WO2021176541A1 - Scroll compressor and method for manufacturing scroll compressor - Google Patents

Scroll compressor and method for manufacturing scroll compressor Download PDF

Info

Publication number
WO2021176541A1
WO2021176541A1 PCT/JP2020/008805 JP2020008805W WO2021176541A1 WO 2021176541 A1 WO2021176541 A1 WO 2021176541A1 JP 2020008805 W JP2020008805 W JP 2020008805W WO 2021176541 A1 WO2021176541 A1 WO 2021176541A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
scroll compressor
electromagnet coil
permanent magnet
frame
Prior art date
Application number
PCT/JP2020/008805
Other languages
French (fr)
Japanese (ja)
Inventor
令 三坂
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/008805 priority Critical patent/WO2021176541A1/en
Priority to JP2022504797A priority patent/JP7278473B2/en
Publication of WO2021176541A1 publication Critical patent/WO2021176541A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents

Definitions

  • the present disclosure relates to a scroll compressor having a swing scroll in which a magnet is embedded and a method for manufacturing the scroll compressor.
  • the swing scroll is a necessary component due to the structure of the scroll compressor, and therefore a component that supports the swing scroll in the axial direction (hereinafter referred to as a frame) is also required.
  • the scroll compressor performs a compression operation in which low-pressure refrigerant is sucked in and high-pressure refrigerant is discharged, and among the gas loads generated by compressing the refrigerant, the axial load acts as a thrust load on the swing scroll. ..
  • the thrust load acts on the swing scroll
  • the swing scroll is pressed against the frame, and a sliding loss occurs when sliding with respect to the frame.
  • This sliding loss is a factor of performance deterioration, and various mechanisms for generating a force in the direction of separating the swing scroll and the frame have been considered as a measure for improving the sliding loss.
  • Patent Document 1 describes a method in which permanent magnets are embedded in both the swing scroll and the frame, and a force in a direction that separates the swing scroll and the frame is generated by a repulsive force between the permanent magnets.
  • the thrust load also changes because the operating range changes from light load operation with a light load to heavy load operation with a heavy load according to the control request of the unit.
  • Patent Document 1 since a permanent magnet is used, the magnetic force is constant, and it is not possible to follow the thrust load that changes with the operation of the compressor. Therefore, the thrust load cannot be appropriately reduced in a wide operating range.
  • the present disclosure has been made to solve the above-mentioned problems, and provides a scroll compressor and a method for manufacturing a scroll compressor capable of appropriately reducing the thrust load acting on the frame in a wide operating range.
  • the purpose is to do.
  • the scroll compressor according to the present disclosure includes a fixed scroll and a compression mechanism having a swinging scroll that swings with respect to the fixed scroll, an electric motor that drives the compression mechanism, and a thrust receiving surface that slides with the swinging scroll. It is provided with a frame, a permanent magnet embedded in a swing scroll, and an electromagnet coil embedded in the frame at a position facing the permanent magnet and generating a repulsive force between the permanent magnet, and the electromagnet coil and the motor are connected in series. It is connected to.
  • the method for manufacturing a scroll compressor according to the present disclosure is the above-mentioned method for manufacturing a scroll compressor, which includes a step of manufacturing a swing scroll from a liquid material, and in the step of manufacturing a swing scroll, the material is used.
  • a permanent magnet is embedded in a material when it is in a liquid state, and a structure in which the permanent magnet is embedded at the same time in the process of manufacturing a swing scroll is manufactured.
  • the electromagnet coil and the electric motor are connected in series, a current corresponding to the rotation speed of the electric motor flows through the electromagnet coil, and the repulsive force generated between the electromagnet coil and the permanent magnet is used as an operating load. It can be adjusted accordingly. Therefore, the thrust load acting on the thrust receiving surface can be appropriately reduced in a wide operating range.
  • FIG. 5 is a schematic view of a swing scroll of the scroll compressor according to the first embodiment as viewed from the frame side.
  • FIG. 5 is a schematic view of a movable frame of the scroll compressor according to the first embodiment as viewed from the swing scroll side.
  • It is an electric circuit diagram of the scroll compressor which concerns on Embodiment 1.
  • FIG. It is a partially enlarged sectional view of the scroll compressor which concerns on Embodiment 2.
  • FIG. FIG. 5 is a schematic view of a movable frame of the scroll compressor according to the second embodiment as viewed from the swing scroll side.
  • FIG. 5 is a schematic schematic view of a movable frame of the scroll compressor according to the third embodiment as viewed from the fixed scroll side. It is an electric circuit diagram which shows the connection example 1 of the electromagnet coil of the scroll compressor which concerns on Embodiment 3.
  • FIG. 2 is an electric circuit diagram which shows the connection example 2 of the electromagnet coil of the scroll compressor which concerns on Embodiment 3.
  • FIG. 3 is an electric circuit diagram which shows the connection example 3 of the electromagnet coil of the scroll compressor which concerns on Embodiment 3.
  • FIG. 5 is a schematic view of a swing scroll of the scroll compressor according to the fourth embodiment as viewed from the frame side. It is explanatory drawing explaining the movement of the permanent magnet with the swinging motion of the rocking scroll of the scroll compressor which concerns on Embodiment 4.
  • FIG. 5 is a schematic view of a swing scroll of the scroll compressor according to the fourth embodiment as viewed from the frame side. It is explanatory drawing explaining the movement of the permanent magnet with the swinging motion of the rocking scroll of the scroll compressor which concerns on Embodiment 4.
  • FIG. 1 is a schematic vertical sectional view of the scroll compressor according to the first embodiment.
  • those having the same reference numerals are the same or equivalent thereof, which are common to the entire text of the specification.
  • the forms of the components appearing in the entire specification are merely examples and are not limited to these descriptions.
  • the scroll compressor 100 is a fluid machine that sucks in the refrigerant that circulates in the refrigeration cycle, compresses it, and discharges it in a high temperature and high pressure state.
  • the scroll compressor 100 is one of the components of a refrigerating cycle device used in various industrial machines such as a refrigerator, a freezer, a vending machine, an air conditioner, a refrigerating device, or a hot water supply device.
  • the scroll compressor 100 includes a compression mechanism 101 that compresses a refrigerant, an electric motor 7 that drives the compression mechanism 101 via a spindle 6, and a closed container 10 that houses the compression mechanism 101 and the electric motor 7. ,have.
  • the compression mechanism 101 is arranged above, and the electric motor 7 is arranged below the compression mechanism 101.
  • An oil reservoir 11 for storing lubricating oil is formed at the bottom of the closed container 10.
  • a suction pipe 9a for sucking the refrigerant gas and a discharge pipe 9b for discharging the refrigerant gas are connected to the closed container 10.
  • the compression mechanism 101 is fixed in the closed container 10, and includes a fixed scroll 1, a swinging scroll 2 that swings with respect to the fixed scroll 1, a movable frame 3, a fixed frame 4, and the like. ..
  • the fixed scroll 1 has a fixed base plate portion 1a and fixed spiral teeth 1b which are spiral protrusions formed on one surface of the fixed base plate portion 1a.
  • the oscillating scroll 2 is formed on one surface of the oscillating base plate portion 2a and the oscillating base plate portion 2a, and is a oscillating spiral tooth which is a spiral protrusion having substantially the same shape as the fixed vortex tooth 1b. It has 2b and.
  • the other surface of the rocking base plate portion 2a that is, the surface opposite to the surface on which the swinging spiral tooth 2b is formed is a thrust surface 2e that supports the thrust load.
  • the swing scroll 2 and the fixed scroll 1 are supported from below by a fixed frame 4 fixed to the closed container 10.
  • the thrust load generated in the swing scroll 2 during the operation of the compressor is supported by the fixed frame 4 via the thrust surface 2e.
  • the portion of the movable frame 3 that slides on the thrust surface 2e of the swing scroll 2 is the thrust receiving surface 3a of the thrust bearing for improving the slidability.
  • the thrust bearing is composed of, for example, a thrust plate.
  • the swinging scroll 2 and the fixed scroll 1 are mounted in the closed container 10 in a state where the swinging spiral tooth 2b and the fixed spiral tooth 1b are combined with each other.
  • a plurality of compression chambers 14 for compressing the refrigerant are formed between the swinging spiral tooth 2b and the fixed spiral tooth 1b.
  • the plurality of compression chambers 14 suck the refrigerant gas from the compression chamber suction space 14a existing on the outer periphery thereof into the outermost chamber 14b of the compression chamber, and apply the pressure of the refrigerant gas as it shifts to the central portion as the spindle 6 rotates. It is raised and discharged from the innermost chamber 14c of the compression chamber formed in the center to the upper space 10a of the closed container 10.
  • the fixed scroll 1 is fixed to the fixed frame 4 by bolts 16 and the like.
  • a discharge port 15 for discharging the refrigerant gas compressed in the compression chamber 14 and having a high pressure is formed in the central portion of the fixed base plate portion 1a of the fixed scroll 1.
  • the compressed and high-pressure refrigerant gas is discharged from the outermost chamber 14b of the compression chamber to the upper space 10a of the closed container 10 via the discharge port 15.
  • the refrigerant gas discharged into the upper space 10a is discharged from the discharge pipe 9b to the outside of the closed container 10.
  • a hollow cylindrical boss portion 2c is formed at a substantially central portion of the surface of the swing scroll 2 opposite to the surface on which the swing spiral tooth 2b is formed.
  • An eccentric shaft portion 6a which will be described later, is inserted into the boss portion 2c.
  • the fixed frame 4 has an upper fitting cylindrical surface 4a on the compression mechanism 101 side of the inner peripheral surface of the fixed frame 4, and a lower fitting cylindrical surface 4b on the motor 7 side.
  • the upper fitting cylindrical surface 4a is engaged with the upper fitting cylindrical surface 3d formed on the outer peripheral surface of the movable frame 3.
  • the lower fitting cylindrical surface 4b is engaged with the lower fitting cylindrical surface 3e formed on the outer peripheral surface of the movable frame 3.
  • the space inside the movable frame 3, that is, the space on the outer peripheral side of the thrust receiving surface 3a, that is, the space on the outer peripheral side of the swing base plate portion 2a of the swing scroll 2 is a compressor having an intake gas atmosphere (suction pressure). It communicates with the suction space 12.
  • An old dam ring 5 is arranged between the fixed scroll 1 and the movable frame 3.
  • the oldham ring 5 has a pair of oldam fixing claws 5a, a pair of oldam swinging claws 5b, and an oldam annular portion 5c provided with a pair of oldam fixing claws 5a and a pair of oldam swinging claws 5b.
  • the Oldham fixed claw 5a and the Oldam swinging claw 5b are formed with a phase difference of 90 degrees.
  • the pair of oldham fixing claws 5a are reciprocally and slidably engaged with the pair of oldam guide grooves 1c formed substantially in a straight line with the fixed base plate portion 1a of the fixed scroll 1.
  • the pair of Oldham swing claws 5b are reciprocally and slidably engaged with the pair of Oldham guide grooves 2f formed in a substantially straight line on the outer peripheral portion of the swing base plate portion 2a of the swing scroll 2. ..
  • the motor 7 has a rotor 7a and a stator 7b arranged on the outer peripheral side of the rotor 7a.
  • the stator 7b is shrink-fitted and fixed to the inner circumference of the closed container 10. Electric power is supplied to the stator 7b via the power supply terminal 10b provided in the closed container 10.
  • the rotor 7a rotates when the stator 7b is energized, and drives the spindle 6 to rotate.
  • the spindle 6 rotates with the rotation of the rotor 7a, and transmits the rotational driving force of the motor 7 to the compression mechanism 101.
  • the upper part of the spindle 6 is rotatably supported by the spindle bearing 3c provided on the fixed frame 4.
  • An eccentric shaft portion 6a eccentric with respect to the central shaft of the main shaft 6 is provided at the upper end of the main shaft 6.
  • the eccentric shaft portion 6a is inserted into the boss portion 2c of the swing scroll 2.
  • a swing bearing 2d is formed on the inner surface of the boss portion 2c, and the eccentric shaft portion 6a is rotationally supported by the swing bearing 2d.
  • the lower part of the spindle 6 is rotatably supported by an auxiliary bearing (not shown).
  • the sub-bearing is press-fitted and fixed to the bearing accommodating portion formed in the central portion of the sub-frame 8 provided in the lower part of the closed container 10.
  • FIG. 2 is a partially enlarged cross-sectional view of the scroll compressor according to the first embodiment.
  • FIG. 3 is a schematic view of the swing scroll of the scroll compressor according to the first embodiment as viewed from the frame side. In FIG. 3, the portion where the permanent magnet is embedded is indicated by a dot.
  • FIG. 4 is a schematic view of the movable frame of the scroll compressor according to the first embodiment as viewed from the swing scroll side.
  • a permanent magnet 50 is embedded in the swing base plate portion 2a of the swing scroll 2 so as to be closer to the thrust surface 2e side.
  • the permanent magnet 50 is formed in a ring shape coaxial with the central axis O of the swing scroll 2.
  • the method of embedding the permanent magnet 50 in the rocking base plate portion 2a of the swing scroll 2 is, for example, to provide a ring-shaped groove in the rocking base plate portion 2a, embed the permanent magnet 50 in the groove, and then the remaining in the groove.
  • the space portion may be covered with a ring-shaped member made of the same material as the rocking base plate portion 2a. Note that this method is an example and is not limited to this method.
  • An electromagnet coil 51 is embedded in the movable frame 3 at a position facing the permanent magnet 50 so as to be closer to the thrust receiving surface 3a.
  • the electromagnet coil 51 is for generating a repulsive force with the permanent magnet 50.
  • the electromagnet coil conductors 51a and 51b at both ends of the electromagnet coil 51 are drawn out of the fixed frame 4 through the conductor passage 4c. Both ends of the conducting wire connecting passage 4c are closed by the connecting passage closing component 4d while passing through the electromagnet coil conducting wires 51a and 51b. Since the space inside the fixed frame 4 is the suction pressure and the space outside is the discharge pressure, when the conductor passage 4c is open, the pressure in the space inside the fixed frame 4 side rises and the movable frame 3 is pushed up and pushed toward the swing scroll 2 side. Therefore, the conductor connecting passage 4c is provided with the connecting passage closing component 4d to block the inside and the outside of the fixed frame 4 side. Although two passage obstruction parts 4d are shown in FIG. 2, one may be used as long as the inner space and the outer space on the fixed frame 4 side can be blocked.
  • FIG. 2 shows an example in which the electromagnet coil 51 is provided on the movable frame 3, but the present invention is not limited to this depending on the structure of the scroll compressor 100.
  • the electromagnet coil 51 is provided in the fixed frame 4.
  • the electromagnet coil 51 may be provided on the frame that supports the swing scroll 2.
  • the electromagnet coil 51 has an arc shape when viewed in a plane, and both ends 51c of the arc shape face each other with a minute distance. Although both ends of the electromagnet coil 51 are separated from each other in FIG. 4, they may be extended in the circumferential direction so that both ends overlap each other. At this time, if both ends of the electromagnet coil 51 are extended in the circumferential direction at the same height position, they interfere with each other. Therefore, the positions in the vertical direction may be shifted and the electromagnet coils 51 may be extended in the circumferential direction.
  • FIG. 5 is an electric circuit diagram of the scroll compressor according to the first embodiment.
  • the electromagnet coil 51 is connected in series with the motor 7.
  • the electromagnet coil lead wire 51a of the motor 7 is connected to the power supply terminal 10b
  • the electromagnet coil lead wire 51b is connected to the motor lead wire 7d.
  • the motor conductor 7c is connected to the power supply terminal 10b.
  • the power supply terminal 10b is connected to the power supply 20.
  • the electric power input to the scroll compressor 100 generates a magnetic force in the electromagnet coil 51, and then drives the electric motor 7.
  • the order may be reversed, and after driving the motor 7, a magnetic force may be generated in the electromagnet coil 51.
  • a repulsive force is generated between the electromagnet coil 51 and the permanent magnet 50.
  • the operation of the scroll compressor 100 will be described.
  • the motor 7 rotates and the spindle 6 is rotationally driven.
  • the swing scroll 2 is restricted from rotating by the old dam ring 5 and makes an eccentric turning motion.
  • the refrigerant sucked into the closed container 10 through the suction pipe 9a is taken into the compression chamber 14 via the compression chamber suction space 14a.
  • the compression chamber 14 that has taken in the gas reduces the volume while moving from the outer peripheral portion toward the center along with the eccentric turning motion of the rocking scroll 2, and compresses the refrigerant.
  • the gas refrigerant compressed in the compression chamber 14 is discharged from the discharge port 15 provided in the fixed scroll 1 to the upper space 10a, and is discharged from the discharge pipe 9b to the outside of the closed container 10.
  • the thrust receiving surface 3a of the fixed frame 4 receives the thrust load generated by the pressure of the refrigerant gas in the compression chamber 14.
  • the rotation speed of the motor 7 is increased, so that the thrust load received by the thrust receiving surface 3a becomes large.
  • the current flowing into the motor 7 increases in order to increase the rotation speed of the motor 7, so that the current flowing into the electromagnet coil 51 connected in series with the motor 7 also inevitably increases.
  • the magnetic force generated from the electromagnet coil 51 increases, and the repulsive force acting between the electromagnet coil 51 and the permanent magnet 50 is commensurate with the increase in the number of rotations of the motor 7. growing.
  • the repulsive force acting between the electromagnet coil 51 and the permanent magnet 50 is adjusted to a repulsive force according to the current operating load. Therefore, the thrust load acting on the thrust receiving surface 3a of the fixed frame 4 is appropriately reduced, the sliding loss between the swing scroll 2 and the fixed frame 4 can be reduced, and the performance can be improved. At the same time, it is possible to prevent seizure between the swing scroll 2 and the fixed frame 4.
  • the rotation speed of the motor 7 is reduced, so that the thrust load received by the thrust receiving surface 3a becomes small.
  • the current flowing into the motor 7 is reduced in order to reduce the rotation speed of the motor 7, so that the current flowing into the electromagnet coil 51 connected in series with the motor 7 is inevitably reduced. Since the magnetic force generated from the electromagnet coil 51 is reduced by reducing the current flowing into the electromagnet coil 51, the repulsive force acting between the electromagnet coil 51 and the permanent magnet 50 is commensurate with the decrease in the number of rotations of the motor 7. Just get smaller.
  • the repulsive force acting between the electromagnet coil 51 and the permanent magnet 50 is adjusted to a repulsive force according to the current operating load. Therefore, the thrust load acting on the thrust receiving surface 3a of the fixed frame 4 is appropriately reduced, and the sliding loss can be reduced while preventing the swing scroll 2 and the fixed frame 4 from being completely separated from each other. Performance can be improved.
  • the scroll compressor 100 of the first embodiment drives a compression mechanism 101 having a fixed scroll 1 and a swing scroll 2 that swings with respect to the fixed scroll 1, and a compression mechanism 101. It includes an electric motor 7 and a frame having a thrust receiving surface 3a that slides on the swing scroll 2.
  • the scroll compressor 100 further includes a permanent magnet 50 embedded in the swing scroll 2 and an electromagnet coil 51 embedded in the frame at a position facing the permanent magnet 50 to generate a repulsive force between the permanent magnet 50 and the permanent magnet 50. ..
  • the electromagnet coil 51 and the motor 7 are connected in series.
  • Embodiment 2 the number of electromagnet coils is a plurality.
  • the differences between the second embodiment and the first embodiment will be mainly described, and the configurations not described in the second embodiment are the same as those in the first embodiment.
  • FIG. 6 is a partially enlarged cross-sectional view of the scroll compressor according to the second embodiment.
  • FIG. 7 is a schematic view of the movable frame of the scroll compressor according to the second embodiment as viewed from the swing scroll side.
  • the electromagnet coils 51 are formed in a circular shape when viewed in a plane, and a plurality of electromagnet coils 51 are embedded in the movable frame 3.
  • the electromagnet coils 51 are arranged at intervals on concentric circles centered on the central axis of the movable frame 3, and are embedded in the movable frame 3 closer to the thrust receiving surface 3a side.
  • eight electromagnet coils 51 are shown, but any number of two or more may be used.
  • the electromagnet coils 51 When the number of the electromagnet coils 51 is two, the electromagnet coils 51 are formed into an arc shape, specifically, a semicircular shape as in the first embodiment so that the electromagnetic force is uniformly generated on the thrust receiving surface 3a. do. When three or more electromagnet coils 51 are installed, the electromagnet coils 51 may have a circular shape or an arc shape as shown in FIGS. 6 and 7. In short, the number and shape of the electromagnet coils 51 that can uniformly generate electromagnetic force on the thrust receiving surface 3a by the plurality of electromagnet coils 51 may be set.
  • FIG. 8 is an electric circuit diagram showing a connection example of the electromagnet coil of the scroll compressor according to the second embodiment.
  • FIG. 9 is an electric circuit diagram showing another connection example of the electromagnet coil of the scroll compressor according to the second embodiment.
  • the plurality of electromagnet coils 51 are all connected in series as shown in FIG. 8 or in parallel as shown in FIG. However, the entire electromagnet coil 51 and the motor 7 are connected in series.
  • Embodiment 3 the connection circuits of the plurality of electromagnet coils 51 are different from those in the second embodiment.
  • the differences between the third embodiment and the second embodiment will be mainly described, and the configurations not described in the third embodiment are the same as those in the second embodiment.
  • FIG. 10 is a schematic schematic view of the movable frame of the scroll compressor according to the third embodiment as viewed from the fixed scroll side.
  • FIG. 11 is an electric circuit diagram showing a connection example 1 of an electromagnet coil of the scroll compressor according to the third embodiment.
  • FIG. 12 is an electric circuit diagram showing a connection example 2 of an electromagnet coil of the scroll compressor according to the third embodiment.
  • FIG. 13 is an electric circuit diagram showing a connection example 3 of the electromagnet coil of the scroll compressor according to the third embodiment.
  • a to H of FIGS. 10 to 13 show the electromagnet coil 51.
  • FIG. 10 shows an example in which the electromagnet coil has the circular shape of the second embodiment shown in FIG. 7, the arc shape of the first embodiment shown in FIG. 4 may be used.
  • the third embodiment has an electric circuit in which a part of a plurality of electromagnet coils 51 is connected in series and the rest are connected in parallel. The entire electromagnet coil 51 and the motor 7 are connected in series. Specific connection examples are shown in FIGS. 11 to 13. In FIG. 11, a series circuit in which the electromagnet coils 51 of A, B, C, and D are connected in series and a series circuit in which the electromagnet coils 51 of E, F, G, and H are connected in series are arranged in parallel. It is connected to the. In FIG.
  • a series circuit connected to the above and a series circuit in which the G and H electromagnet coils 51 are connected in series are connected in parallel.
  • a series circuit in which the electromagnet coils 51 of A, C, E, and G are connected in series and a series circuit in which the electromagnet coils 51 of B, D, F, and H are connected in series are arranged in parallel. It is connected to the.
  • the combination of the electromagnet coils 51 connected in series is not limited to the combinations shown in FIGS. 11 to 13, and is free. In any combination, the entire electromagnet coil 51 is connected in series with the motor 7.
  • Embodiment 4 the number of permanent magnets 50 is a plurality.
  • the differences between the fourth embodiment and the first embodiment will be mainly described, and the configurations not described in the fourth embodiment are the same as those in the first embodiment.
  • FIG. 14 is a schematic view of the swing scroll of the scroll compressor according to the fourth embodiment as viewed from the frame side.
  • the portion where the permanent magnet 50 is embedded is indicated by dots.
  • FIG. 15 is an explanatory diagram illustrating the movement of the permanent magnets accompanying the swinging motion of the swinging scroll of the scroll compressor according to the fourth embodiment.
  • the permanent magnets 50 are formed in a cylindrical shape, and a plurality of permanent magnets 50 are embedded in the swing base plate portion 2a of the swing scroll 2.
  • FIG. 14 shows an example in which 12 permanent magnets 50 are used, but the number is arbitrary.
  • the number of the electromagnet coils 51 may be one as shown in FIG. 4, or may be a plurality as shown in FIG. 7.
  • the number of permanent magnets 50 and the number of electromagnets may be the same or different.
  • the number of permanent magnets 50 and the number of electromagnets are different, either of them may be large.
  • the permanent magnet 50 and the electromagnet coil 51 are both a plurality, the optimization of the shape, the number, and the position of the permanent magnet 50 and the electromagnet coil 51 will be examined.
  • the permanent magnet 50 moves with the swinging motion of the swinging scroll 2 as shown by the arrow 50a in FIG. Therefore, the shapes, numbers, and positions of the permanent magnet 50 and the electromagnet coil 51 are optimized based on the movement locus of the permanent magnet 50 accompanying the swinging motion of the swinging scroll 2. Specifically, it is optimized so that the permanent magnet 50 and the electromagnet coil 51 maintain their positions facing each other during the swinging motion of the swinging scroll 2.
  • the permanent magnet 50 and the electromagnet coil 51 do not have to always maintain the positions facing the electromagnet coil 51 during the swing operation, and at least a part of them may be maintained.
  • some or all of the shapes, numbers and positions of the permanent magnets 50 and the electromagnet coils 51 have been determined so that a necessary, sufficient and uniform repulsive force acts between the swing scroll 2 and the movable frame 3. Just do it.
  • the point that the shapes, numbers, and positions of the permanent magnet 50 and the electromagnet coil 51 are optimized based on the movement locus of the permanent magnet 50 accompanying the swinging motion of the swinging scroll 2 is the present embodiment.
  • the present invention is not limited to 4, and the same applies to the above-described first to third embodiments.
  • Embodiment 5 relates to the materials of the swing scroll 2 and the movable frame 3.
  • the swing scroll 2 and the movable frame 3 may be made of a magnetic material or may be made of a non-magnetic material.
  • the swing scroll 2 and the movable frame 3 are made of a non-magnetic material, they may be made of a non-magnetic metal or a non-metal.
  • the permanent magnet 50 embedded in the swing scroll 2 and the movable frame 3 are attracted to each other by magnetic force. Further, the electromagnet coil 51 and the swing scroll 2 embedded in the movable frame 3 are also attracted to each other by magnetic force. Therefore, when the swing scroll 2 and the movable frame 3 are made of a magnetic material, the effect of reducing the thrust load due to the repulsive force acting between the permanent magnet 50 and the electromagnet coil 51 is weakened. Therefore, when the swing scroll 2 and the movable frame 3 are made of a non-magnetic material, the effect of reducing the thrust load can be enhanced.
  • both the swing scroll 2 and the movable frame 3 may be formed of the non-magnetic material, or either one of them may be formed. Even if either one is used, the effect of reducing the thrust load can be enhanced as compared with the case where both are made of a magnetic material. Further, when both or one of the swing scroll 2 and the movable frame 3 is made of a non-magnetic material, the degree of freedom of optimization can be increased. In optimizing the shapes, numbers, and positions of the permanent magnet 50 and the electromagnet coil 51, the force attracting the permanent magnet 50 and the movable frame 3 and the electromagnet coil 51 and the swing scroll 2 attract each other. This is because there is no need to consider force.
  • the same effect as that of the first embodiment can be obtained, and the following effects can be obtained by forming both or one of the swing scroll 2 and the movable frame 3 with a non-magnetic material. Be done. That is, the effect of reducing the thrust load can be improved, and the degree of freedom in optimizing the shape, number, and position of the permanent magnet 50 and the electromagnet coil 51 can be increased.
  • Embodiment 6 relates to a method for manufacturing a scroll compressor.
  • the method for manufacturing a scroll compressor includes a step of manufacturing the swing scroll 2 from a liquid material.
  • the permanent magnet 50 in the step of manufacturing the swing scroll 2, is embedded in the material when the material is in a liquid state, and in the step of manufacturing the swing scroll 2, the permanent magnet 50 is embedded at the same time.
  • Manufacture the structure hereinafter, a more specific description will be given.
  • the permanent magnet 50 is placed in the molding mold of the swing scroll 2.
  • a magnet made of a material having a melting point higher than the melting point of the material constituting the swing scroll 2 is used.
  • the liquid material of the swing scroll 2 is poured into the molding die and hardened.
  • the permanent magnet 50 may be arranged in the molding die in advance, or the permanent magnet 50 may be inserted after the liquid material of the rocking scroll 2 is poured into the molding die and before the liquid material of the rocking scroll 2 is solidified. May be placed.
  • the liquid casting material of the swing scroll 2 may be cast into the mold of the swing scroll 2, and the casting magnet to be the permanent magnet 50 may be cast at the same time before the casting material is solidified.
  • the permanent magnet 50 uses a material having a melting point lower than the melting point of the material of the rocking scroll 2.
  • the electromagnet coil 51 is embedded at the same time in the process of manufacturing the movable frame 3.
  • a 3D printer or the like is used to embed the electromagnet coil 51 in the process of manufacturing the movable frame base material, or the electromagnet coil 51 itself is simultaneously manufactured by the 3D printer.
  • the periphery of the electromagnet coil 51 or the entire movable frame base material is molded with an insulator.
  • the electromagnet coil 51 is arranged in the middle of molding the vicinity of the thrust receiving surface 3a of the movable frame base material, and then the molding of the entire movable frame base material is completed. Further, by molding both the insulator and the conductor at the same time, the entire electromagnet coil may be molded by the conductor. As a result, it is possible to prevent the post-process from becoming complicated and shorten the time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

This scroll compressor is provided with: a compression mechanism provided with a fixed scroll and an oscillation scroll that performs oscillation motion with respect to the fixed scroll; an electric motor that drives the compression mechanism; and a frame having a thrust reception surface that slides on the oscillation scroll. The scroll compressor is further provided with a permanent magnet that is embedded in the oscillation scroll and an electromagnet coil that is embedded at a position facing the permanent magnet in the frame and generates a repulsive force with the permanent magnet. The electromagnet coil and the electric motor are connected in series to each other.

Description

スクロール圧縮機およびスクロール圧縮機の製造方法Scroll compressor and manufacturing method of scroll compressor
 本開示は、磁石が埋め込まれた揺動スクロールを有するスクロール圧縮機およびスクロール圧縮機の製造方法に関する。 The present disclosure relates to a scroll compressor having a swing scroll in which a magnet is embedded and a method for manufacturing the scroll compressor.
 スクロール圧縮機において渦巻歯先の漏れを防ぐ方式として、固定スクロールコンプライアント方式、揺動スクロールコンプライアント方式および歯先チップシール方式がある。いずれの方式においてもスクロール圧縮機の構造上、揺動スクロールは必ず必要な部品であり、したがって揺動スクロールを軸方向に支持する部品(以降、フレームという)も必要となる。 There are a fixed scroll compliant method, a swing scroll compliant method, and a tooth tip tip sealing method as methods for preventing leakage of the spiral tooth tip in the scroll compressor. In either method, the swing scroll is a necessary component due to the structure of the scroll compressor, and therefore a component that supports the swing scroll in the axial direction (hereinafter referred to as a frame) is also required.
 スクロール圧縮機は、低圧冷媒を吸い込んで高圧冷媒を吐出する圧縮運転を行うものであり、冷媒を圧縮することによって発生するガス荷重のうち、軸方向の荷重がスラスト荷重として揺動スクロールに作用する。スラスト荷重が揺動スクロールに作用することで、揺動スクロールはフレームへ押し付けられ、フレームに対して摺動する際に摺動ロスが発生する。この摺動ロスは、性能悪化の要因となっており、摺動ロスを改善する対策として揺動スクロールとフレームとを離間させる方向に力を発生させるための様々な機構が考えられている。例えば、揺動スクロールとフレームとの双方に永久磁石を埋め込み、永久磁石同士の斥力によって、揺動スクロールとフレームとを離間させる方向の力を発生させる方法が特許文献1に記載されている。 The scroll compressor performs a compression operation in which low-pressure refrigerant is sucked in and high-pressure refrigerant is discharged, and among the gas loads generated by compressing the refrigerant, the axial load acts as a thrust load on the swing scroll. .. When the thrust load acts on the swing scroll, the swing scroll is pressed against the frame, and a sliding loss occurs when sliding with respect to the frame. This sliding loss is a factor of performance deterioration, and various mechanisms for generating a force in the direction of separating the swing scroll and the frame have been considered as a measure for improving the sliding loss. For example, Patent Document 1 describes a method in which permanent magnets are embedded in both the swing scroll and the frame, and a force in a direction that separates the swing scroll and the frame is generated by a repulsive force between the permanent magnets.
特開2000-130362号公報Japanese Unexamined Patent Publication No. 2000-130362
 圧縮機の運転においては、ユニットの制御要求に応じて負荷の軽い軽負荷運転から負荷の重い重負荷運転まで運転範囲が変化するため、スラスト荷重もまた変化する。特許文献1では、永久磁石が採用されているため、磁力は一定であり、圧縮機運転に伴って変化するスラスト荷重に追従させることはできない。このため、広い運転範囲においてスラスト荷重を適正に低減することができない。 In the operation of the compressor, the thrust load also changes because the operating range changes from light load operation with a light load to heavy load operation with a heavy load according to the control request of the unit. In Patent Document 1, since a permanent magnet is used, the magnetic force is constant, and it is not possible to follow the thrust load that changes with the operation of the compressor. Therefore, the thrust load cannot be appropriately reduced in a wide operating range.
 具体的には、永久磁石の磁力の強さを重負荷運転時のスラスト荷重に合わせて調整した場合、軽負荷運転時には揺動スクロールとフレームとの離間力が強すぎてしまう。逆に、軽負荷運転時のスラスト荷重に合わせて磁力を調整した場合、重負荷運転時において揺動スクロールとフレームとの離間力が足りなくなる。 Specifically, when the strength of the magnetic force of the permanent magnet is adjusted according to the thrust load during heavy load operation, the separation force between the swing scroll and the frame becomes too strong during light load operation. On the contrary, when the magnetic force is adjusted according to the thrust load during the light load operation, the separating force between the swing scroll and the frame becomes insufficient during the heavy load operation.
 本開示は、上記のような課題を解決するためになされたもので、広い運転範囲においてフレームに作用するスラスト荷重を適正に低減することが可能なスクロール圧縮機およびスクロール圧縮機の製造方法を提供することを目的とする。 The present disclosure has been made to solve the above-mentioned problems, and provides a scroll compressor and a method for manufacturing a scroll compressor capable of appropriately reducing the thrust load acting on the frame in a wide operating range. The purpose is to do.
 本開示に係るスクロール圧縮機は、固定スクロールおよび固定スクロールに対して揺動運動する揺動スクロールを備えた圧縮機構と、圧縮機構を駆動する電動機と、揺動スクロールと摺動するスラスト受面を有するフレームと、揺動スクロールに埋め込まれた永久磁石と、フレームにおいて永久磁石と対向する位置に埋め込まれ、永久磁石との間に斥力を発生させる電磁石コイルとを備え、電磁石コイルと電動機とが直列に接続されているものである。 The scroll compressor according to the present disclosure includes a fixed scroll and a compression mechanism having a swinging scroll that swings with respect to the fixed scroll, an electric motor that drives the compression mechanism, and a thrust receiving surface that slides with the swinging scroll. It is provided with a frame, a permanent magnet embedded in a swing scroll, and an electromagnet coil embedded in the frame at a position facing the permanent magnet and generating a repulsive force between the permanent magnet, and the electromagnet coil and the motor are connected in series. It is connected to.
 本開示に係るスクロール圧縮機の製造方法は、上記のスクロール圧縮機の製造方法であって、液状の材料から揺動スクロールを製造する工程を有し、揺動スクロールを製造する工程において、材料が液状の状態にあるときに材料内に永久磁石を埋め込み、揺動スクロールを製造する工程で同時に永久磁石を埋め込んだ構造を製造するものである。 The method for manufacturing a scroll compressor according to the present disclosure is the above-mentioned method for manufacturing a scroll compressor, which includes a step of manufacturing a swing scroll from a liquid material, and in the step of manufacturing a swing scroll, the material is used. A permanent magnet is embedded in a material when it is in a liquid state, and a structure in which the permanent magnet is embedded at the same time in the process of manufacturing a swing scroll is manufactured.
 本開示によれば、電磁石コイルと電動機とが直列に接続されているため、電動機の回転数に応じた電流が電磁石コイルに流れ、電磁石コイルと永久磁石との間に発生する斥力を運転負荷に応じて調整できる。したがって、広い運転範囲において、スラスト受面に作用するスラスト荷重を適正に低減することができる。 According to the present disclosure, since the electromagnet coil and the electric motor are connected in series, a current corresponding to the rotation speed of the electric motor flows through the electromagnet coil, and the repulsive force generated between the electromagnet coil and the permanent magnet is used as an operating load. It can be adjusted accordingly. Therefore, the thrust load acting on the thrust receiving surface can be appropriately reduced in a wide operating range.
実施の形態1に係るスクロール圧縮機の概略縦断面図である。It is a schematic vertical sectional view of the scroll compressor which concerns on Embodiment 1. FIG. 実施の形態1に係るスクロール圧縮機の一部拡大断面図である。It is a partially enlarged sectional view of the scroll compressor which concerns on Embodiment 1. FIG. 実施の形態1に係るスクロール圧縮機の揺動スクロールをフレーム側から見た概略図である。FIG. 5 is a schematic view of a swing scroll of the scroll compressor according to the first embodiment as viewed from the frame side. 実施の形態1に係るスクロール圧縮機の可動フレームを揺動スクロール側から見た概略図である。FIG. 5 is a schematic view of a movable frame of the scroll compressor according to the first embodiment as viewed from the swing scroll side. 実施の形態1に係るスクロール圧縮機の電気回路図である。It is an electric circuit diagram of the scroll compressor which concerns on Embodiment 1. FIG. 実施の形態2に係るスクロール圧縮機の一部拡大断面図である。It is a partially enlarged sectional view of the scroll compressor which concerns on Embodiment 2. FIG. 実施の形態2に係るスクロール圧縮機の可動フレームを揺動スクロール側から見た概略図である。FIG. 5 is a schematic view of a movable frame of the scroll compressor according to the second embodiment as viewed from the swing scroll side. 実施の形態2に係るスクロール圧縮機の電磁石コイルの接続例を示す電気回路図である。It is an electric circuit diagram which shows the connection example of the electromagnet coil of the scroll compressor which concerns on Embodiment 2. FIG. 実施の形態2に係るスクロール圧縮機の電磁石コイルの他の接続例を示す電気回路図である。It is an electric circuit diagram which shows the other connection example of the electromagnet coil of the scroll compressor which concerns on Embodiment 2. FIG. 実施の形態3に係るスクロール圧縮機の可動フレームを固定スクロール側から見た概略模式図である。FIG. 5 is a schematic schematic view of a movable frame of the scroll compressor according to the third embodiment as viewed from the fixed scroll side. 実施の形態3に係るスクロール圧縮機の電磁石コイルの接続例1を示す電気回路図である。It is an electric circuit diagram which shows the connection example 1 of the electromagnet coil of the scroll compressor which concerns on Embodiment 3. FIG. 実施の形態3に係るスクロール圧縮機の電磁石コイルの接続例2を示す電気回路図である。It is an electric circuit diagram which shows the connection example 2 of the electromagnet coil of the scroll compressor which concerns on Embodiment 3. FIG. 実施の形態3に係るスクロール圧縮機の電磁石コイルの接続例3を示す電気回路図である。It is an electric circuit diagram which shows the connection example 3 of the electromagnet coil of the scroll compressor which concerns on Embodiment 3. FIG. 実施の形態4に係るスクロール圧縮機の揺動スクロールをフレーム側から見た概略図である。FIG. 5 is a schematic view of a swing scroll of the scroll compressor according to the fourth embodiment as viewed from the frame side. 実施の形態4に係るスクロール圧縮機の揺動スクロールの揺動運動に伴う永久磁石の移動を説明する説明図である。It is explanatory drawing explaining the movement of the permanent magnet with the swinging motion of the rocking scroll of the scroll compressor which concerns on Embodiment 4. FIG.
実施の形態1.
 図1は、実施の形態1に係るスクロール圧縮機の概略縦断面図である。図1および後述の図において、同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。さらに、明細書全文に表れている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。
Embodiment 1.
FIG. 1 is a schematic vertical sectional view of the scroll compressor according to the first embodiment. In FIG. 1 and the figures described below, those having the same reference numerals are the same or equivalent thereof, which are common to the entire text of the specification. Furthermore, the forms of the components appearing in the entire specification are merely examples and are not limited to these descriptions.
 スクロール圧縮機100は、冷凍サイクルを循環する冷媒を吸入し、圧縮して高温高圧の状態として吐出する流体機械である。スクロール圧縮機100は、例えば、冷蔵庫、冷凍庫、自動販売機、空気調和装置、冷凍装置または給湯装置等の各種産業機械に用いられる冷凍サイクル装置の構成要素の1つとなるものである。 The scroll compressor 100 is a fluid machine that sucks in the refrigerant that circulates in the refrigeration cycle, compresses it, and discharges it in a high temperature and high pressure state. The scroll compressor 100 is one of the components of a refrigerating cycle device used in various industrial machines such as a refrigerator, a freezer, a vending machine, an air conditioner, a refrigerating device, or a hot water supply device.
 図1に示すように、スクロール圧縮機100は、冷媒を圧縮する圧縮機構101と、圧縮機構101を主軸6を介して駆動する電動機7と、圧縮機構101および電動機7を収容する密閉容器10と、を有している。密閉容器10内において、圧縮機構101は上方に配置されており、電動機7は圧縮機構101よりも下方に配置されている。 As shown in FIG. 1, the scroll compressor 100 includes a compression mechanism 101 that compresses a refrigerant, an electric motor 7 that drives the compression mechanism 101 via a spindle 6, and a closed container 10 that houses the compression mechanism 101 and the electric motor 7. ,have. In the closed container 10, the compression mechanism 101 is arranged above, and the electric motor 7 is arranged below the compression mechanism 101.
 密閉容器10の底部には、潤滑油を溜める油溜め部11が形成されている。密閉容器10には、冷媒ガスを吸入するための吸入管9aおよび冷媒ガスを吐出するための吐出管9bが接続されている。 An oil reservoir 11 for storing lubricating oil is formed at the bottom of the closed container 10. A suction pipe 9a for sucking the refrigerant gas and a discharge pipe 9b for discharging the refrigerant gas are connected to the closed container 10.
 圧縮機構101は、密閉容器10内に固定されており、固定スクロール1と、固定スクロール1に対して揺動運動する揺動スクロール2と、可動フレーム3と、固定フレーム4等とを備えている。固定スクロール1は、固定台板部1aと、固定台板部1aの一方の面に形成された渦巻状突起である固定渦巻歯1bと、を有している。また、揺動スクロール2は、揺動台板部2aと、揺動台板部2aの一方の面に形成され、固定渦巻歯1bと実質的に同一形状の渦巻状突起である揺動渦巻歯2bと、を有している。揺動台板部2aの他方の面、すなわち、揺動渦巻歯2bの形成面とは反対側の面は、スラスト荷重を支持するスラスト面2eとなっている。揺動スクロール2および固定スクロール1は、密閉容器10に固定された固定フレーム4によって下方から支持されている。 The compression mechanism 101 is fixed in the closed container 10, and includes a fixed scroll 1, a swinging scroll 2 that swings with respect to the fixed scroll 1, a movable frame 3, a fixed frame 4, and the like. .. The fixed scroll 1 has a fixed base plate portion 1a and fixed spiral teeth 1b which are spiral protrusions formed on one surface of the fixed base plate portion 1a. Further, the oscillating scroll 2 is formed on one surface of the oscillating base plate portion 2a and the oscillating base plate portion 2a, and is a oscillating spiral tooth which is a spiral protrusion having substantially the same shape as the fixed vortex tooth 1b. It has 2b and. The other surface of the rocking base plate portion 2a, that is, the surface opposite to the surface on which the swinging spiral tooth 2b is formed is a thrust surface 2e that supports the thrust load. The swing scroll 2 and the fixed scroll 1 are supported from below by a fixed frame 4 fixed to the closed container 10.
 圧縮機の運転中に揺動スクロール2に生じるスラスト荷重は、スラスト面2eを介して固定フレーム4で支持される。可動フレーム3において揺動スクロール2のスラスト面2eと摺動する部分は、摺動性を向上させるためのスラスト軸受のスラスト受面3aとなっている。スラスト軸受は、例えばスラストプレートで構成されている。 The thrust load generated in the swing scroll 2 during the operation of the compressor is supported by the fixed frame 4 via the thrust surface 2e. The portion of the movable frame 3 that slides on the thrust surface 2e of the swing scroll 2 is the thrust receiving surface 3a of the thrust bearing for improving the slidability. The thrust bearing is composed of, for example, a thrust plate.
 揺動スクロール2および固定スクロール1は、揺動渦巻歯2bと固定渦巻歯1bとを互いに組み合わせた状態で、密閉容器10内に装着されている。揺動渦巻歯2bと固定渦巻歯1bとを互いに組み合わせることにより、揺動渦巻歯2bと固定渦巻歯1bとの間に、冷媒を圧縮する複数の圧縮室14が形成される。複数の圧縮室14は、その外周に存在する圧縮室吸入空間14aから圧縮室最外室14bへ冷媒ガスを吸入し、主軸6の回転に伴って中心部へ移行するにしたがって冷媒ガスの圧力を高め、中心に形成される圧縮室最内室14cから密閉容器10の上部空間10aへと吐出する。 The swinging scroll 2 and the fixed scroll 1 are mounted in the closed container 10 in a state where the swinging spiral tooth 2b and the fixed spiral tooth 1b are combined with each other. By combining the swinging spiral tooth 2b and the fixed spiral tooth 1b with each other, a plurality of compression chambers 14 for compressing the refrigerant are formed between the swinging spiral tooth 2b and the fixed spiral tooth 1b. The plurality of compression chambers 14 suck the refrigerant gas from the compression chamber suction space 14a existing on the outer periphery thereof into the outermost chamber 14b of the compression chamber, and apply the pressure of the refrigerant gas as it shifts to the central portion as the spindle 6 rotates. It is raised and discharged from the innermost chamber 14c of the compression chamber formed in the center to the upper space 10a of the closed container 10.
 固定スクロール1は、ボルト16等によって固定フレーム4に固定されている。固定スクロール1の固定台板部1aの中央部には、圧縮室14で圧縮されて高圧となった冷媒ガスを吐出する吐出ポート15が形成されている。圧縮されて高圧となった冷媒ガスは、圧縮室最外室14bから吐出ポート15を介して、密閉容器10の上部空間10aに吐出されるようになっている。上部空間10aに吐出された冷媒ガスは、吐出管9bから密閉容器10外に排出される。 The fixed scroll 1 is fixed to the fixed frame 4 by bolts 16 and the like. A discharge port 15 for discharging the refrigerant gas compressed in the compression chamber 14 and having a high pressure is formed in the central portion of the fixed base plate portion 1a of the fixed scroll 1. The compressed and high-pressure refrigerant gas is discharged from the outermost chamber 14b of the compression chamber to the upper space 10a of the closed container 10 via the discharge port 15. The refrigerant gas discharged into the upper space 10a is discharged from the discharge pipe 9b to the outside of the closed container 10.
 揺動スクロール2の揺動渦巻歯2b形成面とは反対側の面の略中心部には、中空円筒形状のボス部2cが形成されている。このボス部2cには、後述する偏心軸部6aが挿入される。 A hollow cylindrical boss portion 2c is formed at a substantially central portion of the surface of the swing scroll 2 opposite to the surface on which the swing spiral tooth 2b is formed. An eccentric shaft portion 6a, which will be described later, is inserted into the boss portion 2c.
 固定フレーム4は、固定フレーム4の内周面の圧縮機構101側に上部嵌合円筒面4aを有し、電動機7側に下部嵌合円筒面4bを有している。上部嵌合円筒面4aは、可動フレーム3の外周面に形成された上部嵌合円筒面3dと係合している。また、下部嵌合円筒面4bは、可動フレーム3の外周面に形成された下部嵌合円筒面3eと係合している。可動フレーム3の内側の空間であって、スラスト受面3aの外周側の空間、すなわち揺動スクロール2の揺動台板部2aの外周側の空間は、吸入ガス雰囲気(吸入圧)の圧縮機吸入空間12と連通している。 The fixed frame 4 has an upper fitting cylindrical surface 4a on the compression mechanism 101 side of the inner peripheral surface of the fixed frame 4, and a lower fitting cylindrical surface 4b on the motor 7 side. The upper fitting cylindrical surface 4a is engaged with the upper fitting cylindrical surface 3d formed on the outer peripheral surface of the movable frame 3. Further, the lower fitting cylindrical surface 4b is engaged with the lower fitting cylindrical surface 3e formed on the outer peripheral surface of the movable frame 3. The space inside the movable frame 3, that is, the space on the outer peripheral side of the thrust receiving surface 3a, that is, the space on the outer peripheral side of the swing base plate portion 2a of the swing scroll 2, is a compressor having an intake gas atmosphere (suction pressure). It communicates with the suction space 12.
 固定スクロール1と可動フレーム3との間には、オルダムリング5が配置されている。オルダムリング5は、一対のオルダム固定爪5aと、一対のオルダム揺動爪5bと、一対のオルダム固定爪5aおよび一対のオルダム揺動爪5bが設けられたオルダム環状部5cと、を有する。オルダム固定爪5aとオルダム揺動爪5bとは、90度の位相差を持って形成されている。 An old dam ring 5 is arranged between the fixed scroll 1 and the movable frame 3. The oldham ring 5 has a pair of oldam fixing claws 5a, a pair of oldam swinging claws 5b, and an oldam annular portion 5c provided with a pair of oldam fixing claws 5a and a pair of oldam swinging claws 5b. The Oldham fixed claw 5a and the Oldam swinging claw 5b are formed with a phase difference of 90 degrees.
 一対のオルダム固定爪5aは、固定スクロール1の固定台板部1aにほぼ一直線上に形成された一対のオルダム案内溝1cに往復摺動自在に係合されている。また、一対のオルダム揺動爪5bは、揺動スクロール2の揺動台板部2aの外周部にほぼ一直線上に形成された一対のオルダム案内溝2fに往復摺動自在に係合されている。可動フレーム3のスラスト受面3aの径方向外側には、オルダムリング5のオルダム環状部5cが往復摺動する面3bが形成されている。オルダムリング5によって、揺動スクロール2の自転運動が阻止されるため、電動機7の回転力が伝達される揺動スクロール2は、固定スクロール1に対して自転運動することなく公転運動を行う。 The pair of oldham fixing claws 5a are reciprocally and slidably engaged with the pair of oldam guide grooves 1c formed substantially in a straight line with the fixed base plate portion 1a of the fixed scroll 1. Further, the pair of Oldham swing claws 5b are reciprocally and slidably engaged with the pair of Oldham guide grooves 2f formed in a substantially straight line on the outer peripheral portion of the swing base plate portion 2a of the swing scroll 2. .. On the radial outer side of the thrust receiving surface 3a of the movable frame 3, a surface 3b on which the oldam annular portion 5c of the oldam ring 5 slides back and forth is formed. Since the rotation of the swing scroll 2 is blocked by the old dam ring 5, the swing scroll 2 to which the rotational force of the electric motor 7 is transmitted revolves with respect to the fixed scroll 1 without rotating.
 電動機7は、回転子7aと、回転子7aの外周側に配置された固定子7bとを有している。固定子7bは、密閉容器10の内周に焼嵌め固定されている。固定子7bには、密閉容器10に設けられた電源端子10bを介して電力が供給される。回転子7aは、固定子7bに通電されることにより回転し、主軸6を回転駆動させる。 The motor 7 has a rotor 7a and a stator 7b arranged on the outer peripheral side of the rotor 7a. The stator 7b is shrink-fitted and fixed to the inner circumference of the closed container 10. Electric power is supplied to the stator 7b via the power supply terminal 10b provided in the closed container 10. The rotor 7a rotates when the stator 7b is energized, and drives the spindle 6 to rotate.
 主軸6は、回転子7aの回転に伴って回転し、電動機7の回転駆動力を圧縮機構101に伝達する。主軸6の上部は、固定フレーム4に設けられた主軸受3cによって回転自在に支持されている。主軸6の上端には、主軸6の中心軸に対して偏心した偏心軸部6aが設けられている。偏心軸部6aは、揺動スクロール2のボス部2cに挿入されている。ボス部2cの内側面には揺動軸受2dが形成されおり、偏心軸部6aは、揺動軸受2dによって回転支持されている。主軸6の下部は、副軸受(図示せず)によって回転自在に支持されている。副軸受は、密閉容器10の下部に設けられたサブフレーム8の中央部に形成された軸受収納部に圧入固定されている。 The spindle 6 rotates with the rotation of the rotor 7a, and transmits the rotational driving force of the motor 7 to the compression mechanism 101. The upper part of the spindle 6 is rotatably supported by the spindle bearing 3c provided on the fixed frame 4. An eccentric shaft portion 6a eccentric with respect to the central shaft of the main shaft 6 is provided at the upper end of the main shaft 6. The eccentric shaft portion 6a is inserted into the boss portion 2c of the swing scroll 2. A swing bearing 2d is formed on the inner surface of the boss portion 2c, and the eccentric shaft portion 6a is rotationally supported by the swing bearing 2d. The lower part of the spindle 6 is rotatably supported by an auxiliary bearing (not shown). The sub-bearing is press-fitted and fixed to the bearing accommodating portion formed in the central portion of the sub-frame 8 provided in the lower part of the closed container 10.
 図2は、実施の形態1に係るスクロール圧縮機の一部拡大断面図である。図3は、実施の形態1に係るスクロール圧縮機の揺動スクロールをフレーム側から見た概略図である。図3において、永久磁石が埋め込まれた部分をドットで示している。図4は、実施の形態1に係るスクロール圧縮機の可動フレームを揺動スクロール側から見た概略図である。 FIG. 2 is a partially enlarged cross-sectional view of the scroll compressor according to the first embodiment. FIG. 3 is a schematic view of the swing scroll of the scroll compressor according to the first embodiment as viewed from the frame side. In FIG. 3, the portion where the permanent magnet is embedded is indicated by a dot. FIG. 4 is a schematic view of the movable frame of the scroll compressor according to the first embodiment as viewed from the swing scroll side.
 図2に示すように、揺動スクロール2の揺動台板部2aには、永久磁石50がスラスト面2e側に寄せて埋め込まれている。永久磁石50は、図3に示すように揺動スクロール2の中心軸Oと同軸の輪形状に形成されている。永久磁石50を揺動スクロール2の揺動台板部2aに埋め込む方法は、例えば揺動台板部2aに輪形状の溝を設け、溝に永久磁石50を埋め込んだ後、溝内の残りの空間部分を、揺動台板部2aと同様の素材の輪形状部材で蓋をするようにすればよい。なお、この方法は一例であって、この方法に限られたものではない。 As shown in FIG. 2, a permanent magnet 50 is embedded in the swing base plate portion 2a of the swing scroll 2 so as to be closer to the thrust surface 2e side. As shown in FIG. 3, the permanent magnet 50 is formed in a ring shape coaxial with the central axis O of the swing scroll 2. The method of embedding the permanent magnet 50 in the rocking base plate portion 2a of the swing scroll 2 is, for example, to provide a ring-shaped groove in the rocking base plate portion 2a, embed the permanent magnet 50 in the groove, and then the remaining in the groove. The space portion may be covered with a ring-shaped member made of the same material as the rocking base plate portion 2a. Note that this method is an example and is not limited to this method.
 可動フレーム3において永久磁石50と対向する位置には、スラスト受面3a側に寄せて電磁石コイル51が埋め込まれている。電磁石コイル51は、永久磁石50との間で斥力を発生させるためのものである。 An electromagnet coil 51 is embedded in the movable frame 3 at a position facing the permanent magnet 50 so as to be closer to the thrust receiving surface 3a. The electromagnet coil 51 is for generating a repulsive force with the permanent magnet 50.
 電磁石コイル51の両端の電磁石コイル導線51aおよび51bは、導線連通路4cを通って固定フレーム4の外部に引き出されている。導線連通路4cの両端部は、電磁石コイル導線51aおよび51bを通した状態で連通路閉塞部品4dによって閉塞されている。固定フレーム4の内側の空間は吸入圧、外側の空間は吐出圧となっているため、導線連通路4cが開放されていると、固定フレーム4側の内側の空間の圧力が上昇して可動フレーム3が押し上げられて揺動スクロール2側に押圧されてしまう。したがって、導線連通路4cに連通路閉塞部品4dを設けて固定フレーム4側の内側と外側とを遮断している。なお、図2には、連通路閉塞部品4dが二つ記載されているが、固定フレーム4側の内側の空間と外側の空間とを遮断できればよいため、一つでもよい。 The electromagnet coil conductors 51a and 51b at both ends of the electromagnet coil 51 are drawn out of the fixed frame 4 through the conductor passage 4c. Both ends of the conducting wire connecting passage 4c are closed by the connecting passage closing component 4d while passing through the electromagnet coil conducting wires 51a and 51b. Since the space inside the fixed frame 4 is the suction pressure and the space outside is the discharge pressure, when the conductor passage 4c is open, the pressure in the space inside the fixed frame 4 side rises and the movable frame 3 is pushed up and pushed toward the swing scroll 2 side. Therefore, the conductor connecting passage 4c is provided with the connecting passage closing component 4d to block the inside and the outside of the fixed frame 4 side. Although two passage obstruction parts 4d are shown in FIG. 2, one may be used as long as the inner space and the outer space on the fixed frame 4 side can be blocked.
 また、図2では、電磁石コイル51が可動フレーム3に設けられた例を示しているが、スクロール圧縮機100の構造によってはこれに限らない。例えば、可動フレーム3を設けず、固定フレーム4が揺動スクロール2を支持する構造であれば、電磁石コイル51は固定フレーム4に設けられる。要するに、電磁石コイル51は、揺動スクロール2を支持するフレームに設けられていればよい。 Further, FIG. 2 shows an example in which the electromagnet coil 51 is provided on the movable frame 3, but the present invention is not limited to this depending on the structure of the scroll compressor 100. For example, if the movable frame 3 is not provided and the fixed frame 4 supports the swing scroll 2, the electromagnet coil 51 is provided in the fixed frame 4. In short, the electromagnet coil 51 may be provided on the frame that supports the swing scroll 2.
 電磁石コイル51は、図4に示すように平面的に見て円弧形状となっており、円弧形状の両端部51c間は微少な距離を介して対向している。なお、図4では、電磁石コイル51の両端部が離間しているが、両端部が互いに重なるように周方向に延ばしてもよい。なお、この際、電磁石コイル51の両端部を、同じ高さ位置で周方向の延ばすと互いに干渉するため、上下方向の位置をずらして周方向に延ばせばよい。 As shown in FIG. 4, the electromagnet coil 51 has an arc shape when viewed in a plane, and both ends 51c of the arc shape face each other with a minute distance. Although both ends of the electromagnet coil 51 are separated from each other in FIG. 4, they may be extended in the circumferential direction so that both ends overlap each other. At this time, if both ends of the electromagnet coil 51 are extended in the circumferential direction at the same height position, they interfere with each other. Therefore, the positions in the vertical direction may be shifted and the electromagnet coils 51 may be extended in the circumferential direction.
 図5は、実施の形態1に係るスクロール圧縮機の電気回路図である。図5に示すように電磁石コイル51は、電動機7と直列に接続されている。具体的には、電動機7の電磁石コイル導線51aが電源端子10bに接続され、電磁石コイル導線51bが、電動機導線7dに接続されている。電動機導線7cは、電源端子10bに接続されている。電源端子10bは電源20に接続されている。これにより、スクロール圧縮機100に入力された電力は、電磁石コイル51に磁力を発生させた後、電動機7を駆動する。またはその逆の順序とし、電動機7を駆動した後、電磁石コイル51に磁力を発生させるようしてもよい。電磁石コイル51に電力が入力されることにより、電磁石コイル51と永久磁石50との間には、斥力が発生する。 FIG. 5 is an electric circuit diagram of the scroll compressor according to the first embodiment. As shown in FIG. 5, the electromagnet coil 51 is connected in series with the motor 7. Specifically, the electromagnet coil lead wire 51a of the motor 7 is connected to the power supply terminal 10b, and the electromagnet coil lead wire 51b is connected to the motor lead wire 7d. The motor conductor 7c is connected to the power supply terminal 10b. The power supply terminal 10b is connected to the power supply 20. As a result, the electric power input to the scroll compressor 100 generates a magnetic force in the electromagnet coil 51, and then drives the electric motor 7. Alternatively, the order may be reversed, and after driving the motor 7, a magnetic force may be generated in the electromagnet coil 51. When electric power is input to the electromagnet coil 51, a repulsive force is generated between the electromagnet coil 51 and the permanent magnet 50.
 次に、スクロール圧縮機100の動作について説明する。
 電源端子10bに通電されると、電動機7が回転して主軸6が回転駆動される。主軸6が回転駆動されると、揺動スクロール2がオルダムリング5により自転を規制されて偏心旋回運動する。吸入管9aを介して密閉容器10内に吸入された冷媒は、圧縮室吸入空間14aを介して圧縮室14に取り込まれる。ガスを取り込んだ圧縮室14は、揺動スクロール2の偏心旋回運動に伴い、外周部から中心方向に移動しながら容積を減じ、冷媒を圧縮する。圧縮室14で圧縮されたガス冷媒は、固定スクロール1に設けた吐出ポート15から上部空間10aへと吐出され、吐出管9bから密閉容器10外に排出される。
Next, the operation of the scroll compressor 100 will be described.
When the power supply terminal 10b is energized, the motor 7 rotates and the spindle 6 is rotationally driven. When the main shaft 6 is rotationally driven, the swing scroll 2 is restricted from rotating by the old dam ring 5 and makes an eccentric turning motion. The refrigerant sucked into the closed container 10 through the suction pipe 9a is taken into the compression chamber 14 via the compression chamber suction space 14a. The compression chamber 14 that has taken in the gas reduces the volume while moving from the outer peripheral portion toward the center along with the eccentric turning motion of the rocking scroll 2, and compresses the refrigerant. The gas refrigerant compressed in the compression chamber 14 is discharged from the discharge port 15 provided in the fixed scroll 1 to the upper space 10a, and is discharged from the discharge pipe 9b to the outside of the closed container 10.
 圧縮機の運転中、固定フレーム4のスラスト受面3aは、圧縮室14内の冷媒ガスの圧力により発生したスラスト荷重を受けている。負荷の重い重負荷運転時には、電動機7の回転数が上げられるため、スラスト受面3aが受けるスラスト荷重は大きくなる。そして、重負荷運転時には、電動機7の回転数を上げるために電動機7に流入する電流が多くなるため、電動機7に直列に接続された電磁石コイル51に流入する電流も、必然的に多くなる。電磁石コイル51に流入する電流が多くなることで電磁石コイル51から発生する磁力が増大し、電磁石コイル51と永久磁石50との間に働く斥力が、電動機7の回転数の増加分に見合っただけ大きくなる。つまり、電磁石コイル51と永久磁石50との間に働く斥力が、現在の運転負荷に応じた斥力に調整される。したがって、固定フレーム4のスラスト受面3aに働くスラスト荷重が適正に低減され、揺動スクロール2と固定フレーム4との摺動ロスを低減でき、性能を改善できる。また同時に、揺動スクロール2と固定フレーム4との焼き付きを防ぐことができる。 During the operation of the compressor, the thrust receiving surface 3a of the fixed frame 4 receives the thrust load generated by the pressure of the refrigerant gas in the compression chamber 14. During heavy load operation with a heavy load, the rotation speed of the motor 7 is increased, so that the thrust load received by the thrust receiving surface 3a becomes large. During heavy load operation, the current flowing into the motor 7 increases in order to increase the rotation speed of the motor 7, so that the current flowing into the electromagnet coil 51 connected in series with the motor 7 also inevitably increases. As the current flowing into the electromagnet coil 51 increases, the magnetic force generated from the electromagnet coil 51 increases, and the repulsive force acting between the electromagnet coil 51 and the permanent magnet 50 is commensurate with the increase in the number of rotations of the motor 7. growing. That is, the repulsive force acting between the electromagnet coil 51 and the permanent magnet 50 is adjusted to a repulsive force according to the current operating load. Therefore, the thrust load acting on the thrust receiving surface 3a of the fixed frame 4 is appropriately reduced, the sliding loss between the swing scroll 2 and the fixed frame 4 can be reduced, and the performance can be improved. At the same time, it is possible to prevent seizure between the swing scroll 2 and the fixed frame 4.
 一方、軽負荷運転時には、電動機7の回転数が下げられるため、スラスト受面3aが受けるスラスト荷重は小さくなる。そして、軽負荷運転時には、電動機7の回転数を下げるために電動機7に流入する電流が少なくなるため、電動機7に直列に接続された電磁石コイル51に流入する電流も、必然的に少なくなる。電磁石コイル51に流入する電流が少なくなることで電磁石コイル51から発生する磁力が減少するため、電磁石コイル51と永久磁石50との間に働く斥力が、電動機7の回転数の低下分に見合っただけ小さくなる。つまり、電磁石コイル51と永久磁石50との間に働く斥力が、現在の運転負荷に応じた斥力に調整される。したがって、固定フレーム4のスラスト受面3aに働くスラスト荷重が適正に低減され、揺動スクロール2と固定フレーム4とが完全に離間してしまうことを防止しつつも、摺動ロスを軽減でき、性能を改善できる。 On the other hand, during light load operation, the rotation speed of the motor 7 is reduced, so that the thrust load received by the thrust receiving surface 3a becomes small. During light load operation, the current flowing into the motor 7 is reduced in order to reduce the rotation speed of the motor 7, so that the current flowing into the electromagnet coil 51 connected in series with the motor 7 is inevitably reduced. Since the magnetic force generated from the electromagnet coil 51 is reduced by reducing the current flowing into the electromagnet coil 51, the repulsive force acting between the electromagnet coil 51 and the permanent magnet 50 is commensurate with the decrease in the number of rotations of the motor 7. Just get smaller. That is, the repulsive force acting between the electromagnet coil 51 and the permanent magnet 50 is adjusted to a repulsive force according to the current operating load. Therefore, the thrust load acting on the thrust receiving surface 3a of the fixed frame 4 is appropriately reduced, and the sliding loss can be reduced while preventing the swing scroll 2 and the fixed frame 4 from being completely separated from each other. Performance can be improved.
 以上説明したように、本実施の形態1のスクロール圧縮機100は、固定スクロール1および固定スクロール1に対して揺動運動する揺動スクロール2を備えた圧縮機構101と、圧縮機構101を駆動する電動機7と、揺動スクロール2と摺動するスラスト受面3aを有するフレームとを備える。スクロール圧縮機100はさらに、揺動スクロール2に埋め込まれた永久磁石50と、フレームにおいて永久磁石50と対向する位置に埋め込まれ、永久磁石50との間に斥力を発生させる電磁石コイル51とを備える。そして、電磁石コイル51と電動機7とは直列に接続されている。 As described above, the scroll compressor 100 of the first embodiment drives a compression mechanism 101 having a fixed scroll 1 and a swing scroll 2 that swings with respect to the fixed scroll 1, and a compression mechanism 101. It includes an electric motor 7 and a frame having a thrust receiving surface 3a that slides on the swing scroll 2. The scroll compressor 100 further includes a permanent magnet 50 embedded in the swing scroll 2 and an electromagnet coil 51 embedded in the frame at a position facing the permanent magnet 50 to generate a repulsive force between the permanent magnet 50 and the permanent magnet 50. .. The electromagnet coil 51 and the motor 7 are connected in series.
 このように、電磁石コイル51と電動機7とが直列に接続されているため、電動機7の回転数に応じた電流が電磁石コイル51に流れ、電磁石コイル51と永久磁石50との間に発生する斥力を運転負荷に応じて調整できる。したがって、広い運転範囲において、スラスト受面3aに作用するスラスト荷重を適正に低減することができる。このため、圧縮室14内の冷媒ガスの圧力により過大なスラスト荷重が発生した場合においても、揺動スクロール2とフレームとの焼き付きなどの不具合を防ぐことができる信頼性の高い圧縮機を得ることができる。そして、フレームに作用するスラスト荷重を適正に低減できるため、揺動スクロール2とフレームとの間に発生する摺動ロスを低減した、性能の高い圧縮機を得ることができる。 Since the electromagnet coil 51 and the electric motor 7 are connected in series in this way, a current corresponding to the rotation speed of the electric motor 7 flows through the electromagnet coil 51, and a repulsive force generated between the electromagnet coil 51 and the permanent magnet 50 is generated. Can be adjusted according to the operating load. Therefore, the thrust load acting on the thrust receiving surface 3a can be appropriately reduced in a wide operating range. Therefore, even when an excessive thrust load is generated due to the pressure of the refrigerant gas in the compression chamber 14, a highly reliable compressor capable of preventing problems such as seizure between the swing scroll 2 and the frame can be obtained. Can be done. Then, since the thrust load acting on the frame can be appropriately reduced, it is possible to obtain a high-performance compressor in which the sliding loss generated between the swing scroll 2 and the frame is reduced.
 また、ユニットの据付工事時の配線ミス等により、電動機7が逆相運転となった場合には、電磁石コイル51と永久磁石50とが引き付け合い、過大なスラスト力が発生する。この場合、逆相運転直後に過電流が発生し、冷凍サイクル装置が有する安全装置により、電動機7の電気回路を遮断して圧縮機が停止するので、圧縮機に致命的な損傷を与える前に停止することができる信頼性の高い圧縮機を得ることができる。 Further, when the motor 7 is operated in reverse phase due to a wiring error during the installation work of the unit, the electromagnet coil 51 and the permanent magnet 50 are attracted to each other, and an excessive thrust force is generated. In this case, an overcurrent is generated immediately after the reverse phase operation, and the safety device of the refrigeration cycle device interrupts the electric circuit of the motor 7 to stop the compressor. Therefore, before the compressor is fatally damaged. It is possible to obtain a highly reliable compressor that can be stopped.
実施の形態2.
 本実施の形態2は、電磁石コイルの個数を複数個としたものである。以下、本実施の形態2が実施の形態1と異なる点を中心に説明するものとし、本実施の形態2で説明されていない構成は実施の形態1と同様である。
Embodiment 2.
In the second embodiment, the number of electromagnet coils is a plurality. Hereinafter, the differences between the second embodiment and the first embodiment will be mainly described, and the configurations not described in the second embodiment are the same as those in the first embodiment.
 図6は、実施の形態2に係るスクロール圧縮機の一部拡大断面図である。図7は、実施の形態2に係るスクロール圧縮機の可動フレームを揺動スクロール側から見た概略図である。図7において電磁石コイル51は、平面的に見て円形形状に構成され、可動フレーム3に複数個埋め込まれている。具体的には、各電磁石コイル51は、可動フレーム3の中心軸を中心とした同心円上に間隔を空けて配置され、スラスト受面3a側に寄せて可動フレーム3に埋め込まれている。図7において、電磁石コイル51は8個記載されているが、2個以上のいくつでも良い。 FIG. 6 is a partially enlarged cross-sectional view of the scroll compressor according to the second embodiment. FIG. 7 is a schematic view of the movable frame of the scroll compressor according to the second embodiment as viewed from the swing scroll side. In FIG. 7, the electromagnet coils 51 are formed in a circular shape when viewed in a plane, and a plurality of electromagnet coils 51 are embedded in the movable frame 3. Specifically, the electromagnet coils 51 are arranged at intervals on concentric circles centered on the central axis of the movable frame 3, and are embedded in the movable frame 3 closer to the thrust receiving surface 3a side. In FIG. 7, eight electromagnet coils 51 are shown, but any number of two or more may be used.
 電磁石コイル51の個数が2個の場合、電磁石コイル51を実施の形態1のように円弧形状、具体的には半円形状にし、スラスト受面3a上に均一的に電磁力が発せられるようにする。電磁石コイル51を3個以上設置する場合には、図6および図7に記載されているように電磁石コイル51は、円形形状でもよいし、円弧形状でもよい。要するに、複数の電磁石コイル51によって、スラスト受面3a上に均一的に電磁力を発することのできる電磁石コイル51の個数および形状とすればよい。 When the number of the electromagnet coils 51 is two, the electromagnet coils 51 are formed into an arc shape, specifically, a semicircular shape as in the first embodiment so that the electromagnetic force is uniformly generated on the thrust receiving surface 3a. do. When three or more electromagnet coils 51 are installed, the electromagnet coils 51 may have a circular shape or an arc shape as shown in FIGS. 6 and 7. In short, the number and shape of the electromagnet coils 51 that can uniformly generate electromagnetic force on the thrust receiving surface 3a by the plurality of electromagnet coils 51 may be set.
 図8は、実施の形態2に係るスクロール圧縮機の電磁石コイルの接続例を示す電気回路図である。図9は、実施の形態2に係るスクロール圧縮機の電磁石コイルの他の接続例を示す電気回路図である。複数の電磁石コイル51同士は、図8に示すように全てが直列または図9に示すように全てが並列に接続されている。ただし、電磁石コイル51全体と電動機7は、直列に接続されている。 FIG. 8 is an electric circuit diagram showing a connection example of the electromagnet coil of the scroll compressor according to the second embodiment. FIG. 9 is an electric circuit diagram showing another connection example of the electromagnet coil of the scroll compressor according to the second embodiment. The plurality of electromagnet coils 51 are all connected in series as shown in FIG. 8 or in parallel as shown in FIG. However, the entire electromagnet coil 51 and the motor 7 are connected in series.
 本実施の形態2によれば、実施の形態1と同様の効果を得ることができる。 According to the second embodiment, the same effect as that of the first embodiment can be obtained.
実施の形態3.
 本実施の形態3は、複数の電磁石コイル51の接続回路が実施の形態2と異なる。以下、本実施の形態3が実施の形態2と異なる点を中心に説明するものとし、本実施の形態3で説明されていない構成は実施の形態2と同様である。
Embodiment 3.
In the third embodiment, the connection circuits of the plurality of electromagnet coils 51 are different from those in the second embodiment. Hereinafter, the differences between the third embodiment and the second embodiment will be mainly described, and the configurations not described in the third embodiment are the same as those in the second embodiment.
 図10は、実施の形態3に係るスクロール圧縮機の可動フレームを固定スクロール側から見た概略模式図である。図11は、実施の形態3に係るスクロール圧縮機の電磁石コイルの接続例1を示す電気回路図である。図12は、実施の形態3に係るスクロール圧縮機の電磁石コイルの接続例2を示す電気回路図である。図13は、実施の形態3に係るスクロール圧縮機の電磁石コイルの接続例3を示す電気回路図である。図10~図13のA~Hは、電磁石コイル51を示している。なお、図10には、電磁石コイルが図7に示した実施の形態2の円形形状である例を示したが、図4に示した実施の形態1の円弧形状でもよい。 FIG. 10 is a schematic schematic view of the movable frame of the scroll compressor according to the third embodiment as viewed from the fixed scroll side. FIG. 11 is an electric circuit diagram showing a connection example 1 of an electromagnet coil of the scroll compressor according to the third embodiment. FIG. 12 is an electric circuit diagram showing a connection example 2 of an electromagnet coil of the scroll compressor according to the third embodiment. FIG. 13 is an electric circuit diagram showing a connection example 3 of the electromagnet coil of the scroll compressor according to the third embodiment. A to H of FIGS. 10 to 13 show the electromagnet coil 51. Although FIG. 10 shows an example in which the electromagnet coil has the circular shape of the second embodiment shown in FIG. 7, the arc shape of the first embodiment shown in FIG. 4 may be used.
 本実施の形態3は、複数の電磁石コイル51の一部が直列に接続され、残りが並列に接続された電気回路を有する。そして、電磁石コイル51全体と電動機7とは直列に接続されている。具体的な接続例を図11~図13に示している。図11では、A、B、CおよびDの各電磁石コイル51が直列に接続された直列回路と、E、F、GおよびHの各電磁石コイル51が直列に接続された直列回路とが、並列に接続されている。図12では、AおよびBの各電磁石コイル51が直列に接続された直列回路と、CおよびDの各電磁石コイル51が直列に接続された直列回路と、EおよびFの各電磁石コイル51が直列に接続された直列回路と、GおよびHの各電磁石コイル51が直列に接続された直列回路とが、並列に接続されている。図13では、A、C、EおよびGの各電磁石コイル51が直列に接続された直列回路と、B、D、FおよびHの各電磁石コイル51が直列に接続された直列回路とが、並列に接続されている。 The third embodiment has an electric circuit in which a part of a plurality of electromagnet coils 51 is connected in series and the rest are connected in parallel. The entire electromagnet coil 51 and the motor 7 are connected in series. Specific connection examples are shown in FIGS. 11 to 13. In FIG. 11, a series circuit in which the electromagnet coils 51 of A, B, C, and D are connected in series and a series circuit in which the electromagnet coils 51 of E, F, G, and H are connected in series are arranged in parallel. It is connected to the. In FIG. 12, a series circuit in which the electromagnet coils 51 of A and B are connected in series, a series circuit in which the electromagnet coils 51 of C and D are connected in series, and the electromagnet coils 51 of E and F are connected in series. A series circuit connected to the above and a series circuit in which the G and H electromagnet coils 51 are connected in series are connected in parallel. In FIG. 13, a series circuit in which the electromagnet coils 51 of A, C, E, and G are connected in series and a series circuit in which the electromagnet coils 51 of B, D, F, and H are connected in series are arranged in parallel. It is connected to the.
 直列に接続する電磁石コイル51の組み合わせは、図11~図13に示した組み合わせに限るものではなく、自由である。いずれの組み合わせにおいても、電磁石コイル51全体は、電動機7と直列に接続されている。 The combination of the electromagnet coils 51 connected in series is not limited to the combinations shown in FIGS. 11 to 13, and is free. In any combination, the entire electromagnet coil 51 is connected in series with the motor 7.
 本実施の形態3によれば、実施の形態1と同様の効果を得ることができる。 According to the third embodiment, the same effect as that of the first embodiment can be obtained.
実施の形態4.
 本実施の形態4は、永久磁石50の個数を複数個としたものである。以下、本実施の形態4が実施の形態1と異なる点を中心に説明するものとし、本実施の形態4で説明されていない構成は実施の形態1と同様である。
Embodiment 4.
In the fourth embodiment, the number of permanent magnets 50 is a plurality. Hereinafter, the differences between the fourth embodiment and the first embodiment will be mainly described, and the configurations not described in the fourth embodiment are the same as those in the first embodiment.
 図14は、実施の形態4に係るスクロール圧縮機の揺動スクロールをフレーム側から見た概略図である。図14において、永久磁石50が埋め込まれた部分をドットで示している。図15は、実施の形態4に係るスクロール圧縮機の揺動スクロールの揺動運動に伴う永久磁石の移動を説明する説明図である。 FIG. 14 is a schematic view of the swing scroll of the scroll compressor according to the fourth embodiment as viewed from the frame side. In FIG. 14, the portion where the permanent magnet 50 is embedded is indicated by dots. FIG. 15 is an explanatory diagram illustrating the movement of the permanent magnets accompanying the swinging motion of the swinging scroll of the scroll compressor according to the fourth embodiment.
 図14において永久磁石50は円柱形状に構成され、揺動スクロール2の揺動台板部2aに複数個埋め込まれている。図14には、永久磁石50を12個とした例を示しているが、個数は自由である。なお、電磁石コイル51は、図4に示したように1個でもよいし、図7に示したように複数個でもよい。電磁石コイル51を複数個とした場合、永久磁石50の個数と電磁石の個数とは同数でもよいし、異なっていてもよい。永久磁石50の個数と電磁石の個数とを異ならせる場合には、どちらが多くても良い。 In FIG. 14, the permanent magnets 50 are formed in a cylindrical shape, and a plurality of permanent magnets 50 are embedded in the swing base plate portion 2a of the swing scroll 2. FIG. 14 shows an example in which 12 permanent magnets 50 are used, but the number is arbitrary. The number of the electromagnet coils 51 may be one as shown in FIG. 4, or may be a plurality as shown in FIG. 7. When a plurality of electromagnet coils 51 are used, the number of permanent magnets 50 and the number of electromagnets may be the same or different. When the number of permanent magnets 50 and the number of electromagnets are different, either of them may be large.
 ここで、永久磁石50と電磁石コイル51とが共に複数である場合の、永久磁石50および電磁石コイル51のそれぞれの形状、個数および位置の最適化について検討する。永久磁石50は、図15の矢印50aに示すように揺動スクロール2の揺動運動に伴って移動する。このため、永久磁石50および電磁石コイル51のそれぞれの形状、個数および位置は、揺動スクロール2の揺動運動に伴う永久磁石50の移動軌跡に基づいて最適化されている。具体的には、揺動スクロール2の揺動運動中に、永久磁石50と電磁石コイル51とが互いに相対する位置を維持するように最適化されている。 Here, when the permanent magnet 50 and the electromagnet coil 51 are both a plurality, the optimization of the shape, the number, and the position of the permanent magnet 50 and the electromagnet coil 51 will be examined. The permanent magnet 50 moves with the swinging motion of the swinging scroll 2 as shown by the arrow 50a in FIG. Therefore, the shapes, numbers, and positions of the permanent magnet 50 and the electromagnet coil 51 are optimized based on the movement locus of the permanent magnet 50 accompanying the swinging motion of the swinging scroll 2. Specifically, it is optimized so that the permanent magnet 50 and the electromagnet coil 51 maintain their positions facing each other during the swinging motion of the swinging scroll 2.
 なお、永久磁石50および電磁石コイル51の全てが、揺動運転中に常に電磁石コイル51に相対する位置を維持していなくてもよく、少なくとも一部が維持していればよい。要するに、必要十分で均一な斥力が揺動スクロール2と可動フレーム3との間に作用するように、永久磁石50および電磁石コイル51のそれぞれの形状、個数および位置の一部または全部が決定されていればよい。なお、永久磁石50および電磁石コイル51のそれぞれの形状、個数および位置が、揺動スクロール2の揺動運動に伴う永久磁石50の移動軌跡に基づいて最適化されている点は、本実施の形態4に限られたものではなく、上記実施の形態1~実施の形態3でも同様である。 It should be noted that all of the permanent magnet 50 and the electromagnet coil 51 do not have to always maintain the positions facing the electromagnet coil 51 during the swing operation, and at least a part of them may be maintained. In short, some or all of the shapes, numbers and positions of the permanent magnets 50 and the electromagnet coils 51 have been determined so that a necessary, sufficient and uniform repulsive force acts between the swing scroll 2 and the movable frame 3. Just do it. The point that the shapes, numbers, and positions of the permanent magnet 50 and the electromagnet coil 51 are optimized based on the movement locus of the permanent magnet 50 accompanying the swinging motion of the swinging scroll 2 is the present embodiment. The present invention is not limited to 4, and the same applies to the above-described first to third embodiments.
 本実施の形態4によれば、実施の形態1と同様の効果を得ることができる。 According to the fourth embodiment, the same effect as that of the first embodiment can be obtained.
実施の形態5.
 本実施の形態5は、揺動スクロール2および可動フレーム3の材質に関する。揺動スクロール2および可動フレーム3は、磁性体で形成されていてもよいし、非磁性体で形成されていてもよい。揺動スクロール2および可動フレーム3を非磁性体で形成する場合には、非磁性体の金属または非金属で形成すればよい。
Embodiment 5.
The fifth embodiment relates to the materials of the swing scroll 2 and the movable frame 3. The swing scroll 2 and the movable frame 3 may be made of a magnetic material or may be made of a non-magnetic material. When the swing scroll 2 and the movable frame 3 are made of a non-magnetic material, they may be made of a non-magnetic metal or a non-metal.
 揺動スクロール2および可動フレーム3が磁性体で形成されている場合、揺動スクロール2に埋め込まれている永久磁石50と可動フレーム3とが磁力によって引き付け合う。また、可動フレーム3に埋め込まれている電磁石コイル51と揺動スクロール2とについても、磁力によって引き付け合う。したがって、揺動スクロール2および可動フレーム3が磁性体で形成されている場合、永久磁石50と電磁石コイル51との間に働く斥力による、スラスト荷重の低減効果が弱まる。よって、揺動スクロール2および可動フレーム3を非磁性体で形成した方が、スラスト荷重の低減効果を高めることができる。 When the swing scroll 2 and the movable frame 3 are made of a magnetic material, the permanent magnet 50 embedded in the swing scroll 2 and the movable frame 3 are attracted to each other by magnetic force. Further, the electromagnet coil 51 and the swing scroll 2 embedded in the movable frame 3 are also attracted to each other by magnetic force. Therefore, when the swing scroll 2 and the movable frame 3 are made of a magnetic material, the effect of reducing the thrust load due to the repulsive force acting between the permanent magnet 50 and the electromagnet coil 51 is weakened. Therefore, when the swing scroll 2 and the movable frame 3 are made of a non-magnetic material, the effect of reducing the thrust load can be enhanced.
 なお、非磁性体で形成するのは、揺動スクロール2および可動フレーム3の双方でもよいし、どちらか一方でもよい。どちらか一方とした場合でも、両方を磁性体で形成した場合に比べてスラスト荷重の低減効果を高めることができる。また、揺動スクロール2および可動フレーム3の双方またはどちらか一方を非磁性体で形成した場合、最適化の自由度を高めることができる。これは、永久磁石50および電磁石コイル51のそれぞれの形状、個数および位置を最適化するにあたり、永久磁石50と可動フレーム3とが引き付け合う力と、電磁石コイル51と揺動スクロール2とが引き付け合う力とを考慮する必要がないためである。 It should be noted that both the swing scroll 2 and the movable frame 3 may be formed of the non-magnetic material, or either one of them may be formed. Even if either one is used, the effect of reducing the thrust load can be enhanced as compared with the case where both are made of a magnetic material. Further, when both or one of the swing scroll 2 and the movable frame 3 is made of a non-magnetic material, the degree of freedom of optimization can be increased. In optimizing the shapes, numbers, and positions of the permanent magnet 50 and the electromagnet coil 51, the force attracting the permanent magnet 50 and the movable frame 3 and the electromagnet coil 51 and the swing scroll 2 attract each other. This is because there is no need to consider force.
 本実施の形態5によれば、実施の形態1と同様の効果が得られると共に、揺動スクロール2および可動フレーム3の双方またはどちらか一方を非磁性体で形成したことで以下の効果が得られる。すなわち、スラスト荷重の低減効果を向上できると共に、永久磁石50および電磁石コイル51のそれぞれの形状、個数および位置の最適化の自由度を高めることができる。 According to the fifth embodiment, the same effect as that of the first embodiment can be obtained, and the following effects can be obtained by forming both or one of the swing scroll 2 and the movable frame 3 with a non-magnetic material. Be done. That is, the effect of reducing the thrust load can be improved, and the degree of freedom in optimizing the shape, number, and position of the permanent magnet 50 and the electromagnet coil 51 can be increased.
実施の形態6.
 本実施の形態6は、スクロール圧縮機の製造方法に関する。スクロール圧縮機の製造方法は、液状の材料から揺動スクロール2を製造する工程を有する。本実施の形態6では、揺動スクロール2を製造する工程において、材料が液状の状態にあるときに材料内に永久磁石50を埋め込み、揺動スクロール2を製造する工程で同時に永久磁石50を埋め込んだ構造を製造する。以下、さらに具体的に説明する。
Embodiment 6.
The sixth embodiment relates to a method for manufacturing a scroll compressor. The method for manufacturing a scroll compressor includes a step of manufacturing the swing scroll 2 from a liquid material. In the sixth embodiment, in the step of manufacturing the swing scroll 2, the permanent magnet 50 is embedded in the material when the material is in a liquid state, and in the step of manufacturing the swing scroll 2, the permanent magnet 50 is embedded at the same time. Manufacture the structure. Hereinafter, a more specific description will be given.
 まず、揺動スクロール2の成形型に永久磁石50を配置する。永久磁石50には、揺動スクロール2を構成する材料の融点よりも高い融点の材料で構成されたものを用いる。そして、その成形型に、揺動スクロール2の液状の材料を流し込んで固める。これにより、揺動スクロール2を製造するのと同時に、永久磁石50が揺動スクロール2に埋め込まれた構造を製造できる。なお、永久磁石50は、成形型にあらかじめ配置しておいてもよいし、揺動スクロール2の液状の材料を成形型に流し込んだ後、揺動スクロール2の液状の材料が固まる前に挿入して配置してもよい。 First, the permanent magnet 50 is placed in the molding mold of the swing scroll 2. As the permanent magnet 50, a magnet made of a material having a melting point higher than the melting point of the material constituting the swing scroll 2 is used. Then, the liquid material of the swing scroll 2 is poured into the molding die and hardened. Thereby, at the same time as manufacturing the swing scroll 2, it is possible to manufacture a structure in which the permanent magnet 50 is embedded in the swing scroll 2. The permanent magnet 50 may be arranged in the molding die in advance, or the permanent magnet 50 may be inserted after the liquid material of the rocking scroll 2 is poured into the molding die and before the liquid material of the rocking scroll 2 is solidified. May be placed.
 また、他の方法として、揺動スクロール2の鋳型に揺動スクロール2の液状の鋳物材料を鋳込み、鋳物材料が固まる前に、永久磁石50となる鋳物磁石も同時に鋳込むようにしてもよい。この場合、永久磁石50には、揺動スクロール2の材料の融点よりも低い融点の材料を用いる。 Alternatively, as another method, the liquid casting material of the swing scroll 2 may be cast into the mold of the swing scroll 2, and the casting magnet to be the permanent magnet 50 may be cast at the same time before the casting material is solidified. In this case, the permanent magnet 50 uses a material having a melting point lower than the melting point of the material of the rocking scroll 2.
 このように、揺動スクロール2を製造する工程で同時に永久磁石50を埋め込んだ構造を製造でき、後工程の複雑化防止および時間の短縮化を図ることができる。 In this way, it is possible to manufacture a structure in which the permanent magnet 50 is embedded at the same time in the process of manufacturing the swing scroll 2, and it is possible to prevent the post-process from becoming complicated and shorten the time.
 また、可動フレーム3を製造する工程で電磁石コイル51を同時に埋め込んでおく。例えば、3Dプリンタ等を採用して、可動フレーム基材の製造過程にて電磁石コイル51を埋め込む、または電磁石コイル51自体を3Dプリンタにて同時製造を行う。具体的には、電磁石コイル51の周囲、または可動フレーム基材全体を絶縁体で成形する。可動フレーム基材のスラスト受面3a近傍を成形する途中で、電磁石コイル51を配置し、その後可動フレーム基材全体の成形を完了させる。また、絶縁体および導体の双方を同時に成形することで、電磁石コイル全体を導体によって成形しても良い。これにより、後工程の複雑化防止および時間を短縮することができる。 Also, the electromagnet coil 51 is embedded at the same time in the process of manufacturing the movable frame 3. For example, a 3D printer or the like is used to embed the electromagnet coil 51 in the process of manufacturing the movable frame base material, or the electromagnet coil 51 itself is simultaneously manufactured by the 3D printer. Specifically, the periphery of the electromagnet coil 51 or the entire movable frame base material is molded with an insulator. The electromagnet coil 51 is arranged in the middle of molding the vicinity of the thrust receiving surface 3a of the movable frame base material, and then the molding of the entire movable frame base material is completed. Further, by molding both the insulator and the conductor at the same time, the entire electromagnet coil may be molded by the conductor. As a result, it is possible to prevent the post-process from becoming complicated and shorten the time.
 1 固定スクロール、1a 固定台板部、1b 固定渦巻歯、1c オルダム案内溝、2 揺動スクロール、2a 揺動台板部、2b 揺動渦巻歯、2c ボス部、2d 揺動軸受、2e スラスト面、2f オルダム案内溝、3 可動フレーム、3a スラスト受面、3b 面、3c 主軸受、3d 上部嵌合円筒面、3e 下部嵌合円筒面、4 固定フレーム、4a 上部嵌合円筒面、4b 下部嵌合円筒面、4c 導線連通路、4d 連通路閉塞部品、5 オルダムリング、5a オルダム固定爪、5b オルダム揺動爪、5c オルダム環状部、6 主軸、6a 偏心軸部、7 電動機、7a 回転子、7b 固定子、7c 電動機導線、7d 電動機導線、8 サブフレーム、9a 吸入管、9b 吐出管、10 密閉容器、10a 上部空間、10b 電源端子、11 油溜め部、12 圧縮機吸入空間、14 圧縮室、14a 圧縮室吸入空間、14b 圧縮室最外室、14c 圧縮室最内室、15 吐出ポート、16 ボルト、20 電源、30b 下部嵌合円筒面、50 永久磁石、50a 矢印、51 電磁石コイル、51a 電磁石コイル導線、51b 電磁石コイル導線、51c 両端部、100 スクロール圧縮機、101 圧縮機構。 1 Fixed scroll, 1a Fixed base plate part, 1b Fixed spiral tooth, 1c Oldham guide groove, 2 Swing scroll, 2a Swing base plate part, 2b Swing swirl tooth, 2c Boss part, 2d Swing bearing, 2e Thrust surface , 2f Oldham guide groove, 3 Movable frame, 3a Thrust receiving surface, 3b surface, 3c Main bearing, 3d Upper fitting cylindrical surface, 3e Lower fitting cylindrical surface, 4 Fixed frame, 4a Upper fitting cylindrical surface, 4b Lower fitting Combined cylindrical surface, 4c lead wire continuous passage, 4d continuous passage blocking part, 5 oldam ring, 5a oldam fixing claw, 5b oldam swing claw, 5c oldam annular part, 6 spindle, 6a eccentric shaft part, 7 electric motor, 7a rotor, 7b stator, 7c electromagnet lead wire, 7d electromagnet lead wire, 8 subframe, 9a suction pipe, 9b discharge pipe, 10 closed container, 10a upper space, 10b power supply terminal, 11 oil reservoir, 12 compressor suction space, 14 compression chamber , 14a compression chamber suction space, 14b compression chamber outermost chamber, 14c compression chamber innermost chamber, 15 discharge port, 16 volts, 20 power supply, 30b lower fitting cylindrical surface, 50 permanent magnet, 50a arrow, 51 electromagnet coil, 51a Electromagnet coil lead wire, 51b Electromagnet coil lead wire, 51c both ends, 100 scroll compressor, 101 compression mechanism.

Claims (12)

  1.  固定スクロールおよび前記固定スクロールに対して揺動運動する揺動スクロールを備えた圧縮機構と、
     前記圧縮機構を駆動する電動機と、
     前記揺動スクロールと摺動するスラスト受面を有するフレームと、
     前記揺動スクロールに埋め込まれた永久磁石と、
     前記フレームにおいて前記永久磁石と対向する位置に埋め込まれ、前記永久磁石との間に斥力を発生させる電磁石コイルとを備え、
     前記電磁石コイルと前記電動機とが直列に接続されているスクロール圧縮機。
    A compression mechanism equipped with a fixed scroll and a swinging scroll that swings with respect to the fixed scroll,
    The motor that drives the compression mechanism and
    A frame having a thrust receiving surface that slides with the swing scroll, and
    The permanent magnet embedded in the swing scroll and
    It is provided with an electromagnet coil embedded in the frame at a position facing the permanent magnet and generating a repulsive force between the frame and the permanent magnet.
    A scroll compressor in which the electromagnet coil and the electric motor are connected in series.
  2.  前記電磁石コイルが前記フレームに複数個埋め込まれている請求項1記載のスクロール圧縮機。 The scroll compressor according to claim 1, wherein a plurality of the electromagnet coils are embedded in the frame.
  3.  複数個の前記電磁石コイルが全て直列または並列に接続され、前記電磁石コイル全体と前記電動機とが直列に接続されている請求項2記載のスクロール圧縮機。 The scroll compressor according to claim 2, wherein a plurality of the electromagnet coils are all connected in series or in parallel, and the entire electromagnet coil and the motor are connected in series.
  4.  複数個の前記電磁石コイルは、複数の直列回路を並列に接続した回路によって互いに接続されており、前記電磁石コイル全体と前記電動機とが直列に接続されている請求項2記載のスクロール圧縮機。 The scroll compressor according to claim 2, wherein the plurality of the electromagnet coils are connected to each other by a circuit in which a plurality of series circuits are connected in parallel, and the entire electromagnet coil and the motor are connected in series.
  5.  前記電磁石コイルの個数と前記永久磁石の個数とが、同数または異なる請求項1~請求項4のいずれか一項に記載のスクロール圧縮機。 The scroll compressor according to any one of claims 1 to 4, wherein the number of the electromagnet coils and the number of the permanent magnets are the same or different.
  6.  前記電磁石コイルは、前記フレームの中心軸を中心とした円弧形状である請求項1~請求項5のいずれか一項に記載のスクロール圧縮機。 The scroll compressor according to any one of claims 1 to 5, wherein the electromagnet coil has an arc shape centered on the central axis of the frame.
  7.  前記電磁石コイルは、前記フレームの中心軸を中心とした同心円上に複数配置されている請求項1~請求項5のいずれか一項に記載のスクロール圧縮機。 The scroll compressor according to any one of claims 1 to 5, wherein a plurality of the electromagnet coils are arranged on concentric circles centered on the central axis of the frame.
  8.  前記電磁石コイルおよび前記永久磁石のそれぞれの形状、個数および位置の一部または全部は、前記揺動スクロールの揺動運動に伴う前記永久磁石の移動軌跡に基づいて最適化されている請求項1~請求項7のいずれか一項に記載のスクロール圧縮機。 A part or all of the shapes, numbers, and positions of the electromagnet coil and the permanent magnets are optimized based on the movement locus of the permanent magnets accompanying the swinging motion of the swinging scroll. The scroll compressor according to any one of claims 7.
  9.  前記最適化は、前記揺動スクロールの揺動運動中に、前記永久磁石と前記電磁石コイルとが互いに相対する位置を維持するように行われている請求項8記載のスクロール圧縮機。 The scroll compressor according to claim 8, wherein the optimization is performed so as to maintain a position where the permanent magnet and the electromagnet coil face each other during the swinging motion of the swinging scroll.
  10.  前記揺動スクロールおよび前記フレームの双方またはどちらか一方が、非磁性体にて形成されている請求項1~請求項9のいずれか一項に記載のスクロール圧縮機。 The scroll compressor according to any one of claims 1 to 9, wherein both or one of the swing scroll and the frame is made of a non-magnetic material.
  11.  請求項1~請求項10のいずれか一項に記載のスクロール圧縮機の製造方法であって、
     液状の材料から前記揺動スクロールを製造する工程を有し、
     前記揺動スクロールを製造する工程において、前記材料が液状の状態にあるときに前記材料内に前記永久磁石を埋め込み、前記揺動スクロールを製造する工程で同時に前記永久磁石を埋め込んだ構造を製造するスクロール圧縮機の製造方法。
    The method for manufacturing a scroll compressor according to any one of claims 1 to 10.
    It has a process of manufacturing the swing scroll from a liquid material, and has a process of manufacturing the swing scroll.
    In the step of manufacturing the rocking scroll, the permanent magnet is embedded in the material when the material is in a liquid state, and a structure in which the permanent magnet is embedded at the same time in the step of manufacturing the rocking scroll is manufactured. Manufacturing method of scroll compressor.
  12.  請求項1~請求項10のいずれか一項に記載のスクロール圧縮機の製造方法であって、
     前記電磁石コイルを、前記フレームを製造する工程で同時に埋め込んでおくスクロール圧縮機の製造方法。
    The method for manufacturing a scroll compressor according to any one of claims 1 to 10.
    A method for manufacturing a scroll compressor in which the electromagnet coil is embedded at the same time in the process of manufacturing the frame.
PCT/JP2020/008805 2020-03-03 2020-03-03 Scroll compressor and method for manufacturing scroll compressor WO2021176541A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/008805 WO2021176541A1 (en) 2020-03-03 2020-03-03 Scroll compressor and method for manufacturing scroll compressor
JP2022504797A JP7278473B2 (en) 2020-03-03 2020-03-03 Scroll compressor and scroll compressor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/008805 WO2021176541A1 (en) 2020-03-03 2020-03-03 Scroll compressor and method for manufacturing scroll compressor

Publications (1)

Publication Number Publication Date
WO2021176541A1 true WO2021176541A1 (en) 2021-09-10

Family

ID=77613980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008805 WO2021176541A1 (en) 2020-03-03 2020-03-03 Scroll compressor and method for manufacturing scroll compressor

Country Status (2)

Country Link
JP (1) JP7278473B2 (en)
WO (1) WO2021176541A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294983A (en) * 1988-05-20 1989-11-28 Tokico Ltd Scroll type fluid machine
JPH03991A (en) * 1989-05-26 1991-01-07 Zexel Corp Scroll fluid device
JPH062670A (en) * 1992-06-17 1994-01-11 Hitachi Ltd Rotary type scroll fluid machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000130362A (en) * 1998-10-26 2000-05-12 Denso Corp Compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294983A (en) * 1988-05-20 1989-11-28 Tokico Ltd Scroll type fluid machine
JPH03991A (en) * 1989-05-26 1991-01-07 Zexel Corp Scroll fluid device
JPH062670A (en) * 1992-06-17 1994-01-11 Hitachi Ltd Rotary type scroll fluid machine

Also Published As

Publication number Publication date
JPWO2021176541A1 (en) 2021-09-10
JP7278473B2 (en) 2023-05-19

Similar Documents

Publication Publication Date Title
JP5445550B2 (en) Vane rotary compressor
EP1971009B1 (en) Motor and compressor
JP6680779B2 (en) Compressor and refrigeration cycle device
EP2090780B1 (en) Compressor
WO2021176541A1 (en) Scroll compressor and method for manufacturing scroll compressor
US20060147326A1 (en) Hermetically sealed compressor
WO2018131235A1 (en) Scroll-type compressor
JP2007285293A (en) Compressor
JP2008138591A (en) Compressor
CN106981935B (en) Stator core, compressor, and refrigeration cycle device
JP2007138778A (en) Scroll compressor
JP2021050619A (en) Compressor
WO2018131436A1 (en) Compressor comprising shaft support
JP6320575B2 (en) Electric compressor
KR101990142B1 (en) Linear compressor
CN112055928B (en) Motor, compressor, blower and refrigerating air conditioner
WO2021229742A1 (en) Electric motor, compressor, and refrigeration cycle device
JP2016021837A (en) Motor and compressor
JP2009074464A (en) Compressor
KR101480465B1 (en) Reciprocating compressor and refrigerator having the same
JP6723430B2 (en) Rotating electric machine, compressor and refrigeration cycle device
JP6558346B2 (en) Compressor capable of suppressing refrigeration oil discharge
KR20050072318A (en) Synchronous motor
JP2019135395A (en) Compressor capable of restraining discharge of refrigerator oil
WO2018189768A1 (en) Pressure feeder and refrigeration cycle device equipped with pressure feeder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923636

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022504797

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20923636

Country of ref document: EP

Kind code of ref document: A1