile thermocouple shown in FIG. 2 into the attachment part shown in FIG. 図4に示す取付部に図2に示すプロフィール熱電対を装着した状態を示す図である。It is a figure which shows the state which attached the profile thermocouple shown in FIG. 2 to the attachment part shown in FIG.
 本開示の実施形態として、半導体装置の製造工程の1工程としての熱処理による基板処理工程を実施する基板処理装置の構成例について図1を用いて説明する。 As an embodiment of the present disclosure, a configuration example of a substrate processing apparatus for carrying out a substrate processing step by heat treatment as one step of the manufacturing process of the semiconductor device will be described with reference to FIG.
 基板処理装置1は、処理炉10の内側に備える処理容器としての反応管11にシリコンウエハ等の基板100を収容し、この基板100を所定の雰囲気下で所定の温度に加熱して薄膜を形成する。処理炉10は、反応管11と、反応管11の外周に設けられ、炉軸方向に複数に分割された加熱部としてのヒータユニット12と、を備えている。反応管11は、一端が開口した中空状をなし、第二開口としての炉口18が蓋としてのシールキャップ(ベース)13により閉止される。反応管11内には処理対象の基板100がボート14に支持されて収容され、減圧下でヒータユニット12により加熱して基板100に薄膜を形成する。ヒータユニット12は、コントローラ17に接続され、コントローラ17により制御されて反応管11内を加熱する。 The substrate processing apparatus 1 accommodates a substrate 100 such as a silicon wafer in a reaction tube 11 as a processing container provided inside the processing furnace 10, and heats the substrate 100 to a predetermined temperature in a predetermined atmosphere to form a thin film. do. The processing furnace 10 includes a reaction tube 11 and a heater unit 12 as a heating unit provided on the outer periphery of the reaction tube 11 and divided into a plurality of parts in the furnace axis direction. The reaction tube 11 has a hollow shape with one end open, and the furnace port 18 as the second opening is closed by the seal cap (base) 13 as the lid. The substrate 100 to be processed is supported and housed in the reaction tube 11 by the boat 14, and is heated by the heater unit 12 under reduced pressure to form a thin film on the substrate 100. The heater unit 12 is connected to the controller 17 and is controlled by the controller 17 to heat the inside of the reaction tube 11.
 複数の加熱ゾーンに分割されたヒータユニット12には、それぞれ温度測定器としてのヒータ熱電対15が、シールキャップ13には温度測定器としてのプロファイル熱電対20が設けられ、ヒータ熱電対15およびプロファイル熱電対20がコントローラ17に接続される。なお、図1において図示されていないが、上の三つのヒータ熱電対15はコントローラ17に接続されている。 The heater unit 12 divided into a plurality of heating zones is provided with a heater thermocouple 15 as a temperature measuring device, and the seal cap 13 is provided with a profile thermocouple 20 as a temperature measuring device. The thermocouple 20 is connected to the controller 17. Although not shown in FIG. 1, the above three heater thermocouples 15 are connected to the controller 17.
 ヒータ熱電対15で測定されたヒータユニット12付近の測定温度と設定温度とに応じて、コントローラ17で制御されるサイリスタ16によりヒータユニット12の各加熱ゾーンへの電力供給を制御して、反応管11の内部の温度分布が一定になるようにしている。なお、図1において図示されていないが、上の三つのヒータユニット12は、一番下のヒータユニット12と同様にコントローラ17で制御されるサイリスタに接続されている。 The thyristor 16 controlled by the controller 17 controls the power supply to each heating zone of the heater unit 12 according to the measured temperature near the heater unit 12 and the set temperature measured by the heater thermocouple 15, and the reaction tube. The temperature distribution inside the 11 is made constant. Although not shown in FIG. 1, the upper three heater units 12 are connected to a thyristor controlled by a controller 17 like the lowermost heater unit 12.
 プロファイル熱電対20は、シールキャップ13に設けられた開口を貫通して反応管11内に突出して設けられ、反応管11の内部の温度を測定する。プロファイル熱電対20は、例えば、保護管21内に複数の絶縁管により保護された四対の熱電対素線22a,22bをそれぞれ配索して構成される。保護管21は、石英、SiC(炭化珪素)、アルミナあるいはセラミック等の高耐熱性材料から構成される。 The profile thermocouple 20 is provided so as to penetrate the opening provided in the seal cap 13 and project into the reaction tube 11, and measures the temperature inside the reaction tube 11. The profile thermocouple 20 is configured by, for example, arranging four pairs of thermocouple strands 22a and 22b protected by a plurality of insulating tubes in a protective tube 21, respectively. The protective tube 21 is made of a highly heat-resistant material such as quartz, SiC (silicon carbide), alumina or ceramic.
 保護管21は先端が閉止、基端が開口して形成される。また、基端側には、外径が拡径した大径部21aが設けられる。更に、先端と大径部21aとの間に設けられる小径部21bと、小径部21bから大径部21aに径が徐々に拡大する部分としてのテーパー部21c、とが形成される。基端開口がキャップ25で閉止される。なお、反応管11内の温度を1000℃以上とするようなかなりの高温条件下で用いる場合には、耐熱性の高いSiCやアルミナで保護管21を形成するのが好ましい。保護管21から引き出された熱電対素線22a,22bは、可撓性の絶縁被覆28により保護され、端子台(コネクタ)27により中継されて補償導線29と接続される。補償導線29は、端子コネクタ26でコントローラ17と接続される。 The protective tube 21 is formed with the tip closed and the base end open. Further, a large diameter portion 21a having an enlarged outer diameter is provided on the base end side. Further, a small diameter portion 21b provided between the tip and the large diameter portion 21a, and a tapered portion 21c as a portion whose diameter gradually expands from the small diameter portion 21b to the large diameter portion 21a are formed. The base end opening is closed by the cap 25. When the reaction tube 11 is used under a considerably high temperature condition such that the temperature inside the reaction tube 11 is 1000 ° C. or higher, it is preferable to form the protective tube 21 with SiC or alumina having high heat resistance. The thermocouple strands 22a and 22b drawn out from the protective tube 21 are protected by a flexible insulating coating 28, relayed by a terminal block (connector) 27, and connected to the compensating conductor 29. The compensating lead wire 29 is connected to the controller 17 by the terminal connector 26.
 このように構成されたプロファイル熱電対20は、その保護管21がシールキャップ13に設けた金属製のポート19から反応管11内に炉軸方向に挿入され、反応管11内のボート14に沿うようにセッティングされ、ポート19で保護管21の下部が固定される。この保護管21の内部に通された複数組の熱電対素線22a,22bは、反応管11の外部に設けたヒータユニット12によって加熱される反応管11のボート14付近の温度を複数のゾーン毎に測定する。 The profile thermocouple 20 configured in this way has its protective tube 21 inserted into the reaction tube 11 in the furnace axial direction from the metal port 19 provided on the seal cap 13, and is along the boat 14 in the reaction tube 11. The lower part of the protective tube 21 is fixed at the port 19. A plurality of sets of thermocouple strands 22a and 22b passed through the inside of the protection tube 21 have a plurality of zones in the vicinity of the boat 14 of the reaction tube 11 heated by the heater unit 12 provided outside the reaction tube 11. Measure every time.
 このような反応管11内に基板100を支えた石英製のボート14が搬入される。ボート14の下部に設けられてボート14を支持するシールキャップ13が反応管11の炉口18を閉塞して、反応管11内を気密にする。反応管11内に挿入した基板100を反応管11の外側に設けられるヒータユニット12によりゾーン毎に加熱するとともに、ガス供給口(図示略)よりプロセスガスを供給して流通させ、排気口(図示略)より排気することにより基板100に膜を形成する。 A quartz boat 14 supporting the substrate 100 is carried into such a reaction tube 11. A seal cap 13 provided at the lower part of the boat 14 and supporting the boat 14 closes the furnace opening 18 of the reaction tube 11 to make the inside of the reaction tube 11 airtight. The substrate 100 inserted in the reaction tube 11 is heated for each zone by the heater unit 12 provided on the outside of the reaction tube 11, and the process gas is supplied from the gas supply port (not shown) to be circulated, and the exhaust port (not shown). A film is formed on the substrate 100 by exhausting from (omitted).
 ところで、プロファイル熱電対20は、ゾーン分割された反応管11内の各ゾーン温度を校正するためのものであって、薄膜の形成等の製造運転時に反応管11内のボート14付近の温度を目標とする温度に設定するために、ヒータユニット12に埋め込んだ各ヒータ熱電対15の測定温度と比較される設定温度を調整するようになっている。 By the way, the profile thermocouple 20 is for calibrating the temperature of each zone in the zone-divided reaction tube 11, and targets the temperature near the boat 14 in the reaction tube 11 during a manufacturing operation such as forming a thin film. In order to set the temperature to be the same, the set temperature to be compared with the measured temperature of each heater thermocouple 15 embedded in the heater unit 12 is adjusted.
 一例として、薄膜の形成の製造運転に先立って、コントローラ17は以下A)~E)の工程(校正方法の工程や、半導体装置の製造方法の一工程)を各部に実行させることが可能な様に構成される。
A)基板100を処理する反応管11の内部に、保護管21を有するプロファイル熱電対20を上向きに挿通させる開口を形成するポート19に、ポート19の開口の内周面を覆い且つ反応管11の内側からポート19に装着可能な筒形状に形成される、非金属製の治具31が装着された基板処理装置1を用意する工程、
B)ポート19にプロファイル熱電対20を装着し、治具31がプロファイル熱電対20とともに押し上げられた状態とする工程、
C)反応管11をヒータユニット12により加熱する工程、
D)反応管11外側の温度をヒータ熱電対15により測定すると共に、反応管11内の上下方向の温度分布をプロファイル熱電対20により測定する工程、
E)ヒータ熱電対15およびプロファイル熱電対20の測定データから校正データを予め作成する工程。
As an example, prior to the manufacturing operation of forming the thin film, the controller 17 can make each part execute the steps A) to E) (the step of the calibration method and one step of the manufacturing method of the semiconductor device). It is composed of.
A) The reaction tube 11 covers the inner peripheral surface of the opening of the port 19 at the port 19 which forms an opening through which the profile thermocouple 20 having the protective tube 21 is inserted upward inside the reaction tube 11 for processing the substrate 100. A process of preparing a substrate processing device 1 on which a non-metal jig 31 is mounted, which is formed in a tubular shape that can be mounted on the port 19 from the inside of the above.
B) A step of mounting the profile thermocouple 20 on the port 19 so that the jig 31 is pushed up together with the profile thermocouple 20.
C) A step of heating the reaction tube 11 by the heater unit 12.
D) A step of measuring the temperature outside the reaction tube 11 with a heater thermocouple 15 and measuring the temperature distribution in the vertical direction inside the reaction tube 11 with a profile thermocouple 20.
E) A step of preliminarily creating calibration data from the measurement data of the heater thermocouple 15 and the profile thermocouple 20.
 コントローラ17は、反応管11内を均一に加熱するために、プロファイル熱電対20の測定温度に対応する目標値(管内設定温度)を全て同じにして、ヒータユニット12をゾーン毎に制御する。そして制御が収束し、定常状態となったときに、ヒータ熱電対15の温度を取得し、ヒータ熱電対15に対応する目標値(ヒータ設定温度)として記憶する。これを複数の設定温度について行うと、管内設定温度をヒータ設定温度に変換するテーブルが得られる。このテーブルを用いれば、ヒータ熱電対15の温度を、ヒータ設定温度に近づける制御によって、プロファイル熱電対20無しに、反応管11内を均一に加熱することができる。 The controller 17 controls the heater unit 12 for each zone by making all the target values (set temperature in the tube) corresponding to the measurement temperature of the profile thermocouple 20 the same in order to uniformly heat the inside of the reaction tube 11. Then, when the control converges and the steady state is reached, the temperature of the heater thermocouple 15 is acquired and stored as a target value (heater set temperature) corresponding to the heater thermocouple 15. When this is performed for a plurality of set temperatures, a table for converting the set temperature in the pipe into the set temperature of the heater is obtained. By using this table, the inside of the reaction tube 11 can be uniformly heated without the profile thermocouple 20 by controlling the temperature of the heater thermocouple 15 to be close to the heater set temperature.
 コントローラ17は、より高度な多変量モデル予測制御を行うために、ステップ応答等の処理炉10の熱特性を、プロファイル熱電対20を用いて取得しうる。変換テーブルの取得を含むこのような測定を校正と呼び、校正により得られるデータを校正データと呼ぶ。この場合、基板処理装置1の運用に際しては、プロファイル熱電対20を取り去ってポート19部分の開口を塞ぎ、ヒータ熱電対15のみで温度を測定する。そして、このヒータ熱電対15の測定温度を校正データに基づいて反応管11内部の温度データに修正し、この修正したデータによりヒータユニット12を制御する。校正は装置の据付や保守の際に網羅的に行われることが多いが、運用中に部分的な校正を行うこともできる。 The controller 17 can acquire the thermal characteristics of the processing furnace 10 such as the step response by using the profile thermocouple 20 in order to perform more advanced multivariate model prediction control. Such measurements, including the acquisition of conversion tables, are called calibration, and the data obtained by calibration is called calibration data. In this case, when operating the substrate processing apparatus 1, the profile thermocouple 20 is removed to close the opening of the port 19 portion, and the temperature is measured only by the heater thermocouple 15. Then, the measured temperature of the heater thermocouple 15 is corrected to the temperature data inside the reaction tube 11 based on the calibration data, and the heater unit 12 is controlled by the corrected data. Calibration is often done exhaustively during installation and maintenance of the equipment, but partial calibration can also be done during operation.
 プロファイル熱電対20の取り付けについて図3から図6を用いて説明する。図3(b)に示すように、シールキャップ13は、石英製の円盤状のキャップ(保護プレート)13aと、キャップ13aの底面に接触して保持する金属製のキャップ受け13bを有する。キャップ13aには開口としての円形の孔13cが設けられると共に、キャップ受け13bには金属製のポート19が設けられている。ポート19は、上下方向に伸び、一端がキャップ受け13bの下面に接続された管部19aと、管部19aの一端側に設けられた締結部としての継手19bと、で構成されている。管部19aの内側の空間は、キャップ受け13bの上面側に連通している。孔13cは、キャップ13aに、ポート19に対応する位置に設けられる。具体的には、管部19aと同心に形成され、反応管11内にプロファイル熱電対20を上向きに挿通させる開口19cを構成している。管部19aは、挿通方向において一定の直径を有する円管である。管部19aの内径は孔13cの径よりも小さい。また、孔13cは、後述の係止部31bの直径よりも大きな孔で形成される。継手19bの外周部には、プロファイル熱電対20を締結するために、袋ナット(ユニオンナット)と締結される雄ネジやフランジ等が設けられうる。継手19bの内周には、プロファイル熱電対20との間を気密にシールするための後述のOリング32に対応して、テーパー面若しくは段差が設けられうる。 The attachment of the profile thermocouple 20 will be described with reference to FIGS. 3 to 6. As shown in FIG. 3B, the seal cap 13 has a quartz disc-shaped cap (protective plate) 13a and a metal cap receiver 13b that contacts and holds the bottom surface of the cap 13a. The cap 13a is provided with a circular hole 13c as an opening, and the cap receiver 13b is provided with a metal port 19. The port 19 is composed of a pipe portion 19a extending in the vertical direction and having one end connected to the lower surface of the cap receiver 13b, and a joint 19b as a fastening portion provided on one end side of the pipe portion 19a. The space inside the pipe portion 19a communicates with the upper surface side of the cap receiver 13b. The hole 13c is provided in the cap 13a at a position corresponding to the port 19. Specifically, it is formed concentrically with the tube portion 19a, and constitutes an opening 19c through which the profile thermocouple 20 is inserted upward in the reaction tube 11. The tube portion 19a is a circular tube having a constant diameter in the insertion direction. The inner diameter of the pipe portion 19a is smaller than the diameter of the hole 13c. Further, the hole 13c is formed by a hole larger than the diameter of the locking portion 31b described later. A male screw, a flange, or the like to be fastened to a bag nut (union nut) may be provided on the outer peripheral portion of the joint 19b in order to fasten the profile thermocouple 20. The inner circumference of the joint 19b may be provided with a tapered surface or a step corresponding to the O-ring 32 described later for hermetically sealing the profile thermocouple 20.
 図3(a)に示すように、治具31は筒形状に形成され、図3(b)に示すように、ポート19の開口19cの内面を覆い、シールキャップ13の上方の反応管11側からポート19に装着可能である。なお、治具31は、非金属製である。非金属は、シールキャップ13とは異なる材料を意味し、例えば石英やアルミナ等の材料である。治具31は、管部19aの内側に隙間嵌めされる筒状部31aと、筒状部31aの一端に管部19aの内側の形状よりも大きく形成された係止部31bを有する。例えば、筒状部31aは、挿通方向において一定の直径を有する円管であり、筒状部31aの外径は管部19aの内径よりも小さく構成されている。係止部31bは、挿通方向において一定の直径を有する円管であり、係止部31bの外径は管部19aの内径よりも大きく構成されている。 As shown in FIG. 3A, the jig 31 is formed in a tubular shape, covers the inner surface of the opening 19c of the port 19, and is on the reaction tube 11 side above the seal cap 13 as shown in FIG. 3B. Can be attached to port 19 from. The jig 31 is made of non-metal. The non-metal means a material different from that of the seal cap 13, and is a material such as quartz or alumina. The jig 31 has a tubular portion 31a that is gap-fitted inside the pipe portion 19a, and a locking portion 31b that is formed at one end of the tubular portion 31a to be larger than the inner shape of the pipe portion 19a. For example, the tubular portion 31a is a circular tube having a constant diameter in the insertion direction, and the outer diameter of the tubular portion 31a is smaller than the inner diameter of the tube portion 19a. The locking portion 31b is a circular tube having a constant diameter in the insertion direction, and the outer diameter of the locking portion 31b is larger than the inner diameter of the tube portion 19a.
 係止部31bの下面はキャップ受け13b或いはポート19の上面と当接するように構成されている。これにより、治具31は下に抜け落ちない。治具31は筒状部31aの長さはポート19の管部19aと同程度である。治具31の筒状部31aおよび係止部31bの内径は保護管21の小径部21bの外径よりも大きく、保護管21の大径部21aの外径よりも小さく構成されている。係止部31bの挿通方向の長さは、キャップ13aの挿通方向の長さよりも長く構成されている。なお、係止部31bが反応管11と接触する恐れがある場合、係止部31bの一部を切り欠いてもよい。 The lower surface of the locking portion 31b is configured to be in contact with the upper surface of the cap receiver 13b or the port 19. As a result, the jig 31 does not fall down. The length of the tubular portion 31a of the jig 31 is about the same as that of the pipe portion 19a of the port 19. The inner diameters of the tubular portion 31a and the locking portion 31b of the jig 31 are larger than the outer diameter of the small diameter portion 21b of the protective tube 21 and smaller than the outer diameter of the large diameter portion 21a of the protective tube 21. The length of the locking portion 31b in the insertion direction is longer than the length of the cap 13a in the insertion direction. If there is a risk that the locking portion 31b will come into contact with the reaction tube 11, a part of the locking portion 31b may be cut out.
 まず、図4に示すように、治具31がキャップ13aの孔13cの上方からポート19に挿入される。これにより、開口19c(管部19a)の内面が治具31で覆われる。治具31の筒状部31aがポート19に挿入され、係止部31bによってポート19に係止されたときに、筒状部31aのポート19に挿入される側の先端(下端)の上下方向の位置はポート19の管部19aの下端(つまり管部19aと継手19bの接続位置)と同じか下端よりも下に位置する。 First, as shown in FIG. 4, the jig 31 is inserted into the port 19 from above the hole 13c of the cap 13a. As a result, the inner surface of the opening 19c (tube portion 19a) is covered with the jig 31. When the tubular portion 31a of the jig 31 is inserted into the port 19 and is locked to the port 19 by the locking portion 31b, the tip (lower end) of the tubular portion 31a on the side to be inserted into the port 19 is in the vertical direction. Is the same as or below the lower end of the pipe portion 19a of the port 19 (that is, the connection position between the pipe portion 19a and the joint 19b).
 次に、図5に示すように、保護管21は、ポート19の下方から治具31の筒状部31a内に挿入され、反応管11内に突出するように上方に押し込まれる。この際、ポート19の管部19aおよびシールキャップ13の孔13cの内面が治具31で覆われているので、保護管21がポート19およびシールキャップ13に擦れることはない。 Next, as shown in FIG. 5, the protective tube 21 is inserted into the tubular portion 31a of the jig 31 from below the port 19 and pushed upward so as to protrude into the reaction tube 11. At this time, since the inner surface of the tube portion 19a of the port 19 and the hole 13c of the seal cap 13 is covered with the jig 31, the protective tube 21 does not rub against the port 19 and the seal cap 13.
 その後、図6に示すように、ポート19に挿入された治具31は、ポート19にプロファイル熱電対20が装着されるときに、保護管21の太さが連続的に拡大するテーパー部21cに当接することによってプロファイル熱電対20とともに持ち上げられ、治具31の係止部31bが孔13cから離脱するとともに筒状部31aの一部がポート19の管部19aの内面から離脱する。固定位置まで挿入されたプロファイル熱電対20は継手19bによってポート19に締結される。このときプロファイル熱電対20は袋ナット等によって固定位置に維持され、大径部21aと継手19bの内周は隙間嵌めとなり、テーパー部21cに設けられたOリング32が継手19bに設けたテーパー面に当接することによりプロファイル熱電対20と継手19bの間の気密性を保つことができる。なお大気圧に近い条件で校正が行われるような場合、Oリング32や継手19bに設けたテーパー面は必須でなく、大径部21aと継手19bとが接触して締結されうる。また、治具31の押し上げは、治具31がテーパー部21cに直接当接する方法の他、Oリング32を介在させて当接する方法も含む。このように、ポート19にプロファイル熱電対20が装着されるときに、治具31は、筒状部31aの一部が開口であるポート19の管部19aの内面から離脱しつつ、他の一部が管部19aの内面に留まる。このとき、治具31はプロファイル熱電対20に比べて十分に短く、係止部31bの上端は、最も下の熱電対の測温点よりも十分低い位置にある。従って治具31は、測定される温度に影響を与えない。このように、ポートに挿入された治具は、温度測定器としてのプロファイル熱電対20が装着されるときに、温度測定器と共に上下移動可能に構成される。 After that, as shown in FIG. 6, the jig 31 inserted into the port 19 is attached to the tapered portion 21c in which the thickness of the protective tube 21 continuously increases when the profile thermocouple 20 is attached to the port 19. By abutting, it is lifted together with the profile thermocouple 20, the locking portion 31b of the jig 31 is disengaged from the hole 13c, and a part of the tubular portion 31a is disengaged from the inner surface of the pipe portion 19a of the port 19. The profile thermocouple 20 inserted to the fixed position is fastened to the port 19 by the joint 19b. At this time, the profile thermocouple 20 is maintained in a fixed position by a cap nut or the like, the inner circumference of the large diameter portion 21a and the joint 19b is gap-fitted, and the O-ring 32 provided in the tapered portion 21c is a tapered surface provided in the joint 19b. The airtightness between the profile thermocouple 20 and the joint 19b can be maintained by abutting against. When calibration is performed under conditions close to atmospheric pressure, the tapered surface provided on the O-ring 32 and the joint 19b is not essential, and the large diameter portion 21a and the joint 19b can be brought into contact with each other and fastened. Further, the pushing-up of the jig 31 includes a method in which the jig 31 directly abuts on the tapered portion 21c and a method in which the jig 31 abuts with an O-ring 32 interposed therebetween. In this way, when the profile thermocouple 20 is attached to the port 19, the jig 31 is separated from the inner surface of the tube portion 19a of the port 19 in which a part of the tubular portion 31a is an opening, and the other one. The portion stays on the inner surface of the pipe portion 19a. At this time, the jig 31 is sufficiently shorter than the profile thermocouple 20, and the upper end of the locking portion 31b is sufficiently lower than the temperature measuring point of the lowest thermocouple. Therefore, the jig 31 does not affect the measured temperature. As described above, the jig inserted into the port is configured to be movable up and down together with the temperature measuring device when the profile thermocouple 20 as the temperature measuring device is attached.
 装置を運用する際は、図3~図6に示したキャップ13aに代えて、孔13cを有しないキャップを用いることができ、これによって炉口における金属の露出を完全になくすことができる。或いは、孔13cを塞ぐ非金属製の栓を装着してもよい。なおシールキャップ13は、気密を維持するキャップと機械的な強度を担保するキャップ受けとに分離したものに限らず、金属で一体に形成されてもよい。その場合、シールキャップ13に溶接によって接続されたポート19は、継手19bに装着された気密性の蓋によって完全に閉塞することができる。 When operating the device, instead of the cap 13a shown in FIGS. 3 to 6, a cap having no hole 13c can be used, whereby the exposure of metal at the furnace opening can be completely eliminated. Alternatively, a non-metal stopper that closes the hole 13c may be attached. The seal cap 13 is not limited to a cap that maintains airtightness and a cap receiver that ensures mechanical strength, and may be integrally formed of metal. In that case, the port 19 welded to the seal cap 13 can be completely closed by the airtight lid attached to the joint 19b.
 なお、本開示は上述した各実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々に変更が可能であることはいうまでもない。例えば、大径部21aやテーパー部21cは、小径部21b(プロファイル熱電対20)と一体に形成されるものに制限されず、フェルール等の様態で別体に用意されるものも含む。ポート19への装着時に大径部21aと同様に機能し、プロファイル熱電対20と一体に固定されるフェルールは、大径部21aを構成しているとみなすことができる。また、プロファイル熱電対20は、運用時に撤去されるものに限らず、運用中も治具31と共に反応管11内に残され、それによって測定された内部温度が高精度の温度制御に利用されてもよい。 It is needless to say that the present disclosure is not limited to each of the above-described embodiments, and various changes can be made without departing from the gist thereof. For example, the large-diameter portion 21a and the tapered portion 21c are not limited to those formed integrally with the small-diameter portion 21b (profile thermocouple 20), and include those prepared separately in the form of a ferrule or the like. A ferrule that functions similarly to the large diameter portion 21a when attached to the port 19 and is integrally fixed with the profile thermocouple 20 can be considered to constitute the large diameter portion 21a. Further, the profile thermocouple 20 is not limited to the one removed during operation, but is left in the reaction tube 11 together with the jig 31 during operation, and the internal temperature measured by the profile thermocouple 20 is used for highly accurate temperature control. May be good.
 また、上述した実施形態では、処理がウエハに施される場合について説明したが、処理対象はウエハ以外の基板であってもよく、ホトマスクやプリント配線基板、液晶パネル、コンパクトディスクあるいは磁気ディスク等であってもよい。
  また、本開示は、半導体製造装置だけでなく、LCD製造装置のようなガラス基板を処理する装置や、他の基板処理装置にも適用できる。基板処理の処理内容は、CVD、PVD、酸化膜、窒化膜、金属含有膜等を形成する成膜処理だけでなく、露光処理、リソグラフィ、塗布処理等であってもよい。
Further, in the above-described embodiment, the case where the processing is applied to the wafer has been described, but the processing target may be a substrate other than the wafer, and may be a photomask, a printed wiring board, a liquid crystal panel, a compact disk, a magnetic disk, or the like. There may be.
Further, the present disclosure can be applied not only to a semiconductor manufacturing apparatus but also to an apparatus for processing a glass substrate such as an LCD manufacturing apparatus and other substrate processing apparatus. The processing content of the substrate processing may be not only a film forming process for forming a CVD, PVD, oxide film, nitride film, metal-containing film, etc., but also an exposure process, lithography, coating process, and the like.
 1:基板処理装置
 11:反応管(処理容器)
 19:ポート
 20:プロファイル熱電対(温度測定器)
 21:保護管
 31:治具
1: Substrate processing device 11: Reaction tube (processing container)
19: Port 20: Profile thermocouple (temperature measuring instrument)
21: Protective tube 31: Jig

Claims (15)

  1.  基板を処理する処理容器と、
     前記処理容器内に、保護管を有する温度測定器を上向きに挿通させる開口を形成するポートと、
     前記ポートの前記開口の内面を覆い、且つ、前記処理容器の内側から前記ポートに装着可能な筒形状に形成される、非金属製の治具と、を有し、
     前記ポートに挿入された前記治具は、前記ポートに前記温度測定器が装着されるときに、前記温度測定器とともに上下移動可能に構成される、基板処理装置。
    A processing container for processing the substrate and
    In the processing container, a port forming an opening through which a temperature measuring device having a protective tube is inserted upward, and a port.
    It has a non-metal jig that covers the inner surface of the opening of the port and is formed in a tubular shape that can be attached to the port from the inside of the processing container.
    The jig inserted into the port is a substrate processing device configured to be movable up and down together with the temperature measuring device when the temperature measuring device is mounted on the port.
  2.  前記ポートに挿入された前記治具は、前記ポートに装着された前記温度測定器によって持ち上げられたときに、前記治具の一部が前記開口の内面から離脱しつつ、他の一部が前記開口の内面に留まる請求項1記載の基板処理装置。 When the jig inserted into the port is lifted by the temperature measuring device attached to the port, a part of the jig is separated from the inner surface of the opening, and another part is said. The substrate processing apparatus according to claim 1, wherein the substrate processing apparatus stays on the inner surface of the opening.
  3.  前記治具の内径は、前記保護管の外径よりも大きい請求項2記載の基板処理装置。 The substrate processing apparatus according to claim 2, wherein the inner diameter of the jig is larger than the outer diameter of the protective tube.
  4.  前記治具の長さは、前記保護管の長さよりも小さい請求項3記載の基板処理装置。 The substrate processing apparatus according to claim 3, wherein the length of the jig is smaller than the length of the protective tube.
  5.  前記ポートに挿入された前記治具は、前記ポートに装着された前記保護管の太さが拡大する部分に当接することによって前記温度測定器とともに持ち上げられる請求項1又は2記載の基板処理装置。 The substrate processing apparatus according to claim 1 or 2, wherein the jig inserted into the port is lifted together with the temperature measuring device by abutting on a portion where the thickness of the protective tube attached to the port is increased.
  6.  前記基板を搬入出するために前記処理容器の下方に設けられる炉口を閉じる蓋を更に備え、前記ポートは前記蓋に設けられる請求項5記載の基板処理装置。 The substrate processing apparatus according to claim 5, further comprising a lid for closing the furnace port provided below the processing container for loading and unloading the substrate, and the port provided on the lid.
  7.  前記ポートは、上下方向に伸び、一端が前記蓋に接続され、その内側に前記開口を構成する管部と、前記管部の他端に接続され、装着される前記温度測定器を前記太さが拡大する部分又は前記温度測定器の大径部において固定する締結部と、と有する請求項6記載の基板処理装置。 The port extends in the vertical direction, one end of which is connected to the lid, and a tube portion that constitutes the opening inside the port, and the temperature measuring device that is connected to and mounted on the other end of the tube portion. The substrate processing apparatus according to claim 6, further comprising a portion where the temperature is expanded or a fastening portion which is fixed in a large diameter portion of the temperature measuring device.
  8.  前記管部は、挿通方向において一定の直径を有する円管であり、
     前記治具は、前記管部の内側に隙間嵌めされる筒状部と、前記筒状部の一端に前記開口の内側の形状よりも大きく形成された係止部を有し、前記ポートに挿入され前記係止部によって前記開口に係止されたときに、前記ポートに挿入される側の先端が、前記ポートの前記管部と前記締結部の接続位置に対応するか、前記接続位置よりも前記締結部側に位置する請求項7記載の基板処理装置。
    The tube portion is a circular tube having a constant diameter in the insertion direction.
    The jig has a tubular portion to be gap-fitted inside the pipe portion and a locking portion formed at one end of the tubular portion to be larger than the shape inside the opening, and is inserted into the port. When locked in the opening by the locking portion, the tip on the side inserted into the port corresponds to or more than the connection position of the pipe portion and the fastening portion of the port. The substrate processing apparatus according to claim 7, which is located on the fastening portion side.
  9.  前記ポート及び前記蓋の少なくとも一方は金属製である請求項6記載の基板処理装置。 The substrate processing apparatus according to claim 6, wherein at least one of the port and the lid is made of metal.
  10.  前記蓋は、石英製の円盤状のキャップと、前記キャップの底面に接触して保持する金属製のキャップ受けとを有し、前記ポートは前記キャップ受けに設けられ、前記キャップは、前記ポートに対応する位置に前記係止部より大きな孔を有する請求項8記載の基板処理装置。 The lid has a quartz disk-shaped cap and a metal cap holder that contacts and holds the bottom surface of the cap, the port is provided on the cap holder, and the cap is attached to the port. The substrate processing apparatus according to claim 8, which has a hole larger than the locking portion at a corresponding position.
  11.  前記保護管の太さが拡大する部分はテーパー形状を有する請求項5記載の基板処理装置。 The substrate processing apparatus according to claim 5, wherein the portion where the thickness of the protective tube is expanded has a tapered shape.
  12.  前記締結部は、保護管の太さが拡大する部分との間で、Oリングによって気密性が維持される請求項7記載の基板処理装置。 The substrate processing apparatus according to claim 7, wherein the fastening portion is maintained in airtightness by an O-ring with a portion where the thickness of the protective tube is increased.
  13.  基板を処理する処理容器内に、保護管を有する温度測定器を上向きに挿通させる開口を形成するポートに挿入される、非金属製の治具であって、
     前記ポートの前記開口の内面を覆い、且つ、前記処理容器の内側から前記ポートに装着可能な筒形状に形成され、前記ポートの内側に隙間嵌めされる筒状部と、前記筒状部の一端に前記開口の内側の形状よりも大きく形成された係止部を有し、
     前記ポートに前記温度測定器が装着されるときに、前記保護管の太さが拡大する部分に当接することによって前記温度測定器とともに持ち上げられ、前記筒状部の一部が前記開口の内面から離脱する、治具。
    A non-metal jig that is inserted into a port that forms an opening through which a temperature measuring instrument having a protective tube is inserted upward in a processing container for processing a substrate.
    A tubular portion that covers the inner surface of the opening of the port and is formed in a tubular shape that can be attached to the port from the inside of the processing container and is gap-fitted inside the port, and one end of the tubular portion. Has a locking portion formed larger than the shape of the inside of the opening.
    When the temperature measuring device is attached to the port, it is lifted together with the temperature measuring device by abutting on a portion where the thickness of the protective tube is increased, and a part of the tubular portion is formed from the inner surface of the opening. A jig to separate.
  14.  基板を処理する処理容器の内部に、保護管を有するプロファイル温度測定器を上向きに挿通させる開口を形成するポートに、前記ポートの前記開口の内周面を覆い且つ前記処理容器の内側から前記ポートに装着可能な筒形状に形成される、非金属製の治具が装着された基板処理装置を用意する工程と、
     前記ポートに前記プロファイル温度測定器を装着し、前記治具が前記プロファイル温度測定器とともに押し上げられた状態とする工程と、
     コントローラが、前記処理容器をヒータにより加熱し、前記処理容器外側の温度をヒータ温度測定器により測定すると共に、前記処理容器内の上下方向の温度分布を前記プロファイル温度測定器により測定し、前記ヒータ温度測定器および前記プロファイル温度測定器の測定データから校正データを作成する工程と、を備える基板処理装置の校正方法。
    A port forming an opening through which a profile temperature measuring device having a protective tube is inserted upward inside a processing container for processing a substrate covers the inner peripheral surface of the opening of the port and from the inside of the processing container to the port. The process of preparing a substrate processing device equipped with a non-metal jig, which is formed in a tubular shape that can be mounted on the
    A step of mounting the profile temperature measuring device on the port so that the jig is pushed up together with the profile temperature measuring device.
    The controller heats the processing container with a heater, measures the temperature outside the processing container with a heater temperature measuring device, measures the temperature distribution in the vertical direction inside the processing container with the profile temperature measuring device, and measures the heater. A method for calibrating a substrate processing apparatus, comprising a step of creating calibration data from a temperature measuring device and measurement data of the profile temperature measuring device.
  15.  基板を処理する処理容器と、前記処理容器内に、保護管を有する温度測定器を上向きに挿通させる開口を形成するポートと、を有する基板処理装置の処理容器に基板を搬入する工程と、
     前記処理容器の内側から前記ポートに装着されたときに前記ポートの前記開口の内面を覆う筒形状に形成された非金属製の治具を通して、前記ポートに装着された前記温度測定器によって測定された温度に基づいて、処理容器のヒータを制御する工程と、
     前記ヒータによって加熱された基板を処理する工程と、を備え、
     前記ポートに装着された前記温度測定器は、前記温度測定器の保護管の太さが拡大する部分が前記治具に当接することによって、前記治具を持ち上げ、前記治具の一部が前記開口の内面から離脱する、半導体装置の製造方法。
    A step of carrying the substrate into the processing container of the substrate processing apparatus having a processing container for processing the substrate and a port in the processing container for forming an opening through which the temperature measuring device having a protective tube is inserted upward.
    Measured by the temperature measuring device mounted on the port through a non-metal jig formed in a tubular shape covering the inner surface of the opening of the port when mounted on the port from the inside of the processing container. The process of controlling the heater of the processing container based on the temperature
    A step of processing a substrate heated by the heater is provided.
    The temperature measuring device mounted on the port lifts the jig when a portion where the thickness of the protective tube of the temperature measuring device is enlarged comes into contact with the jig, and a part of the jig is said to be said. A method of manufacturing a semiconductor device that separates from the inner surface of an opening.
PCT/JP2021/002288 2020-03-04 2021-01-22 Substrate processing device, jig, calibration method for substrate processing device, and method for manufacturing semiconductor device WO2021176879A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020037321A JP6916920B1 (en) 2020-03-04 2020-03-04 Manufacturing method of substrate processing equipment, jigs, semiconductor equipment and calibration method of substrate processing equipment
JP2020-037321 2020-03-04

Publications (1)

Publication Number Publication Date
WO2021176879A1 true WO2021176879A1 (en) 2021-09-10

Family

ID=77172660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002288 WO2021176879A1 (en) 2020-03-04 2021-01-22 Substrate processing device, jig, calibration method for substrate processing device, and method for manufacturing semiconductor device

Country Status (2)

Country Link
JP (1) JP6916920B1 (en)
WO (1) WO2021176879A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031062A (en) * 1998-07-09 2000-01-28 Kokusai Electric Co Ltd Furnace temperature measuring instrument
JP2004022943A (en) * 2002-06-19 2004-01-22 Hitachi Kokusai Electric Inc Semiconductor manufacturing equipment
JP2008096215A (en) * 2006-10-10 2008-04-24 Kawasaki Precision Machinery Ltd Sheathed thermocouple for measuring temperature in high pressure domain, and its manufacturing method
US7465086B1 (en) * 2005-03-05 2008-12-16 Foreman Instrumentation & Controls, Inc. Adjustable length thermowell
JP2010021385A (en) * 2008-07-11 2010-01-28 Hitachi Kokusai Electric Inc Substrate processing device and method of manufacturing semiconductor device
WO2013180010A1 (en) * 2012-05-28 2013-12-05 株式会社日立国際電気 Substrate treatment device, temperature measurement system, method for measuring temperature of treatment device, transportation device, and memory medium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031062A (en) * 1998-07-09 2000-01-28 Kokusai Electric Co Ltd Furnace temperature measuring instrument
JP2004022943A (en) * 2002-06-19 2004-01-22 Hitachi Kokusai Electric Inc Semiconductor manufacturing equipment
US7465086B1 (en) * 2005-03-05 2008-12-16 Foreman Instrumentation & Controls, Inc. Adjustable length thermowell
JP2008096215A (en) * 2006-10-10 2008-04-24 Kawasaki Precision Machinery Ltd Sheathed thermocouple for measuring temperature in high pressure domain, and its manufacturing method
JP2010021385A (en) * 2008-07-11 2010-01-28 Hitachi Kokusai Electric Inc Substrate processing device and method of manufacturing semiconductor device
WO2013180010A1 (en) * 2012-05-28 2013-12-05 株式会社日立国際電気 Substrate treatment device, temperature measurement system, method for measuring temperature of treatment device, transportation device, and memory medium

Also Published As

Publication number Publication date
JP6916920B1 (en) 2021-08-11
TW202142101A (en) 2021-11-01
JP2021141180A (en) 2021-09-16

Similar Documents

Publication Publication Date Title
US7479619B2 (en) Thermal processing unit
KR101504937B1 (en) Temperature detecting apparatus, substrate processing apparatus and method of manufacturing semiconductor device
KR20100110822A (en) Heat treatment apparatus, and method for controlling the same
KR20120085915A (en) Processing apparatus and temperature control method
TWI466216B (en) Substrate processing device, method for manufacturing semiconductor device and roof insulator
KR100615763B1 (en) Method of temperature-calibrating heat treating apparatus
JP4527449B2 (en) Cylinder for heat treatment chamber
WO2021176879A1 (en) Substrate processing device, jig, calibration method for substrate processing device, and method for manufacturing semiconductor device
TW564503B (en) Heat treatment method and device
JP5352156B2 (en) Heat treatment equipment
TWI834024B (en) Substrate processing device, jig, calibration method of substrate processing device, and manufacturing method of semiconductor device
TWI837793B (en) Support member, substrate processing device, and method of manufacturing semiconductor device
JP2001308085A (en) Heat-treating method
WO2020189176A1 (en) Gas supply part, substrate processing device, and method for manufacturing semiconductor device
TWI819705B (en) Furnace mouth structure, substrate processing device and manufacturing method of semiconductor device
JP2005333032A (en) Forming method of temperature conversion function of processed materials for monitor, calculating method of temperature distribution, and sheet-fed type heat treatment equipment
WO2023053172A1 (en) Support tool, substrate processing device, and method for manufacturing semiconductor device
JP4422525B2 (en) Semiconductor manufacturing equipment
JPH07273050A (en) Temperature measuring apparatus for vacuum heat treatment device
KR20180050709A (en) Substrate processing apparatus, joint part, and manufacturing method of semiconductor device
JP2009016532A (en) Substrate treatment equipment and manufacturing method for semiconductor device
JPH11140651A (en) Cvd device and cvd treating method
KR20050091691A (en) Heat treatment method and heat treatment device
KR20070025381A (en) Apparatus for fabricating semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21763496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21763496

Country of ref document: EP

Kind code of ref document: A1