WO2015056364A1 - Compressor - Google Patents
Compressor Download PDFInfo
- Publication number
- WO2015056364A1 WO2015056364A1 PCT/JP2014/001377 JP2014001377W WO2015056364A1 WO 2015056364 A1 WO2015056364 A1 WO 2015056364A1 JP 2014001377 W JP2014001377 W JP 2014001377W WO 2015056364 A1 WO2015056364 A1 WO 2015056364A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laser
- stator
- housing
- electromagnetic steel
- compressor
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/0042—Driving elements, brakes, couplings, transmissions specially adapted for pumps
- F04C29/0085—Prime movers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B35/00—Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
- F04B35/04—Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B39/00—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
- F04B39/12—Casings; Cylinders; Cylinder heads; Fluid connections
- F04B39/121—Casings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C23/00—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
- F04C23/008—Hermetic pumps
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/18—Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
- H02K1/185—Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to outer stators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/14—Structural association with mechanical loads, e.g. with hand-held machine tools or fans
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/30—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F04C18/34—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
- F04C18/356—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
Definitions
- the present invention relates to a compressor used for an air conditioner, a refrigerator, a blower, a water heater, and the like.
- a compressor is used for the refrigeration system and the air conditioner.
- the compressor sucks in the working refrigerant evaporated in the evaporator, compresses the working refrigerant to a pressure necessary for condensation, and delivers the high-temperature high-pressure working refrigerant into the working refrigerant circuit.
- Such a compressor houses a compression mechanism portion for compressing a refrigerant gas and a motor portion for driving the compression mechanism portion in a sealed container.
- the motor unit includes a stator fixed to the inner wall surface of the hermetic container, and a rotor transmitting rotational power to the drive shaft.
- the stator of the motor unit has been closely fixed to the inner wall of the sealed container by shrink fitting.
- this method there is a problem that the stator is deformed due to the contraction stress of the closed container and the efficiency of the motor unit is reduced. That is, a compressive stress is applied to the stator, and the electromagnetic steel plates constituting the stator are distorted, and a magnetic field distortion occurs when the rotor rotates, causing a decrease in the efficiency of the motor unit.
- the vibration generated in the stator is transmitted to the closed container, vibration and noise of the compressor become a problem.
- Patent Document 1 the method of closely fixing a stator to a sealed container by laser welding is proposed (for example, refer patent document 1).
- Patent Document 1 laser irradiation is performed all over the axial direction of the stator core.
- the stator is fixed to the inner wall of the housing by the plurality of laser welds, and the plurality of laser welds are formed at predetermined intervals in the circumferential direction of the housing, and the respective laser welds Is formed over a predetermined length, and the stator is one in which laminated electromagnetic steel plates are fixed by a laser welding portion for fixing electromagnetic steel plates.
- a compressor of the present invention includes a motor unit, a compression mechanism unit, and a housing, and the motor unit is a stator formed by laminating a plurality of electromagnetic steel plates, It is a compressor which consists of a rotor arranged inside the above-mentioned stator, and the above-mentioned stator is being fixed to the inner wall of the above-mentioned housing by a plurality of laser welds, and a plurality of the above-mentioned laser welds.
- the laser welding parts are formed at predetermined intervals in the circumferential direction of the housing, and each of the laser welded parts is formed over a predetermined length, and the stator is formed of the laminated electromagnetic steel sheets for fixing electromagnetic steel sheets.
- the efficiency fall of the motor part by deformation of a stator can be prevented. Further, according to the present invention, no swelling (convex portion) occurs in the laser welded portion, so that the damage of the covering material (heat insulating material, soundproofing material, heat storage material, etc.) covering the outer peripheral surface of the compressor can be prevented. it can. Further, since the electromagnetic steel sheet of the stator is fixed by the laser welding portion for fixing the magnetic steel sheet, the compressor having high rigidity of the stator itself and excellent in efficiency and noise can be realized.
- Sectional view of a compressor according to an embodiment of the present invention A plan view of a motor unit according to an embodiment of the present invention
- the figure explaining the laser welding part concerning the embodiment of the present invention The figure which shows the relationship of the motor part and housing which concern on embodiment of this invention.
- the figure explaining the laser welding part concerning the modification 1 of the present invention The figure explaining the laser welding part concerning modification 2 of the present invention
- Diagram for explaining the distance between laser welds according to the embodiment of the present invention and the second modification A perspective view of a stator according to an embodiment of the present invention
- Explanatory drawing which shows the positional relationship of the laser welding part for electromagnetic steel plate fixing, and a laser welding part Characteristic chart showing the relationship between noise from the distance from the laser weld to the laser weld for fixing the magnetic steel sheet
- a first invention comprises a motor unit, a compression mechanism unit, and a housing, and the motor unit is disposed inside the stator and a stator formed by laminating a plurality of electric steel plates.
- a compressor comprising a rotor, wherein the stator is fixed to the inner wall of the housing by a plurality of laser welds, and a plurality of the laser welds are separated by a predetermined distance in the circumferential direction of the housing
- the laser welded portions are formed over a predetermined length, and the stator is configured such that the laminated electromagnetic steel plates are fixed by the electromagnetic steel plate fixing laser welded portions. Thereby, the efficiency reduction of the motor unit due to the deformation of the stator can be prevented.
- the laser weld has a predetermined length, laser irradiation at relatively low temperature and low temperature is possible, and local deformation of the stator can be prevented. Furthermore, since no swelling (convex shape) occurs at the laser welding point, it is possible to prevent damage to the covering material (heat insulating material, soundproofing material, heat storage material, etc.) that covers the outer peripheral surface of the compressor. Further, since the electromagnetic steel sheet of the stator is laser-welded, a compressor having high rigidity of the stator itself and excellent efficiency and noise can be realized.
- the laser welding portion is formed to be inclined with respect to the axial direction of the housing.
- the welding range can be expanded in the circumferential direction of the housing, and the torque fluctuation received by the stator during compression and the torque fluctuation generated by the rotation of the motor unit can be evenly distributed and held by the plurality of welds.
- the first laser welding portion, and the second laser welding portion disposed circumferentially adjacent to the first laser welding portion are inclined directions with respect to the axial direction of the housing. The opposite. As a result, the distance between adjacent laser welds can be partially shortened, and the circumferential rigidity of the housing can be increased.
- a plurality of gaps serving as a refrigerant passage and a contact portion with the housing are formed on the outer peripheral surface of the stator, and the laser welded portion is formed in the contact portion.
- the fixing laser welding portion is formed in a range of 1/2 of the distance from the central portion of the laser welding portion to the central portion of the adjacent gap.
- the laser welding portion for fixing the electromagnetic steel sheet is formed on the contact portion forming the laser welding portion or the side portion of the contact portion. Therefore, the noise value of the specific frequency component can be further reduced.
- FIG. 1 is a longitudinal sectional view of a compressor 100 according to an embodiment of the present invention.
- the compressor 100 includes a sealed container 1, a motor unit 2, a compression mechanism unit 3, and a drive shaft 4.
- the closed container 1 comprises a cylindrical housing 5 and an upper cover 6 and a lower cover 7 closing the opening of the housing 5.
- the compression mechanism portion 3 is disposed at the lower portion of the housing 5.
- the motor unit 2 is disposed on the compression mechanism unit 3 inside the housing 5.
- the compression mechanism unit 3 and the motor unit 2 are connected by the drive shaft 4.
- the upper cover 6 is provided with a terminal 8 for supplying electric power to the motor unit 2.
- An oil reservoir 9 for holding lubricating oil is formed at the bottom of the closed container 1.
- the motor unit 2 is composed of a stator 10 and a rotor 11.
- the stator 10 is fixed to the inner wall of the housing 5.
- the rotor 11 is fixed to the drive shaft 4 and rotates with the drive shaft 4. Both ends of the drive shaft 4 are rotatably supported by the upper bearing member 12 and the lower bearing member 13.
- the compression mechanism portion 3 includes an upper bearing member 12, a lower bearing member 13, cylinders 15a and 15b, rolling pistons 16a and 16b, and vanes (not shown).
- a discharge pipe 17 is provided in the upper part of the closed container 1.
- the discharge pipe 17 penetrates the upper portion of the upper cover 6 and is open toward the inner space of the closed container 1.
- the discharge pipe 17 plays a role as a discharge flow path for guiding the refrigerant gas compressed by the compression mechanism unit 3 to the outside of the closed container 1.
- the internal space of the closed vessel 1 is filled with the compressed refrigerant.
- the accumulator 18 is provided.
- the accumulator 18 separates the refrigerant gas into gas and liquid before directly drawing the refrigerant gas into the compressor 100.
- the accumulator 18 includes a cylindrical case 19, a refrigerant gas introduction pipe connected to the upper portion of the case 19, and two refrigerant gas lead pipes connected to the lower portion of the case 19.
- the compressor 100 As a refrigerant compressed by the compression mechanism section 3, it is preferable to use an HFC refrigerant R32.
- the HFC refrigerant R32 By using the HFC refrigerant R32, the refrigerant circulation amount is increased by about 10% as compared to the conventional alternative refrigerant, and the noise and the vibration of the motor unit 2 can be suppressed without reducing the efficiency even if the load torque increases.
- the stator 10 and the housing 5 of the motor unit 2 are welded and fixed by laser irradiation with a fiber laser.
- FIG. 2 shows a plan view of the motor unit 2 according to the embodiment of the present invention.
- a DC IPM motor having distributed winding of a winding method is suitable.
- the motor unit 2 includes a stator 10 fixed to the inner wall surface of the housing 5 and a rotor 11 for transmitting rotational power to the shaft.
- the stator 10 has a stator core 22 and a winding 25.
- the stator core 22 is formed by laminating a plurality of electromagnetic steel plates made of a metal material. The plurality of electromagnetic steel plates are fixed in a stacked state by the laser welding portion 102 for fixing the electromagnetic steel plates.
- the stator core 22 includes an annular yoke portion 22A, a tooth portion 22B projecting radially inward from the yoke portion 22A, a slot 23 formed between adjacent tooth portions 22B, and an inner side of the tooth portion 22B. And a through hole 22C in which the rotor 11 is disposed. Insulating paper (not shown) is inserted in the slot 23 in order to maintain the insulation with the winding 25.
- a plurality of air gaps 24A serving as a refrigerant passage are provided on the outer peripheral portion of the stator 10, that is, the outer peripheral surface of the yoke portion 22A.
- the gap 24A makes the width gap a in the circumferential direction of the yoke portion 22A larger than the depth gap in the radial direction of the yoke portion 22A. It is preferable that the width gap a in the gap 24A be wider than the circumferential width b of one slot 23, and the width gap a be twice or more the circumferential width b of the slot 23.
- the air gap 24A is provided so as to penetrate the motor unit 2 in the axial direction, and allows the upper space and the lower space of the motor unit 2 to communicate with each other.
- a refrigerant passage hole 24B serving as a refrigerant passage is formed in the yoke portion 22A, which is between the adjacent air gaps 24A and is the outer side in the radial direction of the teeth portion 22B.
- the diameter c of the refrigerant passage hole 24B is smaller than the minimum width d of the teeth portion 22B. As described above, by making the diameter c of the refrigerant passage hole 24B smaller than the minimum width d of the teeth portion 22B, it is possible to secure the refrigerant passage and to prevent the efficiency reduction of the motor unit 2.
- the refrigerant passage hole 24B is provided to penetrate the motor unit 2 in the axial direction, and allows the upper space and the lower space of the motor unit 2 to communicate with each other.
- the refrigerant compressed by the compression mechanism 3 and discharged from the opening of the muffler cover 21 passes through the air gap 24A of the stator 10, the air gap (not shown) of the rotor 11 and the refrigerant passage hole 24B. It is led to space.
- the stator 10 and the housing 5 are fixed by six laser welds 20.
- the laser welding portion 20 is formed between the adjacent air gaps 24A and at a position which is on the outer side in the radial direction of the slot 23.
- the laser welding portion 20 is formed such that the focusing point of the fiber laser is at the position of the stator 10.
- FIG. 3 is a view (a developed view of the housing 5) for explaining the laser welding portion 20 according to the present embodiment.
- the laser welds 20 are formed at predetermined intervals in the circumferential direction of the housing 5. In the present embodiment, six laser welds 20 are provided. In addition, the mutual space
- the width of the laser welded portion 20 is preferably twice or more the thickness of the electromagnetic steel sheet.
- the width of the laser welded portion 20 By setting the width of the laser welded portion 20 to be twice or more the thickness of the electromagnetic steel sheet, the penetration depth into the stator 10 can be suppressed, and the efficiency reduction of the motor portion 2 can be prevented.
- the width of the laser weld 20 is, for example, 0.5 mm to 3 mm.
- the laser welding portion 20 in the present embodiment is formed over a predetermined length in the axial direction of the housing 5. That is, the laser welding portion 20 is linear.
- the laser welding portion 20 is formed at a point like the welding point in the conventional spot welding, the local distortion in the stator 10 is large because it is necessary to irradiate the laser at a high temperature and high temperature locally. Become.
- the laser welded portion 20 since the laser welded portion 20 has a predetermined length, laser irradiation at relatively low temperature and low temperature is possible, and local deformation of the stator 10 can be prevented.
- the figure which shows the relationship between the motor part 2 and the housing 5 in this Embodiment in FIG. 4 is shown.
- A is preferably 10% or more and 90% or less of B.
- the laser welded portion 20 is formed at a position exceeding 5% of the axial length B of the stator core 22 in the axial direction of the stator core 22 from the end face of the stator core 22.
- the welding strength is insufficient.
- the length A of the laser weld 20 exceeds 90% of the axial length B of the stator core 22 or from the end face of the stator core 22 in the axial direction of the stator core 22
- sparks generated when welding the stator 10 and the housing 5 are the upper and lower ends of the stator core 22. There is a risk that it may protrude into the housing 5.
- the length A of the laser welded portion 20 is preferably 10% or more and 20% or less of the axial length B of the stator core 22.
- the welding range can be made smaller, and deformation of the stator 10 generated at the time of laser welding can be more effectively prevented.
- the length of the laser weld 20 is about 10 to 20 mm, and the length of the stator core 22 is about 60 mm.
- the length of the laser welding part 20 means welding distance.
- the length of the laser weld 20 is A shown in FIG.
- all of the plurality of laser welds 20 have the same length, and laser welds 20 of different lengths may be included.
- torque in the circumferential direction is dispersed at the same height. Therefore, the rotational torque generated in the stator 10 is not received as a moment force in the axial direction, and the vibration of the stator 10 can be suppressed.
- the laser welds 20 in the present embodiment are formed at the same height in the axial direction of the housing 5. As a result, it becomes possible to evenly disperse and hold the torque fluctuation generated by the compression mechanism section 3 and the torque fluctuation generated by the rotation of the motor section 2 by the plurality of laser welding sections 20.
- the same height does not necessarily mean exactly the same, and includes a state of being somewhat deviated within the range where the above-mentioned effect is exerted.
- the fact that the housing 5 is formed at the same height in the axial direction can be rephrased as starting points in the housing 5 of the laser welding are made the same height.
- Modification 1 The modification 1 of the laser welding part 20 which concerns on this Embodiment is shown in FIG.
- the plurality of laser welded parts 20A are formed at different heights in the axial direction of the housing 5.
- the distortion of the magnetic field generated during high-speed rotation of the motor unit 2 and the axial vibration generated by the moment force of the rotating torque are held by the laser welds 20A of different heights. Distortion and vibration can be suppressed.
- a plurality of laser welds 20 are formed, and the laser welds 20 are formed at positions spaced 180 degrees apart in the circumferential direction. Thereby, the distortion of the outer peripheral direction by laser welding can be offset.
- the laser welding portion 20 in the present embodiment is formed to be inclined with respect to the axial direction of the housing 5.
- the welding range can be expanded with respect to the circumferential direction of the housing 5, and the torque fluctuation received by the stator 10 at the time of compression and the torque fluctuation generated by the rotation of the motor unit 2 can be equalized with the plurality of laser welds 20. It becomes possible to disperse and hold.
- the inclination ⁇ of the laser welding portion 20 is inclined in the range of 10 degrees to 30 degrees with respect to the axial direction of the housing 5.
- all six laser welding parts 20 do not need to be inclined and formed.
- adjacent laser welds 20 are formed to be inclined in the opposite direction with respect to the axial direction of the housing 5.
- the distance between the ends of the adjacent laser welds 20 can be shortened, and the circumferential rigidity of the housing 5 can be enhanced.
- welding can be performed while rotating the housing 5, the time required for welding can be shortened.
- Modification 2 The modification 2 of the laser welding part 20 which concerns on this Embodiment is shown in FIG.
- a plurality of laser welded portions 20B are formed in parallel with the axial direction of the housing 5. With this configuration, since the laser welded portion 20B can be made longer in the axial direction of the stator 10, it is possible to suppress the vibration of the stator 10.
- FIG. 7 is a view for explaining the distance between the end portions of each of the laser welds 20 and 20B according to the embodiment of the present invention and the second modification.
- the distance (W) between the ends of the laser weld 20 in the embodiment is smaller than the distance (W ′) between the ends of the laser weld 20B according to the second modification (W ⁇ W ′).
- the stator 10 is configured by laminating a plurality of electromagnetic steel plates 101.
- the plurality of electromagnetic steel plates 101 are fixed by the electromagnetic steel plate fixing laser welds 102.
- a compressor with high rigidity and excellent efficiency and noise can be realized.
- FIG. 9 is an explanatory view showing a positional relationship between the laser welded portion 102 for fixing the electromagnetic steel plate and the laser welded portion 20,
- FIG. 9 (a) shows an outer peripheral surface of the housing 5, and
- FIG. The sectional drawing of the vicinity is shown.
- the electromagnetic steel plate fixing laser welded portion 102 is formed on the side of the air gap 24A, that is, on the side of the contact portion between the housing 5 and the stator 10.
- the radially outer position of the slot 23 is the contact portion between the housing 5 and the stator 10.
- the laser welding portion 20 is formed on the side of the contact portion between the housing 5 and the stator 10. As described above, noise can be reduced by forming the electromagnetic steel plate fixing laser welded portion 102 on the side portion of the contact portion between the housing 5 and the stator 10 forming the laser welded portion 20.
- FIG. 10 is a characteristic diagram showing the relationship between the distance from the laser welded portion 20 to the laser welded portion 102 for fixing the electromagnetic steel plate and the noise
- FIG. 10A shows the position where the laser welded portion 102 for electromagnetic steel plate fixed is formed.
- A, B and C are shown
- FIG. 10B shows noise values of specific frequency components at respective positions A, B and C.
- the position A is a contact portion between the housing 5 and the stator 10 and overlaps the laser welding portion 20
- the position B is a side portion of the contact portion between the housing 5 and the stator 10
- the position C is an air gap 24A.
- the laser welded portion 102 for fixing the electromagnetic steel plate is the central portion of the laser welded portion 20. It is preferable to form in the range of L / 2 to L / 2. As described above, the noise value of the specific frequency component can be reduced by forming the electromagnetic steel plate fixing laser welded portion 102 in the range of L / 2 from the central portion of the laser welded portion 20, and further, for fixing the electromagnetic steel plate By forming the laser welding portion 102 at the contact portion or the side portion of the contact portion between the housing 5 forming the laser welding portion 20 and the stator 10, the noise value of the specific frequency component can be reduced.
- the present invention is not limited to the configuration of the embodiment, and various changes can be made within the scope of the present invention, and the present invention can be implemented in the following other embodiments.
- the embodiment shows an example in which the present invention is applied to a two-piston rotary compressor. However, the present invention can also be practiced with a one-piston rotary compressor. Moreover, it is applicable not only to a rotary compressor but, for example, to a scroll compressor.
- the example in which six laser welding parts 20 were formed was shown in embodiment, it is not restricted to six. It is only necessary to form a plurality.
- the embodiment shows an example in which the distributed winding type motor unit 2 is implemented, but the concentrated winding type motor unit 2 can also implement the present invention.
- the embodiment shows an example in which the stator 10 and the housing 5 are fixed by laser welding, but first, the motor portion 2 is inserted into the cylindrical housing 5 by shrink fitting, After the clearance dimension with the rotor 11 is determined, welding and fixing may be performed by laser welding.
- a fiber laser is most suitable for the laser welding portion 20
- a fiber laser, a carbon dioxide gas laser, or a YAG laser can be used for the laser welding portion 102 for fixing the electromagnetic steel plate.
- the efficiency of the compressor can be enhanced by preventing the deformation and distortion of the motor unit.
- it is applicable also to uses, such as a heat pump type hot-water heater other than the compressor for air conditioners.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Compressor (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Manufacture Of Motors, Generators (AREA)
- Laser Beam Processing (AREA)
Abstract
Description
これにより、電動機部の高効率化、圧縮機の外周面を被覆する被覆材(断熱材、防音材、蓄熱材等)の保護を実現することができる。また、固定子の電磁鋼板が電磁鋼板固定用レーザ溶接部にて固定されているので、固定子自体の剛性が高く効率や騒音に優れた圧縮機を実現することができる。 In order to solve the above-mentioned conventional problems, a compressor of the present invention includes a motor unit, a compression mechanism unit, and a housing, and the motor unit is a stator formed by laminating a plurality of electromagnetic steel plates, It is a compressor which consists of a rotor arranged inside the above-mentioned stator, and the above-mentioned stator is being fixed to the inner wall of the above-mentioned housing by a plurality of laser welds, and a plurality of the above-mentioned laser welds The laser welding parts are formed at predetermined intervals in the circumferential direction of the housing, and each of the laser welded parts is formed over a predetermined length, and the stator is formed of the laminated electromagnetic steel sheets for fixing electromagnetic steel sheets. It is fixed by a laser weld.
As a result, it is possible to realize the high efficiency of the motor unit and the protection of the covering material (heat insulating material, soundproofing material, heat storage material, etc.) that covers the outer peripheral surface of the compressor. Further, since the electromagnetic steel sheet of the stator is fixed by the laser welding portion for fixing the magnetic steel sheet, the compressor having high rigidity of the stator itself and excellent in efficiency and noise can be realized.
これにより、固定子の変形による電動機部の効率低下を防止することができる。また、レーザ溶接部が所定の長さを有するので比較的低温・低熱でのレーザ照射が可能となり、局所的な固定子の変形を防止することができる。さらには、レーザ溶接点に盛り上がり(凸形状)が生じないので、圧縮機の外周面を被覆する被覆材(断熱材、防音材、蓄熱材等)の破損を防止することができる。また、固定子の電磁鋼板がレーザ溶接されているので、固定子自体の剛性が高く効率や騒音に優れた圧縮機を実現することができる。 A first invention comprises a motor unit, a compression mechanism unit, and a housing, and the motor unit is disposed inside the stator and a stator formed by laminating a plurality of electric steel plates. A compressor comprising a rotor, wherein the stator is fixed to the inner wall of the housing by a plurality of laser welds, and a plurality of the laser welds are separated by a predetermined distance in the circumferential direction of the housing The laser welded portions are formed over a predetermined length, and the stator is configured such that the laminated electromagnetic steel plates are fixed by the electromagnetic steel plate fixing laser welded portions.
Thereby, the efficiency reduction of the motor unit due to the deformation of the stator can be prevented. In addition, since the laser weld has a predetermined length, laser irradiation at relatively low temperature and low temperature is possible, and local deformation of the stator can be prevented. Furthermore, since no swelling (convex shape) occurs at the laser welding point, it is possible to prevent damage to the covering material (heat insulating material, soundproofing material, heat storage material, etc.) that covers the outer peripheral surface of the compressor. Further, since the electromagnetic steel sheet of the stator is laser-welded, a compressor having high rigidity of the stator itself and excellent efficiency and noise can be realized.
これにより、ハウジング円周方向に関して溶接範囲を広げることができ、圧縮時に固定子が受けるトルク変動と電動機部の回転により発生するトルク変動とを、複数の溶接部で均等に分散して保持することができる。 In the second invention, the laser welding portion is formed to be inclined with respect to the axial direction of the housing.
As a result, the welding range can be expanded in the circumferential direction of the housing, and the torque fluctuation received by the stator during compression and the torque fluctuation generated by the rotation of the motor unit can be evenly distributed and held by the plurality of welds. Can.
これにより、隣接するレーザ溶接部間の距離を部分的に短くすることができ、ハウジングの円周方向の剛性を高めることができる。 According to a third aspect of the present invention, the first laser welding portion, and the second laser welding portion disposed circumferentially adjacent to the first laser welding portion are inclined directions with respect to the axial direction of the housing. The opposite.
As a result, the distance between adjacent laser welds can be partially shortened, and the circumferential rigidity of the housing can be increased.
これにより、特定周波数成分の騒音値を低減できる。 In a fourth aspect of the present invention, a plurality of gaps serving as a refrigerant passage and a contact portion with the housing are formed on the outer peripheral surface of the stator, and the laser welded portion is formed in the contact portion. The fixing laser welding portion is formed in a range of 1/2 of the distance from the central portion of the laser welding portion to the central portion of the adjacent gap.
Thereby, the noise value of the specific frequency component can be reduced.
これにより、特定周波数成分の騒音値を更に低減できる。 According to a fifth aspect of the invention, the laser welding portion for fixing the electromagnetic steel sheet is formed on the contact portion forming the laser welding portion or the side portion of the contact portion.
Thereby, the noise value of the specific frequency component can be further reduced.
図1は、本発明の一実施の形態における圧縮機100の縦断面図である。圧縮機100は、密閉容器1、電動機部2、圧縮機構部3及び駆動軸4を備えている。密閉容器1は、円筒状のハウジング5と、このハウジング5の開口を閉塞する上部カバー6及び下部カバー7とから構成されている。圧縮機構部3は、ハウジング5の下部に配置されている。電動機部2は、ハウジング5の内部において、圧縮機構部3の上に配置されている。駆動軸4によって、圧縮機構部3と電動機部2とが連結されている。上部カバー6には、電動機部2に電力を供給するための端子8が設けられている。密閉容器1の底部には、潤滑用のオイルを保持するためのオイル溜まり9が形成されている。電動機部2は、固定子10及び回転子11で構成されている。固定子10は、ハウジング5の内壁に固定されている。回転子11は、駆動軸4に固定されており、かつ駆動軸4とともに回転する。駆動軸4は、上軸受部材12と下軸受部材13とにより回転自在に両端が支持されている。 Embodiment
FIG. 1 is a longitudinal sectional view of a
このように構成された圧縮機100において、電動機部2の固定子10とハウジング5とは、ファイバーレーザによるレーザ照射によって溶接固定されている。 As a refrigerant compressed by the
In the
図2に示すように、電動機部2には、巻線方式を分布巻きとした直流IPMモータが適している。電動機部2は、ハウジング5の内壁面に固定された固定子10と、シャフトに回転動力を伝える回転子11とからなる。
固定子10は、固定子コア22と巻線25とを有する。
固定子コア22は、金属材料からなる複数の電磁鋼板を積層して形成される。複数の電磁鋼板は、電磁鋼板固定用レーザ溶接部102によって積層された状態で固定されている。
固定子コア22は、環状のヨーク部22Aと、ヨーク部22Aから径方向の内側に突出するティース部22Bと、隣接するティース部22Bの間に形成されるスロット23と、ティース部22Bの内側に形成されて回転子11が配置される貫通孔22Cとを有する。スロット23には巻線25との絶縁性を保持する為に絶縁紙(図示せず)が挿入されている。 FIG. 2 shows a plan view of the
As shown in FIG. 2, for the
The
The
The
固定子10とハウジング5とは、6個のレーザ溶接部20によって固定されている。
レーザ溶接部20は、隣接する空隙24Aの間であって、スロット23の径方向の外側となる位置に形成している。レーザ溶接部20は、ファイバーレーザの集光点が固定子10の位置となるように形成される。ファイバーレーザを用いることで溶接時の熱影響が少ない。ファイバーレーザの集光点を、ハウジング5と固定子10との境界位置ではなく、固定子10とすることで、小さなスポットサイズで確実に溶接することができる。 The refrigerant compressed by the
The
The
なお、レーザ溶接部20の幅は、電磁鋼板の板厚の2倍以上とすることが好ましい。レーザ溶接部20の幅を、電磁鋼板の板厚の2倍以上とすることで、固定子10内部への溶け込み深さを抑え、電動機部2の効率低下を防止することができる。レーザ溶接部20の幅は、例えば0.5mm~3mmが適している。 FIG. 3 is a view (a developed view of the housing 5) for explaining the
The width of the laser welded
本実施の形態におけるレーザ溶接部20は、ハウジング5の軸方向に所定の長さに渡って形成されている。すなわち、レーザ溶接部20は線状である。従来のスポット溶接における溶接点のように、レーザ溶接部20を点で形成した場合には、局所的に高温、高熱のレーザを照射する必要があるため、固定子10における局所的な歪が大きくなる。本実施の形態では、レーザ溶接部20は所定の長さを有するので、比較的低温・低熱でのレーザ照射が可能となり、局所的な固定子10の変形を防止することができる。 <Length>
The
また、固定子コア22の端面から固定子コア22の軸方向に、固定子コア22の軸方向長さBの5%の長さを超えた位置にレーザ溶接部20を形成する。
また、レーザ溶接部20の長さAが固定子コア22の軸方向長さBの10%を下回ると、溶接強度が不足する。
また、レーザ溶接部20の長さAが固定子コア22の軸方向長さBの90%を越える、又は、固定子コア22の端面から固定子コア22の軸方向に、固定子コア22の軸方向長さBの5%の長さの範囲内の位置にレーザ溶接部20が形成されると、固定子10とハウジング5を溶接する際に発生する火花が、固定子コア22の上下端からハウジング5内にはみ出すおそれがある。 The figure which shows the relationship between the
In addition, the laser welded
In addition, when the length A of the laser welded
In addition, the length A of the
本実施の形態におけるレーザ溶接部20は、ハウジング5の軸方向に同じ高さに形成されている。これにより、圧縮機構部3により発生するトルク変動と、電動機部2の回転により発生するトルク変動とを、複数のレーザ溶接部20で均等に分散して保持することが可能となる。なお、「同じ高さ」とは、必ずしも厳密に同一を意味するのではなく、上記作用効果を奏する範囲内で、多少ずれている状態も含む。ハウジング5の軸方向に同じ高さに形成されているとは、レーザ溶接のハウジング5における開始点を、同じ高さにすると言い換えることができる。 <
The laser welds 20 in the present embodiment are formed at the same height in the axial direction of the
本実施の形態に係るレーザ溶接部20の変形例1を図5に示す。本変形例では、複数のレーザ溶接部20Aがハウジング5の軸方向に違う高さに形成されている。この構成により、電動機部2の高速回転時に発生する磁界の歪みと回転トルクのモーメント力により発生する軸方向の振動とを、異なる高さのレーザ溶接部20Aで保持することにより、固定子10の歪み及び振動を抑えることができる。 (Modification 1)
The
レーザ溶接部20は複数個形成され、レーザ溶接部20は互いに円周方向に180度間隔をおいた位置に形成されている。これにより、レーザ溶接による外周方向の歪を相殺することができる。 <
A plurality of laser welds 20 are formed, and the laser welds 20 are formed at positions spaced 180 degrees apart in the circumferential direction. Thereby, the distortion of the outer peripheral direction by laser welding can be offset.
本実施の形態におけるレーザ溶接部20は、ハウジング5の軸方向に対して、傾斜して形成されている。これにより、ハウジング5の円周方向に関して溶接範囲を広げることができ、圧縮時の固定子10が受けるトルク変動と電動機部2の回転により発生するトルク変動とを複数のレーザ溶接部20で均等に分散して保持することが可能となる。実用的には、レーザ溶接部20の傾きθは、ハウジング5の軸方向に対して、10度以上30度以下の範囲で傾斜している。なお、6個全てのレーザ溶接部20が全て傾斜して形成されていなくてもよい。 <Slope>
The
本実施の形態に係るレーザ溶接部20の変形例2を図6に示す。本変形例では、複数のレーザ溶接部20Bがハウジング5の軸方向に平行に形成されている。この構成により、固定子10の軸方向においてレーザ溶接部20Bを長くできるため、固定子10の振動を抑えることが可能となる。 (Modification 2)
The
図8に示すように、固定子10は、複数の電磁鋼板101が積層されて構成されている。本実施の形態では、この複数の電磁鋼板101が、電磁鋼板固定用レーザ溶接部102によって固定されている。これにより、剛性が高く効率や騒音に優れた圧縮機を実現することができる。 Next, the configuration of the
As shown in FIG. 8, the
図9は、電磁鋼板固定用レーザ溶接部102とレーザ溶接部20との位置関係を示す説明図であり、図9(a)はハウジング5の外周面を示し、図9(b)はハウジング5近傍の断面図を示している。
電磁鋼板固定用レーザ溶接部102は、空隙24Aの側部、すなわち、ハウジング5と固定子10との接触部分の側部に形成している。スロット23の径方向の外側となる位置が、ハウジング5と固定子10との接触部分となっている。
レーザ溶接部20は、ハウジング5と固定子10との接触部分の側部に形成している。
このように、レーザ溶接部20を形成するハウジング5と固定子10との接触部分の側部に、電磁鋼板固定用レーザ溶接部102を形成することで、騒音低減を図ることができる。 Next, the positional relationship between the electromagnetic steel plate fixing laser welded
FIG. 9 is an explanatory view showing a positional relationship between the laser welded
The electromagnetic steel plate fixing laser welded
The
As described above, noise can be reduced by forming the electromagnetic steel plate fixing laser welded
位置Aは、ハウジング5と固定子10との接触部分であってレーザ溶接部20と重畳する位置、位置Bは、ハウジング5と固定子10との接触部分の側部、位置Cは、空隙24Aの中央部である。
図10(b)に示すように、レーザ溶接部20の中央部から隣接する空隙24Aの中央部までの距離をLとすると、電磁鋼板固定用レーザ溶接部102は、レーザ溶接部20の中央部からL/2の範囲に形成することが好ましい。
以上のように、電磁鋼板固定用レーザ溶接部102を、レーザ溶接部20の中央部からL/2の範囲に形成することで特定周波数成分の騒音値を低減でき、更には、電磁鋼板固定用レーザ溶接部102を、レーザ溶接部20を形成するハウジング5と固定子10との接触部分又は接触部分の側部に形成することで、特定周波数成分の騒音値を低減することができる。 FIG. 10 is a characteristic diagram showing the relationship between the distance from the laser welded
The position A is a contact portion between the
Assuming that the distance from the central portion of the laser welded
As described above, the noise value of the specific frequency component can be reduced by forming the electromagnetic steel plate fixing laser welded
(1)実施の形態では、2ピストンのロータリ式圧縮機に実施した例を示したが、1ピストンのロータリ式圧縮機においても本願発明を実施することができる。また、ロータリ式圧縮機に限らず、例えばスクロール式圧縮機にも適用できる。
(2)実施の形態では、レーザ溶接部20が6個形成されている例を示したが、6個に限られるものではない。複数個形成されていればよい。
(3)実施の形態では、分布巻き式の電動機部2に実施した例を示したが、集中巻き式の電動機部2においても本願発明を実施することができる。
(4)実施の形態では、固定子10とハウジング5とをレーザ溶接で固定する例を示したが、まず、円筒状のハウジング5に電動機部2を焼きばめにより挿入し、固定子10と回転子11との隙間寸法を確定した後に、レーザ溶接により溶接固定を行ってもよい。
なお、レーザ溶接部20には、ファイバーレーザが最も適しているが、電磁鋼板固定用レーザ溶接部102には、ファイバーレーザ、炭酸ガスレーザ、又はYAGレーザを用いることができる。 The present invention is not limited to the configuration of the embodiment, and various changes can be made within the scope of the present invention, and the present invention can be implemented in the following other embodiments.
(1) The embodiment shows an example in which the present invention is applied to a two-piston rotary compressor. However, the present invention can also be practiced with a one-piston rotary compressor. Moreover, it is applicable not only to a rotary compressor but, for example, to a scroll compressor.
(2) Although the example in which six
(3) The embodiment shows an example in which the distributed winding
(4) The embodiment shows an example in which the
Although a fiber laser is most suitable for the
2 電動機部
3 圧縮機構部
4 駆動軸
5 ハウジング
6 上部カバー
7 下部カバー
8 端子
9 オイル溜まり
10 固定子
11 回転子
12 上軸受部材
13 下軸受部材
14 駆動軸偏心部
15 シリンダ
16 ローリングピストン
17 吐出管
18 アキュームレータ
19 ケース
20 レーザ溶接部
21 マフラカバー
22 固定子コア
22A ヨーク部
22B ティース部
23 スロット
24A 空隙
24B 冷媒通路孔
25 巻線
100 圧縮機
101 電磁鋼板
102 電磁鋼板固定用レーザ溶接部
Claims (5)
- 電動機部と、圧縮機構部と、ハウジングとを備え、
前記電動機部が、複数枚の電磁鋼板を積層してなる固定子と、前記固定子の内側に配設されている回転子とからなる圧縮機であって、
前記固定子は前記ハウジング内壁に複数のレーザ溶接部によって固定されており、
複数の前記レーザ溶接部を、前記ハウジングの円周方向に互いに所定の間隔をおいて形成し、
それぞれの前記レーザ溶接部を、所定の長さに渡って形成し、
前記固定子は、積層された前記電磁鋼板が電磁鋼板固定用レーザ溶接部によって固定されていることを特徴とする圧縮機。 A motor unit, a compression mechanism unit, and a housing;
The motor unit is a compressor including a stator formed by laminating a plurality of electromagnetic steel plates, and a rotor disposed inside the stator.
The stator is fixed to the inner wall of the housing by a plurality of laser welds,
Forming a plurality of the laser welds at predetermined intervals in the circumferential direction of the housing;
Forming each of the laser welds over a predetermined length;
A compressor, wherein the laminated electromagnetic steel plates are fixed by a laser welding portion for fixing electromagnetic steel plates in the stator. - 前記レーザ溶接部は、前記ハウジングの前記軸方向に対して傾斜して形成することを特徴とする請求項1に記載の圧縮機。 The compressor according to claim 1, wherein the laser welding portion is formed to be inclined with respect to the axial direction of the housing.
- 第1のレーザ溶接部と、前記第1のレーザ溶接部と円周方向に隣接して配置された第2のレーザ溶接部とは、前記ハウジングの前記軸方向に対する傾斜方向を反対とすることを特徴とする請求項2に記載の圧縮機。 The first laser welding portion and the second laser welding portion disposed circumferentially adjacent to the first laser welding portion have an opposite inclination direction with respect to the axial direction of the housing. A compressor according to claim 2, characterized in.
- 前記固定子の外周面には、冷媒通路となる複数の空隙と、前記ハウジングとの接触部分とが形成され、
前記レーザ溶接部を前記接触部分に形成し、
前記電磁鋼板固定用レーザ溶接部を、前記レーザ溶接部の中央部から隣接する前記空隙の中央部までの距離の1/2の範囲に形成することを特徴とする請求項1から請求項3のいずれかに記載の圧縮機。 On the outer peripheral surface of the stator, a plurality of gaps serving as a refrigerant passage and a contact portion with the housing are formed.
Forming the laser weld at the contact portion;
The laser welded portion for fixing the electromagnetic steel sheet is formed in a range of 1/2 of the distance from the central portion of the laser welded portion to the central portion of the adjacent gap. The compressor according to any one. - 前記電磁鋼板固定用レーザ溶接部を、前記レーザ溶接部を形成する前記接触部分又は前記接触部分の側部に形成することを特徴とする請求項4に記載の圧縮機。 The compressor according to claim 4, characterized in that the laser welded portion for fixing the electromagnetic steel sheet is formed on the contact portion forming the laser welded portion or a side portion of the contact portion.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480048194.0A CN105492769B (en) | 2013-10-15 | 2014-03-11 | Compressor |
JP2015542481A JP6233726B2 (en) | 2013-10-15 | 2014-03-11 | Compressor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-214504 | 2013-10-15 | ||
JP2013214504 | 2013-10-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015056364A1 true WO2015056364A1 (en) | 2015-04-23 |
Family
ID=52827830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/001377 WO2015056364A1 (en) | 2013-10-15 | 2014-03-11 | Compressor |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6233726B2 (en) |
CN (1) | CN105492769B (en) |
WO (1) | WO2015056364A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016185560A1 (en) * | 2015-05-19 | 2016-11-24 | 三菱電機株式会社 | Rotating electric machine |
WO2017135467A1 (en) * | 2016-02-05 | 2017-08-10 | 三菱重工業株式会社 | Rotary machine |
WO2018131436A1 (en) * | 2017-01-11 | 2018-07-19 | ダイキン工業株式会社 | Compressor comprising shaft support |
CN114069930A (en) * | 2020-07-30 | 2022-02-18 | 日本电产三协株式会社 | Electric motor |
EP4148276A4 (en) * | 2020-06-30 | 2023-11-08 | Daikin Industries, Ltd. | Compressor |
EP4293225A4 (en) * | 2021-03-26 | 2024-08-14 | Daikin Ind Ltd | Rotary machine unit, compressor, and refrigeration device |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59126564U (en) * | 1983-02-15 | 1984-08-25 | 三菱電機株式会社 | Cand type electric motor |
JPH05227685A (en) * | 1991-11-26 | 1993-09-03 | Toshiba Corp | Electric rotating machine |
JP2001304123A (en) * | 2000-04-27 | 2001-10-31 | Mitsubishi Electric Corp | Hermetic compressor, method of manufacturing the same, and refrigerating air conditioning device |
JP2007268609A (en) * | 2006-03-07 | 2007-10-18 | Daikin Ind Ltd | Method of producing compressor |
JP2010011645A (en) * | 2008-06-27 | 2010-01-14 | Daikin Ind Ltd | Laminated iron core, motor and compressor |
JP2010041851A (en) * | 2008-08-06 | 2010-02-18 | Daikin Ind Ltd | Structure of fixing stator and casing, and compressor equipped with the same |
JP2011050151A (en) * | 2009-08-26 | 2011-03-10 | Aichi Elec Co | Electric motor and compressor |
JP2013162676A (en) * | 2012-02-07 | 2013-08-19 | Daikin Ind Ltd | Electric motor and compressor |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59101292A (en) * | 1982-11-30 | 1984-06-11 | Toshiba Corp | Formation of hermetic type compressor |
JP2002142390A (en) * | 2000-11-06 | 2002-05-17 | Matsushita Electric Ind Co Ltd | Motor and compressor using the same |
CN202250865U (en) * | 2011-09-07 | 2012-05-30 | 珠海格力节能环保制冷技术研究中心有限公司 | Rotary compressor |
CN202488321U (en) * | 2011-12-26 | 2012-10-10 | 深圳市祺金泰电机科技有限公司 | Direct current motor equipment |
-
2014
- 2014-03-11 CN CN201480048194.0A patent/CN105492769B/en active Active
- 2014-03-11 JP JP2015542481A patent/JP6233726B2/en active Active
- 2014-03-11 WO PCT/JP2014/001377 patent/WO2015056364A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59126564U (en) * | 1983-02-15 | 1984-08-25 | 三菱電機株式会社 | Cand type electric motor |
JPH05227685A (en) * | 1991-11-26 | 1993-09-03 | Toshiba Corp | Electric rotating machine |
JP2001304123A (en) * | 2000-04-27 | 2001-10-31 | Mitsubishi Electric Corp | Hermetic compressor, method of manufacturing the same, and refrigerating air conditioning device |
JP2007268609A (en) * | 2006-03-07 | 2007-10-18 | Daikin Ind Ltd | Method of producing compressor |
JP2010011645A (en) * | 2008-06-27 | 2010-01-14 | Daikin Ind Ltd | Laminated iron core, motor and compressor |
JP2010041851A (en) * | 2008-08-06 | 2010-02-18 | Daikin Ind Ltd | Structure of fixing stator and casing, and compressor equipped with the same |
JP2011050151A (en) * | 2009-08-26 | 2011-03-10 | Aichi Elec Co | Electric motor and compressor |
JP2013162676A (en) * | 2012-02-07 | 2013-08-19 | Daikin Ind Ltd | Electric motor and compressor |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016185560A1 (en) * | 2015-05-19 | 2016-11-24 | 三菱電機株式会社 | Rotating electric machine |
JPWO2016185560A1 (en) * | 2015-05-19 | 2017-08-24 | 三菱電機株式会社 | Rotating electric machine |
CN107534329A (en) * | 2015-05-19 | 2018-01-02 | 三菱电机株式会社 | Electric rotating machine |
CN107534329B (en) * | 2015-05-19 | 2019-06-07 | 三菱电机株式会社 | Rotating electric machine |
US10637308B2 (en) | 2015-05-19 | 2020-04-28 | Mitsubishi Electric Corporation | Rotary electrical machine including an armature core |
WO2017135467A1 (en) * | 2016-02-05 | 2017-08-10 | 三菱重工業株式会社 | Rotary machine |
WO2018131436A1 (en) * | 2017-01-11 | 2018-07-19 | ダイキン工業株式会社 | Compressor comprising shaft support |
EP4148276A4 (en) * | 2020-06-30 | 2023-11-08 | Daikin Industries, Ltd. | Compressor |
US12049888B2 (en) | 2020-06-30 | 2024-07-30 | Daikin Industries, Ltd. | Compressor |
CN114069930A (en) * | 2020-07-30 | 2022-02-18 | 日本电产三协株式会社 | Electric motor |
CN114069930B (en) * | 2020-07-30 | 2024-04-16 | 日本电产三协株式会社 | Motor with a motor housing having a motor housing with a motor housing |
EP4293225A4 (en) * | 2021-03-26 | 2024-08-14 | Daikin Ind Ltd | Rotary machine unit, compressor, and refrigeration device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015056364A1 (en) | 2017-03-09 |
CN105492769B (en) | 2017-05-24 |
JP6233726B2 (en) | 2017-11-22 |
CN105492769A (en) | 2016-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015033488A1 (en) | Compressor | |
WO2015056364A1 (en) | Compressor | |
US11437877B2 (en) | Rotor, motor, compressor, and air conditioner | |
JP2010279126A (en) | Stator core of electric motor, electric motor, sealed compressor, and refrigeration cycle device | |
JP6328342B2 (en) | Rotor, electric motor, compressor and refrigeration air conditioner | |
JP2015075047A (en) | Compressor | |
JP6526316B2 (en) | Rotor, electric motor, compressor, and refrigeration air conditioner | |
JP2010226932A (en) | Electric rotary machine, and refrigerant compressor and fluid compressor using the same, and method for assembling the electric rotary machine | |
US20220294280A1 (en) | Compressor | |
JP2008101558A (en) | Hermetic compressor | |
JP2012013030A (en) | Electric compressor | |
JP7105999B2 (en) | Electric motor, compressor, air conditioner, and method for manufacturing electric motor | |
KR101166306B1 (en) | Stator with stress relief portion and compressor with the same | |
JP2015071971A (en) | Compressor | |
CN112601890B (en) | Compressor | |
JP2007285180A (en) | Rotating compressor, and refrigerating cycle device using the same | |
WO2024176546A1 (en) | Electric motor, compressor, and device | |
JP7436908B2 (en) | Rotating electrical machines, compressors, and refrigeration equipment | |
JP6094717B1 (en) | Compressor | |
WO2017064782A1 (en) | Stator core, compressor, and refrigeration cycle device | |
JP5506269B2 (en) | Hermetic electric compressor | |
JP2008169743A (en) | Compressor | |
KR20160013635A (en) | A rotary compressor and a method for manufacturing the same | |
JP2023087522A (en) | Motor generator, compressor and refrigeration unit | |
JP5180764B2 (en) | Sealed fluid machinery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480048194.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14854068 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015542481 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14854068 Country of ref document: EP Kind code of ref document: A1 |