WO2021229742A1 - Electric motor, compressor, and refrigeration cycle device - Google Patents

Electric motor, compressor, and refrigeration cycle device Download PDF

Info

Publication number
WO2021229742A1
WO2021229742A1 PCT/JP2020/019233 JP2020019233W WO2021229742A1 WO 2021229742 A1 WO2021229742 A1 WO 2021229742A1 JP 2020019233 W JP2020019233 W JP 2020019233W WO 2021229742 A1 WO2021229742 A1 WO 2021229742A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric
wire
electric wire
crimp terminal
electrically connected
Prior art date
Application number
PCT/JP2020/019233
Other languages
French (fr)
Japanese (ja)
Inventor
真史 大野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/019233 priority Critical patent/WO2021229742A1/en
Publication of WO2021229742A1 publication Critical patent/WO2021229742A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes

Definitions

  • This disclosure relates to motors, compressors and refrigeration cycle devices.
  • a compressor has a configuration in which an electric motor, a rotating shaft that transmits the driving force of the electric motor, and a compression mechanism unit that compresses the refrigerant by the driving force transmitted from the rotating shaft are housed in a closed container.
  • the closed container is provided with a power supply terminal for connecting to an external power source such as an inverter device.
  • the electric motor has an annular stator and a rotor rotatably provided facing the inner surface of the stator.
  • the stator includes a stator core and windings wound around the stator core.
  • the electric motor has a configuration in which electric power is supplied from the power supply terminal to the stator and the rotor rotates by connecting the lead wire extending from the winding to the power supply terminal.
  • an external terminal is crimped and crimped to the tip of a lead wire formed by extending from an end of a winding, and power is supplied from a power source between nuts fitted to the external terminal. Power is supplied to the stator by sandwiching and fixing the connection terminals of the wiring.
  • the crimp terminal is crimped to the tip of the lead wire extending from the end of the winding.
  • the electric wire constituting the lead wire is soft and easily deformed. Therefore, when the lead wire has three or more electric wires and the electric wires are crimped by one crimp terminal, there is a possibility that the electric wires are crimped to the crimp terminal in a crossed state. If the crimp terminals are crimped with the wires crossed, the wires may press against each other and break. Further, if the lead wire is pulled when the crimp terminal is connected to the power supply terminal, the crossed electric wire may be broken due to the pulled impact. In a compressor, if the electric wire is broken, an electrical connection failure will occur.
  • This disclosure is made in order to solve the above-mentioned problems, and even when the lead wire is composed of three or more electric wires, it is possible to avoid an electrical connection failure. It is an object of the present invention to provide a highly reliable electric motor, compressor and refrigeration cycle device.
  • the electric wire according to the present disclosure is an electric wire housed in a container of a compressor having a power supply terminal and used, and is an electric wire, a stator core, a winding wound around the stator core, and an electric wire extending from the winding.
  • the power supply terminal has one or a plurality of outlet wires electrically connected to the power supply terminal, and at least one of the outlet wires is a single electric wire composed of one electric wire and two adjacent electric wires. It has an electric wire assembly in which the electric wires are electrically connected by the first crimp terminal, and one of the electric wires of the electric wire assembly is drawn out from the electric wire assembly, and the electric wire alone and the second electric wire assembly are provided. It is electrically connected by a crimp terminal, and the second crimp terminal is electrically connected to the power supply terminal.
  • the compressor according to the present disclosure is fixed to the electric motor, a compression mechanism portion driven by the electric motor to compress the refrigerant, a closed container accommodating the electric motor and the compression mechanism portion, and the closed container. It is equipped with a power supply terminal to which the outlet wire is electrically connected.
  • the compressor, the flow path switching device, the first heat exchanger, the expansion mechanism, and the second heat exchanger are sequentially connected by pipes to circulate the refrigerant. It is equipped with a refrigerant circuit.
  • the electric wires are electrically connected by two crimp terminals.
  • crimping an electric wire with a crimp terminal it is possible to suppress a situation in which the electric wires cross each other and press each other, and it is possible to avoid an electrical connection failure.
  • FIG. 1 is a refrigerant circuit diagram during a cooling operation of the refrigeration cycle device according to the first embodiment.
  • FIG. 2 is a refrigerant circuit diagram during a heating operation of the refrigeration cycle apparatus according to the first embodiment.
  • the refrigerating cycle device 100 according to the first embodiment is used for, for example, an air conditioner, a refrigerating device, a refrigerator, a freezer, a vending machine, a hot water supply device, or the like.
  • the compressor 101, the flow path switching device 102, the first heat exchanger 103, the expansion mechanism 104, and the second heat exchanger 105 are sequentially connected by a refrigerant pipe. It has a refrigerant circuit 200 in which the refrigerant circulates.
  • the refrigeration cycle device 100 has a control unit 106, and the state of each component is monitored and controlled by the control unit 106.
  • the compressor 101 compresses the sucked refrigerant and discharges it in a high temperature and high pressure state.
  • the flow path switching device 102 is, for example, a four-way valve, and has a function of switching the flow path of the refrigerant.
  • the flow path switching device 102 connects the refrigerant discharge side of the compressor 101 and the gas side of the first heat exchanger 103, which is an outdoor heat exchanger, during the cooling operation shown in FIG. 1, and also connects the refrigerant of the compressor 101.
  • the refrigerant flow path is switched so as to connect the suction side and the gas side of the second heat exchanger 105, which is an indoor heat exchanger.
  • the flow path switching device 102 connects the refrigerant discharge side of the compressor 101 and the gas side of the second heat exchanger 105, which is an indoor heat exchanger, during the heating operation shown in FIG. 2, and also connects the compressor 101.
  • the refrigerant flow path is switched so as to connect the refrigerant suction side of the above and the gas side of the first heat exchanger 103 which is an outdoor heat exchanger.
  • the flow path switching device 102 may be configured by combining a two-way valve or a three-way valve.
  • the first heat exchanger 103 functions as a condenser during the cooling operation, and causes heat exchange between the refrigerant discharged from the compressor 101 and the air. Further, the first heat exchanger 103 functions as an evaporator during the heating operation, and causes heat exchange between the refrigerant flowing out from the expansion mechanism 104 and the air. The first heat exchanger 103 sucks in outdoor air by a blower and discharges the air that has exchanged heat with the refrigerant to the outside.
  • the expansion mechanism 104 decompresses and expands the refrigerant flowing in the refrigerant circuit, and is composed of an electronic expansion valve whose opening degree is variably controlled as an example.
  • the second heat exchanger 105 functions as an evaporator during the cooling operation, and causes heat exchange between the refrigerant flowing out from the expansion mechanism 104 and the air. Further, the second heat exchanger 105 functions as a condenser during the heating operation, and causes heat exchange between the refrigerant discharged from the compressor 101 and the air. The second heat exchanger 105 sucks indoor air by a blower and supplies the air exchanged with the refrigerant into the room.
  • the control unit 106 is composed of an arithmetic unit such as a microcomputer or a CPU and software executed on the arithmetic unit.
  • the control unit 106 may be configured by hardware such as a circuit device that realizes the function.
  • the control unit 106 is connected to the compressor 101 as shown in FIGS. 1 and 2, the control unit 106 may be connected to other components.
  • HFC-based refrigerants such as R32, R125, R134a, R407C or R410A are used.
  • HFO-based refrigerants such as R1123, R1132 (E), R1132 (Z), R1132a, R1141, R1234yf, R1234ze (E) or R1234ze (Z) are used.
  • a natural refrigerant such as R290 (propane), R600a (isobutane), R744 (carbon dioxide) or R717 (ammonia) is used.
  • other refrigerants are used.
  • a mixture of two or more of these refrigerants is used.
  • HFC is an abbreviation for Hydrofluorocarbon.
  • HFO is an abbreviation for Hydrofluoroolefin.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 101 passes through the flow path switching device 102, flows to the first heat exchanger 103, exchanges heat with air, and becomes a condensed liquid.
  • the condensed liquefied refrigerant is decompressed by the expansion mechanism 104 to become a low-pressure gas-liquid two-phase refrigerant, which flows to the second heat exchanger 105 and exchanges heat with air to gasify.
  • the gasified refrigerant passes through the flow path switching device 102 and is sucked into the compressor 101.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 101 passes through the flow path switching device 102, flows to the second heat exchanger 105, and exchanges heat with air to form a condensed liquid.
  • the condensed liquefied refrigerant is decompressed by the expansion mechanism 104 to become a low-pressure gas-liquid two-phase refrigerant, which flows to the first heat exchanger 103 and exchanges heat with air to gasify.
  • the gasified refrigerant passes through the flow path switching device 102 and is sucked into the compressor 101.
  • FIG. 3 is a vertical sectional view showing the internal structure of the compressor according to the first embodiment.
  • FIG. 4 is an explanatory diagram showing the configuration of an electric wire bundle in the electric motor according to the first embodiment.
  • FIG. 5 is a cross-sectional view showing a main part of the compression mechanism portion of the compressor according to the first embodiment.
  • the compressor 101 shown in FIG. 3 is a single-cylinder rotary compressor as an example.
  • the compressor 101 may be, for example, a multi-cylinder rotary compressor, a scroll compressor, or a reciprocating compressor, or may have another structure.
  • the compressor 101 uses a closed container 1 forming an outer shell, an electric motor 2, a crank shaft 3 for transmitting the driving force of the electric motor 2, and a driving force transmitted from the crank shaft 3 to supply a refrigerant. It includes a compression mechanism unit 4 for compressing.
  • An electric motor 2, a crank shaft 3, and a compression mechanism portion 4 are housed inside the closed container 1.
  • the electric motor 2 is installed on the upper part of the closed container 1.
  • the compression mechanism portion 4 is installed below the electric motor 2 and below the closed container 1.
  • the electric motor 2 and the compression mechanism portion 4 are connected via a crank shaft 3.
  • the closed container 1 has a cylindrical body portion 1a, a container upper portion 1b that closes the upper surface opening of the body portion 1a, and a container lower portion 1c that closes the lower surface opening of the body portion 1a.
  • the upper part 1b of the container and the lower part 1c of the container are each fixed to the body portion 1a by welding or the like.
  • the upper part 1b of the container corresponds to one end in the axial direction of the closed container 1.
  • the lower part 1c of the container corresponds to the other end in the axial direction of the closed container 1.
  • the closed container 1 may have a structure in which the body portion 1a and the container lower portion 1c are integrally molded.
  • the closed container 1 is connected to the suction muffler 107 via the suction pipe 10, and the refrigerant gas is taken in from the suction muffler 107.
  • the suction muffler 107 is provided to separate the low-pressure refrigerant sucked from the refrigerant circuit 200 into a liquid refrigerant and a gas refrigerant so that the liquid refrigerant is not sucked into the compression mechanism portion 4 as much as possible.
  • the suction muffler 107 is fixed to the outer surface of the body portion 1a of the closed container 1 by welding or the like.
  • a discharge pipe 11 for discharging the compressed refrigerant is connected to the upper portion 1b of the container.
  • the discharge pipe 11 is directly above the crank shaft 3 and is installed in the central portion of the container upper portion 1b, but may be another portion of the container upper portion 1b. It is desirable that the outer diameter of the discharge pipe 11 is 0.1 times or more and 0.2 times or less the outer diameter of the upper portion 1b of the container.
  • the upper portion 1b of the container is provided with a power supply terminal 12 connected to an external power source such as an inverter device and a rod 13 to which a cover for protecting the power supply terminal 12 is attached.
  • the power supply terminal 12 is an airtight terminal such as a glass terminal.
  • the power supply terminal 12 is fixed to the closed container 1 by welding, for example.
  • Refrigerating machine oil 14 is stored in the bottom of the closed container 1.
  • the refrigerating machine oil 14 is mainly supplied to each sliding portion of the compression mechanism portion 4 and lubricates each sliding portion.
  • synthetic oils such as POE, PVE, and AB are used.
  • POE is an abbreviation for Polyolester.
  • PVE is an abbreviation for Polyvinyl Ether.
  • AB is an abbreviation for Alkylbenzene.
  • the electric motor 2 rotates the crank shaft 3.
  • the electric motor 2 is an induction motor as an example, but may be other than an induction motor such as a brushless DC motor.
  • DC is an abbreviation for "Direct Current”.
  • the electric motor 2 has an annular stator 20 fixed to the inner wall surface of the closed container 1 by shrink fitting or the like, and a rotatably provided rotatably provided facing the inner side surface of the stator 20. It has a child 21 and.
  • the stator 20 has a stator core 22, a winding 23, and a wire bundle 24.
  • the stator core 22 is manufactured by punching a plurality of electrical steel sheets containing iron as a main component into a certain shape, laminating them in the axial direction, and fixing them by caulking.
  • the thickness of each electrical steel sheet is, for example, 0.1 mm or more and 1.5 mm or less.
  • the stator core 22 has an outer diameter larger than the inner diameter of the body portion 1a of the closed container 1 and is fixed to the inside of the body portion 1a of the closed container 1 by shrink fitting.
  • the method of fixing the electromagnetic steel sheets of the stator core 22 is not limited to caulking, but may be another method such as welding. Further, the method of fixing the stator core 22 to the inside of the body portion 1a of the closed container 1 is not limited to shrink fitting, and other methods such as press fitting or welding may be used.
  • a plurality of notches may be formed at equal intervals in the circumferential direction on the outer circumference of the stator core 22.
  • Each notch becomes one of the passages of the gas refrigerant discharged from the discharge muffler 44 into the internal space of the closed container 1.
  • Each notch also serves as one of the passages for dropping the refrigerating machine oil 14 guided to the upper part of the closed container 1 to the lower part of the closed container 1.
  • the winding 23 is wound around the stator core 22. Specifically, the winding 23 is wound around a tooth formed on the stator core 22 via an insulating member.
  • the winding 23 is composed of a core wire and at least one layer of insulating coating covering the core wire.
  • the winding 23 is electrically connected to the power supply terminal 12 by a wire bundle 24.
  • the material of the core wire is copper as an example.
  • the material of the coating is AI / EI.
  • AI is an abbreviation for Amide-Imide.
  • EI is an abbreviation for Ester-Imide.
  • the material of the insulating member is PET.
  • PET is an abbreviation for Polyethylene terephthalate.
  • the material of the core wire may be aluminum.
  • the material of the insulating member may be PBT, FEP, PFA, PTFE, LCP, PPS or phenol resin.
  • PBT is an abbreviation for Polybutylene terephlate.
  • FEP is an abbreviation for Fluorinated Ethylene Propyrene.
  • PFA is an abbreviation for Perfluoroalkoxy Alkane.
  • PTFE is an abbreviation for Polytellafluoethylene.
  • LCP is an abbreviation for Liquid Crystal Polymer.
  • PPS is an abbreviation for Polyphenylene Sulfide.
  • the electric wire bundle 24 has a first outlet wire 5, a second outlet wire 6, and a third outlet wire 7.
  • the first outlet line 5 is a common outlet line.
  • the second outlet wire 6 is the outlet wire of the main winding.
  • the third outlet wire 7 is an outlet wire of the auxiliary winding.
  • the first outlet wire 5, the second outlet wire 6 and the third outlet wire 7 are composed of, for example, a copper wire or an electric wire made of aluminum.
  • the first outlet wire 5, the second outlet wire 6 and the third outlet wire 7 may be all made of copper wire or all may be made of aluminum wire. Further, at least one of the first outlet wire 5, the second outlet wire 6 and the third outlet wire 7 is made of an aluminum wire, and the other outlet wires are made of copper wire. You may.
  • the potentials of the first outlet wire 5, the second outlet wire 6 and the third outlet wire 7 are different from each other. Therefore, it is desirable that at least two of the first outlet wire 5, the second outlet wire 6, and the third outlet wire 7 are covered with an insulating tube to ensure mutual insulation.
  • each of the first outlet wire 5, the second outlet wire 6 and the third outlet wire 7 is an electric wire integrated with the winding 23, and the end portion of the winding 23 is directly pulled out to form the electric wire.
  • each electric wire of the electric wire bundle 24 is composed of a core wire and at least one layer of an insulating coating covering the core wire, similarly to the winding 23.
  • each electric wire of the 1st outlet wire 5, the 2nd outlet wire 6 and the 3rd outlet wire 7 is a wire separate from the winding wire 23, and is electrically connected to the winding wire 23 via the connection terminal. It may be a configured configuration.
  • the tip of the first outlet wire 5 is crimped to the crimp terminal 9 (the second crimp terminal 9 described later) and inserted into the cluster 25.
  • the tip of the second outlet wire 6 is crimped to the crimp terminal 70 and inserted into the cluster 25.
  • the tip of the third outlet wire 7 is crimped to a crimp terminal (not shown) and inserted into the cluster 25.
  • the cluster 25 is a block-shaped molded product made of a resin such as PBT, and is connected to the power supply terminal 12. That is, all the crimp terminals can be connected to the power supply terminal 12 only by connecting the cluster 25 to the power supply terminal 12, so that the workability of the wiring can be improved.
  • the rotor 21 has a cylindrical shape and is installed inside the stator 20 via a gap as shown in FIG.
  • the width of the void is, for example, 0.3 mm or more and 1.0 mm or less.
  • the rotor 21 is, for example, a cage-shaped rotor made of die-cast aluminum.
  • the rotor 21 has a rotor core 26, a conductor (not shown), and an end ring 27. Similar to the stator core 22, the rotor core 26 is manufactured by punching a plurality of electrical steel sheets containing iron as a main component into a certain shape, laminating them in the axial direction, and fixing them by caulking. The thickness of each electrical steel sheet is, for example, 0.1 mm or more and 1.5 mm or less. The method of fixing the electromagnetic steel sheets of the rotor core 26 is not limited to caulking, and other methods such as welding may be used.
  • the conductor is filled or inserted into a plurality of slots formed in the rotor core 26.
  • the conductor may be formed of aluminum, copper or the like.
  • the end ring 27 short-circuits both ends of the conductor. As a result, a cage winding is formed.
  • a shaft hole into which the spindle portion 30 of the crank shaft 3 is shrink-fitted or press-fitted is formed. That is, the inner diameter of the rotor core 26 is smaller than the outer diameter of the spindle portion 30.
  • a plurality of through holes penetrating in the axial direction are formed around the shaft hole of the rotor core 26.
  • Each through hole becomes one of the passages of the gas refrigerant discharged from the discharge muffler 44 into the internal space of the closed container 1.
  • Each through hole also serves as one of the passages for dropping the refrigerating machine oil 14 guided to the upper part of the closed container 1 to the lower part of the closed container 1.
  • permanent magnets are inserted into a plurality of insertion holes formed in the rotor core 26. Permanent magnets form magnetic poles. As the permanent magnet, a ferrite magnet or a rare earth magnet is used. In order to prevent the permanent magnets from coming off in the axial direction, upper end plates and lower end plates are provided at both ends in the axial direction of the rotor 21. The upper end plate and the lower end plate also serve as a rotary balancer. The upper end plate and the lower end plate are fixed to the rotor core 26 by a plurality of fixing rivets or the like.
  • the crank shaft 3 includes a spindle portion 30 fixed to the rotor 21 of the motor 2, and a sub-shaft portion 31 provided on the opposite side of the spindle portion 30 with the compression mechanism portion 4 interposed therebetween. It has an eccentric shaft portion 32 provided between the main shaft portion 30 and the sub-shaft portion 31.
  • the spindle portion 30, the sub-shaft portion 31, and the eccentric shaft portion 32 are each cylindrical.
  • the material of the crank shaft 3 is a cast material or a forged material.
  • the main shaft portion 30 and the sub shaft portion 31 are provided so that their central axes coincide with each other.
  • the eccentric shaft portion 32 is provided so that the central shaft deviates from the central shafts of the main shaft portion 30 and the sub-shaft portion 31. In the crank shaft 3, when the main shaft portion 30 and the sub shaft portion 31 rotate around the central axis, the eccentric shaft portion 32 rotates eccentrically.
  • a through hole serving as an oil supply passage 33 for the refrigerating machine oil 14 is formed along the axial direction in the axial center portion of the crank shaft 3.
  • An oil supply mechanism such as an oil pump is provided at the lower part of the crank shaft 3.
  • the refrigerating machine oil 14 stored in the bottom of the closed container 1 is pumped up by the oil supply mechanism as the crank shaft 3 rotates, and is supplied to each sliding portion of the compression mechanism portion 4.
  • the compression mechanism portion 4 includes a cylinder 40 having a cylinder chamber 40a, a main bearing 41 and an auxiliary bearing 42 as bearings for closing the cylinder chamber 40a, a rolling piston 43, and a discharge muffler 44. And a vane 45.
  • the outer peripheral portion of the cylinder 40 is fixed to the closed container 1 by a bolt or the like.
  • the cylinder 40 has a circular outer circumference, and a cylinder chamber 40a, which is a circular space, is formed inside the cylinder 40.
  • the cylinder chamber 40a is a space for compressing the refrigerant during driving.
  • the cylinder chamber 40a has both ends in the axial direction of the crank shaft 3 open, and the main bearing 41 provided on the upper surface of the cylinder 40 and the auxiliary bearing 42 provided on the lower surface of the cylinder 40. Is blocked by.
  • the cylinder 40 is provided with a suction port through which the refrigerant gas from the suction pipe 10 passes through the cylinder chamber 40a from the outer peripheral surface.
  • the cylinder 40 is formed with a discharge port for discharging the refrigerant compressed in the cylinder chamber 40a by cutting out the upper end surface of the cylinder 40.
  • the material of the cylinder 40 is sintered steel, gray cast iron or carbon steel.
  • the main bearing 41 is an inverted T-shaped bearing when viewed from the side.
  • the main bearing 41 is slidably fitted to the main shaft portion 30 of the crankshaft 3 and closes the end surface of the cylinder chamber 40a on the motor 2 side.
  • the auxiliary bearing 42 is a bearing having a T-shaped side view.
  • the auxiliary bearing 42 is slidably fitted to the auxiliary shaft portion 31 of the crank shaft 3 and closes the end face of the cylinder chamber 40a on the refrigerating machine oil 14 side.
  • the main bearing 41 and the auxiliary bearing 42 are fixed to the cylinder 40 by fasteners such as bolts, respectively, and support the crank shaft 3 which is the rotation shaft of the rolling piston 43.
  • An oil film is formed between the main bearing 41 and the spindle portion 30 by supplying the refrigerating machine oil 14 sucked up through the oil supply passage 33.
  • the main bearing 41 supports the main shaft portion 30 without coming into contact with the main shaft portion 30 due to the fluid lubrication of the oil film.
  • the refrigerating machine oil 14 sucked up through the oil supply passage 33 is supplied to form an oil film.
  • the sub-bearing 42 also supports the sub-shaft portion 31 without coming into contact with the sub-shaft portion 31 due to fluid lubrication of the oil film.
  • the material of the main bearing 41 and the auxiliary bearing 42 is a cast material or a sintered material, and specifically, a sintered steel, a gray cast iron or a carbon steel.
  • the main bearing 41 is formed with a discharge port for discharging the refrigerant compressed in the cylinder chamber 40a.
  • the discharge port is located at a position connected to the compression chamber when the cylinder chamber 40a is divided into the suction chamber and the compression chamber by the vane 45.
  • a discharge valve that closes the discharge port so as to be openable and closable is attached to the main bearing 41. The discharge valve closes until the gas refrigerant in the cylinder chamber 40a reaches a desired pressure, and opens when the gas refrigerant in the compression chamber reaches a desired pressure. Thereby, the discharge timing of the gas refrigerant from the cylinder chamber 40a is controlled.
  • a discharge muffler 44 arranged so as to cover the discharge hole is attached to the outside of the main bearing 41.
  • the discharge muffler 44 is formed with a discharge hole for communicating the inside of the discharge muffler 44 with the inside of the closed container 1.
  • the discharge port and the discharge valve are configured to be provided in the main bearing 41, they may be provided in the auxiliary bearing 42. Alternatively, the discharge port and the discharge valve may be provided in both the main bearing 41 and the sub bearing 42. In this case, the discharge muffler 44 is attached to the outside of the bearing provided with the discharge port and the discharge valve.
  • the rolling piston 43 is formed in a ring shape and is slidably fitted to the eccentric shaft portion 32 of the crank shaft 3.
  • the rolling piston 43 is provided in the cylinder chamber 40a together with the eccentric shaft portion 32, and rotates eccentrically together with the eccentric shaft portion 32 in the cylinder chamber 40a to compress the refrigerant.
  • the material of the rolling piston 43 is a cast material, specifically, an alloy steel containing molybdenum, nickel and chromium, or an iron-based cast material.
  • the cylinder 40 is formed with a vane groove 40b that communicates with the cylinder chamber 40a and extends in the radial direction.
  • the vane groove 40b is provided with a vane 45 for partitioning the cylinder chamber 40a into a suction chamber which is a low pressure operating chamber and a compression chamber which is a high pressure operating chamber.
  • the vane 45 has a plate shape with a rounded tip. During the compression process, the vane 45 slides back and forth in the vane groove 40b following the eccentric rotation of the rolling piston 43 while the tip portion is in contact with the outer peripheral portion of the rolling piston 43.
  • the cylinder chamber 40a is divided into a suction chamber and a compression chamber by the tip end portion of the vane 45 abutting on the outer peripheral portion of the rolling piston 43.
  • the material of the vane 45 is high-speed tool steel.
  • the cylinder 40 has a back pressure chamber 40c formed on the back surface side of the vane groove 40b.
  • the back pressure chamber 40c houses a vane spring arranged in series with the vane 45.
  • the vane spring urges the tip of the vane 45 so as to press it against the outer peripheral surface of the rolling piston 43.
  • the vane spring is mainly used for the purpose of pressing the vane 45 against the rolling piston 43 when the compressor 101 is started and there is no difference between the pressure in the closed container 1 and the pressure in the cylinder chamber 40a. Will be done.
  • the vane 45 is provided integrally with the rolling piston 43.
  • the vane reciprocates along the groove of the support rotatably attached to the rolling piston.
  • the vane divides the inside of the cylinder chamber into a compression chamber and a suction chamber by moving back and forth in the radial direction while swinging according to the rotation of the rolling piston.
  • the support is composed of two columnar members having a semicircular cross section. The support is rotatably fitted into a circular holding hole formed in the middle between the suction port and the discharge port of the cylinder.
  • the cylinder chamber 40a which is a space between the cylinder 40 and the rolling piston 43, is divided into a suction chamber and a compression chamber by a vane 45.
  • the crank shaft 3 rotates, the volume of the suction chamber and the volume of the compression chamber change.
  • the suction chamber the low-pressure gas refrigerant is sucked from the suction muffler 107 through the suction pipe 10 by gradually expanding the volume.
  • the compression chamber the gas refrigerant is compressed by gradually reducing the volume.
  • the compressed, high-pressure and high-temperature gas refrigerant is discharged from the discharge muffler 44 into the space inside the closed container 1.
  • the discharged gas refrigerant passes through the motor 2 and is discharged to the outside of the closed container 1 from the discharge pipe 11 at the upper part 1b of the container.
  • the refrigerant discharged to the outside of the closed container 1 passes through the refrigerant circuit 200 and returns to the suction muffler 107 again.
  • FIG. 6 is an explanatory diagram showing the configuration of the lead wire in the electric motor according to the first embodiment.
  • the electric wire bundle 24 has a first outlet wire 5, a second outlet wire 6, and a third outlet wire 7.
  • the electric wire unit 5A composed of one first electric wire 50, and the adjacent second electric wire 51 and the third electric wire 52 are electrically connected to each other at the first crimp terminal 8.
  • It has an electric wire assembly 5B connected to the wire assembly 5B. That is, the first outlet wire 5 has three electric wires, that is, the first electric wire 50, the second electric wire 51, and the third electric wire 52.
  • the second electric wire 51 is an electric wire arranged at a position adjacent to the first electric wire 50.
  • the second electric wire 51 is drawn out from the electric wire assembly 5B and is electrically connected to the electric wire unit 5A by the second crimp terminal 9.
  • the second crimp terminal 9 is electrically connected to the power supply terminal 12 of the compressor 101 via the cluster 25.
  • the first crimp terminal 8 and the second crimp terminal 9 have a serration structure. Since the first crimp terminal 8 and the second crimp terminal 9 have serrations, the electric wires inside the first crimp terminal 8 and the second crimp terminal 9 can be electrically and mechanically connected even when the electric wire is covered with the electric wire insulating film. Further, since the second electric wire 51 and the first electric wire 50 are arranged at adjacent positions, the position of crimping at the first crimp terminal 8 and the position of crimping at the second crimp terminal 9 can be brought close to each other. It is possible to surely avoid the situation where the electric wires intersect.
  • the electric wire constituting the first outlet wire 5 may be electrically connected by the first crimp terminal 8 or the second crimp terminal 9 with the electric wire insulating film removed.
  • the electric wire can be improved in electrical connectivity by removing the electric wire insulating film in advance using a chemical or the like and then crimping the electric wire with the first crimp terminal 8 or the second crimp terminal 9.
  • the second outlet wire 6 is composed of, for example, two electric wires.
  • the third outlet wire 7 is composed of, for example, one electric wire.
  • the second outlet line 6 and the third outlet line 7 may have the same configuration as the first outlet line 5.
  • the electric wires that make up the lead wire are soft and easily deformed. Therefore, when the lead wire has three or more electric wires and the electric wires are crimped by one crimp terminal, there is a possibility that the electric wires are crimped to the crimp terminal in a crossed state. If the crimp terminals are crimped with the wires crossed, the wires may press against each other and break. Further, if the lead wire is pulled when the crimp terminal is connected to the power supply terminal, the crossed electric wires may be broken due to the impact of the pulling. As described above, in the compressor, if the electric wire is broken, an electrical connection failure occurs.
  • At least one lead wire 5 is a single electric wire 5A composed of one electric wire 50, and at least two or more electric wires 51 and 52 adjacent to each other.
  • One of the electric wires 51 of the electric wire assembly 5B is drawn out from the electric wire assembly 5B and is electrically connected to the electric wire unit 5A by the second crimp terminal 9.
  • the second crimp terminal 9 is electrically connected to the power supply terminal 12 of the compressor 101.
  • the electric motor 2 has two electric wires (50, 51, 52) even when the outlet wire 5 is composed of three or more electric wires (50, 51, 52). Since the first crimp terminal 8 and the second crimp terminal 9 are electrically connected to each other, when crimping the electric wire (51, 52) at the first crimp terminal 8, and at the second crimp terminal 9, the electric wire (50, When crimping 51), it is possible to suppress a situation in which electric wires cross each other and press each other, and it is possible to avoid an electrical connection failure.
  • one electric wire 51 drawn out from the electric wire assembly 5B is an electric wire arranged at a position adjacent to the electric wire unit 5A. Therefore, the position of crimping at the first crimp terminal 8 and the position of crimping at the second crimp terminal 9 can be brought close to each other, and the situation where the electric wires intersect can be reliably avoided.
  • first crimp terminal 8 and the second crimp terminal 9 have a serration structure. Since the first crimp terminal 8 and the second crimp terminal 9 have serrations, the electric wires inside the first crimp terminal 8 and the second crimp terminal 9 can be electrically and mechanically connected even when the electric wire is covered with the electric wire insulating film.
  • the electric wires (50, 51, 52) constituting the outlet wire 5 are electrically connected by the first crimp terminal 8 or the second crimp terminal 9 with the electric wire insulating film removed. Therefore, by crimping the electric wire from which the electric wire insulating film has been removed by the first crimp terminal 8 or the second crimp terminal 9, the connectivity can be electrically improved.
  • FIG. 7 is an explanatory view showing the configuration of the lead wire in the electric motor according to the second embodiment.
  • the same components as those of the electric motor described in the second embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the motor 2 according to the second embodiment has a different configuration of the first outlet line 5 from the motor 2 according to the first embodiment.
  • the first outlet wire 5 in the second embodiment is a wire assembly 5C in which the adjacent first wire 50 and the second wire 51 are electrically connected by the first crimp terminal 80.
  • the adjacent third electric wire 52 and the fourth electric wire 53 have an electric wire assembly 5D electrically connected by the first crimp terminal 81. That is, the first outlet wire 5 in the second embodiment has four electric wires, that is, the first electric wire 50, the second electric wire 51, the third electric wire 52, and the fourth electric wire 53.
  • the second electric wire 51 is arranged at a position adjacent to the third electric wire 52.
  • the second electric wire 51 is drawn from the electric wire assembly 5C.
  • the third electric wire 52 is drawn from the electric wire assembly 5D.
  • the drawn out second electric wire 51 and the third electric wire 52 are electrically connected by the second crimp terminal 9.
  • the second crimp terminal 9 is electrically connected to the power supply terminal 12 of the compressor 101 via the cluster 25.
  • the first crimp terminal 8 and the second crimp terminal 9 have a serration structure. Since the first crimp terminal 8 and the second crimp terminal 9 have serrations, the electric wires inside the first crimp terminal 8 and the second crimp terminal 9 can be electrically and mechanically connected even when the electric wire is covered with the electric wire insulating film.
  • the electric wire constituting the first outlet wire 5 may be electrically connected by the first crimp terminal 8 or the second crimp terminal 9 with the electric wire insulating film removed.
  • the electric wire can be improved in electrical connectivity by removing the electric wire insulating film in advance using a chemical or the like and then crimping the electric wire with the first crimp terminal 8 or the second crimp terminal 9.
  • the second outlet wire 6 is composed of, for example, two electric wires.
  • the third outlet wire 7 is composed of, for example, one electric wire.
  • the second outlet line 6 and the third outlet line 7 may have the same configuration as the first outlet line 5.
  • the motor 2 extends from the stator core 22, the winding 23 wound around the stator core 22, and the winding 23, and is electrically connected to the power supply terminal 12. It has one or more outlets (5, 6, 7) to be connected.
  • At least one lead wire 5 is a wire assembly (5C and 5D) in which two adjacent wires (50 and 51, 52 and 53) are electrically connected by a first crimp terminal (80 or 81). I have two sets.
  • the electric wire (51, 52) of any one of the electric wire aggregates (5C and 5D) is drawn from the electric wire aggregate (5C and 5D) and electrically connected by the second crimp terminal 9.
  • the second crimp terminal 9 is electrically connected to the power supply terminal 12 of the compressor 101.
  • the electric wires (50, 51, 52, 53) are electrically connected by the first crimp terminal 8 and the second crimp terminal 9, when crimping the electric wire (50 and 51, 52 and 53) by the first crimp terminal (80 or 81).
  • the electric wires (51, 52) at the second crimp terminal 9 it is possible to suppress the situation where the electric wires cross each other and press each other, and it is possible to avoid an electrical connection failure.
  • the motor 2 according to the second embodiment is an electric wire in which one electric wire (51, 52) drawn from each electric wire aggregate (5C or 5D) is arranged at a position adjacent to each other. Therefore, the crimping position at the first crimping terminal (80 and 81) and the crimping position at the second crimping terminal 9 can be brought close to each other, and the situation where the electric wires intersect can be reliably avoided.
  • the motor 2, the compressor 101 and the refrigerating cycle device 100 have been described above based on the embodiments, the motor 2, the compressor 101 and the refrigerating cycle device 100 are not limited to the configuration of the above-described embodiment. No.
  • the electric motor 2, the compressor 101, and the refrigeration cycle device 100 are not limited to the above-mentioned components, and may include other components.
  • the motor 2, the compressor 101, and the refrigeration cycle device 100 include a range of design changes and application variations normally performed by those skilled in the art within a range that does not deviate from the technical idea thereof.

Abstract

This electric motor has: a stator core; a winding wound around the stator core; and one or a plurality of lead wires extending from the winding and electrically connected to a power supply terminal. At least one lead wire has: an electric wire single body comprising one electric wire; and an electric wire aggregate in which adjacent two electric wires are electrically connected to each other by a first crimp terminal. Either one of the electric wires of the electric wire aggregate is led out from the electric wire aggregate and electrically connected to the electric wire single body by a second crimp terminal. The second crimp terminal is electrically connected to the power supply terminal.

Description

電動機、圧縮機及び冷凍サイクル装置Motors, compressors and refrigeration cycle equipment
 本開示は、電動機、圧縮機及び冷凍サイクル装置に関するものである。 This disclosure relates to motors, compressors and refrigeration cycle devices.
 従来、圧縮機は、密閉容器内に、電動機と、電動機の駆動力を伝達する回転軸と、回転軸から伝達される駆動力によって冷媒を圧縮する圧縮機構部と、が収容された構成が知られている。密閉容器には、インバータ装置等の外部電源と接続する電源端子が設けられている。電動機は、円環状の固定子と、固定子の内側面に対向して回転可能に設けられた回転子と、を有している。固定子は、固定子鉄心と、固定子鉄心に巻かれた巻線とを備えている。電動機は、巻線から延伸した口出線が電源端子に接続されることで、電源端子から固定子に電力が供給され、回転子が回転する構成である。 Conventionally, it is known that a compressor has a configuration in which an electric motor, a rotating shaft that transmits the driving force of the electric motor, and a compression mechanism unit that compresses the refrigerant by the driving force transmitted from the rotating shaft are housed in a closed container. Has been done. The closed container is provided with a power supply terminal for connecting to an external power source such as an inverter device. The electric motor has an annular stator and a rotor rotatably provided facing the inner surface of the stator. The stator includes a stator core and windings wound around the stator core. The electric motor has a configuration in which electric power is supplied from the power supply terminal to the stator and the rotor rotates by connecting the lead wire extending from the winding to the power supply terminal.
 例えば特許文献1では、巻線の端部から延伸して形成された口出線の先端に外部端子がかしめられて圧着されており、該外部端子に嵌るナットの間に電源から電力を供給する配線の接続端子を挟み込んで固定することで、固定子に電力が供給される構成である。 For example, in Patent Document 1, an external terminal is crimped and crimped to the tip of a lead wire formed by extending from an end of a winding, and power is supplied from a power source between nuts fitted to the external terminal. Power is supplied to the stator by sandwiching and fixing the connection terminals of the wiring.
特開2012-036733号公報Japanese Unexamined Patent Publication No. 2012-036733
 特許文献1に開示されているように、巻線の端部から延伸した口出線の先端に圧着端子がかしめられる構成は、一般的に知られている。しかしながら、口出線を構成する電線は、軟らかくて変形しやすい。そのため、口出線が3本以上の電線を有しており、その電線を一つの圧着端子でかしめる場合、電線が交差した状態で圧着端子にかしめられるおそれがある。電線が交差した状態で圧着端子にかしめられると、電線同士が互いに押し付け合って断線するおそれがある。更に、圧着端子を電源端子に接続する際に口出線が引っ張られると、その引っ張られた衝撃で、交差した電線が断線してしまうおそれもある。圧縮機は、電線が断線してしまうと、電気的な接続不良を生じてしまう。 As disclosed in Patent Document 1, it is generally known that the crimp terminal is crimped to the tip of the lead wire extending from the end of the winding. However, the electric wire constituting the lead wire is soft and easily deformed. Therefore, when the lead wire has three or more electric wires and the electric wires are crimped by one crimp terminal, there is a possibility that the electric wires are crimped to the crimp terminal in a crossed state. If the crimp terminals are crimped with the wires crossed, the wires may press against each other and break. Further, if the lead wire is pulled when the crimp terminal is connected to the power supply terminal, the crossed electric wire may be broken due to the pulled impact. In a compressor, if the electric wire is broken, an electrical connection failure will occur.
 本開示は、上記のような課題を解決するためになされたもので、口出線が3本以上の電線で構成された場合であっても、電気的な接続不良を回避することができ、信頼性の高い、電動機、圧縮機及び冷凍サイクル装置を提供することを目的とする。 This disclosure is made in order to solve the above-mentioned problems, and even when the lead wire is composed of three or more electric wires, it is possible to avoid an electrical connection failure. It is an object of the present invention to provide a highly reliable electric motor, compressor and refrigeration cycle device.
 本開示に係る電動機は、電源端子を有する圧縮機の容器に収容して使用される電動機であって、固定子鉄心と、前記固定子鉄心に巻かれた巻線と、前記巻線から延伸して、前記電源端子に電気的に接続される1つ又は複数の口出線と、を有し、少なくとも1つの前記口出線は、1本の電線からなる電線単体と、隣り合う2本の電線が第1圧着端子で電気的に接続された電線集合体と、を有しており、前記電線集合体のいずれか一方の電線は、前記電線集合体から引き出され、前記電線単体と第2圧着端子で電気的に接続されており、前記第2圧着端子が前記電源端子に電気的に接続されるものである。 The electric wire according to the present disclosure is an electric wire housed in a container of a compressor having a power supply terminal and used, and is an electric wire, a stator core, a winding wound around the stator core, and an electric wire extending from the winding. The power supply terminal has one or a plurality of outlet wires electrically connected to the power supply terminal, and at least one of the outlet wires is a single electric wire composed of one electric wire and two adjacent electric wires. It has an electric wire assembly in which the electric wires are electrically connected by the first crimp terminal, and one of the electric wires of the electric wire assembly is drawn out from the electric wire assembly, and the electric wire alone and the second electric wire assembly are provided. It is electrically connected by a crimp terminal, and the second crimp terminal is electrically connected to the power supply terminal.
 本開示に係る圧縮機は、上記電動機と、前記電動機により駆動されて冷媒を圧縮する圧縮機構部と、前記電動機と前記圧縮機構部とを収容する密閉容器と、前記密閉容器に固定され、前記口出線が電気的に接続された電源端子と、を備えているものである。 The compressor according to the present disclosure is fixed to the electric motor, a compression mechanism portion driven by the electric motor to compress the refrigerant, a closed container accommodating the electric motor and the compression mechanism portion, and the closed container. It is equipped with a power supply terminal to which the outlet wire is electrically connected.
 本開示に係る冷凍サイクル装置は、上記圧縮機と、流路切替装置と、第1熱交換器と、膨張機構と、第2熱交換器と、が配管により順次に接続されて冷媒が循環する冷媒回路を備えたものである。 In the refrigeration cycle device according to the present disclosure, the compressor, the flow path switching device, the first heat exchanger, the expansion mechanism, and the second heat exchanger are sequentially connected by pipes to circulate the refrigerant. It is equipped with a refrigerant circuit.
 本開示の電動機、圧縮機及び冷凍サイクル装置によれば、口出線が3本以上の電線で構成された場合であっても、電線を2本ずつ圧着端子で電気的に接続する構成なので、圧着端子で電線をかしめる際に、電線同士が交差して互いに押し付け合う事態を抑制することができ、電気的な接続不良を回避することができる。 According to the motor, compressor and refrigeration cycle device of the present disclosure, even if the lead wire is composed of three or more electric wires, the electric wires are electrically connected by two crimp terminals. When crimping an electric wire with a crimp terminal, it is possible to suppress a situation in which the electric wires cross each other and press each other, and it is possible to avoid an electrical connection failure.
本実施の形態1に係る冷凍サイクル装置の冷房運転時における冷媒回路図である。It is a refrigerant circuit diagram at the time of cooling operation of the refrigeration cycle apparatus which concerns on Embodiment 1. 本実施の形態1に係る冷凍サイクル装置の暖房運転時における冷媒回路図である。It is a refrigerant circuit diagram at the time of heating operation of the refrigeration cycle apparatus which concerns on Embodiment 1. 本実施の形態1に係る圧縮機の内部構造を示した縦断面図である。It is a vertical sectional view which showed the internal structure of the compressor which concerns on Embodiment 1. 本実施の形態1に係る電動機であって、電線束の構成を示した説明図である。It is explanatory drawing which showed the structure of the electric wire bundle which is the electric motor which concerns on Embodiment 1. 本実施の形態1に係る圧縮機の圧縮機構部の要部を示した断面図である。It is sectional drawing which showed the main part of the compression mechanism part of the compressor which concerns on Embodiment 1. 本実施の形態1に係る電動機であって、口出線の構成を示した説明図である。It is explanatory drawing which showed the structure of the outlet wire which is the electric motor which concerns on Embodiment 1. 本実施の形態2に係る電動機であって、口出線の構成を示した説明図である。It is explanatory drawing which showed the structure of the outlet wire which is the electric motor which concerns on Embodiment 2.
 以下、図面を参照して、本開示の実施の形態について説明する。なお、各図中、同一又は相当する部分には、同一符号を付して、その説明を適宜省略又は簡略化する。また、各図に記載の構成について、その形状、大きさ、及び配置等は、適宜変更することができる。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In each figure, the same or corresponding parts are designated by the same reference numerals, and the description thereof will be omitted or simplified as appropriate. In addition, the shape, size, arrangement, and the like of the configurations shown in each figure can be appropriately changed.
 実施の形態1.
 図1は、本実施の形態1に係る冷凍サイクル装置の冷房運転時における冷媒回路図である。図2は、本実施の形態1に係る冷凍サイクル装置の暖房運転時における冷媒回路図である。本実施の形態1に係る冷凍サイクル装置100は、例えば、空気調和装置、冷凍装置、冷蔵庫、冷凍庫、自動販売機、又は給湯装置等の用途に用いられる。本実施の形態1に係る冷凍サイクル装置100は、圧縮機101、流路切替装置102、第1熱交換器103と、膨張機構104と、第2熱交換器105が、冷媒配管により順次に接続され、冷媒が循環する冷媒回路200を有している。また、冷凍サイクル装置100は、制御部106を有しており、制御部106によって各構成要素の状態が監視され及び制御される。
Embodiment 1.
FIG. 1 is a refrigerant circuit diagram during a cooling operation of the refrigeration cycle device according to the first embodiment. FIG. 2 is a refrigerant circuit diagram during a heating operation of the refrigeration cycle apparatus according to the first embodiment. The refrigerating cycle device 100 according to the first embodiment is used for, for example, an air conditioner, a refrigerating device, a refrigerator, a freezer, a vending machine, a hot water supply device, or the like. In the refrigeration cycle device 100 according to the first embodiment, the compressor 101, the flow path switching device 102, the first heat exchanger 103, the expansion mechanism 104, and the second heat exchanger 105 are sequentially connected by a refrigerant pipe. It has a refrigerant circuit 200 in which the refrigerant circulates. Further, the refrigeration cycle device 100 has a control unit 106, and the state of each component is monitored and controlled by the control unit 106.
 圧縮機101は、吸入した冷媒を圧縮し、高温高圧の状態にして吐出するものである。流路切替装置102は、一例として四方弁であり、冷媒の流路を切り換える機能を有するものである。流路切替装置102は、図1に示す冷房運転時において、圧縮機101の冷媒吐出側と室外熱交換器である第1熱交換器103のガス側とを接続すると共に、圧縮機101の冷媒吸入側と室内熱交換器である第2熱交換器105のガス側とを接続するように冷媒流路を切り換える。一方、流路切替装置102は、図2に示す暖房運転時において、圧縮機101の冷媒吐出側と室内熱交換器である第2熱交換器105のガス側とを接続すると共に、圧縮機101の冷媒吸入側と室外熱交換器である第1熱交換器103のガス側とを接続するように冷媒流路を切り換える。なお、流路切替装置102は、二方弁又は三方弁を組み合わせて構成してもよい。 The compressor 101 compresses the sucked refrigerant and discharges it in a high temperature and high pressure state. The flow path switching device 102 is, for example, a four-way valve, and has a function of switching the flow path of the refrigerant. The flow path switching device 102 connects the refrigerant discharge side of the compressor 101 and the gas side of the first heat exchanger 103, which is an outdoor heat exchanger, during the cooling operation shown in FIG. 1, and also connects the refrigerant of the compressor 101. The refrigerant flow path is switched so as to connect the suction side and the gas side of the second heat exchanger 105, which is an indoor heat exchanger. On the other hand, the flow path switching device 102 connects the refrigerant discharge side of the compressor 101 and the gas side of the second heat exchanger 105, which is an indoor heat exchanger, during the heating operation shown in FIG. 2, and also connects the compressor 101. The refrigerant flow path is switched so as to connect the refrigerant suction side of the above and the gas side of the first heat exchanger 103 which is an outdoor heat exchanger. The flow path switching device 102 may be configured by combining a two-way valve or a three-way valve.
 第1熱交換器103は、冷房運転時には凝縮器として機能し、圧縮機101から吐出された冷媒と空気との間で熱交換を行わせるものである。また、第1熱交換器103は、暖房運転時には蒸発器として機能し、膨張機構104から流出した冷媒と空気との間で熱交換を行わせるものである。第1熱交換器103は、送風機によって室外空気を吸い込み、冷媒との間で熱交換した空気を外部に排出する。 The first heat exchanger 103 functions as a condenser during the cooling operation, and causes heat exchange between the refrigerant discharged from the compressor 101 and the air. Further, the first heat exchanger 103 functions as an evaporator during the heating operation, and causes heat exchange between the refrigerant flowing out from the expansion mechanism 104 and the air. The first heat exchanger 103 sucks in outdoor air by a blower and discharges the air that has exchanged heat with the refrigerant to the outside.
 膨張機構104は、冷媒回路内を流れる冷媒を減圧して膨張させるものであり、一例として開度が可変に制御される電子膨張弁で構成される。 The expansion mechanism 104 decompresses and expands the refrigerant flowing in the refrigerant circuit, and is composed of an electronic expansion valve whose opening degree is variably controlled as an example.
 第2熱交換器105は、冷房運転時には蒸発器として機能し、膨張機構104から流出した冷媒と空気との間で熱交換を行わせるものである。また、第2熱交換器105は、暖房運転時には凝縮器として機能し、圧縮機101から吐出された冷媒と空気との間で熱交換を行わせるものである。第2熱交換器105は、送風機によって室内空気を吸い込み、冷媒との間で熱交換した空気を室内に供給する。 The second heat exchanger 105 functions as an evaporator during the cooling operation, and causes heat exchange between the refrigerant flowing out from the expansion mechanism 104 and the air. Further, the second heat exchanger 105 functions as a condenser during the heating operation, and causes heat exchange between the refrigerant discharged from the compressor 101 and the air. The second heat exchanger 105 sucks indoor air by a blower and supplies the air exchanged with the refrigerant into the room.
 制御部106は、例えばマイコン又はCPUのような演算装置と、その上で実行されるソフトウェアとにより構成される。なお、制御部106は、その機能を実現する回路デバイスのようなハードウェアにより構成されてもよい。制御部106は、図1及び図2に示すように、圧縮機101に接続されているが、他の構成要素に接続してもよい。 The control unit 106 is composed of an arithmetic unit such as a microcomputer or a CPU and software executed on the arithmetic unit. The control unit 106 may be configured by hardware such as a circuit device that realizes the function. Although the control unit 106 is connected to the compressor 101 as shown in FIGS. 1 and 2, the control unit 106 may be connected to other components.
 冷媒回路200を循環する冷媒としては、R32、R125、R134a、R407C又はR410AといったHFC系冷媒が使用される。あるいは、R1123、R1132(E)、R1132(Z)、R1132a、R1141、R1234yf、R1234ze(E)又はR1234ze(Z)といったHFO系冷媒が使用される。あるいは、R290(プロパン)、R600a(イソブタン)、R744(二酸化炭素)又はR717(アンモニア)といった自然冷媒が使用される。あるいは、その他の冷媒が使用される。あるいは、これらの冷媒のうち2種類以上の混合物が使用される。「HFC」は、Hydrofluorocarbonの略語である。「HFO」は、Hydrofluoroolefinの略語である。 As the refrigerant circulating in the refrigerant circuit 200, HFC-based refrigerants such as R32, R125, R134a, R407C or R410A are used. Alternatively, HFO-based refrigerants such as R1123, R1132 (E), R1132 (Z), R1132a, R1141, R1234yf, R1234ze (E) or R1234ze (Z) are used. Alternatively, a natural refrigerant such as R290 (propane), R600a (isobutane), R744 (carbon dioxide) or R717 (ammonia) is used. Alternatively, other refrigerants are used. Alternatively, a mixture of two or more of these refrigerants is used. "HFC" is an abbreviation for Hydrofluorocarbon. "HFO" is an abbreviation for Hydrofluoroolefin.
 次に、図1に基づいて冷凍サイクル装置100の冷房運転時の動作を説明する。圧縮機101から吐出された高温高圧のガス冷媒は、流路切替装置102を通過して第1熱交換器103へと流れて空気と熱交換して凝縮液化する。凝縮液化した冷媒は、膨張機構104で減圧され低圧の気液2相冷媒となり、第2熱交換器105へと流れて空気と熱交換してガス化する。ガス化した冷媒は、流路切替装置102を通過して圧縮機101に吸入される。 Next, the operation of the refrigeration cycle device 100 during the cooling operation will be described with reference to FIG. The high-temperature and high-pressure gas refrigerant discharged from the compressor 101 passes through the flow path switching device 102, flows to the first heat exchanger 103, exchanges heat with air, and becomes a condensed liquid. The condensed liquefied refrigerant is decompressed by the expansion mechanism 104 to become a low-pressure gas-liquid two-phase refrigerant, which flows to the second heat exchanger 105 and exchanges heat with air to gasify. The gasified refrigerant passes through the flow path switching device 102 and is sucked into the compressor 101.
 次に、図2に基づいて冷凍サイクル装置100の暖房運転時の動作を説明する。圧縮機101から吐出された高温高圧のガス冷媒は、流路切替装置102を通過して第2熱交換器105へと流れて空気と熱交換して凝縮液化する。凝縮液化した冷媒は膨張機構104で減圧され低圧の気液2相冷媒となり、第1熱交換器103へと流れて空気と熱交換してガス化する。ガス化した冷媒は流路切替装置102を通過して圧縮機101に吸入される。 Next, the operation of the refrigeration cycle device 100 during the heating operation will be described with reference to FIG. The high-temperature and high-pressure gas refrigerant discharged from the compressor 101 passes through the flow path switching device 102, flows to the second heat exchanger 105, and exchanges heat with air to form a condensed liquid. The condensed liquefied refrigerant is decompressed by the expansion mechanism 104 to become a low-pressure gas-liquid two-phase refrigerant, which flows to the first heat exchanger 103 and exchanges heat with air to gasify. The gasified refrigerant passes through the flow path switching device 102 and is sucked into the compressor 101.
 次に、図3~図5に基づいて圧縮機101の構成を具体的に説明する。図3は、本実施の形態1に係る圧縮機の内部構造を示した縦断面図である。図4は、本実施の形態1に係る電動機であって、電線束の構成を示した説明図である。図5は、本実施の形態1に係る圧縮機の圧縮機構部の要部を示した断面図である。 Next, the configuration of the compressor 101 will be specifically described with reference to FIGS. 3 to 5. FIG. 3 is a vertical sectional view showing the internal structure of the compressor according to the first embodiment. FIG. 4 is an explanatory diagram showing the configuration of an electric wire bundle in the electric motor according to the first embodiment. FIG. 5 is a cross-sectional view showing a main part of the compression mechanism portion of the compressor according to the first embodiment.
 図3に示した圧縮機101は、一例として単シリンダーのロータリ圧縮機である。なお、圧縮機101は、例えば多シリンダーのロータリ圧縮機、スクロール圧縮機又はレシプロ圧縮機でもよいし、その他の構造からなるものでもよい。 The compressor 101 shown in FIG. 3 is a single-cylinder rotary compressor as an example. The compressor 101 may be, for example, a multi-cylinder rotary compressor, a scroll compressor, or a reciprocating compressor, or may have another structure.
 圧縮機101は、図3に示すように、外郭を形成する密閉容器1と、電動機2と、電動機2の駆動力を伝達するクランク軸3と、クランク軸3から伝達される駆動力によって冷媒を圧縮する圧縮機構部4と、を備えている。密閉容器1の内部には、電動機2、クランク軸3及び圧縮機構部4が収容されている。電動機2は、密閉容器1の上部に設置されている。圧縮機構部4は、電動機2の下方であって、密閉容器1の下部に設置されている。電動機2と圧縮機構部4は、クランク軸3を介して連結されている。 As shown in FIG. 3, the compressor 101 uses a closed container 1 forming an outer shell, an electric motor 2, a crank shaft 3 for transmitting the driving force of the electric motor 2, and a driving force transmitted from the crank shaft 3 to supply a refrigerant. It includes a compression mechanism unit 4 for compressing. An electric motor 2, a crank shaft 3, and a compression mechanism portion 4 are housed inside the closed container 1. The electric motor 2 is installed on the upper part of the closed container 1. The compression mechanism portion 4 is installed below the electric motor 2 and below the closed container 1. The electric motor 2 and the compression mechanism portion 4 are connected via a crank shaft 3.
 密閉容器1は、円筒状の胴部1aと、胴部1aの上面開口を塞ぐ容器上部1bと、胴部1aの下面開口を塞ぐ容器下部1cと、を有している。容器上部1b及び容器下部1cは、それぞれ胴部1aに溶接等で固着されている。容器上部1bは、密閉容器1の軸方向一端に相当する。容器下部1cは、密閉容器1の軸方向他端に相当する。なお、密閉容器1は、胴部1aと容器下部1cとが一体成形された構成でもよい。 The closed container 1 has a cylindrical body portion 1a, a container upper portion 1b that closes the upper surface opening of the body portion 1a, and a container lower portion 1c that closes the lower surface opening of the body portion 1a. The upper part 1b of the container and the lower part 1c of the container are each fixed to the body portion 1a by welding or the like. The upper part 1b of the container corresponds to one end in the axial direction of the closed container 1. The lower part 1c of the container corresponds to the other end in the axial direction of the closed container 1. The closed container 1 may have a structure in which the body portion 1a and the container lower portion 1c are integrally molded.
 密閉容器1は、吸入管10を介して吸入マフラー107と接続されており、吸入マフラー107から冷媒ガスが取り込まれる。吸入マフラー107は、冷媒回路200から吸入した低圧の冷媒を液冷媒とガス冷媒に分離し、液冷媒がなるべく圧縮機構部4の内部に吸入されないようにするために設けられている。吸入マフラー107は、溶接等により密閉容器1の胴部1aの外側面に固定されている。 The closed container 1 is connected to the suction muffler 107 via the suction pipe 10, and the refrigerant gas is taken in from the suction muffler 107. The suction muffler 107 is provided to separate the low-pressure refrigerant sucked from the refrigerant circuit 200 into a liquid refrigerant and a gas refrigerant so that the liquid refrigerant is not sucked into the compression mechanism portion 4 as much as possible. The suction muffler 107 is fixed to the outer surface of the body portion 1a of the closed container 1 by welding or the like.
 容器上部1bには、圧縮された冷媒が排出される吐出管11が接続されている。吐出管11は、図示例の場合、クランク軸3の真上であって容器上部1bの中央部に設置されているが、容器上部1bのその他の部分でもよい。吐出管11の外径は、容器上部1bの外径の0.1倍以上0.2倍以下であることが望ましい。また、容器上部1bには、インバータ装置等の外部電源と接続する電源端子12と、電源端子12を保護するためのカバーが取り付けられるロッド13と、が設けられている。電源端子12は、例えばガラス端子等の気密端子である。電源端子12は、例えば密閉容器1に溶接で固定されている。 A discharge pipe 11 for discharging the compressed refrigerant is connected to the upper portion 1b of the container. In the case of the illustrated example, the discharge pipe 11 is directly above the crank shaft 3 and is installed in the central portion of the container upper portion 1b, but may be another portion of the container upper portion 1b. It is desirable that the outer diameter of the discharge pipe 11 is 0.1 times or more and 0.2 times or less the outer diameter of the upper portion 1b of the container. Further, the upper portion 1b of the container is provided with a power supply terminal 12 connected to an external power source such as an inverter device and a rod 13 to which a cover for protecting the power supply terminal 12 is attached. The power supply terminal 12 is an airtight terminal such as a glass terminal. The power supply terminal 12 is fixed to the closed container 1 by welding, for example.
 密閉容器1内の底部には、冷凍機油14が貯留されている。冷凍機油14は、主に圧縮機構部4の各摺動部へ供給され、該各摺動部を潤滑するものである。冷凍機油14としては、合成油であるPOE、PVE又はAB等が使用される。「POE」は、Polyolesterの略語である。「PVE」は、Polyvinyl Etherの略語である。「AB」は、Alkylbenzeneの略語である。 Refrigerating machine oil 14 is stored in the bottom of the closed container 1. The refrigerating machine oil 14 is mainly supplied to each sliding portion of the compression mechanism portion 4 and lubricates each sliding portion. As the refrigerating machine oil 14, synthetic oils such as POE, PVE, and AB are used. "POE" is an abbreviation for Polyolester. "PVE" is an abbreviation for Polyvinyl Ether. "AB" is an abbreviation for Alkylbenzene.
 電動機2は、クランク軸3を回転させるものである。電動機2は、一例として誘導電動機であるが、例えばブラシレスDCモータ等のように誘導電動機以外でもよい。なお、DCは、「Direct Current」の略語である。 The electric motor 2 rotates the crank shaft 3. The electric motor 2 is an induction motor as an example, but may be other than an induction motor such as a brushless DC motor. DC is an abbreviation for "Direct Current".
 電動機2は、図1に示すように、密閉容器1の内壁面に焼き嵌め等によって固定された円環状の固定子20と、固定子20の内側面に対向して回転可能に設けられた回転子21と、を有している。 As shown in FIG. 1, the electric motor 2 has an annular stator 20 fixed to the inner wall surface of the closed container 1 by shrink fitting or the like, and a rotatably provided rotatably provided facing the inner side surface of the stator 20. It has a child 21 and.
 固定子20は、固定子鉄心22と、巻線23と、電線束24と、を有している。固定子鉄心22は、鉄を主成分とする複数枚の電磁鋼板を一定の形状に打ち抜き、軸方向に積層し、かしめ接合により固定して製作される。各電磁鋼板の厚さは、例えば、0.1mm以上1.5mm以下である。固定子鉄心22は、外径が密閉容器1の胴部1aの内径よりも大きく、密閉容器1の胴部1aの内側に焼き嵌めにより固定されている。 The stator 20 has a stator core 22, a winding 23, and a wire bundle 24. The stator core 22 is manufactured by punching a plurality of electrical steel sheets containing iron as a main component into a certain shape, laminating them in the axial direction, and fixing them by caulking. The thickness of each electrical steel sheet is, for example, 0.1 mm or more and 1.5 mm or less. The stator core 22 has an outer diameter larger than the inner diameter of the body portion 1a of the closed container 1 and is fixed to the inside of the body portion 1a of the closed container 1 by shrink fitting.
 なお、固定子鉄心22の電磁鋼板同士を固定する方法は、かしめ接合に限らず、溶接等の他の方法でもよい。また、固定子鉄心22を密閉容器1の胴部1aの内側に固定する方法は、焼き嵌めに限らず、圧入又は溶接等の他の方法でもよい。 The method of fixing the electromagnetic steel sheets of the stator core 22 is not limited to caulking, but may be another method such as welding. Further, the method of fixing the stator core 22 to the inside of the body portion 1a of the closed container 1 is not limited to shrink fitting, and other methods such as press fitting or welding may be used.
 固定子鉄心22の外周には、周方向に等間隔に複数の切欠が形成されていてもよい。それぞれの切欠は、吐出マフラー44から密閉容器1の内部空間へ放出されるガス冷媒の通路の1つになる。それぞれの切欠は、密閉容器1の上部に導かれた冷凍機油14を密閉容器1の下部に落とすための通路の1つにもなる。 A plurality of notches may be formed at equal intervals in the circumferential direction on the outer circumference of the stator core 22. Each notch becomes one of the passages of the gas refrigerant discharged from the discharge muffler 44 into the internal space of the closed container 1. Each notch also serves as one of the passages for dropping the refrigerating machine oil 14 guided to the upper part of the closed container 1 to the lower part of the closed container 1.
 巻線23は、固定子鉄心22に巻かれている。具体的には、巻線23は、固定子鉄心22に形成されたティースに絶縁部材を介して巻かれている。巻線23は、芯線と、芯線を覆う少なくとも一層の絶縁被膜とからなる。巻線23は、電線束24によって電源端子12と電気的に接続されている。芯線の材質は、一例として銅である。被膜の材質は、AI/EIである。「AI」は、Amide-Imideの略語である。「EI」は、Ester-Imideの略語である。絶縁部材の材質は、PETである。「PET」は、Polyethylene Terephthalateの略語である。 The winding 23 is wound around the stator core 22. Specifically, the winding 23 is wound around a tooth formed on the stator core 22 via an insulating member. The winding 23 is composed of a core wire and at least one layer of insulating coating covering the core wire. The winding 23 is electrically connected to the power supply terminal 12 by a wire bundle 24. The material of the core wire is copper as an example. The material of the coating is AI / EI. "AI" is an abbreviation for Amide-Imide. "EI" is an abbreviation for Ester-Imide. The material of the insulating member is PET. "PET" is an abbreviation for Polyethylene terephthalate.
 なお、芯線の材質は、アルミニウムでもよい。絶縁部材の材質は、PBT、FEP、PFA、PTFE、LCP、PPS又はフェノール樹脂でもよい。「PBT」は、Polybutylene Terephthalateの略語である。「FEP」は、Fluorinated Ethylene Propyleneの略語である。「PFA」は、Perfluoroalkoxy Alkaneの略語である。「PTFE」は、Polytetrafluoroethyleneの略語である。「LCP」は、Liquid Crystal Polymerの略語である。「PPS」は、Polyphenylene Sulfideの略語である。 The material of the core wire may be aluminum. The material of the insulating member may be PBT, FEP, PFA, PTFE, LCP, PPS or phenol resin. "PBT" is an abbreviation for Polybutylene terephlate. "FEP" is an abbreviation for Fluorinated Ethylene Propyrene. "PFA" is an abbreviation for Perfluoroalkoxy Alkane. "PTFE" is an abbreviation for Polytellafluoethylene. "LCP" is an abbreviation for Liquid Crystal Polymer. "PPS" is an abbreviation for Polyphenylene Sulfide.
 電線束24は、一端側が巻線23に電気的に接続されている。電線束24は、他端側が電源端子12に電気的に接続されている。電線束24は、図4に示すように、第1口出線5と、第2口出線6と、第3口出線7と、を有している。第1口出線5は、共通線の口出線である。第2口出線6は、主巻線の口出線である。第3口出線7は、補助巻線の口出線である。 One end of the wire bundle 24 is electrically connected to the winding 23. The other end of the wire bundle 24 is electrically connected to the power supply terminal 12. As shown in FIG. 4, the electric wire bundle 24 has a first outlet wire 5, a second outlet wire 6, and a third outlet wire 7. The first outlet line 5 is a common outlet line. The second outlet wire 6 is the outlet wire of the main winding. The third outlet wire 7 is an outlet wire of the auxiliary winding.
 第1口出線5、第2口出線6及び第3口出線7は、例えば銅線又はアルミニウムからなる電線で構成されている。第1口出線5、第2口出線6及び第3口出線7は、すべて銅線で構成してもよいし、すべてアルミニウム線で構成してもよい。また、第1口出線5、第2口出線6及び第3口出線7のうち少なくとも1つの口出線を、アルミニウムからなる電線で構成し、その他の口出線を銅線で構成してもよい。 The first outlet wire 5, the second outlet wire 6 and the third outlet wire 7 are composed of, for example, a copper wire or an electric wire made of aluminum. The first outlet wire 5, the second outlet wire 6 and the third outlet wire 7 may be all made of copper wire or all may be made of aluminum wire. Further, at least one of the first outlet wire 5, the second outlet wire 6 and the third outlet wire 7 is made of an aluminum wire, and the other outlet wires are made of copper wire. You may.
 第1口出線5、第2口出線6及び第3口出線7は、互いに電位が異なる。そのため、第1口出線5、第2口出線6及び第3口出線7のうち少なくとも2つ口出線が絶縁チューブで覆われた構成とし、互いに絶縁性を確保することが望ましい。 The potentials of the first outlet wire 5, the second outlet wire 6 and the third outlet wire 7 are different from each other. Therefore, it is desirable that at least two of the first outlet wire 5, the second outlet wire 6, and the third outlet wire 7 are covered with an insulating tube to ensure mutual insulation.
 第1口出線5、第2口出線6及び第3口出線7の各電線は、巻線23と一体の電線であり、巻線23の端部が直に引き出されて形成されている。よって、電線束24の各電線は、巻線23と同じように、芯線と、芯線を覆う少なくとも一層の絶縁被膜とからなる。なお、第1口出線5、第2口出線6及び第3口出線7の各電線は、巻線23とは別個の電線とし、接続端子を介して巻線23に電気的に接続された構成としてもよい。 Each of the first outlet wire 5, the second outlet wire 6 and the third outlet wire 7 is an electric wire integrated with the winding 23, and the end portion of the winding 23 is directly pulled out to form the electric wire. There is. Therefore, each electric wire of the electric wire bundle 24 is composed of a core wire and at least one layer of an insulating coating covering the core wire, similarly to the winding 23. In addition, each electric wire of the 1st outlet wire 5, the 2nd outlet wire 6 and the 3rd outlet wire 7 is a wire separate from the winding wire 23, and is electrically connected to the winding wire 23 via the connection terminal. It may be a configured configuration.
 第1口出線5は、先端部が圧着端子9(後述する第2圧着端子9)にかしめられてクラスタ25に挿入されている。第2口出線6は、先端部が圧着端子70にかしめられて、クラスタ25に挿入されている。そして、第3口出線7は、先端部が図示省略の圧着端子にかしめられてクラスタ25に挿入されている。クラスタ25は、PBT等の樹脂からなるブロック状の成形品であり、電源端子12に接続される。つまり、クラスタ25を電源端子12に接続するだけで、すべての圧着端子を電源端子12に接続することができるので、結線の作業性を向上させることができる。 The tip of the first outlet wire 5 is crimped to the crimp terminal 9 (the second crimp terminal 9 described later) and inserted into the cluster 25. The tip of the second outlet wire 6 is crimped to the crimp terminal 70 and inserted into the cluster 25. The tip of the third outlet wire 7 is crimped to a crimp terminal (not shown) and inserted into the cluster 25. The cluster 25 is a block-shaped molded product made of a resin such as PBT, and is connected to the power supply terminal 12. That is, all the crimp terminals can be connected to the power supply terminal 12 only by connecting the cluster 25 to the power supply terminal 12, so that the workability of the wiring can be improved.
 回転子21は、円筒状であり、図3に示すように、固定子20の内側に空隙を介して設置されている。空隙の幅は、例えば0.3mm以上1.0mm以下である。回転子21は、一例としてアルミダイキャスト製のかご形ロータである。 The rotor 21 has a cylindrical shape and is installed inside the stator 20 via a gap as shown in FIG. The width of the void is, for example, 0.3 mm or more and 1.0 mm or less. The rotor 21 is, for example, a cage-shaped rotor made of die-cast aluminum.
 回転子21は、回転子鉄心26と、図示省略の導体と、エンドリング27と、を有している。回転子鉄心26は、固定子鉄心22と同じように、鉄を主成分とする複数枚の電磁鋼板を一定の形状に打ち抜き、軸方向に積層し、かしめ接合により固定して製作されている。各電磁鋼板の厚さは、例えば、0.1mm以上1.5mm以下である。なお、回転子鉄心26の電磁鋼板同士を固定する方法は、かしめ接合に限らず、溶接等の他の方法でもよい。 The rotor 21 has a rotor core 26, a conductor (not shown), and an end ring 27. Similar to the stator core 22, the rotor core 26 is manufactured by punching a plurality of electrical steel sheets containing iron as a main component into a certain shape, laminating them in the axial direction, and fixing them by caulking. The thickness of each electrical steel sheet is, for example, 0.1 mm or more and 1.5 mm or less. The method of fixing the electromagnetic steel sheets of the rotor core 26 is not limited to caulking, and other methods such as welding may be used.
 導体は、回転子鉄心26に形成された複数個のスロットに充填又は挿入されている。導体は、アルミニウムで形成してもよいし、銅等で形成してもよい。 The conductor is filled or inserted into a plurality of slots formed in the rotor core 26. The conductor may be formed of aluminum, copper or the like.
 エンドリング27は、導体の両端を短絡するものである。これにより、かご形巻線が形成されている。 The end ring 27 short-circuits both ends of the conductor. As a result, a cage winding is formed.
 回転子鉄心26の平面視中心には、クランク軸3の主軸部30が焼き嵌め又は圧入される軸孔が形成されている。すなわち、回転子鉄心26の内径は、主軸部30の外径よりも小さくなっている。図示することは省略したが、回転子鉄心26の軸孔の周囲には、軸方向に貫通する複数個の貫通孔が形成されている。それぞれの貫通孔は、吐出マフラー44から密閉容器1の内部空間へ放出されるガス冷媒の通路の1つになる。それぞれの貫通孔は、密閉容器1の上部に導かれた冷凍機油14を密閉容器1の下部に落とすための通路の1つにもなる。 At the center of the rotor core 26 in a plan view, a shaft hole into which the spindle portion 30 of the crank shaft 3 is shrink-fitted or press-fitted is formed. That is, the inner diameter of the rotor core 26 is smaller than the outer diameter of the spindle portion 30. Although not shown in the figure, a plurality of through holes penetrating in the axial direction are formed around the shaft hole of the rotor core 26. Each through hole becomes one of the passages of the gas refrigerant discharged from the discharge muffler 44 into the internal space of the closed container 1. Each through hole also serves as one of the passages for dropping the refrigerating machine oil 14 guided to the upper part of the closed container 1 to the lower part of the closed container 1.
