WO2018131436A1 - Compressor comprising shaft support - Google Patents

Compressor comprising shaft support Download PDF

Info

Publication number
WO2018131436A1
WO2018131436A1 PCT/JP2017/046209 JP2017046209W WO2018131436A1 WO 2018131436 A1 WO2018131436 A1 WO 2018131436A1 JP 2017046209 W JP2017046209 W JP 2017046209W WO 2018131436 A1 WO2018131436 A1 WO 2018131436A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft support
compressor
rotor
compression mechanism
dimension
Prior art date
Application number
PCT/JP2017/046209
Other languages
French (fr)
Japanese (ja)
Inventor
直人 富岡
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2018131436A1 publication Critical patent/WO2018131436A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00

Definitions

  • Patent Document 1 Japanese Patent Application Laid-Open No. 2006-144731 describes that a phenomenon occurs in a reciprocating compressor that the torque greatly fluctuates during a period in which the crankshaft rotates once. Such torque fluctuations cause vibrations or noise. Similar problems can occur with other types of compressors, such as rotary compressors.
  • One solution to reduce vibrations due to torque fluctuations is to ensure rotational inertia by enlarging the rotor of the motor and increasing the weight of the rotor.
  • An object of the present invention is to suppress the vibration of the compressor.
  • the compressor according to the first aspect of the present invention includes a casing, a motor, a crankshaft, a compression mechanism, and a shaft support.
  • the casing has a cylindrical portion having an inner diameter of a first dimension.
  • the motor has a rotor having an outer diameter of the second dimension.
  • the crankshaft is fixed to the rotor and rotates around the rotation axis.
  • the compression mechanism generates a high-pressure refrigerant by compressing the low-pressure refrigerant.
  • the shaft support part rotatably supports the crankshaft.
  • the ratio of the first dimension to the second dimension is 1.8 or less.
  • the total length of the shaft support portion in the extending direction of the rotation axis is 10 mm or more and 40 mm or less.
  • the overall length of the shaft support is short. Therefore, interference between the rotor and the shaft support, which is an obstacle when the rotor and the shaft support are arranged close to each other, is less likely to occur, which is convenient for suppressing vibration of the compressor.
  • a compressor according to a second aspect of the present invention is the compressor according to the first aspect, wherein the rotor has a first surface far from the compression mechanism and a second surface close to the compression mechanism. The end closest to the first surface of the shaft support is farther from the first surface by a predetermined distance than the second surface. The predetermined distance is 3 mm or less.
  • the compressor which concerns on the 3rd viewpoint of this invention WHEREIN: The compressor which concerns on a 2nd viewpoint WHEREIN: The location which opposes the edge part of a shaft support part in the 2nd surface of a rotor is 1st surface compared with a 2nd surface. A recess is formed which is defined by a surface located closer to the.
  • the rotor and the compression mechanism can be arranged close to each other without interfering with each other due to the presence of the recess. Therefore, since the distance from the fixed part to the casing of the shaft support or the compression mechanism to the center of gravity of the rotor is shorter, vibration of the compressor can be further suppressed.
  • the distance between the end portion and the second surface is short. This means that the surface that defines the concave portion and the end portion of the shaft support portion are appropriately separated. Therefore, the freedom degree of arrangement
  • positioning can be increased about both of them under various restrictions.
  • the compressor according to the fifth aspect of the present invention is the compressor according to any one of the second to fourth aspects, wherein the rotor has a rotor core.
  • the first surface is the surface farthest from the compression mechanism in the rotor core.
  • the second surface is the surface closest to the compression mechanism in the rotor core.
  • the first surface and the second surface belong to the rotor core. Therefore, the distance from the fixed part to the casing of the shaft support or the compression mechanism to the center of gravity of the rotor can be further shortened.
  • the compressor according to the sixth aspect of the present invention is the compressor according to any one of the first to fifth aspects, wherein the first dimension is not less than 60 mm and not more than 120 mm.
  • the total length of the shaft support portion is 37 mm or less.
  • the overall length of the shaft support is even shorter. Therefore, since the distance from the fixed part to the shaft support or the casing of the compression mechanism to the center of gravity of the rotor is further short, vibration of the compressor can be further suppressed.
  • the shaft support portion exists only on the compression mechanism side with respect to the rotor.
  • the shaft support portion does not exist on the opposite side of the compression mechanism with respect to the rotor. Therefore, cost reduction of the compressor can be achieved.
  • the compression mechanism and the shaft support are very close to each other. Therefore, the rotation of the piston in the compression mechanism is stabilized.
  • the shaft support portion is directly fixed to the cylindrical portion.
  • the shaft support is directly fixed to the casing. Therefore, since the fixing part which fixes the assembly of a compression mechanism and a shaft support part to a casing is close to a rotor, the vibration of a compressor can be suppressed more.
  • the compression mechanism is directly fixed to the casing. Therefore, the phenomenon that the compression mechanism having a large weight swings can be suppressed.
  • the compressor according to the thirteenth aspect of the present invention is a rotary compressor in the compressor according to any one of the first to twelfth aspects.
  • the compressor according to the first aspect, the second aspect, the third aspect, the sixth aspect, the seventh aspect, the eleventh aspect, and the thirteenth aspect of the present invention can suppress the vibration of the compressor.
  • the distance from the fixed portion of the shaft support or the compression mechanism to the casing to the center of gravity of the rotor can be further shortened.
  • the compressor according to the eighth aspect of the present invention can reduce the cost of the compressor.
  • the revolution of the piston in the compression mechanism is stabilized.
  • FIG. 3 is a plan view of a cylindrical portion 11 and a motor 20 of the compressor 5.
  • FIG. 3 is a cross-sectional view of a stator 21 of the compressor 5.
  • FIG. 3 is a cross-sectional view of a rotor 22 of the compressor 5.
  • FIG. 3 is a partial cross-sectional view of the compressor 5.
  • FIG. It is sectional drawing of the compressor 5A which concerns on the modification of this invention. It is sectional drawing of the rotor 22 of 5 A of compressors. It is a fragmentary sectional view of compressor 5A.
  • FIG. 1 shows a compressor 5 according to an embodiment of the present invention.
  • the compressor 5 is a rotary compressor that is mounted on a refrigerating apparatus such as an air conditioner or a refrigerator and compresses a gaseous refrigerant.
  • the compressor 5 includes a casing 10, a motor 20, a crankshaft 30, a compression mechanism 40, a shaft support 61, and an auxiliary shaft support 62.
  • the casing 10 accommodates other components of the compressor 5 and can withstand the high pressure of the refrigerant.
  • the casing 10 has a cylindrical part 11, an upper part 12, and a lower part 13.
  • the cylindrical portion 11 is the largest of the components of the casing 10 and has a cylindrical shape. Both the upper part 12 and the lower part 13 are joined to the cylindrical part 11.
  • an oil storage part 14 for storing the refrigerator oil 141 is provided below the casing 10.
  • the motor 20 generates mechanical power using electric power supplied from the terminal 17 via a lead wire (not shown).
  • the motor 20 has a stator 21 and a rotor 22. As shown in FIG. 2, the stator 21 has a cylindrical shape and is fixed to the cylindrical portion 11 of the casing 10. A gap 23 is formed between the stator 21 and the rotor 22. The gap 23 functions as a refrigerant passage.
  • the stator 21 has a stator core 21a, an insulator 21b, and a winding 21c.
  • Stator core 21a consists of a plurality of laminated steel plates.
  • a space 213 for arranging the rotor 22 is formed in the stator core 21a.
  • the insulator 21b is made of resin.
  • the insulators 21b are provided on the stator core upper surface 211 and the stator core lower surface 212, respectively.
  • the winding 21c is for generating an alternating magnetic field, and is wound around a laminate of the stator core 21a and the insulator 21b.
  • the rotor 22 has a rotor core 22a, permanent magnets 22b, end plates 22c, balance weights 22d, and caulking pins 22e.
  • the rotor core 22a is composed of a plurality of laminated steel plates.
  • the rotor core 22 a has a first surface 221 farthest from the compression mechanism 40 and a second surface 222 closest to the compression mechanism 40.
  • the first surface 221 and the second surface 222 are planes parallel to each other.
  • a space 223 for fixing the crankshaft 30 is formed in the rotor core 22a.
  • the permanent magnet 22b is for rotating the entire rotor 22 by interacting with the AC magnetic field generated by the winding 21c.
  • the permanent magnet 22b is disposed in the cavity 224 of the rotor core 22a.
  • the end plates 22c are provided on the first surface 221 and the second surface 222, respectively, and prevent the permanent magnet 22b from going out of the cavity 224.
  • the balance weight 22d is for adjusting the center of gravity of the rotating body composed of the rotor 22 and the components that rotate accompanying the rotor 22.
  • the balance weight 22d is provided on one of the end plates 22c.
  • the caulking pin 22e fixes the end plate 22c or the balance weight 22d to the rotor core 22a.
  • crankshaft 30 is for transmitting the power generated by the motor 20 to the compression mechanism 40.
  • the crankshaft 30 rotates around the rotation axis RA.
  • the crankshaft 30 has a main shaft portion 31 and an eccentric portion 32. A part of the main shaft portion 31 is fixed to the rotor 22.
  • the eccentric part 32 is eccentric with respect to the rotational axis RA.
  • the compression mechanism 40 is for compressing a low-pressure refrigerant to generate a high-pressure refrigerant.
  • the compression mechanism 40 includes a cylinder 41 and a piston 42.
  • the cylinder 41 is a metal member, and has an internal space that communicates with the outside of the casing 10 via the suction pipe 15.
  • the piston 42 is a cylindrical metal member that is smaller than the cylinder 41.
  • the piston 42 is attached to the eccentric part 32.
  • the eccentric portion 32 and the piston 42 are disposed in the internal space of the cylinder 41.
  • a compression chamber 43 is defined by the cylinder 41, the piston 42, a shaft support 61 and an auxiliary shaft support 62 described later.
  • the volume of the compression chamber 43 is increased or decreased by the revolution of the piston 42, whereby the low-pressure refrigerant is compressed and high-pressure refrigerant is generated.
  • the high-pressure refrigerant is discharged from a passage 44 formed in the shaft support portion 61 to a muffler chamber described later.
  • the passage 44 is provided with a discharge valve (not shown). The discharge valve suppresses the high-pressure refrigerant from flowing back from the muffler chamber to the compression chamber 43.
  • the shaft support portion 61 rotatably supports the main shaft portion 31 above the eccentric portion 32.
  • the shaft support 61 also has a function of closing the upper side of the internal space of the cylinder 41.
  • the shaft support portion 61 is fixed to the cylindrical portion 11 at the fixing point F.
  • the fixing method is, for example, welding or shrink fitting.
  • a muffler 63 is attached to the shaft support 61.
  • the shaft support 61 and the muffler 63 define a muffler chamber.
  • the high-pressure refrigerant passes through the passage 44 every time the piston 42 makes one revolution. Such intermittent passage of the high-pressure refrigerant passage 44 can cause noise.
  • the muffler 63 smoothes the pressure fluctuation of the gas refrigerant in the muffler chamber, thereby reducing noise.
  • the high-pressure refrigerant is discharged from a discharge hole 64 formed in the muffler 63.
  • Auxiliary shaft support 62 The auxiliary shaft support portion 62 rotatably supports the main shaft portion 31 below the eccentric portion 32.
  • the auxiliary shaft support part 62 also has a function of closing the lower side of the internal space of the cylinder 41.
  • FIG. 5 shows the dimensions of each part of the compressor 5.
  • the first dimension D1 is the inner diameter of the cylindrical portion 11 of the casing 10.
  • the first dimension D1 is not less than 60 mm and not more than 120 mm.
  • the second dimension D2 is the outer diameter of the rotor core 22a of the rotor 22.
  • the ratio D1 / D2 of the first dimension D1 to the second dimension D2 is designed to be 1.8 or less.
  • the first dimension D1 is 90 mm and the second dimension is 50 mm.
  • the ratio D1 / D2 may be designed to be “less than 1.8”.
  • the end 611 closest to the first surface 221 in the pivot support 61 is farther from the first surface 221 by a predetermined distance H than the second surface 222.
  • This predetermined distance H is, for example, 2 mm or less.
  • the predetermined distance H is, for example, 3 mm or less.
  • the total length L of the shaft support 61 in the extending direction of the rotation axis RA is set short.
  • the total length L is 10 mm or more and 40 mm or less, preferably 10 mm or more and 37 mm or less.
  • the shaft support 61 continuously contacts the crankshaft 30 over the entire length L.
  • the overall length L of the shaft support 61 is short. Therefore, interference between the rotor 22 and the shaft support portion 61 that hinders the rotor 22 and the shaft support portion 61 from being arranged close to each other is unlikely to occur, which is convenient for suppressing vibration of the compressor 5.
  • the first surface 221 and the second surface 222 belong to the rotor core 22a.
  • parts other than the rotor core 22a which is the main part that determines the center of gravity of the rotor 22, are not involved in defining the separation distance between the end 611 of the shaft support 61 and the rotor core 22a. Therefore, the distance from the fixing portion F of the shaft support 61 to the casing 10 to the center of gravity of the rotor 22 can be further shortened.
  • the first dimension D1 is not less than 60 mm and not more than 120 mm. That is, the compressor 5 has a small-diameter casing 10. Therefore, vibration can be suppressed in the small compressor 5.
  • the shaft support 61 contacts the crankshaft 30 over the entire length L. Therefore, the overall length L of the shaft support portion 61 can be shortened compared to the shaft support structure having a non-contact portion.
  • a noise suppression measure can be applied to the compressor 5 which is a rotary compressor that easily generates vibration due to torque fluctuation during rotation.
  • FIG. 6 shows a compressor 5A according to a first modification of the above-described embodiment.
  • the compressor 5A differs from the above-described embodiment in the structure of the rotor 22.
  • a recess 25 is formed in the second surface 222 of the rotor core 22a.
  • the recess 25 is defined by the bottom surface 251 and the side surface 252. Both the bottom surface 251 and the side surface 252 are surfaces located closer to the first surface 221 than the second surface 222.
  • the recess 25 may be defined by a curved surface having a radial or arc-shaped cross section, for example, instead of this configuration.
  • the recessed part 25 is located in the location facing the edge part 611 of the axial support part 61 in the 2nd surface 222 of the rotor core 22a.
  • the end 611 closest to the first surface 221 in the shaft support 61 is farther from the first surface 221 by a predetermined distance H than the second surface 222.
  • the predetermined distance H can be a negative number.
  • the predetermined distance H that is a negative number means a configuration in which the end 611 enters the recess 25.
  • the predetermined distance H is, for example, not less than ⁇ 2 mm and not more than 2 mm. Alternatively, the predetermined distance H is, for example, not less than ⁇ 3 mm and not more than 3 mm.
  • the rotor 22 and the compression mechanism 40 can be arranged close to each other without interfering with each other. Therefore, since the distance from the fixing part F of the shaft support 61 to the casing 10 to the center of gravity of the rotor 22 is shorter, vibration of the compressor 5 can be further suppressed.

Abstract

A compressor (5) comprises: a casing (10); a motor (20); a crank shaft (30); a compression mechanism (40); and a shaft support (61). The casing (10) includes a cylindrical part (11) having an inner diameter of a first dimension (D1). The motor (20) includes a rotor (22) having an outer diameter of a second dimension (D2). The crank shaft (30) is fixed to the rotor (22) and rotates around a rotation axis (RA). The compression mechanism (40) compresses a low-pressure refrigerant so as to produce a high-pressure refrigerant. The shaft support (61) rotatably supports the crank shaft (30). The ratio (D1/D2) of the first dimension (D1) to the second dimension (D2) is 1.8 or less. The total length (L) of the shaft support (61) in the extension direction of the rotation axis (RA) is 10 to 40 mm.

Description

軸支部を備える圧縮機Compressor with shaft support
 本発明は、軸支部を備える圧縮機に関する。 The present invention relates to a compressor provided with a shaft support.
 空気調和装置および冷蔵庫などの冷凍装置には、圧縮機が搭載される。特許文献1(特開2006-144731号公報)は、クランク軸が1回転する期間にトルクが大きく変動する、という現象が往復型圧縮機に起こることを説明している。このようなトルク変動は、振動すなわち騒音を引き起こす。同様の問題は、ロータリ型圧縮機などの他の種類の圧縮機においても起こりうる。トルク変動に起因する振動を低減する解決策の1つは、モータのロータを大型化し、ロータの重量を増やすことによって、回転のイナーシャを確保することである。 Compressors are installed in refrigeration equipment such as air conditioners and refrigerators. Patent Document 1 (Japanese Patent Application Laid-Open No. 2006-144731) describes that a phenomenon occurs in a reciprocating compressor that the torque greatly fluctuates during a period in which the crankshaft rotates once. Such torque fluctuations cause vibrations or noise. Similar problems can occur with other types of compressors, such as rotary compressors. One solution to reduce vibrations due to torque fluctuations is to ensure rotational inertia by enlarging the rotor of the motor and increasing the weight of the rotor.
 しかしながら、ロータの重量増加は別の振動を引き起こすおそれがある。それは、重量の不均衡に起因する振動である。この振動は、ロータの重量分布の微妙な不均衡によってわずかに傾斜したクランク軸の先端が、往復や回転などの運動をすることによって始まる。その運動は、次いで、クランク軸を支える軸受および圧縮機構を振動させる。この振動はケーシングに伝達され、最終的には圧縮機全体が振動する。このような重量の不均衡に起因する振動は、重量の大きなロータを高速で回転させる場合にとりわけ顕著になる。 However, an increase in the weight of the rotor may cause another vibration. It is a vibration due to weight imbalance. This vibration starts when the tip of the crankshaft, which is slightly inclined due to a slight imbalance in the weight distribution of the rotor, moves such as reciprocation and rotation. That motion then causes the bearings and compression mechanisms that support the crankshaft to vibrate. This vibration is transmitted to the casing, and finally the whole compressor vibrates. Such vibration due to weight imbalance is particularly noticeable when a heavy rotor is rotated at high speed.
 本発明の課題は、圧縮機の振動を抑制することである。 An object of the present invention is to suppress the vibration of the compressor.
 本発明の第1観点に係る圧縮機は、ケーシングと、モータと、クランク軸と、圧縮機構と、軸支部と、を備える。ケーシングは、第1寸法の内径を持つ円筒部を有する。モータは、第2寸法の外径を持つロータを有する。クランク軸は、ロータに固定されており、回転軸心のまわりに回転する。圧縮機構は、低圧冷媒を圧縮することによって高圧冷媒を生成する。軸支部は、クランク軸を回転可能に支える。第2寸法に対する第1寸法の比率は1.8以下である。回転軸心の延出方向における軸支部の全長は10mm以上かつ40mm以下である。 The compressor according to the first aspect of the present invention includes a casing, a motor, a crankshaft, a compression mechanism, and a shaft support. The casing has a cylindrical portion having an inner diameter of a first dimension. The motor has a rotor having an outer diameter of the second dimension. The crankshaft is fixed to the rotor and rotates around the rotation axis. The compression mechanism generates a high-pressure refrigerant by compressing the low-pressure refrigerant. The shaft support part rotatably supports the crankshaft. The ratio of the first dimension to the second dimension is 1.8 or less. The total length of the shaft support portion in the extending direction of the rotation axis is 10 mm or more and 40 mm or less.
 この構成によれば、軸支部の全長が短い。したがって、ロータと軸支部とを近接配置する際の妨げとなるロータと軸支部との干渉が起こりにくいので、圧縮機の振動を抑制するのに好都合である。 に よ According to this configuration, the overall length of the shaft support is short. Therefore, interference between the rotor and the shaft support, which is an obstacle when the rotor and the shaft support are arranged close to each other, is less likely to occur, which is convenient for suppressing vibration of the compressor.
 本発明の第2観点に係る圧縮機は、第1観点に係る圧縮機において、ロータが、圧縮機構から遠い第1面、および、圧縮機構に近い第2面を有する。軸支部における第1面に最も近い端部は、前記第2面と比較して所定距離だけ前記第1面からより遠い。所定距離は3mm以下である。 A compressor according to a second aspect of the present invention is the compressor according to the first aspect, wherein the rotor has a first surface far from the compression mechanism and a second surface close to the compression mechanism. The end closest to the first surface of the shaft support is farther from the first surface by a predetermined distance than the second surface. The predetermined distance is 3 mm or less.
 この構成によれば、ロータは軸支部に近接して配置されるので、軸支部または圧縮機構のケーシングへの固定箇所から、ロータの重心までの距離が短い。したがって、クランク軸の傾斜が起こりにくいので、圧縮機の振動を抑制できる。 According to this configuration, since the rotor is disposed close to the shaft support portion, the distance from the fixed portion of the shaft support portion or the compression mechanism to the casing to the center of gravity of the rotor is short. Therefore, the crankshaft is less likely to be inclined, so that the compressor vibration can be suppressed.
 本発明の第3観点に係る圧縮機は、第2観点に係る圧縮機において、ロータの第2面における、軸支部の端部に対向する箇所には、第2面と比較して第1面のより近くに位置する面によって規定される凹部が形成されている。 The compressor which concerns on the 3rd viewpoint of this invention WHEREIN: The compressor which concerns on a 2nd viewpoint WHEREIN: The location which opposes the edge part of a shaft support part in the 2nd surface of a rotor is 1st surface compared with a 2nd surface. A recess is formed which is defined by a surface located closer to the.
 この構成によれば、凹部の存在により、ロータおよび圧縮機構を互いに干渉することなく近接配置することができる。したがって、軸支部または圧縮機構のケーシングへの固定箇所から、ロータの重心までの距離がより短いので、圧縮機の振動をより抑制できる。 According to this configuration, the rotor and the compression mechanism can be arranged close to each other without interfering with each other due to the presence of the recess. Therefore, since the distance from the fixed part to the casing of the shaft support or the compression mechanism to the center of gravity of the rotor is shorter, vibration of the compressor can be further suppressed.
 本発明の第4観点に係る圧縮機は、第3観点に係る圧縮機において、所定距離は、さらに-3mm以上である。 In the compressor according to the fourth aspect of the present invention, in the compressor according to the third aspect, the predetermined distance is further -3 mm or more.
 この構成によれば、軸支部の端部が凹部に入り込んでいる構成において、その端部と第2面との距離が短い。これは、凹部を規定する面と軸支部の端部が適度に離間することを意味する。したがって、各種制約の下で、その両者について、配置の自由度を増やすことができる。 According to this configuration, in the configuration in which the end portion of the shaft support portion enters the recess, the distance between the end portion and the second surface is short. This means that the surface that defines the concave portion and the end portion of the shaft support portion are appropriately separated. Therefore, the freedom degree of arrangement | positioning can be increased about both of them under various restrictions.
 本発明の第5観点に係る圧縮機は、第2観点から第4観点のいずれか1つに係る圧縮機において、ロータがロータコアを有する。第1面は、ロータコアにおける圧縮機構から最も遠い面である。第2面は、ロータコアにおける圧縮機構に最も近い面である。 The compressor according to the fifth aspect of the present invention is the compressor according to any one of the second to fourth aspects, wherein the rotor has a rotor core. The first surface is the surface farthest from the compression mechanism in the rotor core. The second surface is the surface closest to the compression mechanism in the rotor core.
 この構成によれば、第1面および第2面はロータコアに属する。したがって、軸支部または圧縮機構のケーシングへの固定箇所から、ロータの重心までの距離をより短くできる。 According to this configuration, the first surface and the second surface belong to the rotor core. Therefore, the distance from the fixed part to the casing of the shaft support or the compression mechanism to the center of gravity of the rotor can be further shortened.
 本発明の第6観点に係る圧縮機は、第1観点から第5観点のいずれか1つに係る圧縮機において、第1寸法は、60mm以上かつ120mm以下である。 The compressor according to the sixth aspect of the present invention is the compressor according to any one of the first to fifth aspects, wherein the first dimension is not less than 60 mm and not more than 120 mm.
 この構成によれば、圧縮機は小径のケーシングを有する。したがって、小型の圧縮機において振動を抑制できる。 According to this configuration, the compressor has a small diameter casing. Therefore, vibration can be suppressed in a small compressor.
 本発明の第7観点に係る圧縮機は、第1観点から第6観点のいずれか1つに記載の圧縮機において、軸支部の全長は37mm以下である。 In the compressor according to the seventh aspect of the present invention, in the compressor according to any one of the first to sixth aspects, the total length of the shaft support portion is 37 mm or less.
 この構成によれば、軸支部の全長がさらに短い。したがって、軸支部または圧縮機構のケーシングへの固定箇所から、ロータの重心までの距離がさらに短いので、圧縮機の振動をさらに抑制できる。 に よ According to this configuration, the overall length of the shaft support is even shorter. Therefore, since the distance from the fixed part to the shaft support or the casing of the compression mechanism to the center of gravity of the rotor is further short, vibration of the compressor can be further suppressed.
 本発明の第8観点に係る圧縮機は、第1観点から第7観点のいずれか1つに係る圧縮機において、軸支部はロータに対して圧縮機構の側のみに存在する。 In the compressor according to the eighth aspect of the present invention, in the compressor according to any one of the first to seventh aspects, the shaft support portion exists only on the compression mechanism side with respect to the rotor.
 この構成によれば、軸支部はロータに対して圧縮機構の反対側には存在しない。したがって、圧縮機のコストダウンを達成できる。 According to this configuration, the shaft support portion does not exist on the opposite side of the compression mechanism with respect to the rotor. Therefore, cost reduction of the compressor can be achieved.
 本発明の第9観点に係る圧縮機は、第1観点から第8観点のいずれか1つに係る圧縮機において、圧縮機構が軸支部に固定されており、前記軸支部よりも前記ロータから遠い。 A compressor according to a ninth aspect of the present invention is the compressor according to any one of the first to eighth aspects, wherein the compression mechanism is fixed to the shaft support portion and is farther from the rotor than the shaft support portion. .
 この構成によれば、圧縮機構と軸支部は極めて近接している。したがって、圧縮機構におけるピストンの回転が安定化される。 According to this configuration, the compression mechanism and the shaft support are very close to each other. Therefore, the rotation of the piston in the compression mechanism is stabilized.
 本発明の第10観点に係る圧縮機は、第1観点から第9観点のいずれか1つに係る圧縮機において、軸支部が、全長にわたり連続的にクランク軸に接触する。 In the compressor according to the tenth aspect of the present invention, in the compressor according to any one of the first to ninth aspects, the shaft support portion continuously contacts the crankshaft over the entire length.
 この構成によれば、軸支部は全長にわたってクランク軸と接触する。したがって、非接触部分を有する軸支構造に比べて、軸支部の全長を短くできる。 ¡According to this configuration, the shaft support portion contacts the crankshaft over the entire length. Therefore, the overall length of the shaft support portion can be shortened compared to the shaft support structure having a non-contact portion.
 本発明の第11観点に係る圧縮機は、第1観点から第10観点のいずれか1つに係る圧縮機において、軸支部が円筒部に直接的に固定されている。 In the compressor according to the eleventh aspect of the present invention, in the compressor according to any one of the first to tenth aspects, the shaft support portion is directly fixed to the cylindrical portion.
 この構成によれば、軸支部がケーシングに直接的に固定される。したがって、圧縮機構および軸支部の組立体をケーシングに固定する固定箇所がロータに近いので、圧縮機の振動をより抑制できる。 こ の According to this configuration, the shaft support is directly fixed to the casing. Therefore, since the fixing part which fixes the assembly of a compression mechanism and a shaft support part to a casing is close to a rotor, the vibration of a compressor can be suppressed more.
 本発明の第12観点に係る圧縮機は、第1観点から第11観点のいずれか1つに係る圧縮機において、圧縮機構が円筒部に直接的に固定されている。 In the compressor according to the twelfth aspect of the present invention, in the compressor according to any one of the first aspect to the eleventh aspect, the compression mechanism is directly fixed to the cylindrical portion.
 この構成によれば、圧縮機構がケーシングに直接的に固定される。したがって、大きな重量を有する圧縮機構が振れる現象を抑制できる。 According to this configuration, the compression mechanism is directly fixed to the casing. Therefore, the phenomenon that the compression mechanism having a large weight swings can be suppressed.
 本発明の第13観点に係る圧縮機は、第1観点から第12観点のいずれか1つに係る圧縮機において、ロータリ型圧縮機である。 The compressor according to the thirteenth aspect of the present invention is a rotary compressor in the compressor according to any one of the first to twelfth aspects.
 この構成によれば、回転中のトルク変動に起因して振動を発しやすいロータリ型圧縮機に対して、騒音の抑制策を施すことができる。 According to this configuration, it is possible to take a noise suppression measure for a rotary compressor that easily generates vibration due to torque fluctuation during rotation.
 本発明の第1観点、第2観点、第3観点、第6観点、第7観点、第11観点、および第13観点に係る圧縮機によれば、圧縮機の振動を抑制できる。 The compressor according to the first aspect, the second aspect, the third aspect, the sixth aspect, the seventh aspect, the eleventh aspect, and the thirteenth aspect of the present invention can suppress the vibration of the compressor.
 本発明の第4観点に係る圧縮機によれば、凹部を規定する面および軸支部の端部などについて、配置の自由度を増やすことができる。 According to the compressor according to the fourth aspect of the present invention, the degree of freedom of arrangement can be increased with respect to the surface defining the recess and the end of the shaft support.
 本発明の第5観点に係る圧縮機によれば、軸支部または圧縮機構のケーシングへの固定箇所から、ロータの重心までの距離をより短くできる。 According to the compressor according to the fifth aspect of the present invention, the distance from the fixed portion of the shaft support or the compression mechanism to the casing to the center of gravity of the rotor can be further shortened.
 本発明の第8観点に係る圧縮機によれば、圧縮機のコストダウンを達成できる。 The compressor according to the eighth aspect of the present invention can reduce the cost of the compressor.
 本発明の第9観点に係る圧縮機によれば、圧縮機構におけるピストンの公転が安定化される。 According to the compressor according to the ninth aspect of the present invention, the revolution of the piston in the compression mechanism is stabilized.
 本発明の第10観点に係る圧縮機によれば、軸支部の全長を短くできる。 The compressor according to the tenth aspect of the present invention can shorten the overall length of the shaft support.
 本発明の第12観点に係る圧縮機によれば、大きな重量を有する圧縮機構が振れる現象を抑制できる。 The compressor according to the twelfth aspect of the present invention can suppress a phenomenon in which a compression mechanism having a large weight swings.
本発明の一実施形態に係る圧縮機5の断面図である。It is sectional drawing of the compressor 5 which concerns on one Embodiment of this invention. 圧縮機5の円筒部11およびモータ20の平面図である。3 is a plan view of a cylindrical portion 11 and a motor 20 of the compressor 5. FIG. 圧縮機5のステータ21の断面図である。3 is a cross-sectional view of a stator 21 of the compressor 5. FIG. 圧縮機5のロータ22の断面図である。3 is a cross-sectional view of a rotor 22 of the compressor 5. FIG. 圧縮機5の部分的な断面図である。3 is a partial cross-sectional view of the compressor 5. FIG. 本発明の変形例に係る圧縮機5Aの断面図である。It is sectional drawing of the compressor 5A which concerns on the modification of this invention. 圧縮機5Aのロータ22の断面図である。It is sectional drawing of the rotor 22 of 5 A of compressors. 圧縮機5Aの部分的な断面図である。It is a fragmentary sectional view of compressor 5A.
 以下、本発明に係る空気調和装置の実施形態について、図面を用いて説明する。なお、本発明に係る空気調和装置の具体的な構成は、下記の実施形態に限られるものではなく、発明の要旨を逸脱しない範囲で適宜変更可能である。 Hereinafter, embodiments of an air conditioner according to the present invention will be described with reference to the drawings. In addition, the specific structure of the air conditioning apparatus which concerns on this invention is not restricted to the following embodiment, In the range which does not deviate from the summary of invention, it can change suitably.
 (1)全体構成
 (1-1)概要
 図1は、本発明の一実施形態に係る圧縮機5を示す。圧縮機5は、空気調和装置および冷蔵庫などの冷凍装置に搭載され、ガス状の冷媒の圧縮を行うロータリ型圧縮機である。圧縮機5は、ケーシング10、モータ20、クランク軸30、圧縮機構40、軸支部61、補助軸支部62を有する。
(1) Overall Configuration (1-1) Outline FIG. 1 shows a compressor 5 according to an embodiment of the present invention. The compressor 5 is a rotary compressor that is mounted on a refrigerating apparatus such as an air conditioner or a refrigerator and compresses a gaseous refrigerant. The compressor 5 includes a casing 10, a motor 20, a crankshaft 30, a compression mechanism 40, a shaft support 61, and an auxiliary shaft support 62.
 (1-2)ケーシング10
 ケーシング10は、圧縮機5の他の構成要素を収容するものであり、冷媒の高い圧力に耐えることができる。ケーシング10は、円筒部11、上部12、下部13を有する。円筒部11は、ケーシング10の構成要素の中で最も大きいものであり、円筒状である。上部12および下部13はいずれも円筒部11に接合されている。ケーシング10の下方には、冷凍機油141を貯留するための油貯留部14が設けられている。
(1-2) Casing 10
The casing 10 accommodates other components of the compressor 5 and can withstand the high pressure of the refrigerant. The casing 10 has a cylindrical part 11, an upper part 12, and a lower part 13. The cylindrical portion 11 is the largest of the components of the casing 10 and has a cylindrical shape. Both the upper part 12 and the lower part 13 are joined to the cylindrical part 11. Below the casing 10, an oil storage part 14 for storing the refrigerator oil 141 is provided.
 円筒部11には、吸入管15が設置されている。上部12には、吐出管16およびターミナル17が設置されている。吸入管15は、低圧冷媒を吸入するためのものである。吐出管16は、高圧冷媒を吐出するためのものである。ターミナル17は、外部から電力の供給を受けるためのものである。 The suction pipe 15 is installed in the cylindrical part 11. A discharge pipe 16 and a terminal 17 are installed on the upper part 12. The suction pipe 15 is for sucking low-pressure refrigerant. The discharge pipe 16 is for discharging a high-pressure refrigerant. The terminal 17 is for receiving power supply from the outside.
 (1-3)モータ20
 モータ20は、ターミナル17から図示しない導線を介して供給された電力を用いて、機械的な動力を発生するものである。モータ20は、ステータ21およびロータ22を有する。図2に示すように、ステータ21は円筒状であり、ケーシング10の円筒部11に固定されている。ステータ21とロータ22の間には間隙23が形成されている。間隙23は、冷媒の通路として機能する。
(1-3) Motor 20
The motor 20 generates mechanical power using electric power supplied from the terminal 17 via a lead wire (not shown). The motor 20 has a stator 21 and a rotor 22. As shown in FIG. 2, the stator 21 has a cylindrical shape and is fixed to the cylindrical portion 11 of the casing 10. A gap 23 is formed between the stator 21 and the rotor 22. The gap 23 functions as a refrigerant passage.
 図3に示すように、ステータ21は、ステータコア21a、インシュレータ21b、巻線21cを有する。ステータコア21aは、積層された複数の鋼板からなる。ステータコア21aには、ロータ22を配置するための空間213が形成されている。インシュレータ21bは樹脂からなる。インシュレータ21bは、ステータコア上面211とステータコア下面212にそれぞれ設けられる。巻線21cは、交流磁界を発するためのものであり、ステータコア21aとインシュレータ21bの積層体に巻きつけられている。 As shown in FIG. 3, the stator 21 has a stator core 21a, an insulator 21b, and a winding 21c. Stator core 21a consists of a plurality of laminated steel plates. A space 213 for arranging the rotor 22 is formed in the stator core 21a. The insulator 21b is made of resin. The insulators 21b are provided on the stator core upper surface 211 and the stator core lower surface 212, respectively. The winding 21c is for generating an alternating magnetic field, and is wound around a laminate of the stator core 21a and the insulator 21b.
 図4に示すように、ロータ22は、ロータコア22a、永久磁石22b、端板22c、バランスウェイト22d、かしめピン22eを有する。ロータコア22aは、積層された複数の鋼板からなる。ロータコア22aは、圧縮機構40から最も遠い第1面221、および、圧縮機構40に最も近い第2面222を有する。第1面221と第2面222は互いに平行な平面である。ロータコア22aには、クランク軸30を固定するための空間223が形成されている。永久磁石22bは、巻線21cが発する交流磁界と相互作用することによって、ロータ22の全体を回転させるためのものである。永久磁石22bは、ロータコア22aの空洞224の中に配置されている。端板22cは、第1面221および第2面222にそれぞれ設けられ、永久磁石22bが空洞224の外に出て行くことを防止する。バランスウェイト22dは、ロータ22およびそれに付随して回転する部品からなる回転体の重心を調整するためのものである。バランスウェイト22dは、いずれかの端板22cに設けられる。かしめピン22eは、端板22cまたはバランスウェイト22dをロータコア22aに固定する。 As shown in FIG. 4, the rotor 22 has a rotor core 22a, permanent magnets 22b, end plates 22c, balance weights 22d, and caulking pins 22e. The rotor core 22a is composed of a plurality of laminated steel plates. The rotor core 22 a has a first surface 221 farthest from the compression mechanism 40 and a second surface 222 closest to the compression mechanism 40. The first surface 221 and the second surface 222 are planes parallel to each other. A space 223 for fixing the crankshaft 30 is formed in the rotor core 22a. The permanent magnet 22b is for rotating the entire rotor 22 by interacting with the AC magnetic field generated by the winding 21c. The permanent magnet 22b is disposed in the cavity 224 of the rotor core 22a. The end plates 22c are provided on the first surface 221 and the second surface 222, respectively, and prevent the permanent magnet 22b from going out of the cavity 224. The balance weight 22d is for adjusting the center of gravity of the rotating body composed of the rotor 22 and the components that rotate accompanying the rotor 22. The balance weight 22d is provided on one of the end plates 22c. The caulking pin 22e fixes the end plate 22c or the balance weight 22d to the rotor core 22a.
 (1-4)クランク軸30
 図1に戻り、クランク軸30は、モータ20が発生させた動力を圧縮機構40に伝達するためのものである。クランク軸30は、回転軸心RAのまわりに回転する。クランク軸30は、主軸部31と偏心部32を有する。主軸部31の一部はロータ22に固定されている。偏心部32は、回転軸心RAに対して偏心している。
(1-4) Crankshaft 30
Returning to FIG. 1, the crankshaft 30 is for transmitting the power generated by the motor 20 to the compression mechanism 40. The crankshaft 30 rotates around the rotation axis RA. The crankshaft 30 has a main shaft portion 31 and an eccentric portion 32. A part of the main shaft portion 31 is fixed to the rotor 22. The eccentric part 32 is eccentric with respect to the rotational axis RA.
 (1-5)圧縮機構40
 圧縮機構40は、低圧冷媒を圧縮して高圧冷媒を生成するためのものである。圧縮機構40は、シリンダ41、ピストン42を有する。
(1-5) Compression mechanism 40
The compression mechanism 40 is for compressing a low-pressure refrigerant to generate a high-pressure refrigerant. The compression mechanism 40 includes a cylinder 41 and a piston 42.
 シリンダ41は金属部材であり、吸入管15を介してケーシング10の外部と連通する内部空間を有する。ピストン42は、シリンダ41よりも小さな円筒状の金属部材である。ピストン42は、偏心部32に取り付けられている。偏心部32およびピストン42は、シリンダ41の内部空間に配置されている。クランク軸30の回転に伴い、ピストン42は公転する。シリンダ41、ピストン42、後述する軸支部61および補助軸支部62によって、圧縮室43が規定される。 The cylinder 41 is a metal member, and has an internal space that communicates with the outside of the casing 10 via the suction pipe 15. The piston 42 is a cylindrical metal member that is smaller than the cylinder 41. The piston 42 is attached to the eccentric part 32. The eccentric portion 32 and the piston 42 are disposed in the internal space of the cylinder 41. As the crankshaft 30 rotates, the piston 42 revolves. A compression chamber 43 is defined by the cylinder 41, the piston 42, a shaft support 61 and an auxiliary shaft support 62 described later.
 圧縮室43の容積は、ピストン42の公転により増減し、それによって低圧冷媒が圧縮され、高圧冷媒が生成される。高圧冷媒は、軸支部61に形成された通路44から後述するマフラ室へ吐出される。通路44には、図示しない吐出弁が設けられている。吐出弁は、高圧冷媒がマフラ室から圧縮室43へ逆流することを抑制する。 The volume of the compression chamber 43 is increased or decreased by the revolution of the piston 42, whereby the low-pressure refrigerant is compressed and high-pressure refrigerant is generated. The high-pressure refrigerant is discharged from a passage 44 formed in the shaft support portion 61 to a muffler chamber described later. The passage 44 is provided with a discharge valve (not shown). The discharge valve suppresses the high-pressure refrigerant from flowing back from the muffler chamber to the compression chamber 43.
 (1-6)軸支部61
 軸支部61は、偏心部32よりも上方の主軸部31を回転可能に支える。軸支部61は、シリンダ41の内部空間の上側を塞ぐ機能も有する。軸支部61は、固定箇所Fにおいて円筒部11に固定されている。固定方法は、例えば、溶接または焼き嵌めである。軸支部61にはマフラ63が取り付けられている。軸支部61とマフラ63は、マフラ室を規定する。高圧冷媒は、ピストン42が公転を1回するたびに通路44を通過する。高圧冷媒の通路44の通過がこのように断続的であることは、騒音の原因となり得る。マフラ63は、マフラ室においてガス冷媒の圧力変動を平滑化し、それによって騒音を低減する。高圧冷媒は、マフラ63に形成された吐出孔64から吐出される。
(1-6) Shaft support 61
The shaft support portion 61 rotatably supports the main shaft portion 31 above the eccentric portion 32. The shaft support 61 also has a function of closing the upper side of the internal space of the cylinder 41. The shaft support portion 61 is fixed to the cylindrical portion 11 at the fixing point F. The fixing method is, for example, welding or shrink fitting. A muffler 63 is attached to the shaft support 61. The shaft support 61 and the muffler 63 define a muffler chamber. The high-pressure refrigerant passes through the passage 44 every time the piston 42 makes one revolution. Such intermittent passage of the high-pressure refrigerant passage 44 can cause noise. The muffler 63 smoothes the pressure fluctuation of the gas refrigerant in the muffler chamber, thereby reducing noise. The high-pressure refrigerant is discharged from a discharge hole 64 formed in the muffler 63.
 (1-7)補助軸支部62
 補助軸支部62は、偏心部32よりも下方の主軸部31を回転可能に支える。補助軸支部62は、シリンダ41の内部空間の下側を塞ぐ機能も有する。
(1-7) Auxiliary shaft support 62
The auxiliary shaft support portion 62 rotatably supports the main shaft portion 31 below the eccentric portion 32. The auxiliary shaft support part 62 also has a function of closing the lower side of the internal space of the cylinder 41.
 (2)基本動作
 図1の矢印は冷媒の流れを示す。低圧冷媒は吸入管15から圧縮機構40の圧縮室43へ吸入される。圧縮機構40の圧縮動作によって生成した高圧冷媒は、通路44および吐出孔64を通過して、圧縮機構40から吐出される。その後、高圧冷媒は、ロータ22に向かって吹きつけられた後、間隙23へ向かって進む。高圧冷媒は、間隙23の中を上昇した後、吐出管16からケーシング10の外部へ吐出される。
(2) Basic operation The arrows in FIG. 1 indicate the flow of the refrigerant. The low-pressure refrigerant is sucked from the suction pipe 15 into the compression chamber 43 of the compression mechanism 40. The high-pressure refrigerant generated by the compression operation of the compression mechanism 40 passes through the passage 44 and the discharge hole 64 and is discharged from the compression mechanism 40. Thereafter, the high-pressure refrigerant is blown toward the rotor 22 and then proceeds toward the gap 23. The high-pressure refrigerant rises in the gap 23 and is then discharged from the discharge pipe 16 to the outside of the casing 10.
 (3)詳細構成
 本発明に係る圧縮機5のロータ22は、75~150rps(回転毎秒)、好ましくは100~150rps、さらに好ましくは120~130rpsで回転するよう構成されている。この回転速度は、従来の圧縮機におけるロータの回転速度の15~75rpsと比較して速いものである。
(3) Detailed Configuration The rotor 22 of the compressor 5 according to the present invention is configured to rotate at 75 to 150 rps (rotation per second), preferably 100 to 150 rps, more preferably 120 to 130 rps. This rotational speed is higher than the rotational speed of the rotor in the conventional compressor, 15 to 75 rps.
 図5は、圧縮機5の各部の寸法を示している。第1寸法D1は、ケーシング10の円筒部11の内径である。第1寸法D1は、60mm以上かつ120mm以下である。第2寸法D2は、ロータ22のロータコア22aの外径である。第2寸法D2に対する第1寸法D1の比率D1/D2は、1.8以下となるように設計されている。例えば、第1寸法D1は90mmであり、第2寸法は50mmである。比率D1/D2は、1.8“未満”となるように設計されてもよい。 FIG. 5 shows the dimensions of each part of the compressor 5. The first dimension D1 is the inner diameter of the cylindrical portion 11 of the casing 10. The first dimension D1 is not less than 60 mm and not more than 120 mm. The second dimension D2 is the outer diameter of the rotor core 22a of the rotor 22. The ratio D1 / D2 of the first dimension D1 to the second dimension D2 is designed to be 1.8 or less. For example, the first dimension D1 is 90 mm and the second dimension is 50 mm. The ratio D1 / D2 may be designed to be “less than 1.8”.
 軸支部61における第1面221に最も近い端部611は、第2面222と比較して所定距離Hだけ第1面221からより遠い。この所定距離Hは、例えば2mm以下である。あるいは、この所定距離Hは、例えば3mm以下である。回転軸心RAの延出方向における軸支部61の全長Lは短く設定されている。例えば、全長Lは10mm以上かつ40mm以下であり、好ましくは10mm以上かつ37mm以下である。軸支部61は、全長Lにわたり連続的にクランク軸30と接触する。 The end 611 closest to the first surface 221 in the pivot support 61 is farther from the first surface 221 by a predetermined distance H than the second surface 222. This predetermined distance H is, for example, 2 mm or less. Alternatively, the predetermined distance H is, for example, 3 mm or less. The total length L of the shaft support 61 in the extending direction of the rotation axis RA is set short. For example, the total length L is 10 mm or more and 40 mm or less, preferably 10 mm or more and 37 mm or less. The shaft support 61 continuously contacts the crankshaft 30 over the entire length L.
 (4)特徴
 (4-1)
 軸支部61の全長Lが短い。したがって、ロータ22と軸支部61とを近接配置する際の妨げとなるロータ22と軸支部61との干渉が起こりにくいので、圧縮機5の振動を抑制するのに好都合である。
(4) Features (4-1)
The overall length L of the shaft support 61 is short. Therefore, interference between the rotor 22 and the shaft support portion 61 that hinders the rotor 22 and the shaft support portion 61 from being arranged close to each other is unlikely to occur, which is convenient for suppressing vibration of the compressor 5.
 (4-2)
 ロータ22は軸支部61に近接して配置されるので、軸支部61のケーシング10への固定箇所Fから、ロータ22の重心までの距離が短い。したがって、クランク軸30の傾斜が起こりにくいので、圧縮機5の振動を抑制できる。
(4-2)
Since the rotor 22 is disposed close to the shaft support portion 61, the distance from the fixing portion F of the shaft support portion 61 to the casing 10 to the center of gravity of the rotor 22 is short. Therefore, since the inclination of the crankshaft 30 hardly occurs, the vibration of the compressor 5 can be suppressed.
 (4-3)
 第1面221および第2面222はロータコア22aに属する。この結果、軸支部61の端部611とロータコア22aとの離間距離の規定に、ロータ22の重心を決定する主要部品であるロータコア22a以外の部品が関与しない。したがって、軸支部61のケーシング10への固定箇所Fから、ロータ22の重心までの距離をより短くできる。
(4-3)
The first surface 221 and the second surface 222 belong to the rotor core 22a. As a result, parts other than the rotor core 22a, which is the main part that determines the center of gravity of the rotor 22, are not involved in defining the separation distance between the end 611 of the shaft support 61 and the rotor core 22a. Therefore, the distance from the fixing portion F of the shaft support 61 to the casing 10 to the center of gravity of the rotor 22 can be further shortened.
 (4-4)
 第1寸法D1は、60mm以上かつ120mm以下である。すなわち、圧縮機5は小径のケーシング10を有する。したがって、小型の圧縮機5において振動を抑制できる。
(4-4)
The first dimension D1 is not less than 60 mm and not more than 120 mm. That is, the compressor 5 has a small-diameter casing 10. Therefore, vibration can be suppressed in the small compressor 5.
 (4-5)
 軸支部61はロータ22に対して圧縮機構40の反対側には存在しない。したがって、圧縮機のコストダウンを達成できる。
(4-5)
The shaft support 61 does not exist on the opposite side of the compression mechanism 40 with respect to the rotor 22. Therefore, cost reduction of the compressor can be achieved.
 (4-6)
 圧縮機構40と軸支部61は極めて近接している。したがって、圧縮機構40におけるピストン42の公転が安定化される。
(4-6)
The compression mechanism 40 and the shaft support 61 are very close to each other. Therefore, the revolution of the piston 42 in the compression mechanism 40 is stabilized.
 (4-7)
 軸支部61は全長Lにわたってクランク軸30と接触する。したがって、非接触部分を有する軸支構造に比べて、軸支部61の全長Lを短くできる。
(4-7)
The shaft support 61 contacts the crankshaft 30 over the entire length L. Therefore, the overall length L of the shaft support portion 61 can be shortened compared to the shaft support structure having a non-contact portion.
 (4-8)
 軸支部61がケーシング10に直接的に固定される。したがって、圧縮機構40および軸支部61の組立体をケーシング10に固定する固定箇所Fがロータ22に近いので、圧縮機5の振動をより抑制できる。
(4-8)
The shaft support 61 is directly fixed to the casing 10. Therefore, since the fixing location F for fixing the assembly of the compression mechanism 40 and the shaft support 61 to the casing 10 is close to the rotor 22, vibration of the compressor 5 can be further suppressed.
 (4-9)
 回転中のトルク変動に起因して振動を発しやすいロータリ型圧縮機である圧縮機5に対して、騒音の抑制策を施すことができる。
(4-9)
A noise suppression measure can be applied to the compressor 5 which is a rotary compressor that easily generates vibration due to torque fluctuation during rotation.
 (5)変形例
 (5-1)第1変形例
 図6は、上述の実施形態の第1変形例に係る圧縮機5Aを示す。圧縮機5Aは、ロータ22の構造が上述の実施形態と異なる。図7に示すように、ロータコア22aの第2面222には凹部25が形成されている。凹部25は、底面251および側面252によって規定される。底面251および側面252は、いずれも、第2面222と比較して第1面221のより近くに位置する面である。凹部25は、この構成に代えて、例えば、放射線状または円弧状の断面を有する曲面によって規定されてもよい。
(5) Modification (5-1) First Modification FIG. 6 shows a compressor 5A according to a first modification of the above-described embodiment. The compressor 5A differs from the above-described embodiment in the structure of the rotor 22. As shown in FIG. 7, a recess 25 is formed in the second surface 222 of the rotor core 22a. The recess 25 is defined by the bottom surface 251 and the side surface 252. Both the bottom surface 251 and the side surface 252 are surfaces located closer to the first surface 221 than the second surface 222. The recess 25 may be defined by a curved surface having a radial or arc-shaped cross section, for example, instead of this configuration.
 図8に示すように、凹部25は、ロータコア22aの第2面222における、軸支部61の端部611に対向する箇所に位置する。軸支部61における第1面221に最も近い端部611は、第2面222と比較して所定距離Hだけ第1面221からより遠い。この所定距離Hは負数とすることもできる。負数である所定距離Hは、端部611が凹部25の中に入り込んでいる構成を意味する。所定距離Hは、例えば-2mm以上かつ2mm以下である。あるいは、所定距離Hは、例えば-3mm以上かつ3mm以下である。 As shown in FIG. 8, the recessed part 25 is located in the location facing the edge part 611 of the axial support part 61 in the 2nd surface 222 of the rotor core 22a. The end 611 closest to the first surface 221 in the shaft support 61 is farther from the first surface 221 by a predetermined distance H than the second surface 222. The predetermined distance H can be a negative number. The predetermined distance H that is a negative number means a configuration in which the end 611 enters the recess 25. The predetermined distance H is, for example, not less than −2 mm and not more than 2 mm. Alternatively, the predetermined distance H is, for example, not less than −3 mm and not more than 3 mm.
 この構成によれば、凹部25の存在により、ロータ22および圧縮機構40を互いに干渉することなく近接配置することができる。したがって、軸支部61のケーシング10への固定箇所Fから、ロータ22の重心までの距離がより短いので、圧縮機5の振動をより抑制できる。 According to this configuration, due to the presence of the recess 25, the rotor 22 and the compression mechanism 40 can be arranged close to each other without interfering with each other. Therefore, since the distance from the fixing part F of the shaft support 61 to the casing 10 to the center of gravity of the rotor 22 is shorter, vibration of the compressor 5 can be further suppressed.
 軸支部61の端部611が凹部25に入り込んでいる場合においても、その端部611と第2面222との距離が短い。これは、凹部25を規定する面(すなわち底面251および側面252)と、軸支部61の端部611が適度に離間することを意味する。したがって、所定の絶縁距離の確保などの各種制約の下で、凹部を規定する面および軸支部の端部などについて、配置の自由度を増やすことができる。 Even when the end portion 611 of the shaft support portion 61 enters the recess 25, the distance between the end portion 611 and the second surface 222 is short. This means that the surface defining the recess 25 (that is, the bottom surface 251 and the side surface 252) and the end portion 611 of the shaft support portion 61 are appropriately separated. Therefore, the degree of freedom of arrangement can be increased for the surface defining the recess and the end portion of the shaft support portion under various restrictions such as securing a predetermined insulation distance.
 (5-2)第2変形例
 上述の実施形態では、軸支部61がケーシング10に直接的に固定される。これに代えて、またはこれと併せて、圧縮機構40がケーシング10に直接的に固定されてもよい。この場合、大きな重量を有する圧縮機構40が振れる現象を抑制できる。
(5-2) Second Modification In the above-described embodiment, the shaft support 61 is directly fixed to the casing 10. Instead of or in combination with this, the compression mechanism 40 may be directly fixed to the casing 10. In this case, the phenomenon that the compression mechanism 40 having a large weight swings can be suppressed.
     5、5A  圧縮機
    10  ケーシング
    11  円筒部
    12  上部
    13  下部
    14  油貯留部
    20  モータ
    21  ステータ
    22  ロータ
    25  凹部
    30  クランク軸
    40  圧縮機構
    41  シリンダ
    42  ピストン
    45  マフラ
    46  吐出孔
    61  軸支部
    62  補助軸支部
   141  冷凍機油
    F   固定箇所
    H   所定距離
    L   軸支部の全長
    RA  回転軸心
5, 5A Compressor 10 Casing 11 Cylindrical part 12 Upper part 13 Lower part 14 Oil storage part 20 Motor 21 Stator 22 Rotor 25 Recessed part 30 Crankshaft 40 Compression mechanism 41 Cylinder 42 Piston 45 Muffler 46 Discharge hole 61 Shaft support part 62 Auxiliary support part 141 Freezing Machine oil F Fixed location H Predetermined distance L Total length of shaft support RA Rotation axis
特開2006-144731号公報JP 2006-144731 A

Claims (13)

  1.  第1寸法(D1)の内径を持つ円筒部(11)を有するケーシング(10)と、
     第2寸法(D2)の外径を持つロータ(22)を有するモータ(20)と、
     前記ロータに固定されており、回転軸心(RA)のまわりに回転するクランク軸(30)と、
     低圧冷媒を圧縮することによって高圧冷媒を生成する圧縮機構(40)と、
     前記クランク軸を回転可能に支える軸支部(61)と、
    を備え、
     前記第2寸法に対する前記第1寸法の比率(D1/D2)は1.8以下であり、
     前記回転軸心の延出方向における前記軸支部の全長(L)は10mm以上かつ40mm以下である、
    圧縮機(5、5A)。
    A casing (10) having a cylindrical portion (11) having an inner diameter of a first dimension (D1);
    A motor (20) having a rotor (22) having an outer diameter of a second dimension (D2);
    A crankshaft (30) fixed to the rotor and rotating about a rotational axis (RA);
    A compression mechanism (40) for generating a high-pressure refrigerant by compressing the low-pressure refrigerant;
    A shaft support (61) for rotatably supporting the crankshaft;
    With
    The ratio of the first dimension to the second dimension (D1 / D2) is 1.8 or less,
    The total length (L) of the shaft support portion in the extending direction of the rotation axis is 10 mm or more and 40 mm or less.
    Compressor (5, 5A).
  2.  前記ロータは、前記圧縮機構から遠い第1面(221)、および、前記圧縮機構に近い第2面(222)を有し、
     前記軸支部における前記第1面に最も近い端部(611)は、前記第2面と比較して所定距離(H)だけ前記第1面からより遠く、
     前記所定距離は3mm以下である、
    請求項1に記載の圧縮機。
    The rotor has a first surface (221) far from the compression mechanism and a second surface (222) close to the compression mechanism;
    The end portion (611) closest to the first surface in the shaft support portion is farther from the first surface by a predetermined distance (H) than the second surface,
    The predetermined distance is 3 mm or less.
    The compressor according to claim 1.
  3.  前記ロータの前記第2面における、前記軸支部の前記端部に対向する箇所には、前記第2面と比較して前記第1面のより近くに位置する面によって規定される凹部(25)が形成されている、
    請求項2に記載の圧縮機(5A)。
    A recessed portion (25) defined by a surface located closer to the first surface as compared to the second surface, at a portion of the second surface of the rotor that faces the end of the shaft support portion. Is formed,
    The compressor (5A) according to claim 2.
  4.  前記所定距離(H)は、さらに-3mm以上である、
    請求項3に記載の圧縮機(5A)。
    The predetermined distance (H) is further -3 mm or more.
    The compressor (5A) according to claim 3.
  5.  前記ロータはロータコア(22a)を有し、
     前記第1面は、前記ロータコアにおける前記圧縮機構から最も遠い面であり、
     前記第2面は、前記ロータコアにおける前記圧縮機構に最も近い面である、
    請求項2から4のいずれか1つに記載の圧縮機(5、5A)。
    The rotor has a rotor core (22a);
    The first surface is a surface farthest from the compression mechanism in the rotor core,
    The second surface is a surface closest to the compression mechanism in the rotor core.
    The compressor (5, 5A) according to any one of claims 2 to 4.
  6.  前記第1寸法は、60mm以上かつ120mm以下である、
    請求項1から5のいずれか1つに記載の圧縮機。
    The first dimension is 60 mm or more and 120 mm or less,
    The compressor according to any one of claims 1 to 5.
  7.  前記軸支部の前記全長は37mm以下である、
    請求項1から6のいずれか1つに記載の圧縮機。
    The total length of the shaft support portion is 37 mm or less,
    The compressor according to any one of claims 1 to 6.
  8.  前記軸支部は前記ロータに対して前記圧縮機構の側のみに存在する、
    請求項1から7のいずれか1つに記載の圧縮機。
    The shaft support part is present only on the compression mechanism side with respect to the rotor,
    The compressor according to any one of claims 1 to 7.
  9.  前記圧縮機構は前記軸支部に固定されており、前記軸支部よりも前記ロータから遠い、
    請求項1から8のいずれか1つに記載の圧縮機。
    The compression mechanism is fixed to the shaft support, and is farther from the rotor than the shaft support,
    The compressor according to any one of claims 1 to 8.
  10.  前記軸支部は、前記全長にわたり連続的に前記クランク軸に接触する、
    請求項1から9のいずれか1つに記載の圧縮機。
    The shaft support portion continuously contacts the crankshaft over the entire length.
    The compressor according to any one of claims 1 to 9.
  11.  前記軸支部は前記円筒部に直接的に固定されている
    請求項1から10のいずれか1つに記載の圧縮機。
    The compressor according to any one of claims 1 to 10, wherein the shaft support portion is directly fixed to the cylindrical portion.
  12.  前記圧縮機構は前記円筒部に直接的に固定されている
    請求項1から11のいずれか1つに記載の圧縮機。
    The compressor according to any one of claims 1 to 11, wherein the compression mechanism is directly fixed to the cylindrical portion.
  13.  ロータリ型圧縮機である、
    請求項1から12のいずれか1つに記載の圧縮機。
    A rotary compressor,
    The compressor according to any one of claims 1 to 12.
PCT/JP2017/046209 2017-01-11 2017-12-22 Compressor comprising shaft support WO2018131436A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-002548 2017-01-11
JP2017002548A JP2020037869A (en) 2017-01-11 2017-01-11 Compressor having pivot part

Publications (1)

Publication Number Publication Date
WO2018131436A1 true WO2018131436A1 (en) 2018-07-19

Family

ID=62839900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046209 WO2018131436A1 (en) 2017-01-11 2017-12-22 Compressor comprising shaft support

Country Status (2)

Country Link
JP (1) JP2020037869A (en)
WO (1) WO2018131436A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220099080A1 (en) * 2019-02-13 2022-03-31 Mitsubishi Electric Corporation Compressor and air conditioner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4930166B1 (en) * 1969-05-19 1974-08-10
JPS559586U (en) * 1978-07-06 1980-01-22
JP2009002352A (en) * 2008-08-22 2009-01-08 Daikin Ind Ltd Compressor
JP2009275645A (en) * 2008-05-16 2009-11-26 Mitsubishi Electric Corp Rotary compressor
WO2014025025A1 (en) * 2012-08-09 2014-02-13 東芝キヤリア株式会社 Rotary compressor and refrigeration cycle apparatus
WO2015056364A1 (en) * 2013-10-15 2015-04-23 パナソニックIpマネジメント株式会社 Compressor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4930166B1 (en) * 1969-05-19 1974-08-10
JPS559586U (en) * 1978-07-06 1980-01-22
JP2009275645A (en) * 2008-05-16 2009-11-26 Mitsubishi Electric Corp Rotary compressor
JP2009002352A (en) * 2008-08-22 2009-01-08 Daikin Ind Ltd Compressor
WO2014025025A1 (en) * 2012-08-09 2014-02-13 東芝キヤリア株式会社 Rotary compressor and refrigeration cycle apparatus
WO2015056364A1 (en) * 2013-10-15 2015-04-23 パナソニックIpマネジメント株式会社 Compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220099080A1 (en) * 2019-02-13 2022-03-31 Mitsubishi Electric Corporation Compressor and air conditioner

Also Published As

Publication number Publication date
JP2020037869A (en) 2020-03-12

Similar Documents

Publication Publication Date Title
WO2007111141A1 (en) Compressor
WO2016206054A1 (en) Rotary compressor and refrigerating cycle device having same
AU2016339431B2 (en) Compressor
WO2018131436A1 (en) Compressor comprising shaft support
CN106979138B (en) Hermetic refrigerant compressor and refrigeration device
CN110662902B (en) Sealed refrigeration compressor and refrigeration device
JP2008022666A (en) Electric motor and compressor
WO2018110426A1 (en) Compressor provided with compression mechanism fixed to casing
JP6558346B2 (en) Compressor capable of suppressing refrigeration oil discharge
JP2016094923A (en) Compressor
EP3217014B1 (en) Compressor
JP2019135395A (en) Compressor capable of restraining discharge of refrigerator oil
US11965500B2 (en) Linear compressor
KR20140095702A (en) Scroll compressor
KR102344890B1 (en) Reciprocating compressor
US20210123424A1 (en) Linear compressor
JP2002130171A (en) Closed rotary compressor
JP6650690B2 (en) Hermetic compressor
JP2006144730A (en) Reciprocating refrigerant compressor
JP2016094924A (en) Muffler and compression mechanism
JP2016021837A (en) Motor and compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17891469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP