WO2015056364A1 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
WO2015056364A1
WO2015056364A1 PCT/JP2014/001377 JP2014001377W WO2015056364A1 WO 2015056364 A1 WO2015056364 A1 WO 2015056364A1 JP 2014001377 W JP2014001377 W JP 2014001377W WO 2015056364 A1 WO2015056364 A1 WO 2015056364A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
stator
housing
electromagnetic steel
compressor
Prior art date
Application number
PCT/JP2014/001377
Other languages
French (fr)
Japanese (ja)
Inventor
昭三 長谷
大輔 船越
昭徳 福田
武志 平塚
仁 高尾
信一 吉塚
逸雄 清水
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201480048194.0A priority Critical patent/CN105492769B/en
Priority to JP2015542481A priority patent/JP6233726B2/en
Publication of WO2015056364A1 publication Critical patent/WO2015056364A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/121Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/185Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to outer stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member

Definitions

  • the present invention relates to a compressor used for an air conditioner, a refrigerator, a blower, a water heater, and the like.
  • a compressor is used for the refrigeration system and the air conditioner.
  • the compressor sucks in the working refrigerant evaporated in the evaporator, compresses the working refrigerant to a pressure necessary for condensation, and delivers the high-temperature high-pressure working refrigerant into the working refrigerant circuit.
  • Such a compressor houses a compression mechanism portion for compressing a refrigerant gas and a motor portion for driving the compression mechanism portion in a sealed container.
  • the motor unit includes a stator fixed to the inner wall surface of the hermetic container, and a rotor transmitting rotational power to the drive shaft.
  • the stator of the motor unit has been closely fixed to the inner wall of the sealed container by shrink fitting.
  • this method there is a problem that the stator is deformed due to the contraction stress of the closed container and the efficiency of the motor unit is reduced. That is, a compressive stress is applied to the stator, and the electromagnetic steel plates constituting the stator are distorted, and a magnetic field distortion occurs when the rotor rotates, causing a decrease in the efficiency of the motor unit.
  • the vibration generated in the stator is transmitted to the closed container, vibration and noise of the compressor become a problem.
  • Patent Document 1 the method of closely fixing a stator to a sealed container by laser welding is proposed (for example, refer patent document 1).
  • Patent Document 1 laser irradiation is performed all over the axial direction of the stator core.
  • the stator is fixed to the inner wall of the housing by the plurality of laser welds, and the plurality of laser welds are formed at predetermined intervals in the circumferential direction of the housing, and the respective laser welds Is formed over a predetermined length, and the stator is one in which laminated electromagnetic steel plates are fixed by a laser welding portion for fixing electromagnetic steel plates.
  • a compressor of the present invention includes a motor unit, a compression mechanism unit, and a housing, and the motor unit is a stator formed by laminating a plurality of electromagnetic steel plates, It is a compressor which consists of a rotor arranged inside the above-mentioned stator, and the above-mentioned stator is being fixed to the inner wall of the above-mentioned housing by a plurality of laser welds, and a plurality of the above-mentioned laser welds.
  • the laser welding parts are formed at predetermined intervals in the circumferential direction of the housing, and each of the laser welded parts is formed over a predetermined length, and the stator is formed of the laminated electromagnetic steel sheets for fixing electromagnetic steel sheets.
  • the efficiency fall of the motor part by deformation of a stator can be prevented. Further, according to the present invention, no swelling (convex portion) occurs in the laser welded portion, so that the damage of the covering material (heat insulating material, soundproofing material, heat storage material, etc.) covering the outer peripheral surface of the compressor can be prevented. it can. Further, since the electromagnetic steel sheet of the stator is fixed by the laser welding portion for fixing the magnetic steel sheet, the compressor having high rigidity of the stator itself and excellent in efficiency and noise can be realized.
  • Sectional view of a compressor according to an embodiment of the present invention A plan view of a motor unit according to an embodiment of the present invention
  • the figure explaining the laser welding part concerning the embodiment of the present invention The figure which shows the relationship of the motor part and housing which concern on embodiment of this invention.
  • the figure explaining the laser welding part concerning the modification 1 of the present invention The figure explaining the laser welding part concerning modification 2 of the present invention
  • Diagram for explaining the distance between laser welds according to the embodiment of the present invention and the second modification A perspective view of a stator according to an embodiment of the present invention
  • Explanatory drawing which shows the positional relationship of the laser welding part for electromagnetic steel plate fixing, and a laser welding part Characteristic chart showing the relationship between noise from the distance from the laser weld to the laser weld for fixing the magnetic steel sheet
  • a first invention comprises a motor unit, a compression mechanism unit, and a housing, and the motor unit is disposed inside the stator and a stator formed by laminating a plurality of electric steel plates.
  • a compressor comprising a rotor, wherein the stator is fixed to the inner wall of the housing by a plurality of laser welds, and a plurality of the laser welds are separated by a predetermined distance in the circumferential direction of the housing
  • the laser welded portions are formed over a predetermined length, and the stator is configured such that the laminated electromagnetic steel plates are fixed by the electromagnetic steel plate fixing laser welded portions. Thereby, the efficiency reduction of the motor unit due to the deformation of the stator can be prevented.
  • the laser weld has a predetermined length, laser irradiation at relatively low temperature and low temperature is possible, and local deformation of the stator can be prevented. Furthermore, since no swelling (convex shape) occurs at the laser welding point, it is possible to prevent damage to the covering material (heat insulating material, soundproofing material, heat storage material, etc.) that covers the outer peripheral surface of the compressor. Further, since the electromagnetic steel sheet of the stator is laser-welded, a compressor having high rigidity of the stator itself and excellent efficiency and noise can be realized.
  • the laser welding portion is formed to be inclined with respect to the axial direction of the housing.
  • the welding range can be expanded in the circumferential direction of the housing, and the torque fluctuation received by the stator during compression and the torque fluctuation generated by the rotation of the motor unit can be evenly distributed and held by the plurality of welds.
  • the first laser welding portion, and the second laser welding portion disposed circumferentially adjacent to the first laser welding portion are inclined directions with respect to the axial direction of the housing. The opposite. As a result, the distance between adjacent laser welds can be partially shortened, and the circumferential rigidity of the housing can be increased.
  • a plurality of gaps serving as a refrigerant passage and a contact portion with the housing are formed on the outer peripheral surface of the stator, and the laser welded portion is formed in the contact portion.
  • the fixing laser welding portion is formed in a range of 1/2 of the distance from the central portion of the laser welding portion to the central portion of the adjacent gap.
  • the laser welding portion for fixing the electromagnetic steel sheet is formed on the contact portion forming the laser welding portion or the side portion of the contact portion. Therefore, the noise value of the specific frequency component can be further reduced.
  • FIG. 1 is a longitudinal sectional view of a compressor 100 according to an embodiment of the present invention.
  • the compressor 100 includes a sealed container 1, a motor unit 2, a compression mechanism unit 3, and a drive shaft 4.
  • the closed container 1 comprises a cylindrical housing 5 and an upper cover 6 and a lower cover 7 closing the opening of the housing 5.
  • the compression mechanism portion 3 is disposed at the lower portion of the housing 5.
  • the motor unit 2 is disposed on the compression mechanism unit 3 inside the housing 5.
  • the compression mechanism unit 3 and the motor unit 2 are connected by the drive shaft 4.
  • the upper cover 6 is provided with a terminal 8 for supplying electric power to the motor unit 2.
  • An oil reservoir 9 for holding lubricating oil is formed at the bottom of the closed container 1.
  • the motor unit 2 is composed of a stator 10 and a rotor 11.
  • the stator 10 is fixed to the inner wall of the housing 5.
  • the rotor 11 is fixed to the drive shaft 4 and rotates with the drive shaft 4. Both ends of the drive shaft 4 are rotatably supported by the upper bearing member 12 and the lower bearing member 13.
  • the compression mechanism portion 3 includes an upper bearing member 12, a lower bearing member 13, cylinders 15a and 15b, rolling pistons 16a and 16b, and vanes (not shown).
  • a discharge pipe 17 is provided in the upper part of the closed container 1.
  • the discharge pipe 17 penetrates the upper portion of the upper cover 6 and is open toward the inner space of the closed container 1.
  • the discharge pipe 17 plays a role as a discharge flow path for guiding the refrigerant gas compressed by the compression mechanism unit 3 to the outside of the closed container 1.
  • the internal space of the closed vessel 1 is filled with the compressed refrigerant.
  • the accumulator 18 is provided.
  • the accumulator 18 separates the refrigerant gas into gas and liquid before directly drawing the refrigerant gas into the compressor 100.
  • the accumulator 18 includes a cylindrical case 19, a refrigerant gas introduction pipe connected to the upper portion of the case 19, and two refrigerant gas lead pipes connected to the lower portion of the case 19.
  • the compressor 100 As a refrigerant compressed by the compression mechanism section 3, it is preferable to use an HFC refrigerant R32.
  • the HFC refrigerant R32 By using the HFC refrigerant R32, the refrigerant circulation amount is increased by about 10% as compared to the conventional alternative refrigerant, and the noise and the vibration of the motor unit 2 can be suppressed without reducing the efficiency even if the load torque increases.
  • the stator 10 and the housing 5 of the motor unit 2 are welded and fixed by laser irradiation with a fiber laser.
  • FIG. 2 shows a plan view of the motor unit 2 according to the embodiment of the present invention.
  • a DC IPM motor having distributed winding of a winding method is suitable.
  • the motor unit 2 includes a stator 10 fixed to the inner wall surface of the housing 5 and a rotor 11 for transmitting rotational power to the shaft.
  • the stator 10 has a stator core 22 and a winding 25.
  • the stator core 22 is formed by laminating a plurality of electromagnetic steel plates made of a metal material. The plurality of electromagnetic steel plates are fixed in a stacked state by the laser welding portion 102 for fixing the electromagnetic steel plates.
  • the stator core 22 includes an annular yoke portion 22A, a tooth portion 22B projecting radially inward from the yoke portion 22A, a slot 23 formed between adjacent tooth portions 22B, and an inner side of the tooth portion 22B. And a through hole 22C in which the rotor 11 is disposed. Insulating paper (not shown) is inserted in the slot 23 in order to maintain the insulation with the winding 25.
  • a plurality of air gaps 24A serving as a refrigerant passage are provided on the outer peripheral portion of the stator 10, that is, the outer peripheral surface of the yoke portion 22A.
  • the gap 24A makes the width gap a in the circumferential direction of the yoke portion 22A larger than the depth gap in the radial direction of the yoke portion 22A. It is preferable that the width gap a in the gap 24A be wider than the circumferential width b of one slot 23, and the width gap a be twice or more the circumferential width b of the slot 23.
  • the air gap 24A is provided so as to penetrate the motor unit 2 in the axial direction, and allows the upper space and the lower space of the motor unit 2 to communicate with each other.
  • a refrigerant passage hole 24B serving as a refrigerant passage is formed in the yoke portion 22A, which is between the adjacent air gaps 24A and is the outer side in the radial direction of the teeth portion 22B.
  • the diameter c of the refrigerant passage hole 24B is smaller than the minimum width d of the teeth portion 22B. As described above, by making the diameter c of the refrigerant passage hole 24B smaller than the minimum width d of the teeth portion 22B, it is possible to secure the refrigerant passage and to prevent the efficiency reduction of the motor unit 2.
  • the refrigerant passage hole 24B is provided to penetrate the motor unit 2 in the axial direction, and allows the upper space and the lower space of the motor unit 2 to communicate with each other.
  • the refrigerant compressed by the compression mechanism 3 and discharged from the opening of the muffler cover 21 passes through the air gap 24A of the stator 10, the air gap (not shown) of the rotor 11 and the refrigerant passage hole 24B. It is led to space.
  • the stator 10 and the housing 5 are fixed by six laser welds 20.
  • the laser welding portion 20 is formed between the adjacent air gaps 24A and at a position which is on the outer side in the radial direction of the slot 23.
  • the laser welding portion 20 is formed such that the focusing point of the fiber laser is at the position of the stator 10.
  • FIG. 3 is a view (a developed view of the housing 5) for explaining the laser welding portion 20 according to the present embodiment.
  • the laser welds 20 are formed at predetermined intervals in the circumferential direction of the housing 5. In the present embodiment, six laser welds 20 are provided. In addition, the mutual space
  • the width of the laser welded portion 20 is preferably twice or more the thickness of the electromagnetic steel sheet.
  • the width of the laser welded portion 20 By setting the width of the laser welded portion 20 to be twice or more the thickness of the electromagnetic steel sheet, the penetration depth into the stator 10 can be suppressed, and the efficiency reduction of the motor portion 2 can be prevented.
  • the width of the laser weld 20 is, for example, 0.5 mm to 3 mm.
  • the laser welding portion 20 in the present embodiment is formed over a predetermined length in the axial direction of the housing 5. That is, the laser welding portion 20 is linear.
  • the laser welding portion 20 is formed at a point like the welding point in the conventional spot welding, the local distortion in the stator 10 is large because it is necessary to irradiate the laser at a high temperature and high temperature locally. Become.
  • the laser welded portion 20 since the laser welded portion 20 has a predetermined length, laser irradiation at relatively low temperature and low temperature is possible, and local deformation of the stator 10 can be prevented.
  • the figure which shows the relationship between the motor part 2 and the housing 5 in this Embodiment in FIG. 4 is shown.
  • A is preferably 10% or more and 90% or less of B.
  • the laser welded portion 20 is formed at a position exceeding 5% of the axial length B of the stator core 22 in the axial direction of the stator core 22 from the end face of the stator core 22.
  • the welding strength is insufficient.
  • the length A of the laser weld 20 exceeds 90% of the axial length B of the stator core 22 or from the end face of the stator core 22 in the axial direction of the stator core 22
  • sparks generated when welding the stator 10 and the housing 5 are the upper and lower ends of the stator core 22. There is a risk that it may protrude into the housing 5.
  • the length A of the laser welded portion 20 is preferably 10% or more and 20% or less of the axial length B of the stator core 22.
  • the welding range can be made smaller, and deformation of the stator 10 generated at the time of laser welding can be more effectively prevented.
  • the length of the laser weld 20 is about 10 to 20 mm, and the length of the stator core 22 is about 60 mm.
  • the length of the laser welding part 20 means welding distance.
  • the length of the laser weld 20 is A shown in FIG.
  • all of the plurality of laser welds 20 have the same length, and laser welds 20 of different lengths may be included.
  • torque in the circumferential direction is dispersed at the same height. Therefore, the rotational torque generated in the stator 10 is not received as a moment force in the axial direction, and the vibration of the stator 10 can be suppressed.
  • the laser welds 20 in the present embodiment are formed at the same height in the axial direction of the housing 5. As a result, it becomes possible to evenly disperse and hold the torque fluctuation generated by the compression mechanism section 3 and the torque fluctuation generated by the rotation of the motor section 2 by the plurality of laser welding sections 20.
  • the same height does not necessarily mean exactly the same, and includes a state of being somewhat deviated within the range where the above-mentioned effect is exerted.
  • the fact that the housing 5 is formed at the same height in the axial direction can be rephrased as starting points in the housing 5 of the laser welding are made the same height.
  • Modification 1 The modification 1 of the laser welding part 20 which concerns on this Embodiment is shown in FIG.
  • the plurality of laser welded parts 20A are formed at different heights in the axial direction of the housing 5.
  • the distortion of the magnetic field generated during high-speed rotation of the motor unit 2 and the axial vibration generated by the moment force of the rotating torque are held by the laser welds 20A of different heights. Distortion and vibration can be suppressed.
  • a plurality of laser welds 20 are formed, and the laser welds 20 are formed at positions spaced 180 degrees apart in the circumferential direction. Thereby, the distortion of the outer peripheral direction by laser welding can be offset.
  • the laser welding portion 20 in the present embodiment is formed to be inclined with respect to the axial direction of the housing 5.
  • the welding range can be expanded with respect to the circumferential direction of the housing 5, and the torque fluctuation received by the stator 10 at the time of compression and the torque fluctuation generated by the rotation of the motor unit 2 can be equalized with the plurality of laser welds 20. It becomes possible to disperse and hold.
  • the inclination ⁇ of the laser welding portion 20 is inclined in the range of 10 degrees to 30 degrees with respect to the axial direction of the housing 5.
  • all six laser welding parts 20 do not need to be inclined and formed.
  • adjacent laser welds 20 are formed to be inclined in the opposite direction with respect to the axial direction of the housing 5.
  • the distance between the ends of the adjacent laser welds 20 can be shortened, and the circumferential rigidity of the housing 5 can be enhanced.
  • welding can be performed while rotating the housing 5, the time required for welding can be shortened.
  • Modification 2 The modification 2 of the laser welding part 20 which concerns on this Embodiment is shown in FIG.
  • a plurality of laser welded portions 20B are formed in parallel with the axial direction of the housing 5. With this configuration, since the laser welded portion 20B can be made longer in the axial direction of the stator 10, it is possible to suppress the vibration of the stator 10.
  • FIG. 7 is a view for explaining the distance between the end portions of each of the laser welds 20 and 20B according to the embodiment of the present invention and the second modification.
  • the distance (W) between the ends of the laser weld 20 in the embodiment is smaller than the distance (W ′) between the ends of the laser weld 20B according to the second modification (W ⁇ W ′).
  • the stator 10 is configured by laminating a plurality of electromagnetic steel plates 101.
  • the plurality of electromagnetic steel plates 101 are fixed by the electromagnetic steel plate fixing laser welds 102.
  • a compressor with high rigidity and excellent efficiency and noise can be realized.
  • FIG. 9 is an explanatory view showing a positional relationship between the laser welded portion 102 for fixing the electromagnetic steel plate and the laser welded portion 20,
  • FIG. 9 (a) shows an outer peripheral surface of the housing 5, and
  • FIG. The sectional drawing of the vicinity is shown.
  • the electromagnetic steel plate fixing laser welded portion 102 is formed on the side of the air gap 24A, that is, on the side of the contact portion between the housing 5 and the stator 10.
  • the radially outer position of the slot 23 is the contact portion between the housing 5 and the stator 10.
  • the laser welding portion 20 is formed on the side of the contact portion between the housing 5 and the stator 10. As described above, noise can be reduced by forming the electromagnetic steel plate fixing laser welded portion 102 on the side portion of the contact portion between the housing 5 and the stator 10 forming the laser welded portion 20.
  • FIG. 10 is a characteristic diagram showing the relationship between the distance from the laser welded portion 20 to the laser welded portion 102 for fixing the electromagnetic steel plate and the noise
  • FIG. 10A shows the position where the laser welded portion 102 for electromagnetic steel plate fixed is formed.
  • A, B and C are shown
  • FIG. 10B shows noise values of specific frequency components at respective positions A, B and C.
  • the position A is a contact portion between the housing 5 and the stator 10 and overlaps the laser welding portion 20
  • the position B is a side portion of the contact portion between the housing 5 and the stator 10
  • the position C is an air gap 24A.
  • the laser welded portion 102 for fixing the electromagnetic steel plate is the central portion of the laser welded portion 20. It is preferable to form in the range of L / 2 to L / 2. As described above, the noise value of the specific frequency component can be reduced by forming the electromagnetic steel plate fixing laser welded portion 102 in the range of L / 2 from the central portion of the laser welded portion 20, and further, for fixing the electromagnetic steel plate By forming the laser welding portion 102 at the contact portion or the side portion of the contact portion between the housing 5 forming the laser welding portion 20 and the stator 10, the noise value of the specific frequency component can be reduced.
  • the present invention is not limited to the configuration of the embodiment, and various changes can be made within the scope of the present invention, and the present invention can be implemented in the following other embodiments.
  • the embodiment shows an example in which the present invention is applied to a two-piston rotary compressor. However, the present invention can also be practiced with a one-piston rotary compressor. Moreover, it is applicable not only to a rotary compressor but, for example, to a scroll compressor.
  • the example in which six laser welding parts 20 were formed was shown in embodiment, it is not restricted to six. It is only necessary to form a plurality.
  • the embodiment shows an example in which the distributed winding type motor unit 2 is implemented, but the concentrated winding type motor unit 2 can also implement the present invention.
  • the embodiment shows an example in which the stator 10 and the housing 5 are fixed by laser welding, but first, the motor portion 2 is inserted into the cylindrical housing 5 by shrink fitting, After the clearance dimension with the rotor 11 is determined, welding and fixing may be performed by laser welding.
  • a fiber laser is most suitable for the laser welding portion 20
  • a fiber laser, a carbon dioxide gas laser, or a YAG laser can be used for the laser welding portion 102 for fixing the electromagnetic steel plate.
  • the efficiency of the compressor can be enhanced by preventing the deformation and distortion of the motor unit.
  • it is applicable also to uses, such as a heat pump type hot-water heater other than the compressor for air conditioners.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Laser Beam Processing (AREA)

Abstract

This compressor is provided with an electric motor section (2), a compression mechanism section (3), and a housing (5). The electric motor section (2) comprises: a stator (10) obtained by stacking a plurality of electromagnetic steel sheets (101); and a rotor (11) provided inside the stator (10). The stator (10) is fixed to an inner wall of the housing (5) by a plurality of laser welded parts (20). The plurality of laser welded parts (20) are formed on the housing (5) in a circumferential direction, with a prescribed interval therebetween. Furthermore, the laser welded parts (20) are formed extending a prescribed length. In the stator (10), the stacked electromagnetic steel sheets (101) are fixed by laser welded parts (102) for fixing the electromagnetic steel sheets. Accordingly, provided is a compressor with which the electric motor section (2) therein is made highly efficient, and with which a coating material coating an outer peripheral surface of the housing (5) is protected.

Description

圧縮機Compressor
 本発明は、空調機、冷凍機、ブロワ、給湯機等に使用される圧縮機に関するものである。 The present invention relates to a compressor used for an air conditioner, a refrigerator, a blower, a water heater, and the like.
 冷凍装置や空気調和装置には、圧縮機が使用されている。圧縮機は、蒸発器で蒸発した作動冷媒を吸入し、凝縮するために必要な圧力まで作動冷媒を圧縮し、作動冷媒回路中に高温高圧の作動冷媒を送り出す。このような圧縮機は、冷媒ガスを圧縮する圧縮機構部と、圧縮機構部を駆動する電動機部とを密閉容器内に収納する。電動機部は、密閉容器の内壁面に固定された固定子と、駆動軸に回転動力を伝えるロータとからなる。 A compressor is used for the refrigeration system and the air conditioner. The compressor sucks in the working refrigerant evaporated in the evaporator, compresses the working refrigerant to a pressure necessary for condensation, and delivers the high-temperature high-pressure working refrigerant into the working refrigerant circuit. Such a compressor houses a compression mechanism portion for compressing a refrigerant gas and a motor portion for driving the compression mechanism portion in a sealed container. The motor unit includes a stator fixed to the inner wall surface of the hermetic container, and a rotor transmitting rotational power to the drive shaft.
 従来、電動機部の固定子は、密閉容器の内壁に焼きばめにより密着固定されていた。しかしながら、この方法では、密閉容器の収縮応力によって固定子が変形し、電動機部の効率が低下するという問題がある。すなわち、固定子に圧縮応力がかかり、固定子を構成する電磁鋼板が歪み、ロータ回転時に磁界歪みが発生して電動機部の効率低下を引き起こす。また、固定子で発生した振動が密閉容器に伝達されるので、圧縮機の振動及び騒音が問題となる。 Conventionally, the stator of the motor unit has been closely fixed to the inner wall of the sealed container by shrink fitting. However, in this method, there is a problem that the stator is deformed due to the contraction stress of the closed container and the efficiency of the motor unit is reduced. That is, a compressive stress is applied to the stator, and the electromagnetic steel plates constituting the stator are distorted, and a magnetic field distortion occurs when the rotor rotates, causing a decrease in the efficiency of the motor unit. In addition, since the vibration generated in the stator is transmitted to the closed container, vibration and noise of the compressor become a problem.
 近年、省エネルギー化の観点から、直流電流により駆動される直流IPMモータが提案されている。また、高効率化の観点から、固定子を構成する電磁鋼板の薄板化が提案されている。この直流モータは、数rpmから6000rpm以上での幅広い回転数での運転が可能であるが、高速運転時には電流を多く流して、トルクを発生させる弱め界磁制御を用いるため、上述の磁界歪みによる効率の低下や騒音振動の増加がより顕著となる。 In recent years, a direct current IPM motor driven by a direct current has been proposed from the viewpoint of energy saving. In addition, from the viewpoint of high efficiency, thinning of the electromagnetic steel sheet constituting the stator has been proposed. Although this DC motor can be operated at a wide range of rotational speeds from several rpm to 6000 rpm or more, it uses field-weakening control that generates a large amount of current at high speed operation to generate torque. The decrease and the increase in noise and vibration become more significant.
 そこで、固定子を密閉容器に、レーザ溶接によって密着固定する方法が提案されている(例えば、特許文献1参照)。特許文献1では、固定子コアの軸線方向のすべてに亘ってレーザ照射が施されている。 Then, the method of closely fixing a stator to a sealed container by laser welding is proposed (for example, refer patent document 1). In Patent Document 1, laser irradiation is performed all over the axial direction of the stator core.
特開昭63-189685号公報Japanese Patent Application Laid-Open No. 63-189685
 しかしながら、特許文献1のように固定子コアの軸線方向のすべてに亘ってレーザ照射が施されている場合、固定子コアのすべてと密閉容器とを溶着させる必要があり、レーザ照射時間や熱量調整が困難となる。また、レーザの照射によってモータが損傷しないように、モータと密閉容器との接触面を幅広く確保する必要がある。さらには、密閉容器の板厚を薄くできないことから、固定子コア設計に制限が生じるという課題ある。 However, when laser irradiation is performed over the entire axial direction of the stator core as in Patent Document 1, it is necessary to weld all of the stator core and the closed container, and the laser irradiation time and heat amount adjustment Is difficult. In addition, it is necessary to secure a wide contact surface between the motor and the sealed container so that the motor is not damaged by the laser irradiation. Furthermore, since the thickness of the closed container can not be reduced, there is a problem that the stator core design is limited.
 本発明は、固定子がハウジングの内壁に複数のレーザ溶接部によって固定されており、複数のレーザ溶接部を、ハウジングの円周方向に互いに所定の間隔をおいて形成し、それぞれのレーザ溶接部を、所定の長さに渡って形成し、固定子は、積層された電磁鋼板が電磁鋼板固定用レーザ溶接部にて固定されているものである。 In the present invention, the stator is fixed to the inner wall of the housing by the plurality of laser welds, and the plurality of laser welds are formed at predetermined intervals in the circumferential direction of the housing, and the respective laser welds Is formed over a predetermined length, and the stator is one in which laminated electromagnetic steel plates are fixed by a laser welding portion for fixing electromagnetic steel plates.
 前記従来の課題を解決するために、本発明の圧縮機は、電動機部と、圧縮機構部と、ハウジングとを備え、前記電動機部が、複数枚の電磁鋼板を積層してなる固定子と、前記固定子の内側に配設されている回転子とからなる圧縮機であって、前記固定子は前記ハウジング内壁に複数のレーザ溶接部によって固定されており、複数の前記レーザ溶接部を、前記ハウジングの円周方向に互いに所定の間隔をおいて形成し、それぞれの前記レーザ溶接部を、所定の長さに渡って形成し、前記固定子は、積層された前記電磁鋼板が電磁鋼板固定用レーザ溶接部にて固定されている。
 これにより、電動機部の高効率化、圧縮機の外周面を被覆する被覆材(断熱材、防音材、蓄熱材等)の保護を実現することができる。また、固定子の電磁鋼板が電磁鋼板固定用レーザ溶接部にて固定されているので、固定子自体の剛性が高く効率や騒音に優れた圧縮機を実現することができる。
In order to solve the above-mentioned conventional problems, a compressor of the present invention includes a motor unit, a compression mechanism unit, and a housing, and the motor unit is a stator formed by laminating a plurality of electromagnetic steel plates, It is a compressor which consists of a rotor arranged inside the above-mentioned stator, and the above-mentioned stator is being fixed to the inner wall of the above-mentioned housing by a plurality of laser welds, and a plurality of the above-mentioned laser welds The laser welding parts are formed at predetermined intervals in the circumferential direction of the housing, and each of the laser welded parts is formed over a predetermined length, and the stator is formed of the laminated electromagnetic steel sheets for fixing electromagnetic steel sheets. It is fixed by a laser weld.
As a result, it is possible to realize the high efficiency of the motor unit and the protection of the covering material (heat insulating material, soundproofing material, heat storage material, etc.) that covers the outer peripheral surface of the compressor. Further, since the electromagnetic steel sheet of the stator is fixed by the laser welding portion for fixing the magnetic steel sheet, the compressor having high rigidity of the stator itself and excellent in efficiency and noise can be realized.
 本発明によれば、固定子の変形による電動機部の効率低下を防止することができる。また、本発明によれば、レーザ溶接部に盛り上がり(凸部)が生じないので、圧縮機の外周面を被覆する被覆材(断熱材、防音材、蓄熱材等)の破損を防止することができる。また、固定子の電磁鋼板が電磁鋼板固定用レーザ溶接部にて固定されているので、固定子自体の剛性が高く効率や騒音に優れた圧縮機を実現することができる。 ADVANTAGE OF THE INVENTION According to this invention, the efficiency fall of the motor part by deformation of a stator can be prevented. Further, according to the present invention, no swelling (convex portion) occurs in the laser welded portion, so that the damage of the covering material (heat insulating material, soundproofing material, heat storage material, etc.) covering the outer peripheral surface of the compressor can be prevented. it can. Further, since the electromagnetic steel sheet of the stator is fixed by the laser welding portion for fixing the magnetic steel sheet, the compressor having high rigidity of the stator itself and excellent in efficiency and noise can be realized.
本発明の一実施の形態に係る圧縮機の断面図Sectional view of a compressor according to an embodiment of the present invention 本発明の実施の形態に係る電動機部の平面図A plan view of a motor unit according to an embodiment of the present invention 本発明の実施の形態に係るレーザ溶接部を説明する図The figure explaining the laser welding part concerning the embodiment of the present invention 本発明の実施の形態に係る電動機部とハウジングとの関係を示す図The figure which shows the relationship of the motor part and housing which concern on embodiment of this invention. 本発明の変形例1に係るレーザ溶接部を説明する図The figure explaining the laser welding part concerning the modification 1 of the present invention 本発明の変形例2に係るレーザ溶接部を説明する図The figure explaining the laser welding part concerning modification 2 of the present invention 本発明の実施の形態及び変形例2に係るレーザ溶接部間距離を説明する図Diagram for explaining the distance between laser welds according to the embodiment of the present invention and the second modification 本発明の実施の形態に係る固定子の斜視図A perspective view of a stator according to an embodiment of the present invention 電磁鋼板固定用レーザ溶接部とレーザ溶接部との位置関係を示す説明図Explanatory drawing which shows the positional relationship of the laser welding part for electromagnetic steel plate fixing, and a laser welding part レーザ溶接部から電磁鋼板固定用レーザ溶接部までの距離と騒音との関係を示す特性図Characteristic chart showing the relationship between noise from the distance from the laser weld to the laser weld for fixing the magnetic steel sheet
 第1の発明は、電動機部と、圧縮機構部と、ハウジングとを備え、前記電動機部が、複数枚の電動鋼板を積層してなる固定子と、前記固定子の内側に配設されている回転子とからなる圧縮機であって、前記固定子は前記ハウジング内壁に複数のレーザ溶接部によって固定されており、複数の前記レーザ溶接部を、前記ハウジングの円周方向に互いに所定の間隔をおいて形成し、それぞれの前記レーザ溶接部を、所定の長さに渡って形成し、前記固定子は、積層された前記電磁鋼板が電磁鋼板固定用レーザ溶接部にて固定されている。
 これにより、固定子の変形による電動機部の効率低下を防止することができる。また、レーザ溶接部が所定の長さを有するので比較的低温・低熱でのレーザ照射が可能となり、局所的な固定子の変形を防止することができる。さらには、レーザ溶接点に盛り上がり(凸形状)が生じないので、圧縮機の外周面を被覆する被覆材(断熱材、防音材、蓄熱材等)の破損を防止することができる。また、固定子の電磁鋼板がレーザ溶接されているので、固定子自体の剛性が高く効率や騒音に優れた圧縮機を実現することができる。
A first invention comprises a motor unit, a compression mechanism unit, and a housing, and the motor unit is disposed inside the stator and a stator formed by laminating a plurality of electric steel plates. A compressor comprising a rotor, wherein the stator is fixed to the inner wall of the housing by a plurality of laser welds, and a plurality of the laser welds are separated by a predetermined distance in the circumferential direction of the housing The laser welded portions are formed over a predetermined length, and the stator is configured such that the laminated electromagnetic steel plates are fixed by the electromagnetic steel plate fixing laser welded portions.
Thereby, the efficiency reduction of the motor unit due to the deformation of the stator can be prevented. In addition, since the laser weld has a predetermined length, laser irradiation at relatively low temperature and low temperature is possible, and local deformation of the stator can be prevented. Furthermore, since no swelling (convex shape) occurs at the laser welding point, it is possible to prevent damage to the covering material (heat insulating material, soundproofing material, heat storage material, etc.) that covers the outer peripheral surface of the compressor. Further, since the electromagnetic steel sheet of the stator is laser-welded, a compressor having high rigidity of the stator itself and excellent efficiency and noise can be realized.
 第2の発明は、前記レーザ溶接部は、前記ハウジングの前記軸方向に対して、傾斜して形成する。
 これにより、ハウジング円周方向に関して溶接範囲を広げることができ、圧縮時に固定子が受けるトルク変動と電動機部の回転により発生するトルク変動とを、複数の溶接部で均等に分散して保持することができる。
In the second invention, the laser welding portion is formed to be inclined with respect to the axial direction of the housing.
As a result, the welding range can be expanded in the circumferential direction of the housing, and the torque fluctuation received by the stator during compression and the torque fluctuation generated by the rotation of the motor unit can be evenly distributed and held by the plurality of welds. Can.
 第3の発明は、第1のレーザ溶接部と、前記第1のレーザ溶接部と円周方向に隣接して配置された第2のレーザ溶接部とは、前記ハウジングの前記軸方向に対する傾斜方向を反対とする。
 これにより、隣接するレーザ溶接部間の距離を部分的に短くすることができ、ハウジングの円周方向の剛性を高めることができる。
According to a third aspect of the present invention, the first laser welding portion, and the second laser welding portion disposed circumferentially adjacent to the first laser welding portion are inclined directions with respect to the axial direction of the housing. The opposite.
As a result, the distance between adjacent laser welds can be partially shortened, and the circumferential rigidity of the housing can be increased.
 第4の発明は、前記固定子の外周面には、冷媒通路となる複数の空隙と、前記ハウジングとの接触部分とが形成され、前記レーザ溶接部を前記接触部分に形成し、前記電磁鋼板固定用レーザ溶接部を、前記レーザ溶接部の中央部から隣接する前記空隙の中央部までの距離の1/2の範囲に形成する。
 これにより、特定周波数成分の騒音値を低減できる。
In a fourth aspect of the present invention, a plurality of gaps serving as a refrigerant passage and a contact portion with the housing are formed on the outer peripheral surface of the stator, and the laser welded portion is formed in the contact portion. The fixing laser welding portion is formed in a range of 1/2 of the distance from the central portion of the laser welding portion to the central portion of the adjacent gap.
Thereby, the noise value of the specific frequency component can be reduced.
 第5の発明は、前記電磁鋼板固定用レーザ溶接部を、前記レーザ溶接部を形成する前記接触部分又は前記接触部分の側部に形成する。
 これにより、特定周波数成分の騒音値を更に低減できる。
According to a fifth aspect of the invention, the laser welding portion for fixing the electromagnetic steel sheet is formed on the contact portion forming the laser welding portion or the side portion of the contact portion.
Thereby, the noise value of the specific frequency component can be further reduced.
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited by the embodiment.
 (実施の形態)
 図1は、本発明の一実施の形態における圧縮機100の縦断面図である。圧縮機100は、密閉容器1、電動機部2、圧縮機構部3及び駆動軸4を備えている。密閉容器1は、円筒状のハウジング5と、このハウジング5の開口を閉塞する上部カバー6及び下部カバー7とから構成されている。圧縮機構部3は、ハウジング5の下部に配置されている。電動機部2は、ハウジング5の内部において、圧縮機構部3の上に配置されている。駆動軸4によって、圧縮機構部3と電動機部2とが連結されている。上部カバー6には、電動機部2に電力を供給するための端子8が設けられている。密閉容器1の底部には、潤滑用のオイルを保持するためのオイル溜まり9が形成されている。電動機部2は、固定子10及び回転子11で構成されている。固定子10は、ハウジング5の内壁に固定されている。回転子11は、駆動軸4に固定されており、かつ駆動軸4とともに回転する。駆動軸4は、上軸受部材12と下軸受部材13とにより回転自在に両端が支持されている。
Embodiment
FIG. 1 is a longitudinal sectional view of a compressor 100 according to an embodiment of the present invention. The compressor 100 includes a sealed container 1, a motor unit 2, a compression mechanism unit 3, and a drive shaft 4. The closed container 1 comprises a cylindrical housing 5 and an upper cover 6 and a lower cover 7 closing the opening of the housing 5. The compression mechanism portion 3 is disposed at the lower portion of the housing 5. The motor unit 2 is disposed on the compression mechanism unit 3 inside the housing 5. The compression mechanism unit 3 and the motor unit 2 are connected by the drive shaft 4. The upper cover 6 is provided with a terminal 8 for supplying electric power to the motor unit 2. An oil reservoir 9 for holding lubricating oil is formed at the bottom of the closed container 1. The motor unit 2 is composed of a stator 10 and a rotor 11. The stator 10 is fixed to the inner wall of the housing 5. The rotor 11 is fixed to the drive shaft 4 and rotates with the drive shaft 4. Both ends of the drive shaft 4 are rotatably supported by the upper bearing member 12 and the lower bearing member 13.
 電動機部2が付勢され、駆動軸4が回転すると、駆動軸偏心部14a、14bがシリンダ15a、15b内において偏心回転し、ローリングピストン16a、16bがベーン(図示せず)に当接しながら回転運動する。そして、各々半回転ずれた周期で、両シリンダ15a、15bにおいて、冷媒ガスの吸入、圧縮が繰り返される。圧縮機構部3は、上軸受部材12、下軸受部材13、シリンダ15a,15b、ローリングピストン16a,16b、ベーン(図示せず)から構成される。 When the motor unit 2 is energized and the drive shaft 4 is rotated, the drive shaft eccentric portions 14a and 14b are eccentrically rotated in the cylinders 15a and 15b, and the rolling pistons 16a and 16b are rotated while contacting the vanes (not shown). Exercise. Then, the suction and compression of the refrigerant gas are repeated in both cylinders 15a and 15b in a cycle shifted by half a rotation. The compression mechanism portion 3 includes an upper bearing member 12, a lower bearing member 13, cylinders 15a and 15b, rolling pistons 16a and 16b, and vanes (not shown).
 密閉容器1の上部には、吐出管17が設けられている。吐出管17は、上部カバー6の上部を貫通しているとともに、密閉容器1の内部空間に向かって開口している。吐出管17は、圧縮機構部3で圧縮された冷媒ガスを密閉容器1の外部に導く吐出流路としての役割を担う。圧縮機100の動作時において、密閉容器1の内部空間は、圧縮された冷媒で満たされる。 A discharge pipe 17 is provided in the upper part of the closed container 1. The discharge pipe 17 penetrates the upper portion of the upper cover 6 and is open toward the inner space of the closed container 1. The discharge pipe 17 plays a role as a discharge flow path for guiding the refrigerant gas compressed by the compression mechanism unit 3 to the outside of the closed container 1. During operation of the compressor 100, the internal space of the closed vessel 1 is filled with the compressed refrigerant.
 また、圧縮機100の液圧縮を防止するため、アキュームレータ18が設けられている。アキュームレータ18は、圧縮機100に冷媒ガスを直接吸入する前に、冷媒ガスを気液分離させる。アキュームレータ18は、円筒状のケース19と、ケース19の上部に接続される冷媒ガス導入管と、ケース19の下部に接続される二本の冷媒ガス導出管とで構成される。 Moreover, in order to prevent the liquid compression of the compressor 100, the accumulator 18 is provided. The accumulator 18 separates the refrigerant gas into gas and liquid before directly drawing the refrigerant gas into the compressor 100. The accumulator 18 includes a cylindrical case 19, a refrigerant gas introduction pipe connected to the upper portion of the case 19, and two refrigerant gas lead pipes connected to the lower portion of the case 19.
 圧縮機構部3で圧縮する冷媒としては、HFC冷媒R32を用いることが好ましい。HFC冷媒R32を用いることで、従来の代替冷媒と比較して冷媒循環量が10%程度増え、負荷トルクが増加しても効率を低下させず、電動機部2の騒音や振動を抑制できる。
 このように構成された圧縮機100において、電動機部2の固定子10とハウジング5とは、ファイバーレーザによるレーザ照射によって溶接固定されている。
As a refrigerant compressed by the compression mechanism section 3, it is preferable to use an HFC refrigerant R32. By using the HFC refrigerant R32, the refrigerant circulation amount is increased by about 10% as compared to the conventional alternative refrigerant, and the noise and the vibration of the motor unit 2 can be suppressed without reducing the efficiency even if the load torque increases.
In the compressor 100 configured as described above, the stator 10 and the housing 5 of the motor unit 2 are welded and fixed by laser irradiation with a fiber laser.
 図2に本発明の実施の形態に係る電動機部2の平面図を示す。
 図2に示すように、電動機部2には、巻線方式を分布巻きとした直流IPMモータが適している。電動機部2は、ハウジング5の内壁面に固定された固定子10と、シャフトに回転動力を伝える回転子11とからなる。
 固定子10は、固定子コア22と巻線25とを有する。
 固定子コア22は、金属材料からなる複数の電磁鋼板を積層して形成される。複数の電磁鋼板は、電磁鋼板固定用レーザ溶接部102によって積層された状態で固定されている。
 固定子コア22は、環状のヨーク部22Aと、ヨーク部22Aから径方向の内側に突出するティース部22Bと、隣接するティース部22Bの間に形成されるスロット23と、ティース部22Bの内側に形成されて回転子11が配置される貫通孔22Cとを有する。スロット23には巻線25との絶縁性を保持する為に絶縁紙(図示せず)が挿入されている。
FIG. 2 shows a plan view of the motor unit 2 according to the embodiment of the present invention.
As shown in FIG. 2, for the motor unit 2, a DC IPM motor having distributed winding of a winding method is suitable. The motor unit 2 includes a stator 10 fixed to the inner wall surface of the housing 5 and a rotor 11 for transmitting rotational power to the shaft.
The stator 10 has a stator core 22 and a winding 25.
The stator core 22 is formed by laminating a plurality of electromagnetic steel plates made of a metal material. The plurality of electromagnetic steel plates are fixed in a stacked state by the laser welding portion 102 for fixing the electromagnetic steel plates.
The stator core 22 includes an annular yoke portion 22A, a tooth portion 22B projecting radially inward from the yoke portion 22A, a slot 23 formed between adjacent tooth portions 22B, and an inner side of the tooth portion 22B. And a through hole 22C in which the rotor 11 is disposed. Insulating paper (not shown) is inserted in the slot 23 in order to maintain the insulation with the winding 25.
 固定子10の外周部、すなわちヨーク部22Aの外周面には、冷媒通路となる複数の空隙24Aが設けられている。空隙24Aは、ヨーク部22Aの径方向の深さ隙間に対して、ヨーク部22Aの周方向の幅隙間aを大きくしている。空隙24Aにおける幅隙間aは、一つのスロット23の周方向幅bよりも広く、幅隙間aは、スロット23の周方向幅bの2倍以上とすることが好ましい。このように、空隙24Aにおける幅隙間aを広くすることで、深さ隙間を小さくしても、冷媒通路を確保できるとともに電動機部2の効率低下を防止できる。空隙24Aは、電動機部2を軸方向に貫通して設けられており、電動機部2の上部空間と下部空間を連通させる。 On the outer peripheral portion of the stator 10, that is, the outer peripheral surface of the yoke portion 22A, a plurality of air gaps 24A serving as a refrigerant passage are provided. The gap 24A makes the width gap a in the circumferential direction of the yoke portion 22A larger than the depth gap in the radial direction of the yoke portion 22A. It is preferable that the width gap a in the gap 24A be wider than the circumferential width b of one slot 23, and the width gap a be twice or more the circumferential width b of the slot 23. As described above, by widening the width gap a in the gap 24A, even if the depth gap is reduced, the refrigerant passage can be secured and the efficiency reduction of the motor unit 2 can be prevented. The air gap 24A is provided so as to penetrate the motor unit 2 in the axial direction, and allows the upper space and the lower space of the motor unit 2 to communicate with each other.
 隣接する空隙24Aの間であって、ティース部22Bの径方向の外側となるヨーク部22Aには、冷媒通路となる冷媒通路孔24Bを形成している。冷媒通路孔24Bの直径cは、ティース部22Bの最小幅dよりも小さい。このように、冷媒通路孔24Bの直径cをティース部22Bの最小幅dよりも小さくすることで、冷媒通路を確保できるとともに電動機部2の効率低下を防止できる。冷媒通路孔24Bは、電動機部2を軸方向に貫通して設けられており、電動機部2の上部空間と下部空間を連通させる。 A refrigerant passage hole 24B serving as a refrigerant passage is formed in the yoke portion 22A, which is between the adjacent air gaps 24A and is the outer side in the radial direction of the teeth portion 22B. The diameter c of the refrigerant passage hole 24B is smaller than the minimum width d of the teeth portion 22B. As described above, by making the diameter c of the refrigerant passage hole 24B smaller than the minimum width d of the teeth portion 22B, it is possible to secure the refrigerant passage and to prevent the efficiency reduction of the motor unit 2. The refrigerant passage hole 24B is provided to penetrate the motor unit 2 in the axial direction, and allows the upper space and the lower space of the motor unit 2 to communicate with each other.
 圧縮機構部3によって圧縮され、マフラカバー21の開口から吐出された冷媒は、固定子10の空隙24A、回転子11の空隙(図示せず)、及び冷媒通路孔24Bを通じて、密閉容器1の上部空間へと導かれる。
 固定子10とハウジング5とは、6個のレーザ溶接部20によって固定されている。
 レーザ溶接部20は、隣接する空隙24Aの間であって、スロット23の径方向の外側となる位置に形成している。レーザ溶接部20は、ファイバーレーザの集光点が固定子10の位置となるように形成される。ファイバーレーザを用いることで溶接時の熱影響が少ない。ファイバーレーザの集光点を、ハウジング5と固定子10との境界位置ではなく、固定子10とすることで、小さなスポットサイズで確実に溶接することができる。
The refrigerant compressed by the compression mechanism 3 and discharged from the opening of the muffler cover 21 passes through the air gap 24A of the stator 10, the air gap (not shown) of the rotor 11 and the refrigerant passage hole 24B. It is led to space.
The stator 10 and the housing 5 are fixed by six laser welds 20.
The laser welding portion 20 is formed between the adjacent air gaps 24A and at a position which is on the outer side in the radial direction of the slot 23. The laser welding portion 20 is formed such that the focusing point of the fiber laser is at the position of the stator 10. By using a fiber laser, there is little thermal influence at the time of welding. By setting the focusing point of the fiber laser not to the boundary position between the housing 5 and the stator 10 but to the stator 10, welding can be reliably performed with a small spot size.
 従来のスポット溶接では、溶接孔をロウ材等の溶接材で埋める必要があるため、溶接部に盛り上がり(凸部)が生じる。これに対し、本実施の形態では、レーザ溶接を用いているため、溶接部には盛り上がり(凸部)が生じず、レーザ溶接部20の形成によって、ハウジング5の外壁には凹部が形成される。これにより、圧縮機100の外周面を被覆する被覆材(断熱材、防音材、蓄熱材等)の破損を防止することができる。 In the conventional spot welding, since it is necessary to fill the welding hole with a welding material such as brazing material, a raised portion (convex portion) is generated in the welding portion. On the other hand, in the present embodiment, since laser welding is used, no swell (convex portion) occurs in the welded portion, and a concave portion is formed in the outer wall of the housing 5 by the formation of the laser welded portion 20. . Thereby, the damage of the covering material (a heat insulating material, a soundproof material, a thermal storage material etc.) which coat | covers the outer peripheral surface of the compressor 100 can be prevented.
 図3に本実施の形態に係るレーザ溶接部20を説明する図(ハウジング5の展開図)を示す。レーザ溶接部20は、ハウジング5の円周方向に互いに所定の間隔をおいて形成されている。本実施の形態では、6個のレーザ溶接部20が設けられている。なお、レーザ溶接部20の互いの間隔は同じである必要はなく、異なる間隔であってもよい。以下、レーザ溶接部20の長さ、配置および傾きについて詳細に説明する。
 なお、レーザ溶接部20の幅は、電磁鋼板の板厚の2倍以上とすることが好ましい。レーザ溶接部20の幅を、電磁鋼板の板厚の2倍以上とすることで、固定子10内部への溶け込み深さを抑え、電動機部2の効率低下を防止することができる。レーザ溶接部20の幅は、例えば0.5mm~3mmが適している。
FIG. 3 is a view (a developed view of the housing 5) for explaining the laser welding portion 20 according to the present embodiment. The laser welds 20 are formed at predetermined intervals in the circumferential direction of the housing 5. In the present embodiment, six laser welds 20 are provided. In addition, the mutual space | interval of the laser welding part 20 does not need to be the same, and may be different space | interval. Hereinafter, the length, arrangement, and inclination of the laser welding portion 20 will be described in detail.
The width of the laser welded portion 20 is preferably twice or more the thickness of the electromagnetic steel sheet. By setting the width of the laser welded portion 20 to be twice or more the thickness of the electromagnetic steel sheet, the penetration depth into the stator 10 can be suppressed, and the efficiency reduction of the motor portion 2 can be prevented. The width of the laser weld 20 is, for example, 0.5 mm to 3 mm.
 <長さ>
 本実施の形態におけるレーザ溶接部20は、ハウジング5の軸方向に所定の長さに渡って形成されている。すなわち、レーザ溶接部20は線状である。従来のスポット溶接における溶接点のように、レーザ溶接部20を点で形成した場合には、局所的に高温、高熱のレーザを照射する必要があるため、固定子10における局所的な歪が大きくなる。本実施の形態では、レーザ溶接部20は所定の長さを有するので、比較的低温・低熱でのレーザ照射が可能となり、局所的な固定子10の変形を防止することができる。
<Length>
The laser welding portion 20 in the present embodiment is formed over a predetermined length in the axial direction of the housing 5. That is, the laser welding portion 20 is linear. When the laser welding portion 20 is formed at a point like the welding point in the conventional spot welding, the local distortion in the stator 10 is large because it is necessary to irradiate the laser at a high temperature and high temperature locally. Become. In the present embodiment, since the laser welded portion 20 has a predetermined length, laser irradiation at relatively low temperature and low temperature is possible, and local deformation of the stator 10 can be prevented.
 図4に、本実施の形態における電動機部2とハウジング5との関係を示す図を示す。レーザ溶接部20の長さをA(図3参照)、固定子コア22の軸方向長さをB(図4参照)としたとき、AがBの10%以上90%以下が好ましい。
 また、固定子コア22の端面から固定子コア22の軸方向に、固定子コア22の軸方向長さBの5%の長さを超えた位置にレーザ溶接部20を形成する。
 また、レーザ溶接部20の長さAが固定子コア22の軸方向長さBの10%を下回ると、溶接強度が不足する。
 また、レーザ溶接部20の長さAが固定子コア22の軸方向長さBの90%を越える、又は、固定子コア22の端面から固定子コア22の軸方向に、固定子コア22の軸方向長さBの5%の長さの範囲内の位置にレーザ溶接部20が形成されると、固定子10とハウジング5を溶接する際に発生する火花が、固定子コア22の上下端からハウジング5内にはみ出すおそれがある。
The figure which shows the relationship between the motor part 2 and the housing 5 in this Embodiment in FIG. 4 is shown. When the length of the laser welded portion 20 is A (see FIG. 3) and the axial length of the stator core 22 is B (see FIG. 4), A is preferably 10% or more and 90% or less of B.
In addition, the laser welded portion 20 is formed at a position exceeding 5% of the axial length B of the stator core 22 in the axial direction of the stator core 22 from the end face of the stator core 22.
In addition, when the length A of the laser welded portion 20 is less than 10% of the axial length B of the stator core 22, the welding strength is insufficient.
In addition, the length A of the laser weld 20 exceeds 90% of the axial length B of the stator core 22 or from the end face of the stator core 22 in the axial direction of the stator core 22 When the laser welded portion 20 is formed at a position within a length range of 5% of the axial length B, sparks generated when welding the stator 10 and the housing 5 are the upper and lower ends of the stator core 22. There is a risk that it may protrude into the housing 5.
 さらには、レーザ溶接部20の長さAが固定子コア22の軸方向長さBの10%以上20%以下が好ましい。20%以下とすることで、溶接範囲をより小さくして、レーザ溶接時に発生する固定子10の変形をより効果的に防止できる。 Furthermore, the length A of the laser welded portion 20 is preferably 10% or more and 20% or less of the axial length B of the stator core 22. By setting the content to 20% or less, the welding range can be made smaller, and deformation of the stator 10 generated at the time of laser welding can be more effectively prevented.
 一例として、実用的には、レーザ溶接部20の長さは10~20mm程度、固定子コア22の長さは60mm程度である。なお、レーザ溶接部20の長さとは溶接距離を意味する。レーザ溶接部20が傾斜している場合、レーザ溶接部20の長さとは図3に示されるAとなる。 As an example, practically, the length of the laser weld 20 is about 10 to 20 mm, and the length of the stator core 22 is about 60 mm. In addition, the length of the laser welding part 20 means welding distance. When the laser weld 20 is inclined, the length of the laser weld 20 is A shown in FIG.
 なお、複数のレーザ溶接部20のうち全てが同じ長さである必要はなく、異なる長さのレーザ溶接部20が含まれていてもよい。複数のレーザ溶接部20のうち全てが同じ長さである場合、円周方向のトルクを同一高さで分散化する。よって、固定子10に発生する回転トルクを軸方向のモーメント力として受けることがなくなり、固定子10の振動を抑えることが可能となる。 It is not necessary that all of the plurality of laser welds 20 have the same length, and laser welds 20 of different lengths may be included. When all of the plurality of laser welds 20 have the same length, torque in the circumferential direction is dispersed at the same height. Therefore, the rotational torque generated in the stator 10 is not received as a moment force in the axial direction, and the vibration of the stator 10 can be suppressed.
 <配置1>
 本実施の形態におけるレーザ溶接部20は、ハウジング5の軸方向に同じ高さに形成されている。これにより、圧縮機構部3により発生するトルク変動と、電動機部2の回転により発生するトルク変動とを、複数のレーザ溶接部20で均等に分散して保持することが可能となる。なお、「同じ高さ」とは、必ずしも厳密に同一を意味するのではなく、上記作用効果を奏する範囲内で、多少ずれている状態も含む。ハウジング5の軸方向に同じ高さに形成されているとは、レーザ溶接のハウジング5における開始点を、同じ高さにすると言い換えることができる。
<Arrangement 1>
The laser welds 20 in the present embodiment are formed at the same height in the axial direction of the housing 5. As a result, it becomes possible to evenly disperse and hold the torque fluctuation generated by the compression mechanism section 3 and the torque fluctuation generated by the rotation of the motor section 2 by the plurality of laser welding sections 20. In addition, "the same height" does not necessarily mean exactly the same, and includes a state of being somewhat deviated within the range where the above-mentioned effect is exerted. The fact that the housing 5 is formed at the same height in the axial direction can be rephrased as starting points in the housing 5 of the laser welding are made the same height.
 (変形例1)
 本実施の形態に係るレーザ溶接部20の変形例1を図5に示す。本変形例では、複数のレーザ溶接部20Aがハウジング5の軸方向に違う高さに形成されている。この構成により、電動機部2の高速回転時に発生する磁界の歪みと回転トルクのモーメント力により発生する軸方向の振動とを、異なる高さのレーザ溶接部20Aで保持することにより、固定子10の歪み及び振動を抑えることができる。
(Modification 1)
The modification 1 of the laser welding part 20 which concerns on this Embodiment is shown in FIG. In the present modification, the plurality of laser welded parts 20A are formed at different heights in the axial direction of the housing 5. With this configuration, the distortion of the magnetic field generated during high-speed rotation of the motor unit 2 and the axial vibration generated by the moment force of the rotating torque are held by the laser welds 20A of different heights. Distortion and vibration can be suppressed.
 <配置2>
 レーザ溶接部20は複数個形成され、レーザ溶接部20は互いに円周方向に180度間隔をおいた位置に形成されている。これにより、レーザ溶接による外周方向の歪を相殺することができる。
<Arrangement 2>
A plurality of laser welds 20 are formed, and the laser welds 20 are formed at positions spaced 180 degrees apart in the circumferential direction. Thereby, the distortion of the outer peripheral direction by laser welding can be offset.
 <傾き>
 本実施の形態におけるレーザ溶接部20は、ハウジング5の軸方向に対して、傾斜して形成されている。これにより、ハウジング5の円周方向に関して溶接範囲を広げることができ、圧縮時の固定子10が受けるトルク変動と電動機部2の回転により発生するトルク変動とを複数のレーザ溶接部20で均等に分散して保持することが可能となる。実用的には、レーザ溶接部20の傾きθは、ハウジング5の軸方向に対して、10度以上30度以下の範囲で傾斜している。なお、6個全てのレーザ溶接部20が全て傾斜して形成されていなくてもよい。
<Slope>
The laser welding portion 20 in the present embodiment is formed to be inclined with respect to the axial direction of the housing 5. Thereby, the welding range can be expanded with respect to the circumferential direction of the housing 5, and the torque fluctuation received by the stator 10 at the time of compression and the torque fluctuation generated by the rotation of the motor unit 2 can be equalized with the plurality of laser welds 20. It becomes possible to disperse and hold. In practice, the inclination θ of the laser welding portion 20 is inclined in the range of 10 degrees to 30 degrees with respect to the axial direction of the housing 5. In addition, all six laser welding parts 20 do not need to be inclined and formed.
 隣接するレーザ溶接部20同士で、ハウジング5の軸方向を基準に反対の方向に傾斜して形成されていることが好ましい。その理由の詳細については後述するが、隣接するレーザ溶接部20の端部間の距離を短くすることができ、ハウジング5の円周方向の剛性を高めることができる。また、ハウジング5を回転させながら溶接を行えるため、溶接に要する時間を短縮できる。 Preferably, adjacent laser welds 20 are formed to be inclined in the opposite direction with respect to the axial direction of the housing 5. Although the details of the reason will be described later, the distance between the ends of the adjacent laser welds 20 can be shortened, and the circumferential rigidity of the housing 5 can be enhanced. Moreover, since welding can be performed while rotating the housing 5, the time required for welding can be shortened.
 (変形例2)
 本実施の形態に係るレーザ溶接部20の変形例2を図6に示す。本変形例では、複数のレーザ溶接部20Bがハウジング5の軸方向に平行に形成されている。この構成により、固定子10の軸方向においてレーザ溶接部20Bを長くできるため、固定子10の振動を抑えることが可能となる。
(Modification 2)
The modification 2 of the laser welding part 20 which concerns on this Embodiment is shown in FIG. In the present modification, a plurality of laser welded portions 20B are formed in parallel with the axial direction of the housing 5. With this configuration, since the laser welded portion 20B can be made longer in the axial direction of the stator 10, it is possible to suppress the vibration of the stator 10.
 以下、本実施の形態に係るレーザ溶接部20と変形例2に係るレーザ溶接部20Bとのそれぞれの端部同士における間隔について説明する。図7に、本発明の実施の形態及び変形例2に係るレーザ溶接部20、20Bのそれぞれの端部間距離を説明する図を示す。実施の形態におけるレーザ溶接部20の端部間の距離(W)は、変形例2に係るレーザ溶接部20Bの端部間の距離(W’)よりも小さい(W<W’)。これにより、実施の形態においては、ハウジング5の円周方向における剛性を高めることができる。 Hereinafter, the space | interval in each edge part of the laser welding part 20 which concerns on this Embodiment, and the laser welding part 20B which concerns on the modification 2 is demonstrated. FIG. 7 is a view for explaining the distance between the end portions of each of the laser welds 20 and 20B according to the embodiment of the present invention and the second modification. The distance (W) between the ends of the laser weld 20 in the embodiment is smaller than the distance (W ′) between the ends of the laser weld 20B according to the second modification (W <W ′). Thereby, in the embodiment, the rigidity in the circumferential direction of the housing 5 can be enhanced.
 次に、固定子10の構成について説明する。
 図8に示すように、固定子10は、複数の電磁鋼板101が積層されて構成されている。本実施の形態では、この複数の電磁鋼板101が、電磁鋼板固定用レーザ溶接部102によって固定されている。これにより、剛性が高く効率や騒音に優れた圧縮機を実現することができる。
Next, the configuration of the stator 10 will be described.
As shown in FIG. 8, the stator 10 is configured by laminating a plurality of electromagnetic steel plates 101. In the present embodiment, the plurality of electromagnetic steel plates 101 are fixed by the electromagnetic steel plate fixing laser welds 102. As a result, a compressor with high rigidity and excellent efficiency and noise can be realized.
 次に、複数の電磁鋼板を固定する電磁鋼板固定用レーザ溶接部102と、固定子10をハウジング5に固定するレーザ溶接部20との位置関係について説明する。
 図9は、電磁鋼板固定用レーザ溶接部102とレーザ溶接部20との位置関係を示す説明図であり、図9(a)はハウジング5の外周面を示し、図9(b)はハウジング5近傍の断面図を示している。
 電磁鋼板固定用レーザ溶接部102は、空隙24Aの側部、すなわち、ハウジング5と固定子10との接触部分の側部に形成している。スロット23の径方向の外側となる位置が、ハウジング5と固定子10との接触部分となっている。
 レーザ溶接部20は、ハウジング5と固定子10との接触部分の側部に形成している。
 このように、レーザ溶接部20を形成するハウジング5と固定子10との接触部分の側部に、電磁鋼板固定用レーザ溶接部102を形成することで、騒音低減を図ることができる。
Next, the positional relationship between the electromagnetic steel plate fixing laser welded portion 102 for fixing a plurality of electromagnetic steel plates and the laser welded portion 20 for fixing the stator 10 to the housing 5 will be described.
FIG. 9 is an explanatory view showing a positional relationship between the laser welded portion 102 for fixing the electromagnetic steel plate and the laser welded portion 20, FIG. 9 (a) shows an outer peripheral surface of the housing 5, and FIG. The sectional drawing of the vicinity is shown.
The electromagnetic steel plate fixing laser welded portion 102 is formed on the side of the air gap 24A, that is, on the side of the contact portion between the housing 5 and the stator 10. The radially outer position of the slot 23 is the contact portion between the housing 5 and the stator 10.
The laser welding portion 20 is formed on the side of the contact portion between the housing 5 and the stator 10.
As described above, noise can be reduced by forming the electromagnetic steel plate fixing laser welded portion 102 on the side portion of the contact portion between the housing 5 and the stator 10 forming the laser welded portion 20.
 図10は、レーザ溶接部20から電磁鋼板固定用レーザ溶接部102までの距離と騒音との関係を示す特性図であり、図10(a)は電磁鋼板固定用レーザ溶接部102の形成した位置A、B、Cを示し、図10(b)はそれぞれの位置A、B、Cでの特定周波数成分の騒音値を示している。
 位置Aは、ハウジング5と固定子10との接触部分であってレーザ溶接部20と重畳する位置、位置Bは、ハウジング5と固定子10との接触部分の側部、位置Cは、空隙24Aの中央部である。
 図10(b)に示すように、レーザ溶接部20の中央部から隣接する空隙24Aの中央部までの距離をLとすると、電磁鋼板固定用レーザ溶接部102は、レーザ溶接部20の中央部からL/2の範囲に形成することが好ましい。
 以上のように、電磁鋼板固定用レーザ溶接部102を、レーザ溶接部20の中央部からL/2の範囲に形成することで特定周波数成分の騒音値を低減でき、更には、電磁鋼板固定用レーザ溶接部102を、レーザ溶接部20を形成するハウジング5と固定子10との接触部分又は接触部分の側部に形成することで、特定周波数成分の騒音値を低減することができる。
FIG. 10 is a characteristic diagram showing the relationship between the distance from the laser welded portion 20 to the laser welded portion 102 for fixing the electromagnetic steel plate and the noise, and FIG. 10A shows the position where the laser welded portion 102 for electromagnetic steel plate fixed is formed. A, B and C are shown, and FIG. 10B shows noise values of specific frequency components at respective positions A, B and C.
The position A is a contact portion between the housing 5 and the stator 10 and overlaps the laser welding portion 20, the position B is a side portion of the contact portion between the housing 5 and the stator 10, and the position C is an air gap 24A. Central part of
Assuming that the distance from the central portion of the laser welded portion 20 to the central portion of the adjacent void 24A is L, as shown in FIG. 10B, the laser welded portion 102 for fixing the electromagnetic steel plate is the central portion of the laser welded portion 20. It is preferable to form in the range of L / 2 to L / 2.
As described above, the noise value of the specific frequency component can be reduced by forming the electromagnetic steel plate fixing laser welded portion 102 in the range of L / 2 from the central portion of the laser welded portion 20, and further, for fixing the electromagnetic steel plate By forming the laser welding portion 102 at the contact portion or the side portion of the contact portion between the housing 5 forming the laser welding portion 20 and the stator 10, the noise value of the specific frequency component can be reduced.
 本願発明は、実施の形態の構成に限定されるものではなく、本願発明の趣旨の範囲内で種々の変更が可能であり、次のような、他の実施の形態で実施することができる。
(1)実施の形態では、2ピストンのロータリ式圧縮機に実施した例を示したが、1ピストンのロータリ式圧縮機においても本願発明を実施することができる。また、ロータリ式圧縮機に限らず、例えばスクロール式圧縮機にも適用できる。
(2)実施の形態では、レーザ溶接部20が6個形成されている例を示したが、6個に限られるものではない。複数個形成されていればよい。
(3)実施の形態では、分布巻き式の電動機部2に実施した例を示したが、集中巻き式の電動機部2においても本願発明を実施することができる。
(4)実施の形態では、固定子10とハウジング5とをレーザ溶接で固定する例を示したが、まず、円筒状のハウジング5に電動機部2を焼きばめにより挿入し、固定子10と回転子11との隙間寸法を確定した後に、レーザ溶接により溶接固定を行ってもよい。
 なお、レーザ溶接部20には、ファイバーレーザが最も適しているが、電磁鋼板固定用レーザ溶接部102には、ファイバーレーザ、炭酸ガスレーザ、又はYAGレーザを用いることができる。
The present invention is not limited to the configuration of the embodiment, and various changes can be made within the scope of the present invention, and the present invention can be implemented in the following other embodiments.
(1) The embodiment shows an example in which the present invention is applied to a two-piston rotary compressor. However, the present invention can also be practiced with a one-piston rotary compressor. Moreover, it is applicable not only to a rotary compressor but, for example, to a scroll compressor.
(2) Although the example in which six laser welding parts 20 were formed was shown in embodiment, it is not restricted to six. It is only necessary to form a plurality.
(3) The embodiment shows an example in which the distributed winding type motor unit 2 is implemented, but the concentrated winding type motor unit 2 can also implement the present invention.
(4) The embodiment shows an example in which the stator 10 and the housing 5 are fixed by laser welding, but first, the motor portion 2 is inserted into the cylindrical housing 5 by shrink fitting, After the clearance dimension with the rotor 11 is determined, welding and fixing may be performed by laser welding.
Although a fiber laser is most suitable for the laser welding portion 20, a fiber laser, a carbon dioxide gas laser, or a YAG laser can be used for the laser welding portion 102 for fixing the electromagnetic steel plate.
 以上のように、本発明の圧縮機は、電動機部の変形、歪みを防止することにより、圧縮機の高効率化を図ることが可能となる。これにより、空気調和機用圧縮機のほかに、ヒートポンプ式給湯機などの用途にも適用できる。 As described above, according to the compressor of the present invention, the efficiency of the compressor can be enhanced by preventing the deformation and distortion of the motor unit. Thereby, it is applicable also to uses, such as a heat pump type hot-water heater other than the compressor for air conditioners.
 1 密閉容器
 2 電動機部
 3 圧縮機構部
 4 駆動軸
 5 ハウジング
 6 上部カバー
 7 下部カバー
 8 端子
 9 オイル溜まり
 10 固定子
 11 回転子
 12 上軸受部材
 13 下軸受部材
 14 駆動軸偏心部
 15 シリンダ
 16 ローリングピストン
 17 吐出管
 18 アキュームレータ
 19 ケース
 20 レーザ溶接部
 21 マフラカバー
 22 固定子コア
 22A ヨーク部
 22B ティース部
 23 スロット
 24A 空隙
 24B 冷媒通路孔
 25 巻線
 100 圧縮機
 101 電磁鋼板
 102 電磁鋼板固定用レーザ溶接部
Reference Signs List 1 sealed container 2 motor unit 3 compression mechanism unit 4 drive shaft 5 housing 6 upper cover 7 lower cover 8 terminal 9 oil reservoir 10 stator 11 rotor 12 upper bearing member 13 lower bearing member 14 drive shaft eccentric part 15 cylinder 16 rolling piston Reference Signs List 17 discharge pipe 18 accumulator 19 case 20 laser welded portion 21 muffler cover 22 stator core 22A yoke portion 22B teeth portion 23 slot 24A air gap 24B refrigerant passage hole 25 winding 100 compressor 101 electromagnetic steel plate 102 laser steel welding portion for fixing electromagnetic steel plate

Claims (5)

  1.  電動機部と、圧縮機構部と、ハウジングとを備え、
    前記電動機部が、複数枚の電磁鋼板を積層してなる固定子と、前記固定子の内側に配設されている回転子とからなる圧縮機であって、
    前記固定子は前記ハウジング内壁に複数のレーザ溶接部によって固定されており、
    複数の前記レーザ溶接部を、前記ハウジングの円周方向に互いに所定の間隔をおいて形成し、
    それぞれの前記レーザ溶接部を、所定の長さに渡って形成し、
    前記固定子は、積層された前記電磁鋼板が電磁鋼板固定用レーザ溶接部によって固定されていることを特徴とする圧縮機。
    A motor unit, a compression mechanism unit, and a housing;
    The motor unit is a compressor including a stator formed by laminating a plurality of electromagnetic steel plates, and a rotor disposed inside the stator.
    The stator is fixed to the inner wall of the housing by a plurality of laser welds,
    Forming a plurality of the laser welds at predetermined intervals in the circumferential direction of the housing;
    Forming each of the laser welds over a predetermined length;
    A compressor, wherein the laminated electromagnetic steel plates are fixed by a laser welding portion for fixing electromagnetic steel plates in the stator.
  2.  前記レーザ溶接部は、前記ハウジングの前記軸方向に対して傾斜して形成することを特徴とする請求項1に記載の圧縮機。 The compressor according to claim 1, wherein the laser welding portion is formed to be inclined with respect to the axial direction of the housing.
  3.  第1のレーザ溶接部と、前記第1のレーザ溶接部と円周方向に隣接して配置された第2のレーザ溶接部とは、前記ハウジングの前記軸方向に対する傾斜方向を反対とすることを特徴とする請求項2に記載の圧縮機。 The first laser welding portion and the second laser welding portion disposed circumferentially adjacent to the first laser welding portion have an opposite inclination direction with respect to the axial direction of the housing. A compressor according to claim 2, characterized in.
  4.  前記固定子の外周面には、冷媒通路となる複数の空隙と、前記ハウジングとの接触部分とが形成され、
    前記レーザ溶接部を前記接触部分に形成し、
    前記電磁鋼板固定用レーザ溶接部を、前記レーザ溶接部の中央部から隣接する前記空隙の中央部までの距離の1/2の範囲に形成することを特徴とする請求項1から請求項3のいずれかに記載の圧縮機。
    On the outer peripheral surface of the stator, a plurality of gaps serving as a refrigerant passage and a contact portion with the housing are formed.
    Forming the laser weld at the contact portion;
    The laser welded portion for fixing the electromagnetic steel sheet is formed in a range of 1/2 of the distance from the central portion of the laser welded portion to the central portion of the adjacent gap. The compressor according to any one.
  5.  前記電磁鋼板固定用レーザ溶接部を、前記レーザ溶接部を形成する前記接触部分又は前記接触部分の側部に形成することを特徴とする請求項4に記載の圧縮機。 The compressor according to claim 4, characterized in that the laser welded portion for fixing the electromagnetic steel sheet is formed on the contact portion forming the laser welded portion or a side portion of the contact portion.
PCT/JP2014/001377 2013-10-15 2014-03-11 Compressor WO2015056364A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480048194.0A CN105492769B (en) 2013-10-15 2014-03-11 Compressor
JP2015542481A JP6233726B2 (en) 2013-10-15 2014-03-11 Compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-214504 2013-10-15
JP2013214504 2013-10-15

Publications (1)

Publication Number Publication Date
WO2015056364A1 true WO2015056364A1 (en) 2015-04-23

Family

ID=52827830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001377 WO2015056364A1 (en) 2013-10-15 2014-03-11 Compressor

Country Status (3)

Country Link
JP (1) JP6233726B2 (en)
CN (1) CN105492769B (en)
WO (1) WO2015056364A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016185560A1 (en) * 2015-05-19 2016-11-24 三菱電機株式会社 Rotating electric machine
WO2017135467A1 (en) * 2016-02-05 2017-08-10 三菱重工業株式会社 Rotary machine
WO2018131436A1 (en) * 2017-01-11 2018-07-19 ダイキン工業株式会社 Compressor comprising shaft support
CN114069930A (en) * 2020-07-30 2022-02-18 日本电产三协株式会社 Electric motor
EP4148276A4 (en) * 2020-06-30 2023-11-08 Daikin Industries, Ltd. Compressor
EP4293225A4 (en) * 2021-03-26 2024-08-14 Daikin Ind Ltd Rotary machine unit, compressor, and refrigeration device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126564U (en) * 1983-02-15 1984-08-25 三菱電機株式会社 Cand type electric motor
JPH05227685A (en) * 1991-11-26 1993-09-03 Toshiba Corp Electric rotating machine
JP2001304123A (en) * 2000-04-27 2001-10-31 Mitsubishi Electric Corp Hermetic compressor, method of manufacturing the same, and refrigerating air conditioning device
JP2007268609A (en) * 2006-03-07 2007-10-18 Daikin Ind Ltd Method of producing compressor
JP2010011645A (en) * 2008-06-27 2010-01-14 Daikin Ind Ltd Laminated iron core, motor and compressor
JP2010041851A (en) * 2008-08-06 2010-02-18 Daikin Ind Ltd Structure of fixing stator and casing, and compressor equipped with the same
JP2011050151A (en) * 2009-08-26 2011-03-10 Aichi Elec Co Electric motor and compressor
JP2013162676A (en) * 2012-02-07 2013-08-19 Daikin Ind Ltd Electric motor and compressor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59101292A (en) * 1982-11-30 1984-06-11 Toshiba Corp Formation of hermetic type compressor
JP2002142390A (en) * 2000-11-06 2002-05-17 Matsushita Electric Ind Co Ltd Motor and compressor using the same
CN202250865U (en) * 2011-09-07 2012-05-30 珠海格力节能环保制冷技术研究中心有限公司 Rotary compressor
CN202488321U (en) * 2011-12-26 2012-10-10 深圳市祺金泰电机科技有限公司 Direct current motor equipment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126564U (en) * 1983-02-15 1984-08-25 三菱電機株式会社 Cand type electric motor
JPH05227685A (en) * 1991-11-26 1993-09-03 Toshiba Corp Electric rotating machine
JP2001304123A (en) * 2000-04-27 2001-10-31 Mitsubishi Electric Corp Hermetic compressor, method of manufacturing the same, and refrigerating air conditioning device
JP2007268609A (en) * 2006-03-07 2007-10-18 Daikin Ind Ltd Method of producing compressor
JP2010011645A (en) * 2008-06-27 2010-01-14 Daikin Ind Ltd Laminated iron core, motor and compressor
JP2010041851A (en) * 2008-08-06 2010-02-18 Daikin Ind Ltd Structure of fixing stator and casing, and compressor equipped with the same
JP2011050151A (en) * 2009-08-26 2011-03-10 Aichi Elec Co Electric motor and compressor
JP2013162676A (en) * 2012-02-07 2013-08-19 Daikin Ind Ltd Electric motor and compressor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016185560A1 (en) * 2015-05-19 2016-11-24 三菱電機株式会社 Rotating electric machine
JPWO2016185560A1 (en) * 2015-05-19 2017-08-24 三菱電機株式会社 Rotating electric machine
CN107534329A (en) * 2015-05-19 2018-01-02 三菱电机株式会社 Electric rotating machine
CN107534329B (en) * 2015-05-19 2019-06-07 三菱电机株式会社 Rotating electric machine
US10637308B2 (en) 2015-05-19 2020-04-28 Mitsubishi Electric Corporation Rotary electrical machine including an armature core
WO2017135467A1 (en) * 2016-02-05 2017-08-10 三菱重工業株式会社 Rotary machine
WO2018131436A1 (en) * 2017-01-11 2018-07-19 ダイキン工業株式会社 Compressor comprising shaft support
EP4148276A4 (en) * 2020-06-30 2023-11-08 Daikin Industries, Ltd. Compressor
US12049888B2 (en) 2020-06-30 2024-07-30 Daikin Industries, Ltd. Compressor
CN114069930A (en) * 2020-07-30 2022-02-18 日本电产三协株式会社 Electric motor
CN114069930B (en) * 2020-07-30 2024-04-16 日本电产三协株式会社 Motor with a motor housing having a motor housing with a motor housing
EP4293225A4 (en) * 2021-03-26 2024-08-14 Daikin Ind Ltd Rotary machine unit, compressor, and refrigeration device

Also Published As

Publication number Publication date
JPWO2015056364A1 (en) 2017-03-09
CN105492769B (en) 2017-05-24
JP6233726B2 (en) 2017-11-22
CN105492769A (en) 2016-04-13

Similar Documents

Publication Publication Date Title
WO2015033488A1 (en) Compressor
WO2015056364A1 (en) Compressor
US11437877B2 (en) Rotor, motor, compressor, and air conditioner
JP2010279126A (en) Stator core of electric motor, electric motor, sealed compressor, and refrigeration cycle device
JP6328342B2 (en) Rotor, electric motor, compressor and refrigeration air conditioner
JP2015075047A (en) Compressor
JP6526316B2 (en) Rotor, electric motor, compressor, and refrigeration air conditioner
JP2010226932A (en) Electric rotary machine, and refrigerant compressor and fluid compressor using the same, and method for assembling the electric rotary machine
US20220294280A1 (en) Compressor
JP2008101558A (en) Hermetic compressor
JP2012013030A (en) Electric compressor
JP7105999B2 (en) Electric motor, compressor, air conditioner, and method for manufacturing electric motor
KR101166306B1 (en) Stator with stress relief portion and compressor with the same
JP2015071971A (en) Compressor
CN112601890B (en) Compressor
JP2007285180A (en) Rotating compressor, and refrigerating cycle device using the same
WO2024176546A1 (en) Electric motor, compressor, and device
JP7436908B2 (en) Rotating electrical machines, compressors, and refrigeration equipment
JP6094717B1 (en) Compressor
WO2017064782A1 (en) Stator core, compressor, and refrigeration cycle device
JP5506269B2 (en) Hermetic electric compressor
JP2008169743A (en) Compressor
KR20160013635A (en) A rotary compressor and a method for manufacturing the same
JP2023087522A (en) Motor generator, compressor and refrigeration unit
JP5180764B2 (en) Sealed fluid machinery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480048194.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14854068

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015542481

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14854068

Country of ref document: EP

Kind code of ref document: A1