 なお、図示することは省略したが、電動機2がブラシレスDCモータとして構成される場合には、回転子鉄心26に形成される複数個の挿入孔に永久磁石が挿入される。永久磁石は、磁極を形成する。永久磁石としては、フェライト磁石又は希土類磁石が使用される。永久磁石が軸方向に抜けないようにするために、回転子21の軸方向両端には、上端板及び下端板が設けられる。上端板及び下端板は、回転バランサを兼ねている。上端板及び下端板は、複数の固定用リベット等により回転子鉄心26に固定される。 Although not shown, when the electric motor 2 is configured as a brushless DC motor, permanent magnets are inserted into a plurality of insertion holes formed in the rotor core 26. Permanent magnets form magnetic poles. As the permanent magnet, a ferrite magnet or a rare earth magnet is used. In order to prevent the permanent magnets from coming off in the axial direction, upper end plates and lower end plates are provided at both ends in the axial direction of the rotor 21. The upper end plate and the lower end plate also serve as a rotary balancer. The upper end plate and the lower end plate are fixed to the rotor core 26 by a plurality of fixing rivets or the like.
 クランク軸3は、図3に示すように、電動機2の回転子21に固定された主軸部30と、圧縮機構部4を挟んで主軸部30の反対側に設けられた副軸部31と、主軸部30と副軸部31との間に設けられた偏心軸部32と、を有している。主軸部30、副軸部31及び偏心軸部32は、それぞれ円柱状である。因みに、クランク軸3の材質は、鋳造材又は鍛造材である。 As shown in FIG. 3, the crank shaft 3 includes a spindle portion 30 fixed to the rotor 21 of the motor 2, and a sub-shaft portion 31 provided on the opposite side of the spindle portion 30 with the compression mechanism portion 4 interposed therebetween. It has an eccentric shaft portion 32 provided between the main shaft portion 30 and the sub-shaft portion 31. The spindle portion 30, the sub-shaft portion 31, and the eccentric shaft portion 32 are each cylindrical. Incidentally, the material of the crank shaft 3 is a cast material or a forged material.
 主軸部30と副軸部31とは、互いの中心軸が一致するように設けられている。偏心軸部32は、中心軸が主軸部30及び副軸部31の中心軸からずれるように設けられている。クランク軸3は、主軸部30及び副軸部31が中心軸周りに回転すると、偏心軸部32が偏心回転する。 The main shaft portion 30 and the sub shaft portion 31 are provided so that their central axes coincide with each other. The eccentric shaft portion 32 is provided so that the central shaft deviates from the central shafts of the main shaft portion 30 and the sub-shaft portion 31. In the crank shaft 3, when the main shaft portion 30 and the sub shaft portion 31 rotate around the central axis, the eccentric shaft portion 32 rotates eccentrically.
 図5に示すように、クランク軸3の軸心部には、冷凍機油14の給油路33となる貫通孔が軸方向に沿って形成されている。クランク軸3の下部には、オイルポンプ等の給油機構が設けられている。密閉容器1の底に貯留されている冷凍機油14は、クランク軸3の回転に伴い、給油機構によって汲み上げられて、圧縮機構部4の各摺動部に供給される。 As shown in FIG. 5, a through hole serving as an oil supply passage 33 for the refrigerating machine oil 14 is formed along the axial direction in the axial center portion of the crank shaft 3. An oil supply mechanism such as an oil pump is provided at the lower part of the crank shaft 3. The refrigerating machine oil 14 stored in the bottom of the closed container 1 is pumped up by the oil supply mechanism as the crank shaft 3 rotates, and is supplied to each sliding portion of the compression mechanism portion 4.
 圧縮機構部4は、図3及び図5に示すように、シリンダー室40aを有するシリンダー40と、シリンダー室40aを閉塞する軸受として主軸受41及び副軸受42と、ローリングピストン43と、吐出マフラー44と、ベーン45と、を備えている。 As shown in FIGS. 3 and 5, the compression mechanism portion 4 includes a cylinder 40 having a cylinder chamber 40a, a main bearing 41 and an auxiliary bearing 42 as bearings for closing the cylinder chamber 40a, a rolling piston 43, and a discharge muffler 44. And a vane 45.
 シリンダー40は、外周部がボルト等により密閉容器1に固定されている。シリンダー40は、図5に示すように、外周が円形状に形成され、内部に円形状の空間であるシリンダー室40aが形成されている。このシリンダー室40aは、駆動時に冷媒を圧縮する空間である。シリンダー室40aは、図3に示すように、クランク軸3の軸方向の両端が開口しており、シリンダー40の上面に設けられた主軸受41と、シリンダー40の下面に設けられた副軸受42によって閉塞されている。なお、図示することは省略したが、シリンダー40には、吸入管10からの冷媒ガスが通る吸入ポートが、外周面からシリンダー室40aに貫通して設けられている。また、図示することは省略したが、シリンダー40には、シリンダー室40aで圧縮された冷媒が吐出される吐出ポートが、シリンダー40の上端面を切り欠いて形成されている。因みに、シリンダー40の材質は、焼結鋼、ねずみ鋳鉄又は炭素鋼である。 The outer peripheral portion of the cylinder 40 is fixed to the closed container 1 by a bolt or the like. As shown in FIG. 5, the cylinder 40 has a circular outer circumference, and a cylinder chamber 40a, which is a circular space, is formed inside the cylinder 40. The cylinder chamber 40a is a space for compressing the refrigerant during driving. As shown in FIG. 3, the cylinder chamber 40a has both ends in the axial direction of the crank shaft 3 open, and the main bearing 41 provided on the upper surface of the cylinder 40 and the auxiliary bearing 42 provided on the lower surface of the cylinder 40. Is blocked by. Although not shown, the cylinder 40 is provided with a suction port through which the refrigerant gas from the suction pipe 10 passes through the cylinder chamber 40a from the outer peripheral surface. Although not shown, the cylinder 40 is formed with a discharge port for discharging the refrigerant compressed in the cylinder chamber 40a by cutting out the upper end surface of the cylinder 40. Incidentally, the material of the cylinder 40 is sintered steel, gray cast iron or carbon steel.
 主軸受41は、側面視が逆T字状の軸受である。主軸受41は、クランク軸3の主軸部30に摺動自在に嵌合し、シリンダー室40aの電動機2側の端面を閉塞する。一方、副軸受42は、側面視がT字状の軸受である。副軸受42は、クランク軸3の副軸部31に摺動自在に嵌合し、シリンダー室40aの冷凍機油14側の端面を閉塞する。主軸受41と副軸受42は、それぞれボルト等の締結具によってシリンダー40に固定され、ローリングピストン43の回転軸であるクランク軸3を支持している。主軸受41と主軸部30との間には、給油路33を介して吸い上げられた冷凍機油14が供給されて油膜が形成されている。主軸受41は、油膜の流体潤滑によって主軸部30に接触することなく該主軸部30を支持している。また、副軸受42と副軸部31との間には、給油路33を介して吸い上げられた冷凍機油14が供給されて油膜が形成されている。副軸受42も、主軸受41と同様に、油膜の流体潤滑によって副軸部31に接触することなく該副軸部31を支持している。因みに、主軸受41及び副軸受42の材質は、鋳造材又は焼結材であり、具体的には、焼結鋼、ねずみ鋳鉄又は炭素鋼である。 The main bearing 41 is an inverted T-shaped bearing when viewed from the side. The main bearing 41 is slidably fitted to the main shaft portion 30 of the crankshaft 3 and closes the end surface of the cylinder chamber 40a on the motor 2 side. On the other hand, the auxiliary bearing 42 is a bearing having a T-shaped side view. The auxiliary bearing 42 is slidably fitted to the auxiliary shaft portion 31 of the crank shaft 3 and closes the end face of the cylinder chamber 40a on the refrigerating machine oil 14 side. The main bearing 41 and the auxiliary bearing 42 are fixed to the cylinder 40 by fasteners such as bolts, respectively, and support the crank shaft 3 which is the rotation shaft of the rolling piston 43. An oil film is formed between the main bearing 41 and the spindle portion 30 by supplying the refrigerating machine oil 14 sucked up through the oil supply passage 33. The main bearing 41 supports the main shaft portion 30 without coming into contact with the main shaft portion 30 due to the fluid lubrication of the oil film. Further, between the auxiliary bearing 42 and the auxiliary shaft portion 31, the refrigerating machine oil 14 sucked up through the oil supply passage 33 is supplied to form an oil film. Like the main bearing 41, the sub-bearing 42 also supports the sub-shaft portion 31 without coming into contact with the sub-shaft portion 31 due to fluid lubrication of the oil film. Incidentally, the material of the main bearing 41 and the auxiliary bearing 42 is a cast material or a sintered material, and specifically, a sintered steel, a gray cast iron or a carbon steel.
 図示することは省略したが、主軸受41には、シリンダー室40aで圧縮された冷媒が吐出される吐出口が形成されている。吐出口は、シリンダー室40aがベーン45によって吸入室と圧縮室とに仕切られているときに圧縮室につながる位置にある。主軸受41には、吐出口を開閉自在に閉塞する吐出弁が取り付けられている。吐出弁は、シリンダー室40a内のガス冷媒が所望の圧力になるまで閉じ、圧縮室内のガス冷媒が所望の圧力になると開く。これにより、シリンダー室40aからのガス冷媒の吐出タイミングが制御される。 Although not shown, the main bearing 41 is formed with a discharge port for discharging the refrigerant compressed in the cylinder chamber 40a. The discharge port is located at a position connected to the compression chamber when the cylinder chamber 40a is divided into the suction chamber and the compression chamber by the vane 45. A discharge valve that closes the discharge port so as to be openable and closable is attached to the main bearing 41. The discharge valve closes until the gas refrigerant in the cylinder chamber 40a reaches a desired pressure, and opens when the gas refrigerant in the compression chamber reaches a desired pressure. Thereby, the discharge timing of the gas refrigerant from the cylinder chamber 40a is controlled.
 主軸受41の外側には、吐出孔を覆うように配置された吐出マフラー44が取り付けられている。図示することは省略したが、吐出マフラー44には、吐出マフラー44の内部と密閉容器1の内部とを連通させる吐出孔が形成されている。吐出弁が開いたときに該吐出弁から吐出される高温かつ高圧のガス冷媒は、一旦吐出マフラー44に入り、その後吐出マフラー44から密閉容器1の内部空間に放出される。 A discharge muffler 44 arranged so as to cover the discharge hole is attached to the outside of the main bearing 41. Although not shown in the figure, the discharge muffler 44 is formed with a discharge hole for communicating the inside of the discharge muffler 44 with the inside of the closed container 1. When the discharge valve is opened, the high-temperature and high-pressure gas refrigerant discharged from the discharge valve once enters the discharge muffler 44, and then is discharged from the discharge muffler 44 into the internal space of the closed container 1.
 なお、吐出口及び吐出弁は、主軸受41に設けた構成を示したが、副軸受42に設けてもよい。あるいは、吐出口及び吐出弁は、主軸受41と副軸受42との両方に設けてもよい。この場合、吐出マフラー44は、吐出口及び吐出弁が設けられている軸受の外側に取り付けられる。 Although the discharge port and the discharge valve are configured to be provided in the main bearing 41, they may be provided in the auxiliary bearing 42. Alternatively, the discharge port and the discharge valve may be provided in both the main bearing 41 and the sub bearing 42. In this case, the discharge muffler 44 is attached to the outside of the bearing provided with the discharge port and the discharge valve.
 ローリングピストン43は、リング状で構成され、クランク軸3の偏心軸部32に摺動自在に嵌合されている。ローリングピストン43は、偏心軸部32と共にシリンダー室40aに設けられており、シリンダー室40a内で偏心軸部32と共に偏心回転して冷媒を圧縮するものである。ローリングピストン43の材質は、鋳造材であり、具体的には、モリブデン、ニッケル及びクロムを含有する合金鋼、又は鉄系鋳造材である。 The rolling piston 43 is formed in a ring shape and is slidably fitted to the eccentric shaft portion 32 of the crank shaft 3. The rolling piston 43 is provided in the cylinder chamber 40a together with the eccentric shaft portion 32, and rotates eccentrically together with the eccentric shaft portion 32 in the cylinder chamber 40a to compress the refrigerant. The material of the rolling piston 43 is a cast material, specifically, an alloy steel containing molybdenum, nickel and chromium, or an iron-based cast material.
 シリンダー40には、図5に示すように、シリンダー室40aに連通し径方向に延びるベーン溝40bが形成されている。ベーン溝40bには、シリンダー室40aを低圧の作動室である吸入室と高圧の作動室である圧縮室とに仕切るためのベーン45が設けられている。ベーン45は、先端が丸まった板状である。ベーン45は、圧縮工程中に、先端部がローリングピストン43の外周部に当接したまま、ローリングピストン43の偏心回転に追従してベーン溝40b内を往復摺動する。シリンダー室40aは、ベーン45の先端部がローリングピストン43の外周部に当接することにより、吸入室と圧縮室とに仕切られる。因みに、ベーン45の材質は、高速度工具鋼である。 As shown in FIG. 5, the cylinder 40 is formed with a vane groove 40b that communicates with the cylinder chamber 40a and extends in the radial direction. The vane groove 40b is provided with a vane 45 for partitioning the cylinder chamber 40a into a suction chamber which is a low pressure operating chamber and a compression chamber which is a high pressure operating chamber. The vane 45 has a plate shape with a rounded tip. During the compression process, the vane 45 slides back and forth in the vane groove 40b following the eccentric rotation of the rolling piston 43 while the tip portion is in contact with the outer peripheral portion of the rolling piston 43. The cylinder chamber 40a is divided into a suction chamber and a compression chamber by the tip end portion of the vane 45 abutting on the outer peripheral portion of the rolling piston 43. Incidentally, the material of the vane 45 is high-speed tool steel.
 また、シリンダー40には、図5に示すように、ベーン溝40bの背面側に背圧室40cが形成されている。図示することは省略したが、背圧室40cには、ベーン45と直列に配置されたベーンスプリングが収納されている。ベーンスプリングは、ベーン45の先端部をローリングピストン43の外周面に押し付けるように付勢するものである。因みに、圧縮機101は、運転を開始するとベーン45の背面において、高圧である密閉容器1内の圧力と、シリンダー室40aの圧力との差圧による力が作用する。そのため、ベーンスプリングは、主に圧縮機101の起動時であって、密閉容器1内の圧力とシリンダー室40aの圧力とに差が無い状態において、ベーン45をローリングピストン43に押付ける目的で使用される。 Further, as shown in FIG. 5, the cylinder 40 has a back pressure chamber 40c formed on the back surface side of the vane groove 40b. Although not shown, the back pressure chamber 40c houses a vane spring arranged in series with the vane 45. The vane spring urges the tip of the vane 45 so as to press it against the outer peripheral surface of the rolling piston 43. Incidentally, when the compressor 101 starts operation, a force due to a differential pressure between the pressure in the closed container 1 which is a high pressure and the pressure in the cylinder chamber 40a acts on the back surface of the vane 45. Therefore, the vane spring is mainly used for the purpose of pressing the vane 45 against the rolling piston 43 when the compressor 101 is started and there is no difference between the pressure in the closed container 1 and the pressure in the cylinder chamber 40a. Will be done.
 因みに、図示することは省略するが、圧縮機101がスイング式のロータリ圧縮機として構成される場合には、ベーン45が、ローリングピストン43と一体に設けられる。ベーンは、クランク軸が駆動されると、ローリングピストンに回転自在に取り付けられた支持体の溝に沿って往復運動する。ベーンは、ローリングピストンの回転に従って揺動しながら半径方向へ進退することによって、シリンダー室の内部を圧縮室と吸入室とに区画する。なお、支持体は、横断面が半円形状の2個の柱状部材で構成される。支持体は、シリンダーの吸入口と吐出口との中間部に形成された円形状の保持孔に回転自在に嵌められる。 Incidentally, although not shown, when the compressor 101 is configured as a swing type rotary compressor, the vane 45 is provided integrally with the rolling piston 43. When the crank shaft is driven, the vane reciprocates along the groove of the support rotatably attached to the rolling piston. The vane divides the inside of the cylinder chamber into a compression chamber and a suction chamber by moving back and forth in the radial direction while swinging according to the rotation of the rolling piston. The support is composed of two columnar members having a semicircular cross section. The support is rotatably fitted into a circular holding hole formed in the middle between the suction port and the discharge port of the cylinder.
 ここで、図3及び図5を参照して圧縮機101の動作について簡潔に説明する。先ず、電源端子12から電線束24を介して電動機2の固定子20に電力が供給される。これにより、固定子20の巻線23に電流が流れ、巻線23から磁束が発生する。電動機2の回転子21は、巻線23から発生する磁束と、回転子21のかご形巻線から発生する磁束との作用によって回転する。回転子21の回転によって、回転子21に固定されたクランク軸3が回転する。クランク軸3の回転に伴い、ローリングピストン43がシリンダー40のシリンダー室40a内で偏心回転する。シリンダー40とローリングピストン43との間の空間であるシリンダー室40aは、ベーン45によって吸入室と圧縮室とに分割されている。クランク軸3の回転に伴い、吸入室の容積と圧縮室の容積とが変化する。吸入室では、徐々に容積が拡大することにより、吸入マフラー107から吸入管10を介して低圧のガス冷媒が吸入される。圧縮室では、徐々に容積が縮小することにより、ガス冷媒が圧縮される。圧縮され、高圧かつ高温となったガス冷媒は、吐出マフラー44から密閉容器1内の空間に吐出される。吐出されたガス冷媒は、電動機2を通過して容器上部1bにある吐出管11から密閉容器1の外へ吐出される。密閉容器1の外へ吐出された冷媒は、冷媒回路200を通って、再び吸入マフラー107に戻ってくる。 Here, the operation of the compressor 101 will be briefly described with reference to FIGS. 3 and 5. First, electric power is supplied from the power supply terminal 12 to the stator 20 of the electric motor 2 via the electric wire bundle 24. As a result, a current flows through the winding 23 of the stator 20, and a magnetic flux is generated from the winding 23. The rotor 21 of the motor 2 rotates by the action of the magnetic flux generated from the winding 23 and the magnetic flux generated from the cage winding of the rotor 21. The rotation of the rotor 21 causes the crank shaft 3 fixed to the rotor 21 to rotate. As the crank shaft 3 rotates, the rolling piston 43 rotates eccentrically in the cylinder chamber 40a of the cylinder 40. The cylinder chamber 40a, which is a space between the cylinder 40 and the rolling piston 43, is divided into a suction chamber and a compression chamber by a vane 45. As the crank shaft 3 rotates, the volume of the suction chamber and the volume of the compression chamber change. In the suction chamber, the low-pressure gas refrigerant is sucked from the suction muffler 107 through the suction pipe 10 by gradually expanding the volume. In the compression chamber, the gas refrigerant is compressed by gradually reducing the volume. The compressed, high-pressure and high-temperature gas refrigerant is discharged from the discharge muffler 44 into the space inside the closed container 1. The discharged gas refrigerant passes through the motor 2 and is discharged to the outside of the closed container 1 from the discharge pipe 11 at the upper part 1b of the container. The refrigerant discharged to the outside of the closed container 1 passes through the refrigerant circuit 200 and returns to the suction muffler 107 again.
 次に、図5を参照しつつ、図6に基づいて本実施の形態1に係る圧縮機の口出線の特徴について説明する。図6は、本実施の形態1に係る電動機であって、口出線の構成を示した説明図である。 Next, with reference to FIG. 5, the characteristics of the lead wire of the compressor according to the first embodiment will be described with reference to FIG. FIG. 6 is an explanatory diagram showing the configuration of the lead wire in the electric motor according to the first embodiment.
 上記したように、電線束24は、第1口出線5と、第2口出線6と、第3口出線7と、を有している。第1口出線5は、図6に示すように、1本の第1電線50から成る電線単体5Aと、隣り合う第2電線51と第3電線52とが第1圧着端子8で電気的に接続された電線集合体5Bと、を有している。つまり、第1口出線5は、第1電線50、第2電線51及び第3電線52の3本の電線を有している。第2電線51は、第1電線50と隣り合う位置に配置された電線である。第2電線51は、電線集合体5Bから引き出され、電線単体5Aと第2圧着端子9で電気的に接続されている。第2圧着端子9は、クラスタ25を介して圧縮機101の電源端子12に電気的に接続されている。 As described above, the electric wire bundle 24 has a first outlet wire 5, a second outlet wire 6, and a third outlet wire 7. As shown in FIG. 6, in the first outlet wire 5, the electric wire unit 5A composed of one first electric wire 50, and the adjacent second electric wire 51 and the third electric wire 52 are electrically connected to each other at the first crimp terminal 8. It has an electric wire assembly 5B connected to the wire assembly 5B. That is, the first outlet wire 5 has three electric wires, that is, the first electric wire 50, the second electric wire 51, and the third electric wire 52. The second electric wire 51 is an electric wire arranged at a position adjacent to the first electric wire 50. The second electric wire 51 is drawn out from the electric wire assembly 5B and is electrically connected to the electric wire unit 5A by the second crimp terminal 9. The second crimp terminal 9 is electrically connected to the power supply terminal 12 of the compressor 101 via the cluster 25.
 第1圧着端子8及び第2圧着端子9は、セレーションを有する構成である。第1圧着端子8及び第2圧着端子9は、セレーションを有することにより、電線が電線絶縁皮膜を被った状態であっても、その内部の電線を電気的且つ機械的に接続することができる。また、第2電線51と第1電線50とが隣り合う位置に配置された電線であるため、第1圧着端子8でかしめる位置と、第2圧着端子9でかしめる位置とを近づけることができ、電線が交差する事態を確実に回避させることができる。 The first crimp terminal 8 and the second crimp terminal 9 have a serration structure. Since the first crimp terminal 8 and the second crimp terminal 9 have serrations, the electric wires inside the first crimp terminal 8 and the second crimp terminal 9 can be electrically and mechanically connected even when the electric wire is covered with the electric wire insulating film. Further, since the second electric wire 51 and the first electric wire 50 are arranged at adjacent positions, the position of crimping at the first crimp terminal 8 and the position of crimping at the second crimp terminal 9 can be brought close to each other. It is possible to surely avoid the situation where the electric wires intersect.
 なお、第1口出線5を構成する電線は、電線絶縁皮膜が除去された状態で、第1圧着端子8又は第2圧着端子9で電気的に接続された構成としてもよい。電線は、薬品等を用いて事前に電線絶縁皮膜を除去した後に、第1圧着端子8又は第2圧着端子9でかしめることにより、電気的な接続性を向上させることができる。 The electric wire constituting the first outlet wire 5 may be electrically connected by the first crimp terminal 8 or the second crimp terminal 9 with the electric wire insulating film removed. The electric wire can be improved in electrical connectivity by removing the electric wire insulating film in advance using a chemical or the like and then crimping the electric wire with the first crimp terminal 8 or the second crimp terminal 9.
 図示することは省略したが、第2口出線6は、例えば2本の電線で構成されている。第3口出線7は、例えば1本の電線で構成されている。但し、第2口出線6及び第3口出線7も、第1口出線5と同じく上記構成としてもよい。 Although not shown, the second outlet wire 6 is composed of, for example, two electric wires. The third outlet wire 7 is composed of, for example, one electric wire. However, the second outlet line 6 and the third outlet line 7 may have the same configuration as the first outlet line 5.
 ところで、口出線を構成する電線は、軟らかくて変形しやすい。そのため、口出線が3本以上の電線を有しており、その電線を一つの圧着端子でかしめる場合、電線が交差した状態で圧着端子にかしめられるおそれがある。電線が交差した状態で圧着端子にかしめられると、電線同士が互いに押し付け合って断線するおそれがある。更に、圧着端子を電源端子に接続する際に口出線が引っ張られると、引っ張られた衝撃で、交差した電線が断線してしまうおそれもある。このように、圧縮機は、電線が断線してしまうと、電気的な接続不良を生じてしまう。 By the way, the electric wires that make up the lead wire are soft and easily deformed. Therefore, when the lead wire has three or more electric wires and the electric wires are crimped by one crimp terminal, there is a possibility that the electric wires are crimped to the crimp terminal in a crossed state. If the crimp terminals are crimped with the wires crossed, the wires may press against each other and break. Further, if the lead wire is pulled when the crimp terminal is connected to the power supply terminal, the crossed electric wires may be broken due to the impact of the pulling. As described above, in the compressor, if the electric wire is broken, an electrical connection failure occurs.
 そこで、上記したように、本実施の形態1に係る電動機2では、少なくとも1つの口出線5が、1本の電線50からなる電線単体5Aと、隣り合う少なくとも2本以上の電線51及び52が第1圧着端子8で電気的に接続された電線集合体5Bと、を有している。電線集合体5Bのいずれか一方の電線51は、電線集合体5Bから引き出され、電線単体5Aと第2圧着端子9で電気的に接続されている。第2圧着端子9が圧縮機101の電源端子12に電気的に接続される。 Therefore, as described above, in the electric motor 2 according to the first embodiment, at least one lead wire 5 is a single electric wire 5A composed of one electric wire 50, and at least two or more electric wires 51 and 52 adjacent to each other. Has an electric wire assembly 5B electrically connected by the first crimp terminal 8. One of the electric wires 51 of the electric wire assembly 5B is drawn out from the electric wire assembly 5B and is electrically connected to the electric wire unit 5A by the second crimp terminal 9. The second crimp terminal 9 is electrically connected to the power supply terminal 12 of the compressor 101.
 よって、本実施の形態1に係る電動機2は、口出線5が3本以上の電線(50、51、52)で構成された場合であっても、電線(50、51、52)を2本ずつ第1圧着端子8及び第2圧着端子9で電気的に接続する構成なので、第1圧着端子8で電線(51、52)をかしめる際、及び第2圧着端子9で電線(50、51)をかしめる際、電線同士が交差して互いに押し付け合う事態を抑制することができ、電気的な接続不良を回避することができる。 Therefore, the electric motor 2 according to the first embodiment has two electric wires (50, 51, 52) even when the outlet wire 5 is composed of three or more electric wires (50, 51, 52). Since the first crimp terminal 8 and the second crimp terminal 9 are electrically connected to each other, when crimping the electric wire (51, 52) at the first crimp terminal 8, and at the second crimp terminal 9, the electric wire (50, When crimping 51), it is possible to suppress a situation in which electric wires cross each other and press each other, and it is possible to avoid an electrical connection failure.
 更に、本実施の形態1に係る電動機2では、電線集合体5Bから引き出される一方の電線51が、電線単体5Aと隣り合う位置に配置された電線である。よって、第1圧着端子8でかしめる位置と、第2圧着端子9でかしめる位置とを近づけることができ、電線が交差する事態を確実に回避させることができる。 Further, in the motor 2 according to the first embodiment, one electric wire 51 drawn out from the electric wire assembly 5B is an electric wire arranged at a position adjacent to the electric wire unit 5A. Therefore, the position of crimping at the first crimp terminal 8 and the position of crimping at the second crimp terminal 9 can be brought close to each other, and the situation where the electric wires intersect can be reliably avoided.
 また、第1圧着端子8及び第2圧着端子9は、セレーションを有する構成である。第1圧着端子8及び第2圧着端子9は、セレーションを有することにより、電線が電線絶縁皮膜を被った状態であっても、その内部の電線を電気的且つ機械的に接続することができる。 Further, the first crimp terminal 8 and the second crimp terminal 9 have a serration structure. Since the first crimp terminal 8 and the second crimp terminal 9 have serrations, the electric wires inside the first crimp terminal 8 and the second crimp terminal 9 can be electrically and mechanically connected even when the electric wire is covered with the electric wire insulating film.
 また、口出線5を構成する電線(50、51、52)は、電線絶縁皮膜が除去された状態で、第1圧着端子8又は第2圧着端子9で電気的に接続されている。よって、電線絶縁皮膜を除去した電線を第1圧着端子8又は第2圧着端子9でかしめることにより、電気的に接続性を向上させることができる。 Further, the electric wires (50, 51, 52) constituting the outlet wire 5 are electrically connected by the first crimp terminal 8 or the second crimp terminal 9 with the electric wire insulating film removed. Therefore, by crimping the electric wire from which the electric wire insulating film has been removed by the first crimp terminal 8 or the second crimp terminal 9, the connectivity can be electrically improved.
 実施の形態2.
 次に、本実施の形態2に係る電動機2を図7に基づいて説明する。図7は、本実施の形態2に係る電動機であって、口出線の構成を示した説明図である。なお、実施の形態2で説明した電動機と同一の構成要素については、同一の符号を付して、その説明を適宜省略する。
Embodiment 2.
Next, the electric motor 2 according to the second embodiment will be described with reference to FIG. 7. FIG. 7 is an explanatory view showing the configuration of the lead wire in the electric motor according to the second embodiment. The same components as those of the electric motor described in the second embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
 本実施の形態2に係る電動機2は、第1口出線5の構成が実施の形態1に係る電動機2と異なる。実施の形態2における第1口出線5は、図7に示すように、隣り合う第1電線50と第2電線51とが第1圧着端子80で電気的に接続された電線集合体5Cと、隣り合う第3電線52と第4電線53とが第1圧着端子81で電気的に接続された電線集合体5Dと、を有している。つまり、本実施の形態2における第1口出線5は、第1電線50、第2電線51、第3電線52及び第4電線53の4本の電線を有している。 The motor 2 according to the second embodiment has a different configuration of the first outlet line 5 from the motor 2 according to the first embodiment. As shown in FIG. 7, the first outlet wire 5 in the second embodiment is a wire assembly 5C in which the adjacent first wire 50 and the second wire 51 are electrically connected by the first crimp terminal 80. The adjacent third electric wire 52 and the fourth electric wire 53 have an electric wire assembly 5D electrically connected by the first crimp terminal 81. That is, the first outlet wire 5 in the second embodiment has four electric wires, that is, the first electric wire 50, the second electric wire 51, the third electric wire 52, and the fourth electric wire 53.
 第2電線51は、第3電線52と隣り合う位置に配置されている。第2電線51は、電線集合体5Cから引き出されている。第3電線52は、電線集合体5Dから引き出されている。引き出された第2電線51及び第3電線52は、第2圧着端子9で電気的に接続されている。第2圧着端子9は、クラスタ25を介して圧縮機101の電源端子12に電気的に接続されている。 The second electric wire 51 is arranged at a position adjacent to the third electric wire 52. The second electric wire 51 is drawn from the electric wire assembly 5C. The third electric wire 52 is drawn from the electric wire assembly 5D. The drawn out second electric wire 51 and the third electric wire 52 are electrically connected by the second crimp terminal 9. The second crimp terminal 9 is electrically connected to the power supply terminal 12 of the compressor 101 via the cluster 25.
 第1圧着端子8及び第2圧着端子9は、セレーションを有する構成である。第1圧着端子8及び第2圧着端子9は、セレーションを有することにより、電線が電線絶縁皮膜を被った状態であっても、その内部の電線を電気的且つ機械的に接続することができる。 The first crimp terminal 8 and the second crimp terminal 9 have a serration structure. Since the first crimp terminal 8 and the second crimp terminal 9 have serrations, the electric wires inside the first crimp terminal 8 and the second crimp terminal 9 can be electrically and mechanically connected even when the electric wire is covered with the electric wire insulating film.
 なお、第1口出線5を構成する電線は、電線絶縁皮膜が除去された状態で、第1圧着端子8又は第2圧着端子9で電気的に接続された構成としてもよい。電線は、薬品等を用いて事前に電線絶縁皮膜を除去した後に、第1圧着端子8又は第2圧着端子9でかしめることにより、電気的な接続性を向上させることができる。 The electric wire constituting the first outlet wire 5 may be electrically connected by the first crimp terminal 8 or the second crimp terminal 9 with the electric wire insulating film removed. The electric wire can be improved in electrical connectivity by removing the electric wire insulating film in advance using a chemical or the like and then crimping the electric wire with the first crimp terminal 8 or the second crimp terminal 9.
 図示することは省略したが、第2口出線6は、例えば2本の電線で構成されている。第3口出線7は、例えば1本の電線で構成されている。但し、第2口出線6及び第3口出線7も、第1口出線5と同じく上記構成としてもよい。 Although not shown, the second outlet wire 6 is composed of, for example, two electric wires. The third outlet wire 7 is composed of, for example, one electric wire. However, the second outlet line 6 and the third outlet line 7 may have the same configuration as the first outlet line 5.
 以上のように、本実施の形態2に係る電動機2は、固定子鉄心22と、固定子鉄心22に巻かれた巻線23と、巻線23から延伸して、電源端子12に電気的に接続される1つ又は複数の口出線(5、6、7)と、を有している。少なくとも1つの口出線5は、隣り合う2本の電線(50と51、52と53)が第1圧着端子(80又は81)で電気的に接続された電線集合体(5C及び5D)を2組有している。各電線集合体(5C及び5D)のいずれか一方の電線(51、52)は、該電線集合体(5C及び5D)から引き出され、第2圧着端子9で電気的に接続されている。第2圧着端子9が圧縮機101の電源端子12に電気的に接続される。 As described above, the motor 2 according to the second embodiment extends from the stator core 22, the winding 23 wound around the stator core 22, and the winding 23, and is electrically connected to the power supply terminal 12. It has one or more outlets (5, 6, 7) to be connected. At least one lead wire 5 is a wire assembly (5C and 5D) in which two adjacent wires (50 and 51, 52 and 53) are electrically connected by a first crimp terminal (80 or 81). I have two sets. The electric wire (51, 52) of any one of the electric wire aggregates (5C and 5D) is drawn from the electric wire aggregate (5C and 5D) and electrically connected by the second crimp terminal 9. The second crimp terminal 9 is electrically connected to the power supply terminal 12 of the compressor 101.
 よって、本実施の形態2に係る電動機2は、口出線5が3本以上の電線(50、51、52、53)で構成された場合であっても、電線(50、51、52、53)を2本ずつ第1圧着端子8及び第2圧着端子9で電気的に接続する構成なので、第1圧着端子(80又は81)で電線(50と51、52と53)をかしめる際、及び第2圧着端子9で電線(51、52)をかしめる際に、電線同士が交差して互いに押し付け合う事態を抑制することができ、電気的な接続不良を回避することができる。 Therefore, in the electric motor 2 according to the second embodiment, even when the outlet wire 5 is composed of three or more electric wires (50, 51, 52, 53), the electric wires (50, 51, 52, Since the configuration is such that two 53) are electrically connected by the first crimp terminal 8 and the second crimp terminal 9, when crimping the electric wire (50 and 51, 52 and 53) by the first crimp terminal (80 or 81). , And when crimping the electric wires (51, 52) at the second crimp terminal 9, it is possible to suppress the situation where the electric wires cross each other and press each other, and it is possible to avoid an electrical connection failure.
 更に、本実施の形態2に係る電動機2は、各電線集合体(5C又は5D)から引き出される一方の電線(51、52)が、互いに隣り合う位置に配置された電線である。よって、第1圧着端子(80及び81)でかしめる位置と、第2圧着端子9でかしめる位置とを近づけることができ、電線が交差する事態を確実に回避させることができる。 Further, the motor 2 according to the second embodiment is an electric wire in which one electric wire (51, 52) drawn from each electric wire aggregate (5C or 5D) is arranged at a position adjacent to each other. Therefore, the crimping position at the first crimping terminal (80 and 81) and the crimping position at the second crimping terminal 9 can be brought close to each other, and the situation where the electric wires intersect can be reliably avoided.
 以上に、電動機2、圧縮機101及び冷凍サイクル装置100を実施の形態に基づいて説明したが、電動機2、圧縮機101及び冷凍サイクル装置100は上述した実施の形態の構成に限定されるものではない。電動機2、圧縮機101及び冷凍サイクル装置100は、上述した構成要素に限定されるものではなく、他の構成要素を含んでもよい。要するに、電動機2、圧縮機101及び冷凍サイクル装置100は、その技術的思想を逸脱しない範囲において、当業者が通常に行う設計変更及び応用のバリエーションの範囲を含むものである。 Although the motor 2, the compressor 101 and the refrigerating cycle device 100 have been described above based on the embodiments, the motor 2, the compressor 101 and the refrigerating cycle device 100 are not limited to the configuration of the above-described embodiment. No. The electric motor 2, the compressor 101, and the refrigeration cycle device 100 are not limited to the above-mentioned components, and may include other components. In short, the motor 2, the compressor 101, and the refrigeration cycle device 100 include a range of design changes and application variations normally performed by those skilled in the art within a range that does not deviate from the technical idea thereof.
 1 密閉容器、1a 胴部、1b 容器上部、1c 容器下部、2 電動機、3 クランク軸、4 圧縮機構部、5 第1口出線、5A 電線単体、5B、5C、5D 電線集合体、6 第2口出線、7 第3口出線、8 第1圧着端子、9 第2圧着端子、10 吸入管、11 吐出管、12 電源端子、13 ロッド、14 冷凍機油、20 固定子、21 回転子、22 固定子鉄心、23 巻線、24 電線束、25 クラスタ、26 回転子鉄心、27 エンドリング、30 主軸部、31 副軸部、32 偏心軸部、33 給油路、40 シリンダー、40a シリンダー室、40b ベーン溝、40c 背圧室、41 主軸受、42 副軸受、43 ローリングピストン、44 吐出マフラー、45 ベーン、50 第1電線、51 第2電線、52 第3電線、53 第4電線、70 圧着端子、80、81 第1圧着端子、100 冷凍サイクル装置、101 圧縮機、102 流路切替装置、103 第1熱交換器、104 膨張機構、105 第2熱交換器、106 制御部、107 吸入マフラー、200 冷媒回路。 1 closed container, 1a body, 1b upper part of container, 1c lower part of container, 2 electric motor, 3 crank shaft, 4 compression mechanism, 5 1st outlet wire, 5A single wire, 5B, 5C, 5D wire assembly, 6th 2 outlets, 7 3rd outlets, 8 1st crimp terminals, 9 2nd crimp terminals, 10 suction pipes, 11 discharge pipes, 12 power terminals, 13 rods, 14 refrigerating machine oils, 20 stators, 21 rotors , 22 Fixture core, 23 Winding, 24 Wire bundle, 25 Cluster, 26 Rotor core, 27 End ring, 30 Main shaft, 31 Sub-shaft, 32 Eccentric shaft, 33 Refueling path, 40 Cylinder, 40a Cylinder chamber , 40b vane groove, 40c back pressure chamber, 41 main bearing, 42 auxiliary bearing, 43 rolling piston, 44 discharge muffler, 45 vane, 50 1st electric wire, 51 2nd electric wire, 52 3rd electric wire, 53 4th electric wire, 70 Crimping terminal, 80, 81 1st crimping terminal, 100 refrigerating cycle device, 101 compressor, 102 flow path switching device, 103 1st heat exchanger, 104 expansion mechanism, 105 2nd heat exchanger, 106 control unit, 107 suction Muffler, 200 refrigerant circuit.

Claims (10)

  1.  電源端子を有する圧縮機の容器に収容して使用される電動機であって、
     固定子鉄心と、
     前記固定子鉄心に巻かれた巻線と、
     前記巻線から延伸して、前記電源端子に電気的に接続される1つ又は複数の口出線と、を有し、
     少なくとも1つの前記口出線は、1本の電線からなる電線単体と、隣り合う2本の電線が第1圧着端子で電気的に接続された電線集合体と、を有しており、
     前記電線集合体のいずれか一方の電線は、前記電線集合体から引き出され、前記電線単体と第2圧着端子で電気的に接続されており、
     前記第2圧着端子が前記電源端子に電気的に接続される、電動機。
    An electric motor that is housed in a compressor container that has a power supply terminal and is used.
    Stator iron core and
    The winding wound around the stator core and
    It has one or more outlets extending from the winding and electrically connected to the power terminal.
    At least one of the outlet wires has a single electric wire composed of one electric wire and an aggregate of electric wires in which two adjacent electric wires are electrically connected by a first crimp terminal.
    One of the electric wires of the electric wire assembly is drawn from the electric wire assembly and is electrically connected to the electric wire unit by the second crimp terminal.
    An electric motor in which the second crimp terminal is electrically connected to the power supply terminal.
  2.  電源端子を有する圧縮機の容器に収容して使用される電動機であって、
     固定子鉄心と、
     前記固定子鉄心に巻かれた巻線と、
     前記巻線から延伸して、前記電源端子に電気的に接続される1つ又は複数の口出線と、を有し、
     少なくとも1つの前記口出線は、隣り合う2本の電線が第1圧着端子で電気的に接続された電線集合体を2組有しており、
     各前記電線集合体のいずれか一方の電線は、該電線集合体から引き出され、第2圧着端子で電気的に接続されており、
     前記第2圧着端子が前記電源端子に電気的に接続される、電動機。
    An electric motor that is housed in a compressor container that has a power supply terminal and is used.
    Stator iron core and
    The winding wound around the stator core and
    It has one or more outlets extending from the winding and electrically connected to the power terminal.
    At least one of the outlet wires has two sets of wire aggregates in which two adjacent wires are electrically connected by a first crimp terminal.
    One of the wires of each wire assembly is drawn from the wire assembly and electrically connected by the second crimp terminal.
    An electric motor in which the second crimp terminal is electrically connected to the power supply terminal.
  3.  前記電線集合体から引き出される一方の電線は、前記電線単体と隣り合う位置に配置された電線である、請求項1に記載の電動機。 The motor according to claim 1, wherein one of the electric wires drawn out from the electric wire assembly is an electric wire arranged at a position adjacent to the electric wire alone.
  4.  各前記電線集合体から引き出される一方の電線は、互いに隣り合う位置に配置された電線である、請求項2に記載の電動機。 The motor according to claim 2, wherein one of the electric wires drawn out from each of the electric wire aggregates is an electric wire arranged at a position adjacent to each other.
  5.  前記口出線を構成する電線は、銅線である、請求項1~4のいずれか1項に記載の電動機。 The motor according to any one of claims 1 to 4, wherein the electric wire constituting the outlet wire is a copper wire.
  6.  少なくとも1つの前記口出線を構成する電線は、アルミニウム線である、請求項1~5のいずれか1項に記載の電動機。 The motor according to any one of claims 1 to 5, wherein the electric wire constituting at least one of the outlet wires is an aluminum wire.
  7.  前記第1圧着端子及び前記第2圧着端子は、セレーションを有する構成である、請求項1~6のいずれか1項に記載の電動機。 The electric motor according to any one of claims 1 to 6, wherein the first crimp terminal and the second crimp terminal have a serration structure.
  8.  前記口出線を構成する電線は、電線絶縁皮膜が除去された状態で、前記第1圧着端子又は前記第2圧着端子で電気的に接続されている、請求項1~7のいずれか1項に記載の電動機。 The electric wire constituting the outlet wire is electrically connected to the first crimp terminal or the second crimp terminal with the electric wire insulating film removed, according to any one of claims 1 to 7. The electric motor described in.
  9.  請求項1~8のいずれか1項に記載の電動機と、
     前記電動機により駆動されて冷媒を圧縮する圧縮機構部と、
     前記電動機と前記圧縮機構部とを収容する密閉容器と、
     前記密閉容器に固定され、前記口出線が電気的に接続された電源端子と、を備えた、圧縮機。
    The motor according to any one of claims 1 to 8 and the electric motor.
    A compression mechanism that is driven by the motor to compress the refrigerant,
    A closed container for accommodating the motor and the compression mechanism,
    A compressor provided with a power supply terminal fixed to the closed container and electrically connected to the outlet wire.
  10.  請求項9に記載の圧縮機と、流路切替装置と、第1熱交換器と、膨張機構と、第2熱交換器と、が配管により順次に接続されて冷媒が循環する冷媒回路を備えた、冷凍サイクル装置。 The compressor according to claim 9, the flow path switching device, the first heat exchanger, the expansion mechanism, and the second heat exchanger are sequentially connected by pipes to provide a refrigerant circuit in which the refrigerant circulates. Also, refrigeration cycle equipment.
PCT/JP2020/019233 2020-05-14 2020-05-14 Electric motor, compressor, and refrigeration cycle device WO2021229742A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/019233 WO2021229742A1 (en) 2020-05-14 2020-05-14 Electric motor, compressor, and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/019233 WO2021229742A1 (en) 2020-05-14 2020-05-14 Electric motor, compressor, and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2021229742A1 true WO2021229742A1 (en) 2021-11-18

Family

ID=78525502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019233 WO2021229742A1 (en) 2020-05-14 2020-05-14 Electric motor, compressor, and refrigeration cycle device

Country Status (1)

Country Link
WO (1) WO2021229742A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01151103A (en) * 1987-12-08 1989-06-13 Yazaki Corp Wire harness
JPH02150768U (en) * 1989-05-25 1990-12-27
WO2019102574A1 (en) * 2017-11-24 2019-05-31 三菱電機株式会社 Electric motor, compressor, and refrigeration cycle device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01151103A (en) * 1987-12-08 1989-06-13 Yazaki Corp Wire harness
JPH02150768U (en) * 1989-05-25 1990-12-27
WO2019102574A1 (en) * 2017-11-24 2019-05-31 三菱電機株式会社 Electric motor, compressor, and refrigeration cycle device

Similar Documents

Publication Publication Date Title
CN105048680A (en) Electric motor, hermetic compressor, and refrigerating cycle device
WO2019102574A1 (en) Electric motor, compressor, and refrigeration cycle device
KR102328761B1 (en) Compressors and refrigeration cycle units
KR102320908B1 (en) Compressors and refrigeration cycle units
WO2021229742A1 (en) Electric motor, compressor, and refrigeration cycle device
CN108475955B (en) Motor, compressor, refrigeration cycle device, and method for manufacturing motor
CN204578237U (en) Motor, hermetic type compressor and refrigerating circulatory device
JP6407432B2 (en) Compressor and refrigeration cycle apparatus
JP6556342B2 (en) Stator, motor, compressor and refrigeration cycle equipment
CN106981935B (en) Stator core, compressor, and refrigeration cycle device
JP6878443B2 (en) Rotary compressor and refrigeration cycle equipment
WO2022264318A1 (en) Electric motor for compressor, compressor, refrigeration cycle device, and manufacturing method for electric motor for compressor
WO2017098567A1 (en) Compressor and refrigeration cycle device
WO2023100345A1 (en) Oil feed component, compressor, and refrigeration cycle device
EP2169180A1 (en) Fluid machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935089

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935089

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP