WO2018189768A1 - Pressure feeder and refrigeration cycle device equipped with pressure feeder - Google Patents

Pressure feeder and refrigeration cycle device equipped with pressure feeder Download PDF

Info

Publication number
WO2018189768A1
WO2018189768A1 PCT/JP2017/014621 JP2017014621W WO2018189768A1 WO 2018189768 A1 WO2018189768 A1 WO 2018189768A1 JP 2017014621 W JP2017014621 W JP 2017014621W WO 2018189768 A1 WO2018189768 A1 WO 2018189768A1
Authority
WO
WIPO (PCT)
Prior art keywords
notch
rotor
main shaft
pressure feeder
outer peripheral
Prior art date
Application number
PCT/JP2017/014621
Other languages
French (fr)
Japanese (ja)
Inventor
増本 浩二
加藤 啓介
裕貴 田村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/014621 priority Critical patent/WO2018189768A1/en
Publication of WO2018189768A1 publication Critical patent/WO2018189768A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/04Measures to avoid lubricant contaminating the pumped fluid
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit

Definitions

  • the present invention relates to a pressure feeder that pumps a fluid using a driving force of an electric motor, and a refrigeration cycle apparatus using the pressure feeder.
  • Patent Document 1 As such a conventional pressure feeder, for example, there was a compressor as shown in Patent Document 1.
  • this compressor when the fluid that has flowed into the container is compressed by the compressor mechanism, the compressed fluid flows through the inside of the electric motor unit housed in the same container and is discharged out of the container.
  • the present invention has been made in order to solve the above-described problems, and an object of the present invention is to obtain a compressor capable of suppressing the flow of foreign matter inside the electric motor section.
  • the tip of the notch is located in a region shifted from the region surrounded by the end portion of the outer periphery of the notch and the rotation axis of the main shaft.
  • the foreign matter that has entered the provided notch is prevented from coming out again in the centrifugal direction by the inner surface of the notch. For this reason, it is suppressed that a foreign material continues flowing through the inside of an electric motor part, and the failure of an electric motor part can be reduced.
  • FIG. 1 is a cross-sectional view illustrating a schematic configuration of a compressor 100 according to the first embodiment.
  • the compressor 100 includes a cylindrical container 10, a motor unit 30 that is provided inside the container 10 and generates a rotational force, and a rotational force is transmitted through the main shaft 24 of the motor unit 30 that is also provided in the container 10.
  • the compression mechanism unit 20 is provided.
  • a suction pipe 11 having a suction port 12 through which refrigerant is sucked is provided below the container 10, and a discharge pipe 13 having a discharge port 14 through which refrigerant is discharged is provided on the upper surface of the container 10. .
  • An oil sump 15 for storing lubricating oil is formed below the suction pipe 11 in the container 10.
  • the compression mechanism section 20 includes a cylinder 21, an eccentric section 23, a main shaft 24, a roller 22, a vane 25, a spring 26, an upper bearing section 28, and a lower bearing section. 29.
  • the cylinder 21 has a space into which refrigerant flows.
  • the space inside the cylinder 21 and the suction pipe 11 of the container 10 are connected via a flow path through which a refrigerant flows to form a suction chamber.
  • An upper bearing portion 28 provided with a discharge hole 27 is provided above the cylinder 21, and a lower bearing portion 29 is provided below the cylinder 21.
  • the position of the main shaft 24 is fixed by being disposed through the upper bearing portion 28 and the lower bearing portion 29.
  • FIG. 3 is a cross-sectional view taken along the line BB of the motor unit 30 in FIG. 1, and FIG. 4 is a side view of the rotor 50.
  • the electric motor unit 30 includes a rotor 50 having a main shaft 24 that transmits rotational force to the compression mechanism unit 20, and a stator 40 that surrounds the outer peripheral surface of the rotor 50, and above the compression mechanism unit 20 inside the container 10. Has been placed.
  • the stator 40 includes an annular stator core portion 41 and a winding 46 wound around the stator core portion 41.
  • the stator core portion 41 is formed by laminating electromagnetic steel plates in the main axis direction, and includes an annular back yoke portion 42 and a plurality of teeth portions 43 protruding from the back yoke portion 42 toward the inner peripheral surface side.
  • a space called a slot portion 44 is formed between the back yoke portion 42 and the tooth portion 43.
  • a winding 46 is wound around the tooth portion 43, and the winding 46 is accommodated in the slot portion 44.
  • a slot opening 45 that is an opening of the slot portion 44 is formed at the tip of the adjacent teeth portion 43. The slot opening 45 is used for an opening for winding the winding 46 at the time of manufacture, or provided to be a magnetic resistance.
  • a conductive terminal 47 is electrically connected to the stator 40.
  • the conductive terminal 47 is provided above the container 10.
  • the rotor 50 includes a main shaft 24, a rotor core portion 51, and a permanent magnet 56, the outer peripheral surface is surrounded by the stator 40, and the main shaft 24 is supported by the upper bearing portion 28 and the lower bearing portion 29. It is arrange
  • the main shaft 24 and the rotor core portion 51 are fixed, and the rotor 50 is connected to the compression mechanism portion 20 via the main shaft 24.
  • Six rotor permanent magnets 56 are inserted into the rotor core 51 in the axial direction of the main shaft 24 so as to surround the main shaft 24 from six directions.
  • a notch 52 is provided on the outer peripheral surface of the rotor core 51. As shown in FIG. 4, the notch 52 is formed continuously from the upper part to the lower part of the rotor 50.
  • the notch 52 has end portions 53 a and 53 b on the outer peripheral surface, a tip 54, and an inner side surface 55 of the notch 52.
  • the end portions 53a and 53b are portions that form the openings of the notches 52 on the outer peripheral surface of the rotor core portion 51.
  • the inner side surface 55 is two surfaces forming the inside of the notch 52, and is curved and formed in an arc shape in the cross section in the rotation axis direction.
  • the tip 54 is a portion of the inner surface 55 that forms the notch 52 that is closest to the main shaft 24.
  • the inner side surface 55 on the main shaft 24 side of the inner side surface 55 is shaped to return further to the outer peripheral side from the tip end 54, and the tip end 54 closest to the main shaft 24 is located in the middle of the arc forming the inner side surface 55. It will be. That is, the tip 54 is located between the end portions 53a and 53b of the inner side surface 55 and the end portion to which the two inner side surfaces 55 are connected. The tip 54 is located in a region shifted from a region surrounded by the end portions 53 a and 53 b and the rotation shaft 70 of the main shaft 24.
  • the region surrounded by the end portions 53a and 53b and the rotation shaft 70 of the main shaft 24 is a plane 71 connecting the straight line constituting the end portion 53a and the rotation shaft 70 of the main shaft 24 and the straight line forming the end portion 53b. And a plane 72 formed by connecting the rotation shaft 70 of the main shaft 24 and a plane 73 formed by connecting the end portions 53a and 53b.
  • the planes 71 to 73 are indicated by dotted lines. Note that the rotation direction of the rotor 50 of this embodiment is clockwise in FIG. 3, and the rotation direction starts from the region where the tip 54 is displaced from the region surrounded by the end portions 53a and 53b and the rotation shaft 70 of the main shaft 24. It is located in the area shifted to the rear side.
  • the roller 22 of the compression mechanism portion 20 rotates eccentrically inside the cylinder 21. Since the vane 25 is in contact with the roller 22 and swings in the radial direction of the compression chamber, the volume of the compression chamber 60 divided into two changes as the eccentric portion 23 rotates eccentrically.
  • the compressor 100 When the compressor 100 starts operating in this manner, the refrigerant is sucked from the suction port 12 and flows into the compression chamber 60 inside the compression mechanism unit 20.
  • the refrigerant that has flowed in is compressed in the compression chamber 60 by the rotation of the rotor 50, and changes into a high-pressure gas refrigerant.
  • the compressed gas refrigerant is discharged from the discharge hole 27 of the compression mechanism 20 into the space inside the container 10. Further, the gas refrigerant discharged from the discharge hole 27 passes through the outside of the electric motor unit 30, the slot 44, the air gap, or the like and is discharged out of the compressor 100 from the discharge port 14 provided above the container 10.
  • the lubricating oil flows along with the refrigerant inside the compressor 100.
  • the stator 40 rotates, the lubricating oil stored in the oil reservoir 15 is sucked up from an oil hole provided in the main shaft 24.
  • a suction method there are a method using a pressure difference, a method using a gear, a method using a centrifugal force, and the like.
  • the sucked-up lubricating oil passes through a predetermined oil passage and is used for lubrication for suppressing wear due to sliding of the upper bearing portion 28 and the lower bearing portion 29, or the airtightness of the compression chamber of the compression mechanism portion 20 is increased. Used to raise.
  • the lubricating oil supplied to each part cools the upper bearing part 28 and the lower bearing part 29 and returns to the oil sump 15 again.
  • a part of the sucked lubricating oil is discharged into the container 10 and passes through the outside of the electric motor unit 30, the slot unit 44, the air gap or the like together with the compressed refrigerant.
  • a fluid containing a compressed refrigerant and lubricating oil flows inside the compressor 100.
  • One of the reasons for flowing the compressed refrigerant around or inside the electric motor unit 30 in the compressor 100 is to cool the electric motor unit 30 that generates heat during the operation of the compressor 100 with the refrigerant. For this purpose, it is necessary to bring the refrigerant into contact with the electric motor unit 30.
  • the lubricating oil that has been heated to a high temperature by cooling the upper bearing portion 28 and the lower bearing portion 29 is cooled by coming into contact with the refrigerant flowing in the compressor 100 and returns to the oil reservoir 15 again.
  • the fluid containing the compressed refrigerant and lubricating oil is configured to flow around or inside the electric motor unit 30.
  • the refrigerant or the lubricating oil flowing inside the compressor 100 contains foreign particles such as fine abrasion powder generated inside the compressor and dust mixed during manufacturing.
  • the compressor is made of a material that is a magnetic material such as iron, and the material is shaved and worn at the sliding portion. Therefore, the foreign matter includes both a magnetic material and a non-magnetic material. Therefore, when the refrigerant and the lubricating oil flow inside the compressor 100, the foreign matter may flow into the air gap formed between the stator 40 and the rotor 50 together with the fluid.
  • the foreign matter when a fluid containing foreign matter flows through the air gap, the foreign matter is notched 52 provided on the outer peripheral surface of the rotor 50. Get in.
  • the foreign matter having magnetism is attracted toward the outer peripheral surface of the rotor 50 by a magnetic force received from a permanent magnet 56 provided on the rotor 50.
  • the attracted foreign matter of the magnetic body is attracted into the notch 52 provided at a position closer to the permanent magnet 56 than the outer peripheral surface.
  • the foreign matter that has entered the notch 52 is collected at the tip 54 of the notch 52.
  • the rotor 50 since the rotor 50 includes the permanent magnet 56, magnetic foreign matter is collected inside the notch 52 provided closer to the permanent magnet 56 than the outer peripheral surface of the rotor 50 by the magnetic force of the permanent magnet 56. can do. Since the collected foreign matter of the magnetic material is attracted by the magnetic force in the direction in which the permanent magnet 56 is disposed, it is suppressed from coming out of the notch 52 again, and the foreign matter can be reliably collected inside the notch 52. .
  • the rotor 50 is provided with a notch 52, and the magnetic substance of the permanent magnet 56 provided for the rotating operation of the electric motor unit 30 can be used to attract magnetic foreign matter, thereby increasing the number of parts. Therefore, it is possible to reliably collect the foreign matter without causing the foreign matter to continue flowing in the electric motor unit 30.
  • the tip 54 is located in a region shifted from the region surrounded by the end portions 53 a and 53 b and the rotation shaft 70 of the main shaft 24 to the rear side in the direction in which the rotor 50 rotates.
  • the present invention is not limited to this, and may be located in a region shifted forward in the rotational direction.
  • the tip 54 When the tip 54 is located in a region shifted to the rear side in the rotation direction, it is possible to suppress foreign matters from coming out of the notch 52 again when the rotation speed of the rotor 50 is increased.
  • the rotor 50 increases the rotation speed from the stopped state until reaching a certain number of rotations.
  • the foreign matter collected in the notch 52 of the rotor 50 moves in the notch 52 in the opposite direction to the rotation direction of the rotor 50 due to inertia and does not move in the same direction as the rotation direction. Stay inside the notch 52.
  • the notch 52 is linearly formed in the vertical direction from the upper part to the lower part of the rotor 50.
  • the notch 52 is provided on the outer peripheral surface of the rotor 50.
  • the shape which the edge parts 53a and 53b form in the outer peripheral surface of the rotor 50 is not restricted to this.
  • the widths of the openings formed by the end portions 53a and 53b on the outer peripheral surface are different between the upper part and the lower part of the rotor 50, as shown in FIG.
  • the formed structure is intermittently formed from the upper part to the lower part of the rotor 50 as shown in FIG. 6, and is a staggered structure in which notches 52 are provided at positions shifted in the direction of the rotating shaft 70, FIG.
  • the end portions 53a and 53b on the outer peripheral surface of the notch 53 may be formed in a circular shape.
  • the number of the notches 52 is not limited, and an appropriate number may be provided.
  • the influence of the notch 52 on the magnetic flux generated by the permanent magnet 56 can be reduced.
  • the center axis of the end portion 53a and the end portion 53b of the notch 52 is a position facing the center axis 74 of the permanent magnet 56
  • the center axis of the end portion 53a and the end portion 53b is the center axis 74 of the permanent magnet 56.
  • it will be located on the plane 75 which connects the rotating shaft 70 of the main axis
  • one permanent magnet 56 is inserted so that the outer peripheral surface side of the rotor 50 and the main shaft 24 side are different poles.
  • the six permanent magnets 56 are arranged so that the directions of the S pole and the N pole between the adjacent permanent magnets 56 are opposite to each other. Therefore, a magnetic flux is generated from the north pole of one permanent magnet 56 toward the south pole of the adjacent permanent magnet 56.
  • This magnetic flux has a small magnetic flux density in the vicinity of the central axis 74 of one permanent magnet 56 and a large magnetic flux density between adjacent permanent magnets 56.
  • the notch 52 is provided. Is located in a region where the magnetic flux density is small, and therefore has little influence on the magnetic flux. Therefore, even when the notch 52 is provided, the disturbance of the magnetic flux can be reduced, and the influence on the rotating operation of the rotor 50 can be suppressed. As shown in FIG. 8, when the notches 52 are evenly arranged on the outer peripheral surface of the rotor 50, the shape of the magnetic flux generated from each permanent magnet 56 has symmetry about the rotation axis 70 of the main shaft 24.
  • the rotor 50 since the rotor 50 stably rotates, the generation of vibration or noise in the motor unit 30 can be suppressed. Further, in a state where foreign matter enters the notches 52, the amount of foreign matter entering each notch 52 is made uniform, so that the rotor 50 can be stably rotated without losing the balance of the weight of the entire rotor 50. Therefore, generation of vibration or noise can be suppressed.
  • the center axis of the end portion 53a and the end portion 53b of the notch 52 has been described on the plane 75 connecting the center shaft 74 of the permanent magnet 56 and the rotation shaft 70 of the main shaft 24, it is strictly described. Such a positional relationship is not necessary, and the same effect can be obtained if the opening formed by the end portion 53a and the end portion 53b of the notch 52 is provided on the plane 75.
  • the same number of the notches 52 as the permanent magnets 56 are provided, but the present invention is not limited to this. The number may be smaller than the number of permanent magnets 56. In this case, when the number of permanent magnets 56 is set to be half of the number of permanent magnets and every other one, the weight balance is good. Further, the number may be larger than the number of permanent magnets 56. In this case, if the number is an integral multiple of the number of permanent magnets 56, the balance is good.
  • FIG. 9 is a BB cross-sectional view of electric motor unit 30 in compressor 100 according to the second embodiment.
  • the difference from the first embodiment will be mainly described, and the same parts as those in the first embodiment will be denoted by the same reference numerals and the description thereof will be omitted.
  • the outer surface of the rotor 50 is provided with six notches 52 that are the same number as the permanent magnets 56. Further, the notch 52 is positioned so that the central axis of the end portion 53a and the end portion 53b of the notch 52 is positioned on a plane 77 connecting the intermediate point 76 of the adjacent permanent magnet 56 and the rotation shaft 70 of the main shaft 24. Is provided. That is, the notch 52 is provided in a region where the magnetic flux density is high.
  • the central axes of the end 53a and the end 53b of the notch 52 are the intermediate point 76 of the adjacent permanent magnet 56 and the rotation shaft 70 of the main shaft 24. Since it is on the flat surface 77 formed by tying, the magnetic force acting in the vicinity of the notch 52 is increased, and the action of attracting or holding the magnetic foreign matter in the notch 52 is enhanced. Note that the same number of notches 52 as the permanent magnets 56 are provided, but the present invention is not limited to this.
  • FIG. 10 is a BB cross-sectional view of electric motor unit 30 in compressor 100 according to the third embodiment.
  • the difference from the first embodiment will be mainly described, and the same parts as those in the first embodiment will be denoted by the same reference numerals and the description thereof will be omitted.
  • the stator 40 has nine slot openings 45. On the outer peripheral surface of the rotor 50, nine notches 52, which are the same number as the slot openings 45, are provided.
  • the cause of vibration or noise generated when the motor unit 30 is driven is a groove high-frequency electromagnetic force generated by the influence of a groove such as the slot open 45 of the stator 40 or the notch 52 of the rotor 50. Since the vibration frequency of the stator 40 and the rotor 50 changes according to the frequency of the groove high-frequency electromagnetic force, vibration or noise increases due to resonance when the vibration frequency matches the natural frequency of the components constituting the motor unit 30. There is a case. In order to suppress such vibration or noise due to resonance, by selecting a combination of the number of grooves of the stator 40 and the rotor 50, the vibration frequency of the stator 40 and the rotor 50, the natural frequency of the component, Must be designed so that they do not match.
  • stator 40 and the rotor 50 are provided with grooves such as the slot open 45 or the notch 52, noise having a frequency corresponding to the number of grooves provided in each of the stator 40 and the rotor 50 is generated. Therefore, the noise having a frequency obtained by multiplying the rotational speed by the number of grooves provided in the stator 40 or an integral multiple thereof, and the noise having a frequency obtained by multiplying the rotational speed by the number of grooves provided in the rotor 50 or an integral multiple thereof. Will occur.
  • the stator 40 is provided with nine slot openings 45
  • the rotor 50 is provided with six notches 52.
  • noise such as 900 Hz, 1800 Hz, 2700 Hz, or the like is generated by the groove of the stator 40 by multiplying 9 or an integer multiple of 9 to the rotation speed of 100 rps.
  • the groove of the rotor 50 generates noise such as a frequency obtained by multiplying 6 or an integer multiple of 6 to a rotational speed of 100 rps, 600 Hz, 1200 Hz, 1800 Hz, and the like. Accordingly, the entire motor unit 30 generates noise having a frequency corresponding to the number of grooves provided in the stator 40 and noise having a frequency corresponding to the number of grooves provided in the stator 40.
  • the number of notches 52 that is an integral multiple of the number of slot openings 45 provided in the stator 40 is provided in the stator 40 and the rotor 50. Since the number of grooves is the same, the frequency range of the generated noise can be reduced. Since the frequency of the noise is proportional to an integer multiple of the number of notches 52 or slot openings 45, the same effect can be obtained if the number of notches 52 is an integer multiple of the number of slot openings 45.
  • the opening of the notch 52 provided in the rotor 50 is larger than the width of the slot opening 45 provided in the stator 40, the foreign matter flowing through the air gap is fixed.
  • An attraction force larger than the attraction force received from the electromagnet of the child 40 is received from the permanent magnet 56 provided on the rotor 50.
  • the foreign matter having magnetism can be attracted to the notch 52 of the rotor 50 having a greater attraction force than the stator 40 side and can enter the notch 52.
  • foreign matter that has entered the slot opening 45 may be attracted by the permanent magnet 56 of the rotor 50 and jump out of the slot opening 45 and enter the notch 52 of the rotor 50.
  • the compressor 100 including the notch 52 on the outer peripheral surface of the rotor 50 has been described.
  • Such a compressor 100 can be used for the refrigeration cycle apparatus 200.
  • the refrigeration cycle apparatus 200 used in an air conditioner or a refrigerator is provided with a compressor 100.
  • the refrigeration cycle apparatus 200 performs heat exchange of air using heat absorption due to evaporation of refrigerant flowing through the refrigerant circuit and heat dissipation due to condensation.
  • the compressor 100 including the notch 52 is provided on the outer peripheral surface of the rotor 50.
  • moisture is mixed when installed, or the refrigerant circuit deteriorates due to a large temperature change of the refrigerant in the refrigerant circuit, so that rust and lubricating oil are precipitated in the refrigeration cycle apparatus 200. Sludge may be generated.
  • the compressor 100 of the present invention for the refrigeration cycle apparatus 200, foreign matters flowing inside the refrigeration cycle apparatus can be reduced. That is, in the compressor 100 of the present invention, the compressor 100 having the notch 52 on the outer peripheral surface of the rotor 50 is provided, so that foreign matters flowing inside the compressor 100 are collected in the notch 52 of the rotor 50. It is possible to reduce foreign matters flowing inside the refrigeration cycle apparatus 200. The failure of the refrigeration cycle apparatus 200 can be suppressed by reducing foreign matters flowing inside the refrigeration cycle apparatus 200.
  • the electric motor unit 30 having the inner surface 55 having the arc-shaped cutout 52 has been described.
  • the present invention is not limited to this, and the tip 54 of the cutout 52 is the outer periphery of the cutout 52.
  • the shape of the inner surface 55 may be, for example, a curved surface other than an arc or a combination of planes as long as the inner surface 55 is located in a region shifted from the region surrounded by the end portions 53a and 53b and the rotation shaft 70 of the main shaft 24.
  • the electric motor part 30 shall rotate by the permanent magnet 56 provided in the inside of the rotor 50, and the electromagnet generated by the coil
  • the compressor 100 is a rotary compressor, but it may be a scroll type or a reciprocating type.
  • the compressor 100 provided with the electric motor part 30 was described as the pumping machine of the present invention, the pumping machine to which the present invention is applied is not limited to the described compressor, and has a function of feeding fluid by pressure, such as a pump.
  • the rotational speed of the rotor 50 is faster than when a refrigerant with a high GWP is used, so that the stator 40 or the rotor 50 is often damaged by foreign matter passing through the air gap. Since the foreign matter of the stator 40 is likely to enter, failure of the electric motor unit 30 is likely to occur. Therefore, when the refrigerant having a low GWP is used, the effect of suppressing the failure of the electric motor unit 30 can be sufficiently achieved by using the compressor 100 according to the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

Conventional compressors have the problem that a foreign object contained in a fluid compressed by a compression mechanism part may flow into the inside of an electric motor part, damaging the winding wound around, for example, a stator and causing failure of the electric motor part. The purpose of the present invention is to obtain a pressure feeder capable of preventing a foreign object from flowing inside the electric motor part. According to the pressure feeder of the present invention, a notch is provided in the outer circumferential surface of a rotor and the closest end of the notch to the main axis is positioned so as to be in a region shifted from the region surrounded by an end of the notch in the outer circumferential surface and an axis of rotation of a main shaft. In this way, the inside surface of the notch prevents a foreign object that has entered into the notch provided in the outer circumferential surface of the rotor from moving out again in the centrifugal direction, thereby preventing the foreign object from continuing to flow inside the electric motor part and enabling a reduction in failure of the electric motor part.

Description

圧送機及び圧送機を備えた冷凍サイクル装置Refrigeration cycle apparatus equipped with a pressure feeder and a pressure feeder
 この発明は、流体を電動機の駆動力を用いて圧送する圧送機、およびこの圧送機を用いた冷凍サイクル装置に関する。 The present invention relates to a pressure feeder that pumps a fluid using a driving force of an electric motor, and a refrigeration cycle apparatus using the pressure feeder.
 流体を圧送する圧送機には、例えば冷媒を圧縮して高圧にする圧縮機や、空気、液体を移送するポンプ等がある。このような圧送機には、流体を吸入し吐出させる容器の内部に、圧送部と電動機部を備えているものがあり、電動機部で発生した回転力を圧送部に伝え、この回転力で圧送部を駆動して流体に圧力をかけて圧送するものである。この圧送部としては、例えば圧縮機では流体を圧縮する圧縮機構部が設けられており、またポンプでは羽根車を備える圧送機構部が設けられている。そして、これら圧送部に回転力を与える電動機部は、回転軸を介して圧送部に接続された回転子と、この回転子の外周を覆う固定子とを有するものであり、電磁力によって回転子が回転するものである。 Examples of the pressure feeder that pumps fluid include a compressor that compresses a refrigerant to increase the pressure and a pump that transfers air and liquid. Some of these pressure feeders are provided with a pressure feeding portion and an electric motor portion inside a container that sucks and discharges fluid, and the rotational force generated in the electric motor portion is transmitted to the pressure feeding portion, and the pressure feeding is performed by this rotational force. The part is driven and pressure is applied to the fluid to feed it. As this pumping unit, for example, a compressor is provided with a compression mechanism unit that compresses fluid, and a pump is provided with a pumping mechanism unit including an impeller. And the electric motor part which gives rotational force to these pumping parts has the rotor connected to the pumping part via the rotating shaft, and the stator which covers the outer periphery of this rotor, and a rotor by electromagnetic force Is what rotates.
 このような従来の圧送機として、例えば、特許文献1に示されたような圧縮機があった。この圧縮機では、容器に流入した流体が圧縮機機構部で圧縮されると、圧縮された流体は同じ容器に収納された電動機部の内部を流れて容器の外へ吐出される。 As such a conventional pressure feeder, for example, there was a compressor as shown in Patent Document 1. In this compressor, when the fluid that has flowed into the container is compressed by the compressor mechanism, the compressed fluid flows through the inside of the electric motor unit housed in the same container and is discharged out of the container.
特開2005-299635号公報JP 2005-299635 A
 上記のような従来の圧縮機では、圧縮機構部で圧縮された流体に含まれる異物、例えば圧縮機内部で発生している微小な摩耗粉や、製造する際に混入した塵埃等が、電動機部の内部、例えば回転子と固定子との間に形成された隙間等に流れ込むため、この異物により回転子または固定子、あるいは固定子に巻線が巻かれている場合はその巻線が損傷して電動機部の故障の原因になるという問題があった。 In the conventional compressor as described above, foreign matter contained in the fluid compressed by the compression mechanism section, for example, minute wear powder generated inside the compressor, dust mixed in during manufacture, etc. For example, a gap formed between the rotor and the stator or the like, so that if this foreign matter winds the rotor or stator or the stator, the winding is damaged. As a result, there was a problem that the motor part could be damaged.
 本発明は、上記のような課題を解決するためになされたもので、電動機部の内部を異物が流れることを抑制できる圧縮機を得ることを目的とする。 The present invention has been made in order to solve the above-described problems, and an object of the present invention is to obtain a compressor capable of suppressing the flow of foreign matter inside the electric motor section.
 本発明は、回転子の外周面に切欠きが設けられ、切欠きの主軸に最も近い先端が、切欠きの外周面における端部と主軸の回転軸とで囲まれる領域からずれた領域に位置するようにしたものである。 In the present invention, a notch is provided on the outer peripheral surface of the rotor, and the tip closest to the main shaft of the notch is located in a region shifted from the region surrounded by the end portion of the outer surface of the notch and the rotation shaft of the main shaft. It is what you do.
 本発明に係る電動機によれば、切欠きの先端が、切欠きの外周面における端部と主軸の回転軸とで囲まれる領域からずれた領域に位置しているため、回転子の外周面に設けられた切欠きに入り込んだ異物が再び遠心方向に出ていくことが切欠きの内側面によって妨げられる。このため、電動機部の内部を異物が流れ続けることが抑制され、電動機部の故障を減らすことができる。 According to the electric motor of the present invention, the tip of the notch is located in a region shifted from the region surrounded by the end portion of the outer periphery of the notch and the rotation axis of the main shaft. The foreign matter that has entered the provided notch is prevented from coming out again in the centrifugal direction by the inner surface of the notch. For this reason, it is suppressed that a foreign material continues flowing through the inside of an electric motor part, and the failure of an electric motor part can be reduced.
実施の形態1から5係る圧縮機100の概略構成を示す断面図Sectional drawing which shows schematic structure of the compressor 100 which concerns on Embodiment 1-5. 図1における圧縮機構部のA-A断面図AA sectional view of the compression mechanism in FIG. 実施の形態1に係る電動機部の断面図Sectional drawing of the electric motor part which concerns on Embodiment 1. FIG. 実施の形態1に係る回転子の側面図Side view of rotor according to embodiment 1 実施の形態1に係る回転子の側面図Side view of rotor according to embodiment 1 実施の形態1に係る回転子の側面図Side view of rotor according to embodiment 1 実施の形態1に係る回転子の側面図Side view of rotor according to embodiment 1 実施の形態2に係る電動機部の断面図Sectional drawing of the electric motor part which concerns on Embodiment 2. FIG. 実施の形態3に係る電動機部の断面図Sectional drawing of the electric motor part which concerns on Embodiment 3. 実施の形態4に係る電動機部の断面図Sectional drawing of the electric motor part which concerns on Embodiment 4. FIG. 実施の形態5に係る電動機部の断面図Sectional drawing of the electric motor part which concerns on Embodiment 5. FIG.
実施の形態1.
 以下、本発明の圧送機の実施の形態である圧縮機について説明する。圧縮機は、冷凍サイクル等に用いられ、流体である冷媒を圧縮するものである。この実施の形態1の圧縮機は、圧送部として圧縮機構部を備え、電動機部として永久磁石を有するIPM(Interior Permanent Magnet)モータを備えている。図1は実施の形態1の圧縮機100の概略構成を示す断面図である。
Embodiment 1 FIG.
Hereinafter, a compressor which is an embodiment of a pressure feeder of the present invention will be described. The compressor is used in a refrigeration cycle or the like and compresses a refrigerant that is a fluid. The compressor according to the first embodiment includes an IPM (Interior Permanent Magnet) motor having a compression mechanism unit as a pumping unit and a permanent magnet as an electric motor unit. FIG. 1 is a cross-sectional view illustrating a schematic configuration of a compressor 100 according to the first embodiment.
 圧縮機100は、円筒形状の容器10と、この容器10の内部に設けられ回転力を発生させる電動機部30と、同じく容器10内に設けられ電動機部30の主軸24を介して回転力が伝達される圧縮機構部20とを備えている。
 また、容器10の下方には冷媒が吸入される吸入口12を有する吸入管11が設けられ、容器10の上面部には冷媒が吐出される吐出口14を有する吐出管13が設けられている。また、容器10内の吸入管11よりも下方には潤滑油を貯留する油溜り15が形成されている。
The compressor 100 includes a cylindrical container 10, a motor unit 30 that is provided inside the container 10 and generates a rotational force, and a rotational force is transmitted through the main shaft 24 of the motor unit 30 that is also provided in the container 10. The compression mechanism unit 20 is provided.
A suction pipe 11 having a suction port 12 through which refrigerant is sucked is provided below the container 10, and a discharge pipe 13 having a discharge port 14 through which refrigerant is discharged is provided on the upper surface of the container 10. . An oil sump 15 for storing lubricating oil is formed below the suction pipe 11 in the container 10.
 次に、圧縮機構部20の詳細な構成を説明する。図2は図1における圧縮機構部20のA-A断面図である。図1、図2に示すように、圧縮機構部20はシリンダ21と、偏心部23と、主軸24と、ローラ22と、ベーン25と、バネ26と、上側軸受部28と、下側軸受部29とを備える。
 シリンダ21は、内部に冷媒が流入する空間が形成されている。このシリンダ21内部の空間と容器10の吸入管11とは冷媒が流れる流路を介して接続されており、吸入室を形成する。
Next, a detailed configuration of the compression mechanism unit 20 will be described. 2 is a cross-sectional view taken along line AA of the compression mechanism 20 in FIG. As shown in FIGS. 1 and 2, the compression mechanism section 20 includes a cylinder 21, an eccentric section 23, a main shaft 24, a roller 22, a vane 25, a spring 26, an upper bearing section 28, and a lower bearing section. 29.
The cylinder 21 has a space into which refrigerant flows. The space inside the cylinder 21 and the suction pipe 11 of the container 10 are connected via a flow path through which a refrigerant flows to form a suction chamber.
 シリンダ21の圧縮空間には、主軸24が設けられており、主軸24には偏心部23が接続されている。また、偏心部23とシリンダ21の間にはローラ22が設けられており、シリンダ21とローラ22との間には冷媒を圧縮する圧縮室60が形成されている。
 また、シリンダ21の内部には、先端がローラ22に接して配置されたベーン25が設けられており、ベーン25とシリンダ21とはバネ26により接続されている。シリンダ21とローラ22との間の空間は、ベーン25によって2つに分割されている。
A main shaft 24 is provided in the compression space of the cylinder 21, and an eccentric portion 23 is connected to the main shaft 24. A roller 22 is provided between the eccentric portion 23 and the cylinder 21, and a compression chamber 60 for compressing the refrigerant is formed between the cylinder 21 and the roller 22.
Further, a vane 25 having a tip disposed in contact with the roller 22 is provided inside the cylinder 21, and the vane 25 and the cylinder 21 are connected by a spring 26. A space between the cylinder 21 and the roller 22 is divided into two by a vane 25.
 シリンダ21の上方には、吐出孔27が設けられた上側軸受部28が設けられており、シリンダ21の下方には下側軸受部29が設けられている。主軸24は、上側軸受部28と下側軸受部29を貫通して配置されることにより、位置が固定されている。 An upper bearing portion 28 provided with a discharge hole 27 is provided above the cylinder 21, and a lower bearing portion 29 is provided below the cylinder 21. The position of the main shaft 24 is fixed by being disposed through the upper bearing portion 28 and the lower bearing portion 29.
 次に、電動機部30の詳細な構成を説明する。図3は図1における電動機部30のB-B断面図、図4は回転子50の側面図である。電動機部30は、圧縮機構部20に回転力を伝達する主軸24を有する回転子50と、回転子50の外周面を囲む固定子40を備え、容器10の内部において圧縮機構部20の上方に配置されている。 Next, a detailed configuration of the electric motor unit 30 will be described. 3 is a cross-sectional view taken along the line BB of the motor unit 30 in FIG. 1, and FIG. 4 is a side view of the rotor 50. As shown in FIG. The electric motor unit 30 includes a rotor 50 having a main shaft 24 that transmits rotational force to the compression mechanism unit 20, and a stator 40 that surrounds the outer peripheral surface of the rotor 50, and above the compression mechanism unit 20 inside the container 10. Has been placed.
 固定子40は、環状の固定子コア部41と、固定子コア部41に巻回された巻線46を備える。固定子コア部41は、電磁鋼板を主軸方向に積層して形成されており、環状のバックヨーク部42と、バックヨーク部42から内周面側に突出した複数のティース部43を備える。このバックヨーク部42とティース部43との間には、スロット部44と呼ばれる空間が形成されている。ティース部43には巻線46が巻回されており、この巻線46はスロット部44に収まっている。
 隣り合うティース部43の先端はスロット部44の開口であるスロットオープン45が形成されている。スロットオープン45は、製造時に巻線46を巻回するための開口に使われたり、磁気的な抵抗となるために設けられている。
The stator 40 includes an annular stator core portion 41 and a winding 46 wound around the stator core portion 41. The stator core portion 41 is formed by laminating electromagnetic steel plates in the main axis direction, and includes an annular back yoke portion 42 and a plurality of teeth portions 43 protruding from the back yoke portion 42 toward the inner peripheral surface side. A space called a slot portion 44 is formed between the back yoke portion 42 and the tooth portion 43. A winding 46 is wound around the tooth portion 43, and the winding 46 is accommodated in the slot portion 44.
A slot opening 45 that is an opening of the slot portion 44 is formed at the tip of the adjacent teeth portion 43. The slot opening 45 is used for an opening for winding the winding 46 at the time of manufacture, or provided to be a magnetic resistance.
 また、固定子40には、導電端子47が電気的に接続されている。導電端子47は容器10の上方に設けられている。 In addition, a conductive terminal 47 is electrically connected to the stator 40. The conductive terminal 47 is provided above the container 10.
 回転子50は、主軸24と、回転子コア部51と、永久磁石56とを備えており、外周面を固定子40に囲まれ、主軸24を上側軸受部28と下側軸受部29で軸支されることで容器10内に配置されている。固定子40と回転子50との間にはエアギャップと呼ばれる隙間が形成されて配置されている。主軸24と回転子コア部51とは固定されており、主軸24を介して回転子50が圧縮機構部20に接続されている。回転子コア部51には、6枚の板状の永久磁石56が主軸24を六方から囲むようにして主軸24の軸方向に挿入されている。 The rotor 50 includes a main shaft 24, a rotor core portion 51, and a permanent magnet 56, the outer peripheral surface is surrounded by the stator 40, and the main shaft 24 is supported by the upper bearing portion 28 and the lower bearing portion 29. It is arrange | positioned in the container 10 by being supported. A gap called an air gap is formed between the stator 40 and the rotor 50. The main shaft 24 and the rotor core portion 51 are fixed, and the rotor 50 is connected to the compression mechanism portion 20 via the main shaft 24. Six rotor permanent magnets 56 are inserted into the rotor core 51 in the axial direction of the main shaft 24 so as to surround the main shaft 24 from six directions.
 そして、回転子コア部51の外周面には切欠き52が設けられている。この切欠き52は図4に示すように、回転子50の上部から下部まで連続的に形成されている。この切欠き52は、外周面における端部53a、53bと先端54と切欠き52の内側面55とを有する。ここで、端部53a、53bとは、回転子コア部51の外周面における切欠き52の開口を形成する部分であり、図4の例ではそれぞれ回転子50の上部から下部まで直線状に設けられている。内側面55は切欠き52の内側を形成する2つの面であり、それぞれ回転軸方向の断面において湾曲して円弧状に形成されている。また先端54とは、切欠き52を形成する内側面55のうち主軸24に最も近い位置にある部分である。 A notch 52 is provided on the outer peripheral surface of the rotor core 51. As shown in FIG. 4, the notch 52 is formed continuously from the upper part to the lower part of the rotor 50. The notch 52 has end portions 53 a and 53 b on the outer peripheral surface, a tip 54, and an inner side surface 55 of the notch 52. Here, the end portions 53a and 53b are portions that form the openings of the notches 52 on the outer peripheral surface of the rotor core portion 51. In the example of FIG. It has been. The inner side surface 55 is two surfaces forming the inside of the notch 52, and is curved and formed in an arc shape in the cross section in the rotation axis direction. The tip 54 is a portion of the inner surface 55 that forms the notch 52 that is closest to the main shaft 24.
 内側面55のうち主軸24側の内側面55は先端54からさらに外周側に戻る形状になっており、主軸24に最も近い位置にある先端54は内側面55を形成する弧の途中に位置することになる。すなわち、先端54は内側面55の端部53a、53bと2つの内側面55が接続される端部との間に位置する。そして、この先端54は、端部53a、53bと主軸24の回転軸70とで囲まれる領域からずれた領域に位置している。この端部53a、53bと主軸24の回転軸70とで囲まれる領域とは、端部53aを構成する直線と主軸24の回転軸70を結んでなす平面71と、端部53bを構成する直線と主軸24の回転軸70を結んでなす平面72と、端部53a、53bを結んでなす平面73とで囲まれる領域である。図3の断面図では各平面71~73を点線で示している。なお、この実施の形態の回転子50の回転方向は図3における時計まわりであり、先端54が端部53a、53bと主軸24の回転軸70とで囲まれる領域からずれた領域から、回転方向の後方側にずれた領域に位置している。 The inner side surface 55 on the main shaft 24 side of the inner side surface 55 is shaped to return further to the outer peripheral side from the tip end 54, and the tip end 54 closest to the main shaft 24 is located in the middle of the arc forming the inner side surface 55. It will be. That is, the tip 54 is located between the end portions 53a and 53b of the inner side surface 55 and the end portion to which the two inner side surfaces 55 are connected. The tip 54 is located in a region shifted from a region surrounded by the end portions 53 a and 53 b and the rotation shaft 70 of the main shaft 24. The region surrounded by the end portions 53a and 53b and the rotation shaft 70 of the main shaft 24 is a plane 71 connecting the straight line constituting the end portion 53a and the rotation shaft 70 of the main shaft 24 and the straight line forming the end portion 53b. And a plane 72 formed by connecting the rotation shaft 70 of the main shaft 24 and a plane 73 formed by connecting the end portions 53a and 53b. In the cross-sectional view of FIG. 3, the planes 71 to 73 are indicated by dotted lines. Note that the rotation direction of the rotor 50 of this embodiment is clockwise in FIG. 3, and the rotation direction starts from the region where the tip 54 is displaced from the region surrounded by the end portions 53a and 53b and the rotation shaft 70 of the main shaft 24. It is located in the area shifted to the rear side.
 次に、圧縮機100の動作を説明する。
 圧縮機100の導電端子47から電力が供給され、固定子40の巻線に所定の電圧が印加されると巻線46の周辺には磁界が発生し、固定子コア部41は電磁石となる。固定子40において発生した磁束と、回転子50に設けられた永久磁石56により発生する磁束とが反発または吸引することにより、回転子50が回転力をもって回転する。回転子50は図3において時計回りに回転する。回転子50が回転すると、回転子50の主軸24が回転し、主軸24に接続された偏心部23もともに回転する。偏心部23の回転に伴い、圧縮機構部20のローラ22がシリンダ21の内部で偏心回転をする。ベーン25はローラ22に接して圧縮室の半径方向に搖動するため、偏心部23の偏心回転に伴って2つに分割された圧縮室60の容積が変化する。
Next, the operation of the compressor 100 will be described.
When electric power is supplied from the conductive terminal 47 of the compressor 100 and a predetermined voltage is applied to the winding of the stator 40, a magnetic field is generated around the winding 46, and the stator core portion 41 becomes an electromagnet. When the magnetic flux generated in the stator 40 and the magnetic flux generated by the permanent magnet 56 provided in the rotor 50 are repelled or attracted, the rotor 50 rotates with a rotational force. The rotor 50 rotates clockwise in FIG. When the rotor 50 rotates, the main shaft 24 of the rotor 50 rotates, and the eccentric portion 23 connected to the main shaft 24 also rotates. Along with the rotation of the eccentric portion 23, the roller 22 of the compression mechanism portion 20 rotates eccentrically inside the cylinder 21. Since the vane 25 is in contact with the roller 22 and swings in the radial direction of the compression chamber, the volume of the compression chamber 60 divided into two changes as the eccentric portion 23 rotates eccentrically.
 このようにして圧縮機100が動作を開始すると、吸入口12から冷媒が吸い込まれて圧縮機構部20内部の圧縮室60に流入する。流入した冷媒は、回転子50の回転により圧縮室60で圧縮され、高圧のガス冷媒に変化する。圧縮されたガス冷媒は圧縮機構部20の吐出孔27から容器10の内部の空間に吐出される。さらに、吐出孔27から吐出されたガス冷媒は電動機部30の外側、スロット部44、あるいはエアギャップ等を通過して容器10の上方に設けられた吐出口14から圧縮機100の外へ吐出される。 When the compressor 100 starts operating in this manner, the refrigerant is sucked from the suction port 12 and flows into the compression chamber 60 inside the compression mechanism unit 20. The refrigerant that has flowed in is compressed in the compression chamber 60 by the rotation of the rotor 50, and changes into a high-pressure gas refrigerant. The compressed gas refrigerant is discharged from the discharge hole 27 of the compression mechanism 20 into the space inside the container 10. Further, the gas refrigerant discharged from the discharge hole 27 passes through the outside of the electric motor unit 30, the slot 44, the air gap, or the like and is discharged out of the compressor 100 from the discharge port 14 provided above the container 10. The
 また、圧縮機100の運転中は、圧縮機100の内部を冷媒とともに潤滑油が流れている。固定子40が回転すると油溜り15に貯留された潤滑油が主軸24の内部に設けられた油穴から吸い上げられる。吸い上げる方法としては圧力差を利用する方法、ギヤを利用する方法、遠心力を利用する方法などがある。吸い上げられた潤滑油は所定の油通路を通り、上側軸受部28及び下側軸受部29の摺動による摩耗を抑制するための潤滑に利用されたり、圧縮機構部20の圧縮室の気密性を上げるために利用される。各部に供給された潤滑油は上側軸受部28及び下側軸受部29を冷却して、再び油溜り15に戻る。また、吸い上げられた潤滑油の一部は容器10の内部に吐出され、圧縮された冷媒とともに電動機部30の外側、スロット部44、或いはエアギャップ等を通過する。 Further, during the operation of the compressor 100, the lubricating oil flows along with the refrigerant inside the compressor 100. When the stator 40 rotates, the lubricating oil stored in the oil reservoir 15 is sucked up from an oil hole provided in the main shaft 24. As a suction method, there are a method using a pressure difference, a method using a gear, a method using a centrifugal force, and the like. The sucked-up lubricating oil passes through a predetermined oil passage and is used for lubrication for suppressing wear due to sliding of the upper bearing portion 28 and the lower bearing portion 29, or the airtightness of the compression chamber of the compression mechanism portion 20 is increased. Used to raise. The lubricating oil supplied to each part cools the upper bearing part 28 and the lower bearing part 29 and returns to the oil sump 15 again. A part of the sucked lubricating oil is discharged into the container 10 and passes through the outside of the electric motor unit 30, the slot unit 44, the air gap or the like together with the compressed refrigerant.
 以上のように、圧縮機100の内部には、圧縮された冷媒と潤滑油を含む流体が流れる。このうち圧縮された冷媒を圧縮機100内部の電動機部30周囲または内部に流す理由の一つは、圧縮機100の動作中に発熱した電動機部30を冷媒で冷却することである。そのためには、冷媒を電動機部30に接触させることが必要である。また、上側軸受部28及び下側軸受部29を冷却して高温になった潤滑油は、圧縮機100内部を流れる冷媒と接触することで冷却されて、再び油溜り15に戻る。このように、圧縮機100では、圧縮された冷媒と潤滑油を含む流体が、電動機部30周囲または内部を流れる構成となっている。 As described above, a fluid containing a compressed refrigerant and lubricating oil flows inside the compressor 100. One of the reasons for flowing the compressed refrigerant around or inside the electric motor unit 30 in the compressor 100 is to cool the electric motor unit 30 that generates heat during the operation of the compressor 100 with the refrigerant. For this purpose, it is necessary to bring the refrigerant into contact with the electric motor unit 30. In addition, the lubricating oil that has been heated to a high temperature by cooling the upper bearing portion 28 and the lower bearing portion 29 is cooled by coming into contact with the refrigerant flowing in the compressor 100 and returns to the oil reservoir 15 again. Thus, in the compressor 100, the fluid containing the compressed refrigerant and lubricating oil is configured to flow around or inside the electric motor unit 30.
 圧縮機100の内部を流れる冷媒または潤滑油には、圧縮機内部で発生している微小な摩耗粉や、製造する際に混入した塵埃等の異物が含まれている。圧縮機は鉄等の磁性体である材料から構成されており、摺動する部分では材料が削れて摩耗が発生する。そのため、異物には、磁性体と非磁性体の両方が含まれている。したがって、冷媒及び潤滑油が圧縮機100の内部を流れると、異物が流体とともに固定子40と回転子50との間に形成されたエアギャップに流れ込むことがある。 The refrigerant or the lubricating oil flowing inside the compressor 100 contains foreign particles such as fine abrasion powder generated inside the compressor and dust mixed during manufacturing. The compressor is made of a material that is a magnetic material such as iron, and the material is shaved and worn at the sliding portion. Therefore, the foreign matter includes both a magnetic material and a non-magnetic material. Therefore, when the refrigerant and the lubricating oil flow inside the compressor 100, the foreign matter may flow into the air gap formed between the stator 40 and the rotor 50 together with the fluid.
 従来の電動機では、異物を含む流体がエアギャップに流れ込むため、この異物により回転子50または固定子40、あるいは固定子40に設けられた巻線46が損傷して電動機部30の故障の原因となっていた。回転子50が回転している場合は、流体はエアギャップを旋回して流れている。そのため、流体に含まれる異物または、回転子50の外周面に付着した異物が遠心力を受けて固定子40に向けて飛ばされる。固定子40の回転子50に対向する面側にはティース部43等が設けられて複雑な構造になっているため、スロットオープン45から異物が入り込むと、固定子40の内部に異物が堆積し始める。 In the conventional electric motor, fluid containing foreign matter flows into the air gap, and this foreign matter damages the rotor 50 or the stator 40 or the winding 46 provided on the stator 40, which may cause a failure of the motor unit 30. It was. When the rotor 50 is rotating, the fluid flows through the air gap. Therefore, the foreign matter contained in the fluid or the foreign matter attached to the outer peripheral surface of the rotor 50 receives the centrifugal force and is blown toward the stator 40. Since the teeth portion 43 and the like are provided on the surface side of the stator 40 facing the rotor 50 and have a complicated structure, when foreign matter enters from the slot open 45, the foreign matter accumulates inside the stator 40. start.
 固定子40の巻線46には電圧が印加されているため、巻線46と固定子コア部41との間には電位差が発生している。堆積した異物により巻線46の傷付きが発生したりすると、巻線46と固定子コア部41とが接触するため、放電現象やスパークが発生して電動機部30が故障する原因となっていた。 Since a voltage is applied to the winding 46 of the stator 40, a potential difference is generated between the winding 46 and the stator core portion 41. If the wound 46 is damaged by the accumulated foreign matter, the winding 46 and the stator core portion 41 come into contact with each other, and thus a discharge phenomenon or a spark occurs, causing the motor portion 30 to fail. .
 このような従来の圧縮機に対して本発明の実施の形態1に係る圧縮機100では、異物を含む流体がエアギャップを流れると、異物は回転子50の外周面に設けられた切欠き52に入り込む。特に、磁性を有する異物は、回転子50に設けられた永久磁石56から受ける磁力によって回転子50の外周面に向けて吸引される。吸引された磁性体の異物は、外周面よりも永久磁石56に近い位置に設けられた切欠き52内部に吸引される。切欠き52に入り込んだ異物は、切欠き52の先端54に収集される。 In the compressor 100 according to Embodiment 1 of the present invention compared to such a conventional compressor, when a fluid containing foreign matter flows through the air gap, the foreign matter is notched 52 provided on the outer peripheral surface of the rotor 50. Get in. In particular, the foreign matter having magnetism is attracted toward the outer peripheral surface of the rotor 50 by a magnetic force received from a permanent magnet 56 provided on the rotor 50. The attracted foreign matter of the magnetic body is attracted into the notch 52 provided at a position closer to the permanent magnet 56 than the outer peripheral surface. The foreign matter that has entered the notch 52 is collected at the tip 54 of the notch 52.
 回転子50が一定の速度で回転している場合、収集された異物には遠心力が働くため、遠心方向に飛ばされる。切欠き52の先端54が切欠き52の外周面における端部53a、53bと主軸24の回転軸70とで囲まれる領域からずれた領域に位置しているため、遠心方向に飛ばされた異物は切欠き52の内側面55に衝突して切欠き52の内部に収集された状態が維持される。 When the rotor 50 is rotating at a constant speed, centrifugal force is applied to the collected foreign matter, so that it is blown in the centrifugal direction. Since the tip 54 of the notch 52 is located in a region deviated from the region surrounded by the end portions 53a and 53b and the rotation shaft 70 of the main shaft 24 on the outer peripheral surface of the notch 52, the foreign matter blown in the centrifugal direction is The state of colliding with the inner surface 55 of the notch 52 and being collected inside the notch 52 is maintained.
 以上のような実施の形態1に係る圧縮機100によれば、回転子50の外周面に切欠き52が設けられているため、エアギャップを流れる異物を切欠き52の内部に取り込むことができる。また、切欠き52の先端が、切欠き52の外周面における端部53a、53bと主軸24の回転軸70とで囲まれる領域からずれた領域に位置しているため、回転子50の外周面に設けられた切欠き52に入り込んだ異物が再び切欠き52の開口から遠心方向に出ていくことが切欠き52の内側面55によって妨げられる。このため、切欠き52に入り込んだ異物を確実に収集することができ、電動機部30の内部を異物が流れ続けることが抑制され、電動機部30の故障を抑制することができる。 According to the compressor 100 according to the first embodiment as described above, since the notch 52 is provided on the outer peripheral surface of the rotor 50, the foreign matter flowing through the air gap can be taken into the notch 52. . Further, since the tip of the notch 52 is located in a region deviated from the region surrounded by the end portions 53 a and 53 b and the rotation shaft 70 of the main shaft 24 on the outer peripheral surface of the notch 52, the outer peripheral surface of the rotor 50. The inside surface 55 of the notch 52 prevents the foreign matter that has entered the notch 52 provided in the bottom of the notch 52 from coming out of the opening of the notch 52 in the centrifugal direction again. For this reason, it is possible to reliably collect the foreign matter that has entered the notch 52, and to prevent the foreign matter from continuing to flow inside the electric motor unit 30, and to prevent a failure of the electric motor unit 30.
 また、回転子50は永久磁石56を備えるため、永久磁石56の磁力によって回転子50の外周面よりも永久磁石56に近い位置に設けられた切欠き52の内部に、磁性体の異物を収集することができる。収集された磁性体の異物は磁力によって永久磁石56が配置される方向に吸引されるため、再び切欠き52から出ることが抑制され、異物を確実に切欠き52の内部に収集することができる。 Further, since the rotor 50 includes the permanent magnet 56, magnetic foreign matter is collected inside the notch 52 provided closer to the permanent magnet 56 than the outer peripheral surface of the rotor 50 by the magnetic force of the permanent magnet 56. can do. Since the collected foreign matter of the magnetic material is attracted by the magnetic force in the direction in which the permanent magnet 56 is disposed, it is suppressed from coming out of the notch 52 again, and the foreign matter can be reliably collected inside the notch 52. .
 また、回転子50に切欠き52を設ける構成であるとともに、電動機部30の回転動作のために設けられた永久磁石56の磁力を利用して磁性体の異物を吸引できるため、部品点数を増やすことなく異物を確実に収集することができ、電動機部30の内部を異物が流れ続けることを抑制することができる。 In addition, the rotor 50 is provided with a notch 52, and the magnetic substance of the permanent magnet 56 provided for the rotating operation of the electric motor unit 30 can be used to attract magnetic foreign matter, thereby increasing the number of parts. Therefore, it is possible to reliably collect the foreign matter without causing the foreign matter to continue flowing in the electric motor unit 30.
 また、回転子50に設けられた切欠き52に異物が収集されるため、固定子40のスロットオープン45から異物が入り込み固定子40の内部に異物が堆積することを抑制することができる。 Further, since foreign matter is collected in the notch 52 provided in the rotor 50, foreign matter can be prevented from entering through the slot opening 45 of the stator 40 and depositing foreign matter inside the stator 40.
 なお図3では、先端54が端部53a、53bと主軸24の回転軸70とで囲まれる領域からずれた領域から、回転子50が回転する方向の後方側にずれた領域に位置しているが、これに限るものではなく、回転方向の前方側にずれた領域に位置してもよい。 In FIG. 3, the tip 54 is located in a region shifted from the region surrounded by the end portions 53 a and 53 b and the rotation shaft 70 of the main shaft 24 to the rear side in the direction in which the rotor 50 rotates. However, the present invention is not limited to this, and may be located in a region shifted forward in the rotational direction.
 先端54が回転方向の後方側にずれた領域に位置している場合、回転子50の回転速度が増加しているときに異物が再び切欠き52から出ることを抑制することができる。例えば、圧縮機100を停止した状態から駆動させた場合、回転子50は停止の状態から一定の回転数に達するまで、回転速度を増加させる。このとき、回転子50の切欠き52内部に収集された異物は慣性により切欠き52内部を回転子50の回転方向に対して逆向きに移動し、回転方向と同じ向きには移動しないため、切欠き52内部に留まる。
 また、上記実施の形態1のように先端54が回転方向の後方側にずれた領域に位置している場合は、回転子50の回転速度が増加しているときに切欠き52内部に異物を容易に収集することができる。回転子50の回転速度が増加しているときは、エアギャップを流れる流体の速度は回転子50の回転速度よりも小さいため、流体に含まれる異物は回転子50に対しては回転方向の後方側に流れる。したがって、回転方向の後方側にずれた領域に位置している切欠き52に異物を容易に取り込むことができる。
When the tip 54 is located in a region shifted to the rear side in the rotation direction, it is possible to suppress foreign matters from coming out of the notch 52 again when the rotation speed of the rotor 50 is increased. For example, when the compressor 100 is driven from a stopped state, the rotor 50 increases the rotation speed from the stopped state until reaching a certain number of rotations. At this time, the foreign matter collected in the notch 52 of the rotor 50 moves in the notch 52 in the opposite direction to the rotation direction of the rotor 50 due to inertia and does not move in the same direction as the rotation direction. Stay inside the notch 52.
Further, when the tip 54 is located in a region shifted to the rear side in the rotational direction as in the first embodiment, foreign matter is put inside the notch 52 when the rotational speed of the rotor 50 is increased. Easy to collect. When the rotation speed of the rotor 50 is increasing, the speed of the fluid flowing through the air gap is smaller than the rotation speed of the rotor 50, so that foreign matter contained in the fluid is behind the rotor 50 in the rotation direction. Flows to the side. Therefore, the foreign matter can be easily taken into the notch 52 located in the region shifted to the rear side in the rotation direction.
 一方、先端54が回転方向の前方側にずれた領域に位置している場合、回転子50の回転速度が減少しているときに、切欠き52の内部に異物を容易に収集することができる。回転子50の回転速度が減少しているときは、エアギャップを流れる流体の速度は回転子50の回転速度よりも大きいため、流体に含まれる異物は回転子50に対しては回転方向の前方側に流れる。したがって、回転方向の前方側にずれた領域に位置している切欠き52に容易に収集することができる。 On the other hand, when the tip 54 is located in a region shifted forward in the rotational direction, foreign matter can be easily collected inside the notch 52 when the rotational speed of the rotor 50 is decreasing. . When the rotational speed of the rotor 50 is decreasing, the speed of the fluid flowing through the air gap is larger than the rotational speed of the rotor 50, so that the foreign matter contained in the fluid is forward of the rotational direction with respect to the rotor 50. Flows to the side. Therefore, it can collect easily in the notch 52 located in the area | region which shifted | deviated to the front side of the rotation direction.
 なお、実施の形態1では、切欠き52が回転子50の上部から下部まで垂直方向に直線状に形成されているものを示したが、切欠き52が回転子50の外周面に設けられていれば、その端部53a、53bが回転子50の外周面に形成する形状はこれに限らない。例えば、端部53a、53bが外周面に形成する開口の幅が回転子50の上部と下部で異なる構成、図5のように回転子50の上部から下部まで連続的に斜め方向に直線状に形成される構成、図6のように回転子50の上部から下部まで断続的に形成され、さらに回転軸70の方向においてずれた位置に切欠き52が設けられた千鳥状である構成、図7のように切欠き53の外周面における端部53a、53bは円形に形成される構成としてもよい。また、切欠き52の数は限られず、適当な数だけ設けてよい。 In the first embodiment, the notch 52 is linearly formed in the vertical direction from the upper part to the lower part of the rotor 50. However, the notch 52 is provided on the outer peripheral surface of the rotor 50. Then, the shape which the edge parts 53a and 53b form in the outer peripheral surface of the rotor 50 is not restricted to this. For example, the widths of the openings formed by the end portions 53a and 53b on the outer peripheral surface are different between the upper part and the lower part of the rotor 50, as shown in FIG. The formed structure is intermittently formed from the upper part to the lower part of the rotor 50 as shown in FIG. 6, and is a staggered structure in which notches 52 are provided at positions shifted in the direction of the rotating shaft 70, FIG. As described above, the end portions 53a and 53b on the outer peripheral surface of the notch 53 may be formed in a circular shape. Further, the number of the notches 52 is not limited, and an appropriate number may be provided.
 また、この実施の形態1の回転子50においては、図8に示すように各切欠き52における端部53aと端部53bとの中間線である中心軸が、各永久磁石56の中心軸74と対向した位置となるように切欠き52が設けられている。なお、永久磁石56の中心軸74とは、図8に示す電動機部30の断面図において永久磁石56の長手方向における中心を通る軸である。 Further, in the rotor 50 of the first embodiment, as shown in FIG. 8, the central axis that is an intermediate line between the end portion 53 a and the end portion 53 b in each notch 52 is the central axis 74 of each permanent magnet 56. The notch 52 is provided so that it may become a position facing. The central axis 74 of the permanent magnet 56 is an axis passing through the center in the longitudinal direction of the permanent magnet 56 in the cross-sectional view of the electric motor unit 30 shown in FIG.
 このような配置構成にすると、切欠き52が永久磁石56で発生する磁束に与える影響を少なくすることができる。切欠き52の端部53aと端部53bとの中心軸が永久磁石56の中心軸74と対向した位置であると、端部53aと端部53bとの中心軸が永久磁石56の中心軸74及び主軸24の回転軸70を結んでなす平面75上に位置することになる。
 圧縮機100の回転子50では、1つの永久磁石56は回転子50の外周面側と主軸24側とが異なる極となるように挿入されている。また、6枚の永久磁石56は隣り合う永久磁石56同士のS極とN極の向きは逆向きに配置されている。そのため、1つの永久磁石56のN極から隣り合う永久磁石56のS極へ向けて磁束が発生する。この磁束は、1つの永久磁石56の中心軸74付近では磁束密度が小さく、隣り合う永久磁石56同士の間では磁束密度が大きくなる。このような磁束が通る領域に切欠き52が設けられると、切欠き52が設けられた部分では透磁率が変化するため、磁束が変化する。
With such an arrangement, the influence of the notch 52 on the magnetic flux generated by the permanent magnet 56 can be reduced. When the center axis of the end portion 53a and the end portion 53b of the notch 52 is a position facing the center axis 74 of the permanent magnet 56, the center axis of the end portion 53a and the end portion 53b is the center axis 74 of the permanent magnet 56. And it will be located on the plane 75 which connects the rotating shaft 70 of the main axis | shaft 24.
In the rotor 50 of the compressor 100, one permanent magnet 56 is inserted so that the outer peripheral surface side of the rotor 50 and the main shaft 24 side are different poles. Further, the six permanent magnets 56 are arranged so that the directions of the S pole and the N pole between the adjacent permanent magnets 56 are opposite to each other. Therefore, a magnetic flux is generated from the north pole of one permanent magnet 56 toward the south pole of the adjacent permanent magnet 56. This magnetic flux has a small magnetic flux density in the vicinity of the central axis 74 of one permanent magnet 56 and a large magnetic flux density between adjacent permanent magnets 56. When the notch 52 is provided in the region through which such a magnetic flux passes, the magnetic permeability changes in the portion where the notch 52 is provided, so that the magnetic flux changes.
 上記のように、切欠き52の端部53aと端部53bとの中心軸が永久磁石56の中心軸74及び主軸24の回転軸70を結んでなす平面75上に設けられる場合、切欠き52は磁束密度が小さい領域に位置することになるため、磁束に与える影響が少ない。したがって切欠き52を設けた場合でも磁束の乱れを少なくすることができ、回転子50の回転動作への影響を抑えられる。
 なお、図8で示したように各切欠き52が回転子50の外周面に均等配置されていると各永久磁石56から発生する磁束の形状が主軸24の回転軸70のまわりに対称性を有することになるので、回転子50が安定して回転運動するため、電動機部30の振動または騒音の発生を抑制することができる。また、切欠き52に異物が入り込んだ状態では、各切欠き52に入り込む異物の量が均一化されるため、回転子50全体の重量のバランスが崩れることなく回転子50が安定して回転できるので、振動または騒音が発生することを抑制することができる。
As described above, when the center axis of the end portion 53 a and the end portion 53 b of the notch 52 is provided on the plane 75 connecting the center axis 74 of the permanent magnet 56 and the rotation shaft 70 of the main shaft 24, the notch 52 is provided. Is located in a region where the magnetic flux density is small, and therefore has little influence on the magnetic flux. Therefore, even when the notch 52 is provided, the disturbance of the magnetic flux can be reduced, and the influence on the rotating operation of the rotor 50 can be suppressed.
As shown in FIG. 8, when the notches 52 are evenly arranged on the outer peripheral surface of the rotor 50, the shape of the magnetic flux generated from each permanent magnet 56 has symmetry about the rotation axis 70 of the main shaft 24. Therefore, since the rotor 50 stably rotates, the generation of vibration or noise in the motor unit 30 can be suppressed. Further, in a state where foreign matter enters the notches 52, the amount of foreign matter entering each notch 52 is made uniform, so that the rotor 50 can be stably rotated without losing the balance of the weight of the entire rotor 50. Therefore, generation of vibration or noise can be suppressed.
 なお、切欠き52の端部53aと端部53bとの中心軸が永久磁石56の中心軸74及び主軸24の回転軸70を結んでなす平面75上に設けられるものを説明したが、厳密にこのような位置関係でなくてもよく、切欠き52の端部53aと端部53bで形成される開口が平面75上に設けられれば同様の効果がある。
 なお、図8では切欠き52は永久磁石56と同じ数設けられているが、これに限るものではない。永久磁石56の数より少なくてもよく、この場合、永久磁石56の数の半数とし一つおきに配置すると重量バランスがよい。また、永久磁石56の数より多くてもよく、この場合は永久磁石56の数の整数倍とするとバランスがよい。
Although the center axis of the end portion 53a and the end portion 53b of the notch 52 has been described on the plane 75 connecting the center shaft 74 of the permanent magnet 56 and the rotation shaft 70 of the main shaft 24, it is strictly described. Such a positional relationship is not necessary, and the same effect can be obtained if the opening formed by the end portion 53a and the end portion 53b of the notch 52 is provided on the plane 75.
In FIG. 8, the same number of the notches 52 as the permanent magnets 56 are provided, but the present invention is not limited to this. The number may be smaller than the number of permanent magnets 56. In this case, when the number of permanent magnets 56 is set to be half of the number of permanent magnets and every other one, the weight balance is good. Further, the number may be larger than the number of permanent magnets 56. In this case, if the number is an integral multiple of the number of permanent magnets 56, the balance is good.
実施の形態2.
 実施の形態1では、切欠き52の端部53aと端部53bとの中心軸が永久磁石56の中心軸74と対向する位置にあるものを説明したが、実施の形態2では、切欠き52の端部53aと端部53bとの中心軸が、隣り合う永久磁石56の中間点76と対向する位置にある構成の圧縮機100を説明する。
 図9は実施の形態2に係る圧縮機100における電動機部30のB-B断面図である。実施の形態2では、実施の形態1との相違点を中心に説明し、実施の形態1との同一部分には同一符号を付して説明を省略するものとする。
Embodiment 2. FIG.
In the first embodiment, the description has been given of the case where the center axis of the end portion 53a and the end portion 53b of the notch 52 is located at the position facing the center axis 74 of the permanent magnet 56. However, in the second embodiment, the notch 52 is provided. The compressor 100 having a configuration in which the center axis of the end portion 53a and the end portion 53b is located at a position facing the intermediate point 76 of the adjacent permanent magnet 56 will be described.
FIG. 9 is a BB cross-sectional view of electric motor unit 30 in compressor 100 according to the second embodiment. In the second embodiment, the difference from the first embodiment will be mainly described, and the same parts as those in the first embodiment will be denoted by the same reference numerals and the description thereof will be omitted.
 回転子50の外周面には永久磁石56と同数である6つの切欠き52が設けられている。また、切欠き52の端部53aと端部53bとの中心軸が、隣り合う永久磁石56の中間点76及び主軸24の回転軸70を結んでなす平面77上に位置するように切欠き52が設けられている。つまり、切欠き52は磁束密度が大きい領域に設けられることになる。 The outer surface of the rotor 50 is provided with six notches 52 that are the same number as the permanent magnets 56. Further, the notch 52 is positioned so that the central axis of the end portion 53a and the end portion 53b of the notch 52 is positioned on a plane 77 connecting the intermediate point 76 of the adjacent permanent magnet 56 and the rotation shaft 70 of the main shaft 24. Is provided. That is, the notch 52 is provided in a region where the magnetic flux density is high.
 以上のような実施の形態2に係る圧縮機100においては、切欠き52の端部53aと端部53bとの中心軸が、隣り合う永久磁石56の中間点76及び主軸24の回転軸70を結んでなす平面77上にあるため、切欠き52の付近に作用する磁力が大きくなり、切欠き52に磁性体の異物を吸引または保持する作用が高まる。
 なお、切欠き52は永久磁石56と同じ数だけ設けられているが、これに限るものではない。
In the compressor 100 according to the second embodiment as described above, the central axes of the end 53a and the end 53b of the notch 52 are the intermediate point 76 of the adjacent permanent magnet 56 and the rotation shaft 70 of the main shaft 24. Since it is on the flat surface 77 formed by tying, the magnetic force acting in the vicinity of the notch 52 is increased, and the action of attracting or holding the magnetic foreign matter in the notch 52 is enhanced.
Note that the same number of notches 52 as the permanent magnets 56 are provided, but the present invention is not limited to this.
実施の形態3.
 実施の形態1では、切欠き52を永久磁石56の数と同数設けた回転子50を有する圧縮機100を説明したが、実施の形態3では、固定子40のスロットオープン45の数に対して整数倍の数の切欠き52を回転子50に設けた圧縮機100を説明する。
 図10は実施の形態3に係る圧縮機100における電動機部30のB-B断面図である。実施の形態3では、実施の形態1との相違点を中心に説明し、実施の形態1との同一部分には同一符号を付して説明を省略するものとする。
Embodiment 3 FIG.
In the first embodiment, the compressor 100 having the rotor 50 in which the number of the notches 52 is the same as the number of the permanent magnets 56 has been described. However, in the third embodiment, the number of slot openings 45 of the stator 40 is increased. A description will be given of the compressor 100 in which the rotor 50 is provided with the integral number of notches 52.
FIG. 10 is a BB cross-sectional view of electric motor unit 30 in compressor 100 according to the third embodiment. In the third embodiment, the difference from the first embodiment will be mainly described, and the same parts as those in the first embodiment will be denoted by the same reference numerals and the description thereof will be omitted.
 固定子40には、スロットオープン45が9箇所設けられている。回転子50の外周面にはスロットオープン45の数と同じ数である9個の切欠き52が設けられている。 The stator 40 has nine slot openings 45. On the outer peripheral surface of the rotor 50, nine notches 52, which are the same number as the slot openings 45, are provided.
 電動機部30が駆動している場合に発生する振動または騒音の原因には、固定子40のスロットオープン45または回転子50の切欠き52といった溝の影響で発生する溝高周波電磁力がある。この溝高周波電磁力の周波数に応じて固定子40及び回転子50の振動周波数が変化するため、振動周波数が電動機部30を構成する部品の固有振動数と一致すると共振により振動または騒音が増大する場合がある。このような、共振による振動または騒音を抑制するために、固定子40及び回転子50の溝数の組み合わせを選択することで、固定子40及び回転子50の振動周波数と部品の固有振動数とが一致しないよう設計する必要がある。 The cause of vibration or noise generated when the motor unit 30 is driven is a groove high-frequency electromagnetic force generated by the influence of a groove such as the slot open 45 of the stator 40 or the notch 52 of the rotor 50. Since the vibration frequency of the stator 40 and the rotor 50 changes according to the frequency of the groove high-frequency electromagnetic force, vibration or noise increases due to resonance when the vibration frequency matches the natural frequency of the components constituting the motor unit 30. There is a case. In order to suppress such vibration or noise due to resonance, by selecting a combination of the number of grooves of the stator 40 and the rotor 50, the vibration frequency of the stator 40 and the rotor 50, the natural frequency of the component, Must be designed so that they do not match.
 固定子40と回転子50にそれぞれスロットオープン45あるいは切欠き52といった溝が設けられている場合、それぞれに設けられた溝の数に応じた周波数の騒音が発生する。よって、固定子40に設けられた溝の数またはその整数倍を回転速度に掛けた周波数の騒音と、回転子50に設けられた溝の数またはその整数倍を回転速度に掛けた周波数の騒音が発生する。
 例えば、実施の形態1に記載の電動機部30では、固定子40には9箇所のスロットオープン45が設けられており、回転子50には6個の切欠き52が設けられている。回転子50が回転速度100rpsで回転している場合、固定子40の溝により、9または9の整数倍を回転速度100rpsに掛けた周波数、900Hz、1800Hz、2700Hz等の騒音が発生する。また、回転子50の溝により、6または6の整数倍を回転速度100rpsに掛けた周波数、600Hz、1200Hz、1800Hz等の騒音が発生する。したがって、電動機部30全体としては、固定子40に設けられた溝の数に対応した周波数の騒音及び固定子40に設けられた溝の数に対応した周波数の騒音が発生することになる。
When the stator 40 and the rotor 50 are provided with grooves such as the slot open 45 or the notch 52, noise having a frequency corresponding to the number of grooves provided in each of the stator 40 and the rotor 50 is generated. Therefore, the noise having a frequency obtained by multiplying the rotational speed by the number of grooves provided in the stator 40 or an integral multiple thereof, and the noise having a frequency obtained by multiplying the rotational speed by the number of grooves provided in the rotor 50 or an integral multiple thereof. Will occur.
For example, in the motor unit 30 described in the first embodiment, the stator 40 is provided with nine slot openings 45, and the rotor 50 is provided with six notches 52. When the rotor 50 is rotating at a rotation speed of 100 rps, noise such as 900 Hz, 1800 Hz, 2700 Hz, or the like is generated by the groove of the stator 40 by multiplying 9 or an integer multiple of 9 to the rotation speed of 100 rps. Further, the groove of the rotor 50 generates noise such as a frequency obtained by multiplying 6 or an integer multiple of 6 to a rotational speed of 100 rps, 600 Hz, 1200 Hz, 1800 Hz, and the like. Accordingly, the entire motor unit 30 generates noise having a frequency corresponding to the number of grooves provided in the stator 40 and noise having a frequency corresponding to the number of grooves provided in the stator 40.
 実施の形態3に係る圧縮機100においては、固定子40に設けられたスロットオープン45の数に対して整数倍の数の切欠き52を設けることにより、固定子40と回転子50に設けられた溝の数が同じになるため、発生する騒音の周波数の領域を減らすことができる。なお、騒音の周波数が切欠き52またはスロットオープン45の数の整数倍に比例するので、切欠き52の数はスロットオープン45の数の整数倍であれば同様の効果がある。 In the compressor 100 according to the third embodiment, the number of notches 52 that is an integral multiple of the number of slot openings 45 provided in the stator 40 is provided in the stator 40 and the rotor 50. Since the number of grooves is the same, the frequency range of the generated noise can be reduced. Since the frequency of the noise is proportional to an integer multiple of the number of notches 52 or slot openings 45, the same effect can be obtained if the number of notches 52 is an integer multiple of the number of slot openings 45.
実施の形態4.
 実施の形態1では、切欠き52における開口の幅と固定子40におけるスロットオープン45の幅は規定していなかったが、実施の形態4では、切欠き52における開口の幅はスロットオープン45の幅よりも大きくした圧縮機100について説明する。
 図11は実施の形態5に係る圧縮機100における電動機部30のB-B断面図である。実施の形態4では、実施の形態1との相違点を中心に説明し、実施の形態1との同一部分には同一符号を付して説明を省略するものとする。
Embodiment 4 FIG.
In the first embodiment, the width of the opening in the notch 52 and the width of the slot opening 45 in the stator 40 are not defined, but in the fourth embodiment, the width of the opening in the notch 52 is the width of the slot opening 45. A compressor 100 having a larger size will be described.
FIG. 11 is a BB cross-sectional view of electric motor unit 30 in compressor 100 according to the fifth embodiment. In the fourth embodiment, the difference from the first embodiment will be mainly described, and the same parts as those in the first embodiment will be denoted by the same reference numerals and the description thereof will be omitted.
 切欠き52における端部53a、53bで形成される開口の幅をMとし、固定子40におけるスロットオープン45の幅をLとする。実施の形態4に係る圧縮機100においては、切欠き52における開口の幅Mは、スロットオープン45の幅Lよりも大きく構成されている。したがって、M>Lの関係が成り立つ。 Suppose that the width of the opening formed by the end portions 53a and 53b in the notch 52 is M, and the width of the slot opening 45 in the stator 40 is L. In the compressor 100 according to the fourth embodiment, the width M of the opening in the notch 52 is configured to be larger than the width L of the slot opening 45. Therefore, the relationship of M> L is established.
 実施の形態4に係る圧縮機100によれば、回転子50に設けられた切欠き52の開口が固定子40に設けられたスロットオープン45の幅よりも大きいため、エアギャップを流れる異物は固定子40の電磁石から受ける吸引力よりも大きな吸引力を回転子50に設けられた永久磁石56から受ける。磁性を有する異物は、固定子40側よりも吸引力が大きい回転子50の切欠き52に吸引されて、切欠き52の内部に入り込むことができる。
 さらにスロットオープン45に入り込んでしまった異物が、回転子50の永久磁石56から吸引力を受けることにより、スロットオープン45から飛び出して回転子50の切欠き52に入り込む場合がある。よって、回転子50の切欠き52の内部に異物を確実に収集するとともに、固定子40に入り込む異物を減らすことができる。
 また、異物は溝における開口の幅が大きい程、溝に入り込みやすいため、開口の幅が大きい切欠き52では、開口の幅が小さいスロットオープン45よりも多くの異物が入り込み、切欠き52において異物を収集することができる。
 また、スロットオープン45の幅よりも大きい幅の異物が流れている場合、スロットオープン45の幅よりも大きい幅を有する切欠き52には異物が入り込むため、幅が大きい異物を収集することができる。
In the compressor 100 according to the fourth embodiment, since the opening of the notch 52 provided in the rotor 50 is larger than the width of the slot opening 45 provided in the stator 40, the foreign matter flowing through the air gap is fixed. An attraction force larger than the attraction force received from the electromagnet of the child 40 is received from the permanent magnet 56 provided on the rotor 50. The foreign matter having magnetism can be attracted to the notch 52 of the rotor 50 having a greater attraction force than the stator 40 side and can enter the notch 52.
Further, foreign matter that has entered the slot opening 45 may be attracted by the permanent magnet 56 of the rotor 50 and jump out of the slot opening 45 and enter the notch 52 of the rotor 50. Therefore, it is possible to reliably collect foreign matter inside the notch 52 of the rotor 50 and reduce foreign matter that enters the stator 40.
Further, since the foreign matter enters the groove more easily as the width of the opening in the groove becomes larger, the foreign material enters more in the notch 52 having a larger opening width than in the slot opening 45 having a smaller opening width. Can be collected.
Further, when a foreign object having a width larger than the width of the slot opening 45 flows, the foreign object enters the notch 52 having a width larger than the width of the slot opening 45, so that the foreign object having a large width can be collected. .
 以上の実施の形態1から4では、回転子50の外周面に切欠き52を備える圧縮機100について説明した。このような圧縮機100は冷凍サイクル装置200に用いることができる。 In the above first to fourth embodiments, the compressor 100 including the notch 52 on the outer peripheral surface of the rotor 50 has been described. Such a compressor 100 can be used for the refrigeration cycle apparatus 200.
 空気調和装置や冷蔵庫で使用される冷凍サイクル装置200には、圧縮機100が設けられている。冷凍サイクル装置200は、冷媒回路を流れる冷媒の蒸発による吸熱、凝縮による放熱を利用して空気の熱交換を行うものである。実施の形態6における冷凍サイクル装置200では、回転子50の外周面に切欠き52を備える圧縮機100が設けられている。
 冷凍サイクル装置200では、設置するときに水分が混入したり、冷媒回路内部における冷媒の温度変化が大きいため冷媒回路が劣化することにより、冷凍サイクル装置200内で錆や潤滑油の沈殿が含まれるスラッジが発生する場合がある。また、冷凍サイクル装置200内部には製造するときに混入した異物が存在することがある。
The refrigeration cycle apparatus 200 used in an air conditioner or a refrigerator is provided with a compressor 100. The refrigeration cycle apparatus 200 performs heat exchange of air using heat absorption due to evaporation of refrigerant flowing through the refrigerant circuit and heat dissipation due to condensation. In the refrigeration cycle apparatus 200 according to the sixth embodiment, the compressor 100 including the notch 52 is provided on the outer peripheral surface of the rotor 50.
In the refrigeration cycle apparatus 200, moisture is mixed when installed, or the refrigerant circuit deteriorates due to a large temperature change of the refrigerant in the refrigerant circuit, so that rust and lubricating oil are precipitated in the refrigeration cycle apparatus 200. Sludge may be generated. In addition, there may be foreign matters mixed in the refrigeration cycle apparatus 200 during manufacturing.
 そこで、冷凍サイクル装置200に本発明の圧縮機100を用いることで、冷凍サイクル装置内部を流れる異物を減らすことができるものである。すなわち、本発明の圧縮機100においては、回転子50の外周面に切欠き52を備える圧縮機100を備えているため、圧縮機100の内部を流れる異物を回転子50の切欠き52に収集することができ、冷凍サイクル装置200内部を流れる異物を減らすことができる。冷凍サイクル装置200内部を流れる異物を減らすことで冷凍サイクル装置200の故障を抑制することができる。 Therefore, by using the compressor 100 of the present invention for the refrigeration cycle apparatus 200, foreign matters flowing inside the refrigeration cycle apparatus can be reduced. That is, in the compressor 100 of the present invention, the compressor 100 having the notch 52 on the outer peripheral surface of the rotor 50 is provided, so that foreign matters flowing inside the compressor 100 are collected in the notch 52 of the rotor 50. It is possible to reduce foreign matters flowing inside the refrigeration cycle apparatus 200. The failure of the refrigeration cycle apparatus 200 can be suppressed by reducing foreign matters flowing inside the refrigeration cycle apparatus 200.
 なお、上記実施の形態1から4では、内側面55が円弧状の切欠き52を有する電動機部30を説明したが、これに限るものではなく、切欠き52の先端54が切欠き52の外周面における端部53a、53bと主軸24の回転軸70とで囲まれる領域からずれた領域に位置していれば、内側面55の形状は例えば円弧以外の曲面でも平面の組合せでもよい。
 また、電動機部30は回転子50の内部に設けられた永久磁石56と、固定子40の巻線46によって発生する電磁石とで回転運動するものとしたが、電動機部30が回転運動できる構成であればよく、回転子50の内部に巻線46が設けられる構成でもよい。
 また、圧縮機100はロータリ形圧縮機で示したが、スクロール形やレシプロ形でも良い。
 また、本発明の圧送機として電動機部30が設けられた圧縮機100について説明したが、本発明を適用した圧送機は説明した圧縮機に限られず、例えばポンプ等、流体を圧力で送る機能を有する装置であり、流体が流れる容器の内部に電動機が設けられる構成の圧送機に用いることができる。
 また、電動機部30に使用する冷媒の種類は問われないが、HFO1234yf等の地球温暖化係数GWP(Global Warming Potentioal)が低い冷媒を用いた場合には、GWPが高い冷媒を用いた場合よりも、回転子50または固定子40、あるいは固定子40に巻線46が巻かれている場合はその巻線46が損傷して電動機部30の故障になるという問題が発生しやすいため、本発明による効果を得ることができる。GWPが低い冷媒を用いた場合は、GWPが高い冷媒を用いた場合よりも回転子50の回転速度が速くなるためエアギャップを通る異物による固定子40または回転子50の破損が多く、また、固定子40異物が入り込みやすいため、電動機部30の故障が発生しやすい。したがって、GWPが低い冷媒を用いた場合において本発明に係る圧縮機100を用いることにより電動機部30の故障を抑制する効果を十分に奏することができる。
In the first to fourth embodiments, the electric motor unit 30 having the inner surface 55 having the arc-shaped cutout 52 has been described. However, the present invention is not limited to this, and the tip 54 of the cutout 52 is the outer periphery of the cutout 52. The shape of the inner surface 55 may be, for example, a curved surface other than an arc or a combination of planes as long as the inner surface 55 is located in a region shifted from the region surrounded by the end portions 53a and 53b and the rotation shaft 70 of the main shaft 24.
Moreover, although the electric motor part 30 shall rotate by the permanent magnet 56 provided in the inside of the rotor 50, and the electromagnet generated by the coil | winding 46 of the stator 40, it is the structure which the electric motor part 30 can rotate. There may be a configuration in which the winding 46 is provided inside the rotor 50.
The compressor 100 is a rotary compressor, but it may be a scroll type or a reciprocating type.
Moreover, although the compressor 100 provided with the electric motor part 30 was described as the pumping machine of the present invention, the pumping machine to which the present invention is applied is not limited to the described compressor, and has a function of feeding fluid by pressure, such as a pump. It can be used for a pressure feeder having a configuration in which an electric motor is provided inside a container through which a fluid flows.
In addition, the type of refrigerant used in the electric motor unit 30 is not limited, but when a refrigerant with a low global warming potential GWP (Global Warming Potential) such as HFO1234yf is used, compared to a refrigerant with a high GWP. When the winding 46 is wound around the rotor 50 or the stator 40 or the stator 40, the winding 46 is likely to be damaged, resulting in a failure of the motor unit 30. An effect can be obtained. When a refrigerant with a low GWP is used, the rotational speed of the rotor 50 is faster than when a refrigerant with a high GWP is used, so that the stator 40 or the rotor 50 is often damaged by foreign matter passing through the air gap. Since the foreign matter of the stator 40 is likely to enter, failure of the electric motor unit 30 is likely to occur. Therefore, when the refrigerant having a low GWP is used, the effect of suppressing the failure of the electric motor unit 30 can be sufficiently achieved by using the compressor 100 according to the present invention.
 本発明に係る圧送機は、家庭用、業務用等の空気調和装置として広く利用することができる。 The pumping machine according to the present invention can be widely used as an air conditioner for home use or business use.
10 容器、11 吸入管、12 吸入口、13 吐出管、14 吐出口、15 油溜り、20 圧縮機構部、21 シリンダ、22 ローラ、23 偏心部、24 主軸、25 ベーン、26 バネ、27 吐出孔、28 上側軸受部、29 下側軸受部、30 電動機部、40 固定子、41 固定子コア部、42 バックヨーク部、43 ティース部、44 スロット部、45 スロットオープン、46 巻線、47 導電端子、50 回転子、51 回転子コア部、52 切欠き、53a、53b 端部、54 先端、55 内側面、56 永久磁石、60 圧縮室、70 回転軸、71、72、73、75、77 平面、74 中心軸、76 中間点、100 圧縮機、200 冷凍サイクル装置 10 container, 11 suction pipe, 12 suction port, 13 discharge pipe, 14 discharge port, 15 oil sump, 20 compression mechanism part, 21 cylinder, 22 roller, 23 eccentric part, 24 spindle, 25 vane, 26 spring, 27 discharge hole 28 Upper bearing part, 29 Lower bearing part, 30 Motor part, 40 Stator, 41 Stator core part, 42 Back yoke part, 43 Teeth part, 44 Slot part, 45 slot open, 46 winding, 47 Conductive terminal , 50 rotor, 51 rotor core, 52 notch, 53a, 53b end, 54 tip, 55 inner surface, 56 permanent magnet, 60 compression chamber, 70 rotation shaft, 71, 72, 73, 75, 77 plane 74 center axis, 76 midpoint, 100 compressor, 200 refrigeration cycle equipment

Claims (15)

  1.  流体が吸入される吸入口、流体が吐出される吐出口を有する容器と、
    前記容器の内部に設けられ、前記吸入口から吸入された流体を前記容器の内部に圧送する圧送部と、
    前記容器の内部に設けられ、前記圧送部に回転力を伝達する主軸を有する回転子、前記回転子の外周面を囲む固定子を有する電動機部とを備え、
    前記回転子の前記外周面には切欠きが設けられ、前記切欠きの前記主軸に最も近い先端は、前記切欠きの前記外周面における端部と前記主軸の回転軸とで囲まれる領域からずれた領域に位置していることを特徴とする圧送機。
    A container having a suction port through which fluid is sucked and a discharge port through which fluid is discharged;
    A pumping unit that is provided inside the container and pumps the fluid sucked from the suction port into the container;
    A rotor provided inside the container and having a main shaft for transmitting a rotational force to the pumping unit, and a motor unit having a stator surrounding an outer peripheral surface of the rotor,
    The outer peripheral surface of the rotor is provided with a notch, and the tip closest to the main shaft of the notch is displaced from the region surrounded by the end portion of the outer surface of the notch and the rotation shaft of the main shaft. Pumping machine characterized in that it is located in the area.
  2.  前記回転子の内部に前記主軸の軸方向に挿入された永久磁石を備え、
    前記切欠きは、前記外周面における前記2つの端部の中心軸が前記永久磁石の中心軸と対向する位置に設けられたことを特徴とする請求項1に記載の圧送機。
    A permanent magnet inserted in the axial direction of the main shaft inside the rotor,
    2. The pressure feeder according to claim 1, wherein the notch is provided at a position where a central axis of the two end portions on the outer peripheral surface faces a central axis of the permanent magnet.
  3.  前記回転子の内部に前記主軸の軸方向に挿入された永久磁石を備え、
    前記切欠きは、前記外周面における前記2つの端部の中心軸が隣り合う前記永久磁石の中間点と対向する位置に設けられたことを特徴とする請求項1に記載の圧送機。
    A permanent magnet inserted in the axial direction of the main shaft inside the rotor,
    2. The pressure feeder according to claim 1, wherein the notch is provided at a position where a central axis of the two end portions on the outer peripheral surface faces an intermediate point between the adjacent permanent magnets.
  4.  前記固定子は、前記回転子と対向する面に溝が設けられ、
     前記回転子の前記外周面には前記固定子に設けられた前記溝の数と同じ数の前記切欠きが設けられたことを特徴とする請求項1から請求項3のいずれか1項に記載の圧送機。
    The stator is provided with a groove on a surface facing the rotor,
    4. The notch according to claim 1, wherein the number of the cutouts is the same as the number of the grooves provided in the stator on the outer peripheral surface of the rotor. 5. Pumping machine.
  5.  前記固定子は、前記回転子と対向する面に溝が設けられ、
    前記切欠きの幅は、前記固定子に設けられた前記溝の幅よりも大きいことを特徴とする請求項1から請求項3のいずれか1項に記載の圧送機。
    The stator is provided with a groove on a surface facing the rotor,
    The pressure feeder according to any one of claims 1 to 3, wherein a width of the notch is larger than a width of the groove provided in the stator.
  6.  前記切欠きの前記主軸に最も近い先端は、前記切欠きの前記外周面における端部と前記主軸の回転軸とで囲まれる領域から前記回転子が回転する方向の後方側にずれた領域に位置していることを特徴とする請求項1から請求項5のいずれか1項に記載の圧送機。 The tip of the notch closest to the main shaft is located in a region shifted to the rear side in the direction in which the rotor rotates from a region surrounded by an end portion of the outer periphery of the notch and the rotation shaft of the main shaft. The pressure feeder according to any one of claims 1 to 5, wherein the pressure feeder is provided.
  7.  前記切欠きの前記主軸に最も近い先端は、前記切欠きの前記外周面における端部と前記主軸の回転軸とで囲まれる領域から前記回転子が回転する方向の前方側にずれた領域に位置していることを特徴とする請求項1から請求項5のいずれか1項に記載の圧送機。 The front end of the notch closest to the main shaft is located in a region shifted forward from the region surrounded by the end portion of the outer periphery of the notch and the rotation shaft of the main shaft in the direction in which the rotor rotates. The pressure feeder according to any one of claims 1 to 5, wherein the pressure feeder is provided.
  8.  前記切欠きは、前記切欠きの内側を形成する内側面を備え、
    前記内側面は、前記回転軸の方向の断面において湾曲して形成されることを特徴とする請求項1から請求項7のいずれか1項に記載の圧送機。
    The notch includes an inner surface that forms the inside of the notch,
    The pressure feeder according to any one of claims 1 to 7, wherein the inner surface is formed to be curved in a cross section in the direction of the rotation shaft.
  9.  前記切欠きの前記主軸に最も近い位置にある先端は、前記内側面の途中に位置することを特徴とする請求項8に記載の圧送機。 The pressure feeder according to claim 8, wherein a tip of the notch closest to the main shaft is located in the middle of the inner surface.
  10.  前記切欠きの前記外周面における端部は、前記回転子の上部から下部まで連続的に形成されることを特徴とする請求項1から請求項9のいずれか1項に記載の圧送機。 The pumping device according to any one of claims 1 to 9, wherein an end of the notch on the outer peripheral surface is continuously formed from an upper part to a lower part of the rotor.
  11.  前記切欠きの前記外周面における端部は、回転子の上部から下部まで連続的に斜め方向に直線状に形成されることを特徴とする請求項10に記載の圧送機。 The pumping machine according to claim 10, wherein an end portion of the notch on the outer peripheral surface is formed linearly in an oblique direction continuously from the upper part to the lower part of the rotor.
  12.  前記切欠きの前記外周面における端部は、回転子の上部から下部まで断続的に形成されることを特徴とする請求項1から請求項9のいずれか1項に記載の圧送機。 10. The pressure feeder according to claim 1, wherein an end portion of the notch on the outer peripheral surface is intermittently formed from an upper part to a lower part of the rotor.
  13.  前記切欠きの前記外周面における端部は、前記回転軸の方向においてずれた位置に形成されることを特徴とする請求項12に記載の圧送機。 The pumping machine according to claim 12, wherein an end portion of the notch on the outer peripheral surface is formed at a position shifted in the direction of the rotating shaft.
  14.  前記切欠きの前記外周面における端部は、円形に形成されることを特徴とする請求項12または請求項13のいずれか1項に記載の圧送機。 The pressure feeder according to any one of claims 12 and 13, wherein an end portion of the notch on the outer peripheral surface is formed in a circular shape.
  15.  請求項1から14のいずれか1項に記載の圧送機を有することを特徴とする冷凍サイクル装置。 A refrigeration cycle apparatus comprising the pressure feeder according to any one of claims 1 to 14.
PCT/JP2017/014621 2017-04-10 2017-04-10 Pressure feeder and refrigeration cycle device equipped with pressure feeder WO2018189768A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/014621 WO2018189768A1 (en) 2017-04-10 2017-04-10 Pressure feeder and refrigeration cycle device equipped with pressure feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/014621 WO2018189768A1 (en) 2017-04-10 2017-04-10 Pressure feeder and refrigeration cycle device equipped with pressure feeder

Publications (1)

Publication Number Publication Date
WO2018189768A1 true WO2018189768A1 (en) 2018-10-18

Family

ID=63792881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014621 WO2018189768A1 (en) 2017-04-10 2017-04-10 Pressure feeder and refrigeration cycle device equipped with pressure feeder

Country Status (1)

Country Link
WO (1) WO2018189768A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002315243A (en) * 2001-04-13 2002-10-25 Hitachi Ltd Permanent magnet type rotary electric machine
JP2013027141A (en) * 2011-07-21 2013-02-04 Daikin Ind Ltd Rotor, rotary electric machine and compressor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002315243A (en) * 2001-04-13 2002-10-25 Hitachi Ltd Permanent magnet type rotary electric machine
JP2013027141A (en) * 2011-07-21 2013-02-04 Daikin Ind Ltd Rotor, rotary electric machine and compressor

Similar Documents

Publication Publication Date Title
US11183892B2 (en) Consequent pole type rotor, motor having the same, compressor having the same, and fan having the same
JP6109338B2 (en) Permanent magnet embedded electric motor, compressor and refrigeration air conditioner
JP6680779B2 (en) Compressor and refrigeration cycle device
US9634531B2 (en) Electric motor with embedded permanent magnet, compressor, and refrigeration/air-conditioning device
US20160181877A1 (en) Embedded permanent magnet type electric motor, compressor, and refrigeration air-conditioning device
CN108604840B (en) Motor, compressor, and refrigeration and air-conditioning apparatus
JP2014080939A (en) Hermetic electric compressor and freezing air conditioner using the same
CN111193341B (en) DC motor and rotary compressor using the same
US7866957B2 (en) Hermetic compressor
EP1704328A1 (en) Hermetically sealed compressor
WO2018189768A1 (en) Pressure feeder and refrigeration cycle device equipped with pressure feeder
JP6956881B2 (en) Motors, compressors, and air conditioners
JP2008082279A (en) Electric compressor
JP2008022666A (en) Electric motor and compressor
US20230208223A1 (en) Motor, compressor, and refrigeration cycle apparatus
JP7433420B2 (en) Rotors, motors, compressors and air conditioners
JP5135779B2 (en) Compressor
JP2007285293A (en) Compressor
JP2007064019A (en) Compressor
EP3907859A1 (en) Electric motor
WO2020174647A1 (en) Electric motor, compressor, and air conditioner
JP2008138591A5 (en)
JP2009002352A (en) Compressor
JP7026811B2 (en) Stator, motor, compressor and air conditioner
CN111903038A (en) Motor, compressor, and air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17905432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP