WO2017064782A1 - Stator core, compressor, and refrigeration cycle device - Google Patents

Stator core, compressor, and refrigeration cycle device Download PDF

Info

Publication number
WO2017064782A1
WO2017064782A1 PCT/JP2015/079113 JP2015079113W WO2017064782A1 WO 2017064782 A1 WO2017064782 A1 WO 2017064782A1 JP 2015079113 W JP2015079113 W JP 2015079113W WO 2017064782 A1 WO2017064782 A1 WO 2017064782A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic steel
steel plate
steel sheet
electromagnetic
iron core
Prior art date
Application number
PCT/JP2015/079113
Other languages
French (fr)
Japanese (ja)
Inventor
一弥 熊谷
風間 修
貞美 奥川
剛仙 岩邊
利夫 荒井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CZ2018-174A priority Critical patent/CZ2018174A3/en
Priority to JP2017545044A priority patent/JP6395948B2/en
Priority to KR1020187006453A priority patent/KR102018472B1/en
Priority to PCT/JP2015/079113 priority patent/WO2017064782A1/en
Priority to CN201610893813.7A priority patent/CN106981935B/en
Priority to CN201910130808.4A priority patent/CN109936225A/en
Priority to CN201621120105.1U priority patent/CN206302218U/en
Publication of WO2017064782A1 publication Critical patent/WO2017064782A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/121Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with or adaptation to specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a stator core, a compressor, and a refrigeration cycle apparatus.
  • a technique described in Patent Document 1 As a method of manufacturing a stator core of a motor by connecting a plurality of divided cores, a technique described in Patent Document 1 is known.
  • a convex part is formed in one division
  • the convex part of one split core stores the locking piece protruding in the stacking direction and the locking piece formed in the concave part of the other split core.
  • a locking groove is formed.
  • a locking piece protruding in the stacking direction and a locking groove for receiving the locking piece formed on the convex part of the other divided core are formed in the concave portion of one divided core.
  • the present invention aims to increase the bonding force between the divided parts of the stator core.
  • the stator core is: A first electromagnetic steel sheet; A second electromagnetic steel sheet; A portion overlapping with the first electromagnetic steel sheet, and a protrusion having an elasticity and extending obliquely in a direction approaching the first electromagnetic steel sheet, and a portion protruding outward from the first electromagnetic steel sheet; A third electromagnetic steel sheet having a tip end protruding outward from the first electromagnetic steel sheet and adjacent to the second electromagnetic steel sheet; A portion overlapping with the second electromagnetic steel plate, and a portion provided with a hole into which a protrusion of the third electromagnetic steel plate is fitted, and a portion protruding outward from the second electromagnetic steel plate; A fourth electromagnetic steel sheet having a tip end protruding outward from the steel sheet and adjacent to the first electromagnetic steel sheet; A combination of the first electromagnetic steel plate, the second electromagnetic steel plate, the third electromagnetic steel plate, and the fourth electromagnetic steel plate is laminated in the same direction.
  • the combination of the first electromagnetic steel plate, the second electromagnetic steel plate, the third electromagnetic steel plate with the projection, and the fourth electromagnetic steel plate with the hole into which the projection of the third electromagnetic steel plate is fitted is laminated in the same direction.
  • the divided portions of the stator core are joined by two or more protrusions. Therefore, the binding force between the divided parts of the stator core is strong.
  • FIG. 1 is a circuit diagram of a refrigeration cycle apparatus according to Embodiment 1.
  • FIG. 1 is a circuit diagram of a refrigeration cycle apparatus according to Embodiment 1.
  • FIG. 1 is a longitudinal sectional view of a compressor according to Embodiment 1.
  • FIG. 3 is a plan view of the stator core according to the first embodiment. The top view and partial enlarged view of an electromagnetic steel sheet which form the split iron core which concerns on Embodiment 1.
  • FIG. FIG. 3 is a partial cross-sectional view of the split iron core according to the first embodiment.
  • FIG. 6 is a partial cross-sectional view and a partial vertical cross-sectional view of a split iron core according to a modification of the first embodiment.
  • FIG. 6 is a partial cross-sectional view of a split iron core according to a second embodiment.
  • FIG. 6 is a partial cross-sectional view of a split piece of a stator core according to a third embodiment.
  • FIG. 6 is a plan view of a stator core according to a fourth embodiment.
  • FIG. The top view and partial enlarged view of the electromagnetic steel plate which form the division
  • FIG. 10 is a partial cross-sectional view of a split piece of a stator core according to a fourth embodiment.
  • FIG. 6 is a partial cross-sectional view and a partial vertical cross-sectional view of a split piece of a stator core according to a fourth embodiment.
  • FIG. 10 is a partial cross-sectional view of a split piece of a stator core according to a fifth embodiment.
  • FIG. 10 is a partial cross-sectional view and a partial vertical cross-sectional view of a split piece of a stator core according to a fifth embodiment.
  • Embodiment 1 FIG. With reference to FIG.1 and FIG.2, the structure of the refrigerating-cycle apparatus 10 which concerns on this Embodiment is demonstrated.
  • FIG. 1 shows the refrigerant circuit 11 during the cooling operation.
  • FIG. 2 shows the refrigerant circuit 11 during heating operation.
  • the refrigeration cycle apparatus 10 is an air conditioner in the present embodiment, but may be an apparatus other than an air conditioner such as a refrigerator or a heat pump cycle apparatus.
  • the refrigeration cycle apparatus 10 includes a refrigerant circuit 11 in which a refrigerant circulates.
  • the refrigeration cycle apparatus 10 further includes a compressor 12, a four-way valve 13, a first heat exchanger 14 that is an outdoor heat exchanger, an expansion mechanism 15 that is an expansion valve, and a second heat that is an indoor heat exchanger. And an exchanger 16.
  • the compressor 12, the four-way valve 13, the first heat exchanger 14, the expansion mechanism 15, and the second heat exchanger 16 are connected to the refrigerant circuit 11.
  • Compressor 12 compresses the refrigerant.
  • the four-way valve 13 switches the direction in which the refrigerant flows between the cooling operation and the heating operation.
  • the first heat exchanger 14 operates as a condenser during the cooling operation, and dissipates the refrigerant compressed by the compressor 12. That is, the first heat exchanger 14 performs heat exchange using the refrigerant compressed by the compressor 12.
  • the first heat exchanger 14 operates as an evaporator during the heating operation, and heats the refrigerant by exchanging heat between the outdoor air and the refrigerant expanded by the expansion mechanism 15.
  • the expansion mechanism 15 expands the refrigerant radiated by the condenser.
  • the second heat exchanger 16 operates as a condenser during the heating operation, and dissipates heat from the refrigerant compressed by the compressor 12. That is, the second heat exchanger 16 performs heat exchange using the refrigerant compressed by the compressor 12.
  • the second heat exchanger 16 operates as an evaporator during the cooling operation, and heats the refrigerant by exchanging heat between the indoor air and the refrigerant expanded by the expansion mechanism 15.
  • the refrigeration cycle apparatus 10 further includes a control device 17.
  • the control device 17 is specifically a microcomputer. 1 and 2 show only the connection between the control device 17 and the compressor 12, the control device 17 is connected not only to the compressor 12 but also to each element connected to the refrigerant circuit 11. The control device 17 monitors and controls the state of each element.
  • any refrigerant such as R32 refrigerant, R290 (propane) refrigerant, R407C refrigerant, R410A refrigerant, R744 (CO2) refrigerant, R1234yf refrigerant, or the like can be used.
  • FIG. 3 shows a longitudinal section of the compressor 12.
  • the compressor 12 is a hermetic compressor in the present embodiment.
  • the compressor 12 is specifically a one-cylinder rotary compressor, but may be a two-cylinder or more rotary compressor, a scroll compressor, or a reciprocating compressor.
  • the compressor 12 includes a sealed container 20, a compression mechanism 30, a motor 40, and a crankshaft 50.
  • the sealed container 20 is provided with a suction pipe 21 for sucking refrigerant and a discharge pipe 22 for discharging refrigerant.
  • the compression mechanism 30 is accommodated in the sealed container 20. Specifically, the compression mechanism 30 is installed in the lower part inside the sealed container 20. The compression mechanism 30 is driven by a motor 40. The compression mechanism 30 compresses the refrigerant sucked into the suction pipe 21.
  • the motor 40 is also housed in the sealed container 20. Specifically, the motor 40 is installed in the upper part inside the sealed container 20. In this embodiment, the motor 40 is a concentrated winding motor, but may be a distributed winding motor.
  • Refrigerator oil for lubricating the sliding portions of the compression mechanism 30 is stored at the bottom of the sealed container 20. As the crankshaft 50 rotates, the refrigeration oil is pumped up by an oil pump provided at the lower portion of the crankshaft 50 and supplied to each sliding portion of the compression mechanism 30.
  • synthetic oils such as POE (polyol ester), PVE (polyvinyl ether), and AB (alkylbenzene) are used.
  • the motor 40 is a brushless DC (Direct Current) motor, but may be a motor other than a brushless DC motor, such as an induction motor.
  • DC Direct Current
  • the motor 40 includes a stator 41 and a rotor 42.
  • the stator 41 has a cylindrical shape and is fixed so as to be in contact with the inner peripheral surface of the sealed container 20.
  • the rotor 42 has a cylindrical shape, and is installed inside the stator 41 via a gap of 0.3 mm to 1.0 mm.
  • the stator 41 includes a stator core 43 and a winding 44.
  • the stator core 43 is formed by punching a plurality of electromagnetic steel sheets having a thickness of 0.1 mm to 1.5 mm, which are mainly composed of iron, into a certain shape, stacked in an axial direction, and fixed by caulking or welding. Is produced.
  • the stator core 43 has an outer diameter larger than the inner diameter of the intermediate portion of the sealed container 20 and is fixed by being shrink-fitted inside the sealed container 20.
  • the winding 44 is wound around the stator core 43. Specifically, the winding 44 is wound around the stator core 43 by concentrated winding via an insulating member 45.
  • the winding 44 is composed of a core wire and at least one layer of a coating covering the core wire.
  • the material of the core wire is copper.
  • the material of the coating is AI (amidoimide) / EI (ester imide).
  • the material of the insulating member 45 is PET (polyethylene terephthalate).
  • the material of the core wire may be aluminum.
  • the material of the insulating member 45 is PBT (polybutylene terephthalate), FEP (tetrafluoroethylene / hexafluoropropylene copolymer), PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer), PTFE (polytetrafluoroethylene). , LCP (liquid crystal polymer), PPS (polyphenylene sulfide), or phenol resin.
  • One end of a lead wire 25 is connected to the winding 44.
  • the rotor 42 includes a rotor core 46 and a permanent magnet 48.
  • the rotor core 46 is formed by punching a plurality of electromagnetic steel sheets mainly composed of iron and having a thickness of 0.1 millimeters to 1.5 millimeters into a certain shape in the axial direction. Laminated and fixed by caulking or welding.
  • the permanent magnet 48 is inserted into a plurality of insertion holes formed in the rotor core 46.
  • the permanent magnet 48 forms a magnetic pole.
  • a ferrite magnet or a rare earth magnet is used as the permanent magnet 48.
  • a shaft hole in which the main shaft portion 52 of the crankshaft 50 is shrink-fitted or press-fitted is formed in the center of the rotor core 46 in plan view.
  • a plurality of through holes 49 penetrating in the axial direction are formed around the shaft hole of the rotor core 46.
  • Each through hole 49 becomes one of the passages of the gas refrigerant that is discharged from the discharge muffler 35 described later to the space in the sealed container 20.
  • the motor 40 when configured as an induction motor, a plurality of slots formed in the rotor core 46 are filled or inserted with a conductor formed of aluminum or copper. A squirrel-cage winding in which both ends of the conductor are short-circuited by end rings is formed.
  • a terminal 24 connected to an external power source such as an inverter device is attached to the top of the sealed container 20.
  • the terminal 24 is specifically a glass terminal.
  • the terminal 24 is fixed to the sealed container 20 by welding.
  • the other end of the lead wire 25 is connected to the terminal 24. Thereby, the terminal 24 and the winding 44 of the motor 40 are electrically connected.
  • a discharge pipe 22 having both ends opened in the axial direction is attached to the top of the sealed container 20.
  • the gas refrigerant discharged from the compression mechanism 30 is discharged from the space in the sealed container 20 through the discharge pipe 22 to the external refrigerant circuit 11.
  • the compression mechanism 30 includes a cylinder 31, a piston 32, a main bearing 33, a sub bearing 34, and a discharge muffler 35.
  • the inner circumference of the cylinder 31 is circular in plan view.
  • a cylinder chamber that is a circular space in plan view is formed inside the cylinder 31.
  • a suction port for sucking gas refrigerant from the refrigerant circuit 11 is provided on the outer peripheral surface of the cylinder 31. The refrigerant sucked from the suction port is compressed in the cylinder chamber.
  • the cylinder 31 is open at both axial ends.
  • the piston 32 has a ring shape. Therefore, the inner periphery and outer periphery of the piston 32 are circular in plan view.
  • the piston 32 rotates eccentrically in the cylinder chamber.
  • the piston 32 is slidably fitted to an eccentric shaft portion 51 of the crankshaft 50 that serves as a rotation shaft of the piston 32.
  • the cylinder 31 is provided with a vane groove that is connected to the cylinder chamber and extends in the radial direction.
  • a back pressure chamber that is a circular space in plan view connected to the vane groove is formed outside the vane groove.
  • a vane for partitioning the cylinder chamber into a low-pressure suction chamber and a high-pressure compression chamber is installed in the vane groove.
  • the vane has a plate shape with a rounded tip. The vane is always pressed against the piston 32 by a vane spring provided in the back pressure chamber.
  • the vane spring is mainly used for the purpose of pressing the vane against the piston 32 at the start of the compressor 12 in which there is no difference in pressure between the sealed container 20 and the cylinder chamber.
  • the main bearing 33 has an inverted T shape when viewed from the side.
  • the main bearing 33 is slidably fitted to a main shaft portion 52 that is a portion above the eccentric shaft portion 51 of the crankshaft 50.
  • the main bearing 33 closes the cylinder chamber of the cylinder 31 and the upper side of the vane groove.
  • the secondary bearing 34 has a T shape when viewed from the side.
  • the sub-bearing 34 is slidably fitted to a sub-shaft portion 53 that is a portion below the eccentric shaft portion 51 of the crankshaft 50.
  • the secondary bearing 34 closes the cylinder chamber of the cylinder 31 and the lower side of the vane groove.
  • the main bearing 33 and the sub bearing 34 are fixed to the cylinder 31 by fasteners such as bolts, respectively, and support a crankshaft 50 that is a rotating shaft of the piston 32.
  • the main bearing 33 is provided with a discharge port for discharging the refrigerant compressed in the cylinder chamber to the refrigerant circuit 11.
  • the discharge port is located at a position connected to the compression chamber when the cylinder chamber is partitioned by the vane into the suction chamber and the compression chamber.
  • the main bearing 33 is provided with a discharge valve that closes and opens the discharge port.
  • the discharge muffler 35 is attached to the outside of the main bearing 33.
  • the high-temperature and high-pressure gas refrigerant discharged through the discharge valve once enters the discharge muffler 35 and is then discharged from the discharge muffler 35 into the space in the sealed container 20.
  • the discharge port and the discharge valve may be provided in the sub bearing 34 or both the main bearing 33 and the sub bearing 34.
  • the discharge muffler 35 is attached to the outside of a bearing provided with a discharge port and a discharge valve.
  • a suction muffler 23 is provided beside the sealed container 20.
  • the suction muffler 23 sucks low-pressure gas refrigerant from the refrigerant circuit 11.
  • the suction muffler 23 prevents the liquid refrigerant from directly entering the cylinder chamber of the cylinder 31 when the liquid refrigerant returns.
  • the suction muffler 23 is connected to a suction port provided on the outer peripheral surface of the cylinder 31 via a suction pipe 21.
  • the main body of the suction muffler 23 is fixed to the side surface of the sealed container 20 by welding or the like.
  • the material of the cylinder 31, the main bearing 33, and the sub bearing 34 is sintered steel, but may be gray cast iron or carbon steel.
  • the material of the piston 32 is alloy steel containing chromium or the like.
  • the material of the vane is high speed tool steel.
  • a vane is provided integrally with the piston 32.
  • the vane enters and exits along a groove in a support that is rotatably attached to the piston 32.
  • the vane moves back and forth in the radial direction while swinging according to the rotation of the piston 32, thereby dividing the inside of the cylinder chamber into a compression chamber and a suction chamber.
  • the support is composed of two columnar members having a semicircular cross section.
  • the support body is rotatably fitted in a circular holding hole formed in an intermediate portion between the suction port and the discharge port of the cylinder 31.
  • Electric power is supplied from the terminal 24 to the stator 41 of the motor 40 via the lead wire 25.
  • a current flows through the winding 44 of the stator 41 and a magnetic flux is generated from the winding 44.
  • the rotor 42 of the motor 40 rotates by the action of the magnetic flux generated from the winding 44 and the magnetic flux generated from the permanent magnet of the rotor 42.
  • the crankshaft 50 fixed to the rotor 42 rotates.
  • the piston 32 of the compression mechanism 30 rotates eccentrically in the cylinder chamber of the cylinder 31 of the compression mechanism 30.
  • a cylinder chamber that is a space between the cylinder 31 and the piston 32 is divided into a suction chamber and a compression chamber by a vane.
  • the crankshaft 50 rotates, the volume of the suction chamber and the volume of the compression chamber change.
  • the volume gradually increases, whereby low-pressure gas refrigerant is sucked from the suction muffler 23.
  • the compression chamber the gas refrigerant therein is compressed by gradually reducing the volume.
  • the compressed, high-pressure and high-temperature gas refrigerant is discharged from the discharge muffler 35 into the space in the sealed container 20.
  • the discharged gas refrigerant further passes through the motor 40 and is discharged out of the sealed container 20 from the discharge pipe 22 at the top of the sealed container 20.
  • the refrigerant discharged to the outside of the sealed container 20 returns to the suction muffler 23 again through the refrigerant circuit 11.
  • the stator core 43 has a structure in which a plurality of divided cores 60 are connected in the circumferential direction.
  • the “circumferential direction” is the same direction as the rotation direction of the rotor 42 installed inside the stator core 43 when the motor 40 is configured to include the stator core 43.
  • the number of divided cores 60 may be an arbitrary number, but in the present embodiment, it is nine.
  • the nine divided cores 60 include one connecting core 60A and one connecting core 60B.
  • the number of the connecting cores 60A may be any number, and two or more divided cores 60 may correspond to the connecting core 60A.
  • the number of connecting cores 60B is the same as the number of connecting cores 60A, and two or more split cores 60 may correspond to the connecting core 60B.
  • two or more split cores 60 correspond to the connecting core 60A, or when two or more split cores 60 correspond to the connecting core 60B, there is a split core 60 that serves as both the connecting core 60A and the connecting core 60B. Also good.
  • Each divided iron core 60 has a structure in which a tooth 61 and a back yoke 62 are integrally formed.
  • the adjacent divided iron cores 60 are connected to each other by connecting the back yokes 62 to each other.
  • a method of connecting the connecting iron core 60A and the connecting iron core 60B a method to be described later is used.
  • a connecting method of the split iron cores 60 at least one of which does not correspond to either the connecting iron core 60A or the connecting iron core 60B any method can be used. This method can be used.
  • the teeth 61 extend from the inner side in the radial direction of the back yoke 62.
  • the teeth 61 have a shape that extends inward in the radial direction with a constant width from the root, and has a shape in which the width is widened at the tip.
  • a winding 44 is wound around a portion of the tooth 61 extending at a certain width. When a current is passed through the winding 44, the tooth 61 around which the winding 44 is wound becomes a magnetic pole. The direction of the magnetic pole is determined by the direction of the current flowing through the winding 44.
  • FIG. 5 Referring to FIG. 5, FIG. 6 and FIG. 7, the structure of the electromagnetic steel sheet forming the connecting iron core 60A and the connecting iron core 60B will be described.
  • the connecting core 60A is a split core 60 having a structure in which a first electromagnetic steel plate 71 and a third electromagnetic steel plate 73 are laminated in the axial direction.
  • the connecting iron core 60A has a structure in which the first electromagnetic steel plates 71 and the third electromagnetic steel plates 73 are alternately arranged in the axial direction one by one.
  • the “axial direction” is the same direction as the rotational axis direction of the rotor 42 that is installed inside the stator core 43 when the motor 40 is configured to include the stator core 43.
  • FIG. 5 shows the shape of the first electromagnetic steel plate 71 and shows an enlarged connection portion of the first electromagnetic steel plate 71.
  • FIG. 6 shows the shape of the third electromagnetic steel plate 73 and also shows an enlarged connection portion of the third electromagnetic steel plate 73.
  • FIG. 7 shows a connecting portion of the first electromagnetic steel plate 71 and the third electromagnetic steel plate 73 in any four consecutive layers L1 to L4. Although it is desirable that the number of the first electromagnetic steel sheets 71 and the third electromagnetic steel sheets 73 be greater than four, only four layers L1 to L4 are shown here for convenience of explanation.
  • the connecting iron core 60B is a divided iron core 60 having a structure in which a second electromagnetic steel plate 72 and a fourth electromagnetic steel plate 74 are laminated in the axial direction.
  • the connecting iron core 60B has a structure in which the second electromagnetic steel plates 72 and the fourth electromagnetic steel plates 74 are alternately arranged in the axial direction one by one.
  • FIG. 5 shows the shape of the fourth electromagnetic steel plate 74 and shows an enlarged connection portion of the fourth electromagnetic steel plate 74.
  • FIG. 6 shows the shape of the second electromagnetic steel plate 72 and shows an enlarged connection portion of the second electromagnetic steel plate 72.
  • FIG. 7 shows a connecting portion of the second electromagnetic steel plate 72 and the fourth electromagnetic steel plate 74 in the layers L1 to L4.
  • the number of laminations of the second electromagnetic steel plate 72 and the fourth electromagnetic steel plate 74 is the same as the number of laminations of the first electromagnetic steel plate 71 and the third electromagnetic steel plate 73.
  • the third electromagnetic steel plate 73 has a portion 3A that overlaps with the first electromagnetic steel plate 71 and a portion 3B that is provided with a protrusion 81 and protrudes outward from the first electromagnetic steel plate 71.
  • the connecting iron core 60 ⁇ / b> A and the connecting iron core 60 ⁇ / b> B are connected, the end 3 ⁇ / b> C of the third electromagnetic steel plate 73 protruding outward from the first electromagnetic steel plate 71 is adjacent to the second electromagnetic steel plate 72.
  • the protrusion 81 of the third electromagnetic steel plate 73 has elasticity.
  • the protrusion 81 extends obliquely in a direction approaching the first electromagnetic steel plate 71.
  • the protrusion 81 may be formed by any method, but in the present embodiment, the protrusion 81 is formed by cutting and raising a part of the third electromagnetic steel plate 73.
  • the projection 81 may have any shape, but in the present embodiment, the projection 81 has a rectangular shape in plan view.
  • the fourth electromagnetic steel plate 74 has a portion 4A that overlaps with the second electromagnetic steel plate 72, and a portion 4B that is provided with a hole 82 and protrudes outward from the second electromagnetic steel plate 72.
  • the connecting iron core 60 ⁇ / b> A and the connecting iron core 60 ⁇ / b> B are connected, the end 4 ⁇ / b> C of the fourth electromagnetic steel plate 74 protruding outward from the second electromagnetic steel plate 72 is adjacent to the first electromagnetic steel plate 71.
  • the hole 82 of the fourth electromagnetic steel plate 74 may have an arbitrary shape, but in the present embodiment, it has a rectangular shape in plan view.
  • the connecting iron core 60 ⁇ / b> A and the connecting iron core 60 ⁇ / b> B are connected, the projections 81 of the third electromagnetic steel plate 73 are fitted in the holes 82.
  • the connecting iron core 60A and the connecting iron core 60B are coupled by the same number of protrusions 81 as the number of the third electromagnetic steel plates 73. Therefore, the greater the number of protrusions 81, the stronger the coupling force between the connecting iron core 60A and the connecting iron core 60B.
  • the fourth electromagnetic steel plate 74 and the first electromagnetic steel plate 71 are in the same layer in the connecting iron core 60 ⁇ / b> A having the protrusion 81 toward the connecting iron core 60 ⁇ / b> B having the hole 82.
  • the steel plate 72 and the third electromagnetic steel plate 73 are moved in the circumferential direction so that they are in the same layer.
  • the third electromagnetic steel plate 73 of the layer L2 is inserted into a gap generated under the fourth electromagnetic steel plate 74 of the upper layer L1.
  • the projection 81 of the third electromagnetic steel plate 73 of the layer L2 protrudes from the circumferential end of the fourth electromagnetic steel plate 74 of the layer L1. It receives force on the opposite side and elastically deforms.
  • the protrusion 81 is gradually crushed by the circumferential end of the fourth electromagnetic steel plate 74 of the layer L1 that contacts the inclined surface of the protrusion 81. Go.
  • the circumferential end portion of the fourth electromagnetic steel plate 74 corresponds to the end 4C of the fourth electromagnetic steel plate 74 of the layer L1 shown in FIG.
  • the third electromagnetic steel plate 73 of the layer L4 is also inserted into the gap generated below the fourth electromagnetic steel plate 74 of the upper layer L3.
  • the third electromagnetic steel plate 73 can be easily inserted as compared with other methods such as press fitting.
  • the protrusion 81 of the third electromagnetic steel plate 73 of the layer L2 reaches the hole 82 of the fourth electromagnetic steel plate 74 of the layer L1, it returns to its original shape by the elastic force and fits into the hole 82.
  • the 3rd electromagnetic steel plate 73 of the layer L2 and the 4th electromagnetic steel plate 74 of the layer L1 are couple
  • the third electromagnetic steel plate 73 of the layer L4 and the fourth electromagnetic steel plate 74 of the layer L3 are also coupled in the same manner as the third electromagnetic steel plate 73 of the layer L2 and the fourth electromagnetic steel plate 74 of the layer L1.
  • the connecting iron core 60A does not move even when pulled toward the opposite side of the connecting iron core 60B, but can move if pushed toward the connecting iron core 60B.
  • the stator core 43 is shrink-fitted into the sealed container 20 of the compressor 12, a force that contracts the stator core 43 in the circumferential direction works.
  • the connecting core 60A is connected to the connecting core 60B. The force can be absorbed by moving toward. For this reason, the roundness of the inner diameter of the stator core 43 is easily obtained.
  • stress is not concentrated on the connecting portion when the stator core 43 is shrink-fitted, it is possible to avoid occurrence of iron loss in the connecting portion.
  • the combination with the steel plate 74 is laminated in the same direction. Since the protrusions 81 of any combination protrude in the same direction, at least in that direction, the connecting iron core 60A and the connecting iron core 60B are coupled by the two or more protrusions 81. Therefore, the coupling force between the connecting iron core 60A and the connecting iron core 60B is strong.
  • the connecting iron core 60 ⁇ / b> A and the connecting iron core 60 ⁇ / b> B correspond to divided portions of the stator core 43.
  • the hole 82 of the fourth electromagnetic steel plate 74 is provided in a layer different from the layer provided with the protrusion 81 of the third electromagnetic steel plate 73. Therefore, there is no need for welding, and the connecting core 60A and the connecting core 60B can be connected inexpensively and easily.
  • Each of the teeth 61 may have a structure in which a portion extending at a certain width and a tip are connected in the radial direction instead of being integrally formed.
  • the connecting method a method of connecting the connecting iron core 60A and the connecting iron core 60B can be used. That is, a method of fitting the projection 81 of the electromagnetic steel sheet into the hole 82 of another electromagnetic steel sheet can be used.
  • a combination of the first electromagnetic steel plate 71, the second electromagnetic steel plate 72, the third electromagnetic steel plate 73, and the fourth electromagnetic steel plate 74 is continuously laminated in the same direction. Between the combination of the second electromagnetic steel plate 72, the third electromagnetic steel plate 73, and the fourth electromagnetic steel plate 74, another combination of electromagnetic steel plates may be disposed. In the following, a difference from this embodiment will be mainly described for one of such examples.
  • stator core 43 which concerns on the modification of this Embodiment is demonstrated.
  • a combination of the fifth electromagnetic steel plate 75 and the sixth electromagnetic steel plate 76 is disposed between the combination of the first electromagnetic steel plate 71, the second electromagnetic steel plate 72, the third electromagnetic steel plate 73, and the fourth electromagnetic steel plate 74. Has been.
  • the connecting iron core 60A is a divided iron core 60 having a structure in which a first electromagnetic steel plate 71, a third electromagnetic steel plate 73, and a fifth electromagnetic steel plate 75 are laminated in the axial direction.
  • the connecting iron core 60A has a structure in which one first electromagnetic steel plate 71, one third electromagnetic steel plate 73, and two fifth electromagnetic steel plates 75 are sequentially arranged in the axial direction.
  • FIG. 12 shows a connecting portion of the first electromagnetic steel plate 71, the third electromagnetic steel plate 73, and the fifth electromagnetic steel plate 75 in any six consecutive layers L1 to L6.
  • the number of laminations of the first electromagnetic steel plate 71, the third electromagnetic steel plate 73, and the fifth electromagnetic steel plate 75 is preferably greater than six, but here, for convenience of explanation, only six layers L1 to L6 are shown. .
  • the connecting iron core 60B is a divided iron core 60 having a structure in which a second electromagnetic steel plate 72, a fourth electromagnetic steel plate 74, and a sixth electromagnetic steel plate 76 are laminated in the axial direction.
  • the connecting iron core 60B has a structure in which one fourth electromagnetic steel plate 74, one second electromagnetic steel plate 72, and two sixth electromagnetic steel plates 76 are sequentially arranged in the axial direction.
  • FIG. 12 shows a connecting portion of the second electromagnetic steel plate 72, the fourth electromagnetic steel plate 74, and the sixth electromagnetic steel plate 76 in the layers L1 to L6.
  • the number of laminations of the second electromagnetic steel plate 72, the fourth electromagnetic steel plate 74, and the sixth electromagnetic steel plate 76 is the same as the number of laminations of the first electromagnetic steel plate 71, the third electromagnetic steel plate 73, and the fifth electromagnetic steel plate 75.
  • the sixth electromagnetic steel plate 76 is adjacent to the fifth electromagnetic steel plate 75.
  • the number of gaps generated in the stacking direction at the connecting portion can be reduced.
  • Embodiment 2 FIG. In the present embodiment, differences from the first embodiment will be mainly described.
  • stator core 43 The configuration of the stator core 43 according to the present embodiment will be described with reference to FIGS.
  • the projection 81 of the third electromagnetic steel plate 73 and the hole 82 of the fourth electromagnetic steel plate 74 are both rectangular in plan view.
  • the projection 81 of the third electromagnetic steel plate 73 has a square shape in plan view
  • the hole 82 of the fourth electromagnetic steel plate 74 has a circular shape in plan view. It is desirable that the length of one side of the protrusion 81 is not more than ⁇ 2 times the radius R of the hole 82. In this embodiment, the length of one side is ⁇ 2 times the radius R of the hole 82, that is, ⁇ 2R.
  • the third electromagnetic steel plate 73 of the layer L2 is placed under the fourth electromagnetic steel plate 74 of the upper layer L1 as in the first embodiment. Inserted into the resulting gap.
  • the projection 81 of the third electromagnetic steel plate 73 of the layer L2 protrudes from the circumferential end of the fourth electromagnetic steel plate 74 of the layer L1. It receives force on the opposite side and elastically deforms.
  • the third electromagnetic steel plate 73 of the layer L4 is also inserted into the gap generated below the fourth electromagnetic steel plate 74 of the upper layer L3.
  • the protrusion 81 of the third electromagnetic steel plate 73 of the layer L2 reaches the hole 82 of the fourth electromagnetic steel plate 74 of the layer L1, it returns to its original shape by the elastic force and fits into the hole 82. Thereby, the 3rd electromagnetic steel plate 73 of the layer L2 and the 4th electromagnetic steel plate 74 of the layer L1 are couple
  • the third electromagnetic steel plate 73 of the layer L4 and the fourth electromagnetic steel plate 74 of the layer L3 are also coupled in the same manner as the third electromagnetic steel plate 73 of the layer L2 and the fourth electromagnetic steel plate 74 of the layer L1.
  • a combination of the first electromagnetic steel plate 71, the second electromagnetic steel plate 72, the third electromagnetic steel plate 73, and the fourth electromagnetic steel plate 74 is continuously laminated in the same direction. Between the combination of the second electromagnetic steel plate 72, the third electromagnetic steel plate 73, and the fourth electromagnetic steel plate 74, another combination of electromagnetic steel plates may be disposed. Specifically, as in the modification of the first embodiment, a combination of the first electromagnetic steel plate 71, the second electromagnetic steel plate 72, the third electromagnetic steel plate 73, and the fourth electromagnetic steel plate 74 is shown in FIG. Further, a combination of the fifth electromagnetic steel plate 75 and the sixth electromagnetic steel plate 76 may be arranged.
  • Embodiment 3 FIG. In the present embodiment, differences from the first embodiment will be mainly described.
  • stator core 43 Referring to FIG. 15, the configuration of the stator core 43 according to the present embodiment will be described.
  • the projection 81 of the third electromagnetic steel plate 73 is provided only at one location of the third electromagnetic steel plate 73, and the hole 82 of the fourth electromagnetic steel plate 74 is provided only at one location of the fourth electromagnetic steel plate 74. It has been.
  • the protrusions 81 of the third electromagnetic steel plate 73 are provided at a plurality of locations on the third electromagnetic steel plate 73, and the holes 82 of the fourth electromagnetic steel plate 74 are also provided at the plurality of locations on the fourth electromagnetic steel plate 74. Is provided. Specifically, the protrusions 81 are provided at two locations on the third electromagnetic steel plate 73, and the holes 82 are also provided at two locations on the fourth electromagnetic steel plate 74.
  • the third electromagnetic steel plate 73 of the layer L2 is placed under the fourth electromagnetic steel plate 74 of the upper layer L1 as in the first embodiment. Inserted into the resulting gap.
  • the two protrusions 81 of the third electromagnetic steel plate 73 of the layer L2 are axially arranged by the circumferential ends of the fourth electromagnetic steel plate 74 of the layer L1.
  • the projection 81 is elastically deformed by receiving a force on the side opposite to the side from which the projection 81 protrudes.
  • the third electromagnetic steel plate 73 of the layer L4 is also inserted into the gap generated below the fourth electromagnetic steel plate 74 of the upper layer L3.
  • the two protrusions 81 of the third electromagnetic steel sheet 73 of the layer L2 reach the corresponding holes 82 of the fourth electromagnetic steel sheet 74 of the layer L1, they return to the original shape by elastic force and fit into the corresponding holes 82. Thereby, the 3rd electromagnetic steel plate 73 of the layer L2 and the 4th electromagnetic steel plate 74 of the layer L1 are couple
  • the third electromagnetic steel plate 73 of the layer L4 and the fourth electromagnetic steel plate 74 of the layer L3 are also coupled in the same manner as the third electromagnetic steel plate 73 of the layer L2 and the fourth electromagnetic steel plate 74 of the layer L1.
  • the protrusions 81 of each layer are provided at a plurality of locations, the coupling force between the connecting iron core 60A and the connecting iron core 60B is increased.
  • a combination of the first electromagnetic steel plate 71, the second electromagnetic steel plate 72, the third electromagnetic steel plate 73, and the fourth electromagnetic steel plate 74 is continuously laminated in the same direction. Between the combination of the second electromagnetic steel plate 72, the third electromagnetic steel plate 73, and the fourth electromagnetic steel plate 74, another combination of electromagnetic steel plates may be disposed. Specifically, as in the modification of the first embodiment, a combination of the first electromagnetic steel plate 71, the second electromagnetic steel plate 72, the third electromagnetic steel plate 73, and the fourth electromagnetic steel plate 74 is shown in FIG. Further, a combination of the fifth electromagnetic steel plate 75 and the sixth electromagnetic steel plate 76 may be arranged.
  • Embodiment 4 FIG. In the present embodiment, differences from the first embodiment will be mainly described.
  • the stator core 43 has a structure in which a plurality of divided cores 60 are connected in the circumferential direction as in the first embodiment.
  • the number of divided cores 60 may be any number, but is nine in this embodiment.
  • Each divided iron core 60 has a structure in which teeth 61 and a back yoke 62 are connected in the radial direction, unlike the first embodiment.
  • the adjacent divided iron cores 60 are connected to each other by connecting the back yokes 62 to each other.
  • As a method for connecting the divided iron cores 60 the same method as in the first embodiment or any other method can be used.
  • the teeth 61 are connected to the inner side in the radial direction of the back yoke 62.
  • the teeth 61 extend from the root to the inside in the radial direction with a constant width, and have a shape in which the width is widened at the tip.
  • a winding 44 is wound around a portion of the tooth 61 extending at a certain width.
  • the stator core 43 has a structure in which nine teeth 61 and nine back yokes 62 are connected in the radial direction.
  • the stator core 43 may have an integral structure in the circumferential direction. That is, the stator core 43 may have a structure in which nine separately formed teeth 61 and one integrally formed back yoke 62 are connected.
  • the number of teeth 61 may be appropriately changed in the same manner as the number of divided iron cores 60.
  • each divided iron core 60 is divided into a tooth 61 and a back yoke 62, and a magnetic steel sheet having a low iron loss is selectively used for the teeth 61 in which the magnetic flux density is increased.
  • the teeth 61 and the back yoke 62 made of different electromagnetic steel plates need to be coupled with a strong coupling force so that the sound vibration generated at the coupling point does not become a problem.
  • FIG. 17, FIG. 18, FIG. 19 and FIG. 20 the structure of the electromagnetic steel sheet forming the teeth 61 and the back yoke 62 will be described.
  • Each tooth 61 is a divided piece having a structure in which a first electromagnetic steel plate 71 and a third electromagnetic steel plate 73 are laminated in the axial direction.
  • Each of the teeth 61 may have a structure in which only the first electromagnetic steel plate 71 and the third electromagnetic steel plate 73 are laminated, but in the present embodiment, the first electromagnetic steel plate 71, the third electromagnetic steel plate 73, and the first The sixth electromagnetic steel plate 76 and the eighth electromagnetic steel plate 78 are laminated.
  • each tooth 61 is composed of one first electromagnetic steel plate 71, one third electromagnetic steel plate 73, one eighth electromagnetic steel plate 78, and one sixth electromagnetic steel plate 76 in order.
  • the structure is arranged in the axial direction. FIG.
  • FIG. 17 shows the shape of the first electromagnetic steel plate 71 and shows an enlarged connection portion of the first electromagnetic steel plate 71.
  • FIG. 18 shows the shape of the third electromagnetic steel sheet 73 and also shows an enlarged connection portion of the third electromagnetic steel sheet 73.
  • FIG. 19 shows a connecting portion of the first electromagnetic steel plate 71, the third electromagnetic steel plate 73, the sixth electromagnetic steel plate 76, and the eighth electromagnetic steel plate 78 in any four consecutive layers L1 to L4.
  • the number of laminations of the first electromagnetic steel plate 71, the third electromagnetic steel plate 73, the sixth electromagnetic steel plate 76, and the eighth electromagnetic steel plate 78 is preferably more than four.
  • the four layers L1 to L1 are used. Only L4 is shown.
  • FIG. 20 shows six layers L1 to L6 including the layers L1 to L4.
  • Each back yoke 62 is a divided piece having a structure in which a second electromagnetic steel plate 72 and a fourth electromagnetic steel plate 74 are laminated in the axial direction.
  • Each back yoke 62 may have a structure in which only the second electromagnetic steel plate 72 and the fourth electromagnetic steel plate 74 are laminated, but in the present embodiment, the second electromagnetic steel plate 72, the fourth electromagnetic steel plate 74, The fifth electromagnetic steel plate 75 and the seventh electromagnetic steel plate 77 are laminated.
  • each back yoke 62 has one fourth electromagnetic steel plate 74, one second electromagnetic steel plate 72, one fifth electromagnetic steel plate 75, and one seventh electromagnetic steel plate 77 in order. It has a structure that is repeatedly arranged in the axial direction.
  • FIG. 17 shows the shape of the fourth electromagnetic steel plate 74 and shows an enlarged connection portion of the fourth electromagnetic steel plate 74.
  • FIG. 18 shows the shape of the second electromagnetic steel plate 72 and shows an enlarged connection portion of the second electromagnetic steel plate 72.
  • FIG. 19 shows a connecting portion of the second electromagnetic steel plate 72, the fourth electromagnetic steel plate 74, the fifth electromagnetic steel plate 75, and the seventh electromagnetic steel plate 77 in the layers L1 to L4.
  • the number of laminations of the second electromagnetic steel plate 72 and the fourth electromagnetic steel plate 74 is the same as the number of laminations of the second electromagnetic steel plate 72, the fourth electromagnetic steel plate 74, the fifth electromagnetic steel plate 75, and the seventh electromagnetic steel plate 77.
  • the first electromagnetic steel plate 71 is an electromagnetic steel plate having a lower iron loss than the second electromagnetic steel plate 72, the fourth electromagnetic steel plate 74, the fifth electromagnetic steel plate 75, and the seventh electromagnetic steel plate 77.
  • the third electromagnetic steel plate 73 is an electromagnetic steel plate having lower iron loss than the second electromagnetic steel plate 72, the fourth electromagnetic steel plate 74, the fifth electromagnetic steel plate 75, and the seventh electromagnetic steel plate 77, similarly to the first electromagnetic steel plate 71. .
  • the third electromagnetic steel plate 73 includes a portion 3 ⁇ / b> A that overlaps the first electromagnetic steel plate 71, and a portion 3 ⁇ / b> B that is provided with a protrusion 81 and protrudes outward from the first electromagnetic steel plate 71.
  • the third electromagnetic steel plate 73 is adjacent to the second electromagnetic steel plate 72 at the end 3C that protrudes outward from the first electromagnetic steel plate 71. ing.
  • the protrusion 81 of the third electromagnetic steel sheet 73 is the same as that of the first embodiment.
  • the fourth electromagnetic steel plate 74 has a portion 4A that overlaps with the second electromagnetic steel plate 72, and a portion 4B that is provided with a hole 82 and protrudes outward from the second electromagnetic steel plate 72.
  • the fourth electromagnetic steel plate 74 is adjacent to the first electromagnetic steel plate 71 at the end 4C protruding beyond the second electromagnetic steel plate 72. ing.
  • the hole 82 of the fourth electromagnetic steel sheet 74 is the same as that of the first embodiment.
  • the projections 81 of the third electromagnetic steel plate 73 are fitted in the holes 82. Accordingly, at least in the direction in which the protrusions 81 protrude, the teeth 61 and the corresponding back yokes 62 are coupled by the same number of protrusions 81 as the number of the third electromagnetic steel plates 73. Therefore, the greater the number of protrusions 81, the stronger the bonding force between the teeth 61 and the back yoke 62.
  • the fifth electromagnetic steel plate 75 is a part of each back yoke 62. Therefore, when each tooth 61 and the corresponding back yoke 62 are connected, the fifth electromagnetic steel plate 75 is the second of the side having the first electromagnetic steel plate 71 and the side having the second electromagnetic steel plate 72. It arrange
  • the sixth electromagnetic steel plate 76 is an electromagnetic steel plate having a lower iron loss than the second electromagnetic steel plate 72, the fourth electromagnetic steel plate 74, the fifth electromagnetic steel plate 75, and the seventh electromagnetic steel plate 77, similarly to the first electromagnetic steel plate 71. .
  • the sixth electromagnetic steel plate 76 is a part of each tooth 61. Therefore, when each tooth 61 and the corresponding back yoke 62 are connected, the sixth electromagnetic steel plate 76 is the first of the side having the first electromagnetic steel plate 71 and the side having the second electromagnetic steel plate 72. It arrange
  • the seventh electromagnetic steel plate 77 has a portion 7A that overlaps with the fifth electromagnetic steel plate 75 and a portion 7B that is provided with a protrusion 81 and protrudes outward from the fifth electromagnetic steel plate 75.
  • the seventh electromagnetic steel plate 77 is adjacent to the sixth electromagnetic steel plate 76 at the end 7C protruding outward from the fifth electromagnetic steel plate 75. ing.
  • the projection 83 of the seventh electromagnetic steel plate 77 has elasticity.
  • the protrusion 83 extends obliquely in a direction approaching the fifth electromagnetic steel plate 75.
  • the protrusion 83 may be formed by any method, but in the present embodiment, the protrusion 83 is formed by cutting and raising a part of the seventh electromagnetic steel plate 77.
  • the protrusion 83 may have an arbitrary shape, but in the present embodiment, the protrusion 83 has a rectangular shape in plan view.
  • the eighth electromagnetic steel plate 78 has a portion 8A overlapping the sixth electromagnetic steel plate 76 and a portion 8B provided with a hole 84 and protruding outward from the sixth electromagnetic steel plate 76.
  • the end 8C of the eighth electromagnetic steel plate 78 protruding outward from the sixth electromagnetic steel plate 76 is adjacent to the fifth electromagnetic steel plate 75. ing.
  • the hole 84 of the eighth electromagnetic steel plate 78 may have an arbitrary shape, but in the present embodiment, it has a rectangular shape in plan view.
  • a projection 83 of a seventh electromagnetic steel plate 77 is fitted in the hole 84.
  • each tooth 61 and the corresponding back yoke 62 are coupled by the same number of protrusions 83 as the number of the seventh electromagnetic steel plates 77. Therefore, as the number of the protrusions 83 increases, the coupling force between each tooth 61 and the corresponding back yoke 62 increases.
  • the teeth 61 having the protrusions 81 and the holes 84 are formed in the same layer as the fourth electromagnetic steel sheet 74 and the first electromagnetic steel sheet 71 toward the back yoke 62 having the holes 82 and the protrusions 83.
  • the third electromagnetic steel plate 73 are in the same layer
  • the fifth electromagnetic steel plate 75 and the eighth electromagnetic steel plate 78 are in the same layer
  • the seventh electromagnetic steel plate 77 and the sixth electromagnetic steel plate 76 are in the same layer.
  • the third electromagnetic steel plate 73 of the layer L2 is inserted into a gap generated under the fourth electromagnetic steel plate 74 of the upper layer L1.
  • the projection 81 of the third electromagnetic steel plate 73 of the layer L2 protrudes from the radial end of the fourth electromagnetic steel plate 74 of the layer L1. It receives force on the opposite side and elastically deforms.
  • the protrusion 81 is gradually crushed by the radial end of the fourth electromagnetic steel plate 74 of the layer L1 that contacts the inclined surface of the protrusion 81. Go.
  • the radial direction end of the fourth electromagnetic steel plate 74 corresponds to the end 4C of the fourth electromagnetic steel plate 74 of the layer L1 shown in FIG.
  • the third electromagnetic steel plate 73 of the layer L6 is also inserted into the gap generated under the fourth electromagnetic steel plate 74 of the upper layer L5.
  • the seventh electromagnetic steel plate 77 of the layer L4 is inserted into a gap generated below the eighth electromagnetic steel plate 78 of the upper layer L3.
  • the projection 83 of the seventh electromagnetic steel plate 77 of the layer L4 protrudes from the radial projection of the eighth electromagnetic steel plate 78 of the layer L3. It receives force on the opposite side and elastically deforms.
  • the protrusion 83 is gradually crushed by the radial end of the eighth electromagnetic steel plate 78 of the layer L3 that contacts the inclined surface of the protrusion 83.
  • the radial direction end of the eighth electromagnetic steel plate 78 corresponds to the end 8C of the eighth electromagnetic steel plate 78 of the layer L3 shown in FIG.
  • both the projection 81 of the third electromagnetic steel plate 73 and the projection 83 of the seventh electromagnetic steel plate 77 are elastically deformed, so that it is easier than the other methods such as press-fitting.
  • the third electromagnetic steel plate 73 and the seventh electromagnetic steel plate 77 can be inserted.
  • the protrusion 81 of the third electromagnetic steel plate 73 of the layer L2 reaches the hole 82 of the fourth electromagnetic steel plate 74 of the layer L1, it returns to its original shape by the elastic force and fits into the hole 82. Thereby, the 3rd electromagnetic steel plate 73 of the layer L2 and the 4th electromagnetic steel plate 74 of the layer L1 are couple
  • the third electromagnetic steel plate 73 of the layer L6 and the fourth electromagnetic steel plate 74 of the layer L5 are also coupled in the same manner as the third electromagnetic steel plate 73 of the layer L2 and the fourth electromagnetic steel plate 74 of the layer L1.
  • the projection 83 of the seventh electromagnetic steel plate 77 of the layer L4 reaches the hole 84 of the eighth electromagnetic steel plate 78 of the layer L3, it returns to its original shape by the elastic force and fits into the hole 84. Thereby, the seventh electromagnetic steel plate 77 of the layer L4 and the eighth electromagnetic steel plate 78 of the layer L3 are also coupled.
  • the combination with the steel plate 74 is laminated in the same direction.
  • the electromagnetic steel sheet forming the teeth 61 may be an electromagnetic steel sheet with low iron loss. That is, the second electromagnetic steel plate 72 and the fourth electromagnetic steel plate 74 may be electromagnetic steel plates with low iron loss, like the first electromagnetic steel plate 71 and the third electromagnetic steel plate 73.
  • another combination of electromagnetic steel sheets may be arranged.
  • the combination of the fifth electromagnetic steel plate 75 and the sixth electromagnetic steel plate 76 shown in FIG. 12 is arranged between the combination of the sixth electromagnetic steel plate 76, the seventh electromagnetic steel plate 77, and the eighth electromagnetic steel plate 78. Also good.
  • Embodiment 5 FIG. In the present embodiment, differences from the fourth embodiment will be mainly described.
  • stator core 43 The configuration of the stator core 43 according to the present embodiment will be described with reference to FIGS.
  • the projection 83 of the seventh electromagnetic steel plate 77 protrudes on the same side as the side from which the projection 81 of the third electromagnetic steel plate 73 protrudes in the stacking direction.
  • the protrusion 83 of the seventh electromagnetic steel plate 77 protrudes on the side opposite to the side where the protrusion 81 of the third electromagnetic steel plate 73 protrudes in the stacking direction.
  • the positional relationship between the fifth electromagnetic steel plate 75 and the seventh electromagnetic steel plate 77 and the positional relationship between the sixth electromagnetic steel plate 76 and the eighth electromagnetic steel plate 78 are opposite to those in the fourth embodiment. .
  • the third electromagnetic steel plate 73 of the layer L2 is connected to the fourth electromagnetic of the layer L1 that is one layer higher, as in the fourth embodiment. It is inserted into a gap generated under the steel plate 74.
  • the projection 81 of the third electromagnetic steel plate 73 of the layer L2 protrudes from the radial end of the fourth electromagnetic steel plate 74 of the layer L1. It receives force on the opposite side and elastically deforms.
  • the third electromagnetic steel plate 73 of the layer L6 is also inserted into the gap generated below the fourth electromagnetic steel plate 74 of the upper layer L5.
  • the seventh electromagnetic steel plate 77 of the layer L3 is inserted into a gap generated on the eighth electromagnetic steel plate 78 of the next lower layer L4.
  • the projection 83 of the seventh electromagnetic steel plate 77 of the layer L3 protrudes from the radial projection of the eighth electromagnetic steel plate 78 of the layer L4. It receives force on the opposite side and elastically deforms.
  • the protrusion 83 is gradually crushed by the radial end of the eighth electromagnetic steel plate 78 of the layer L4 that contacts the inclined surface of the protrusion 83.
  • the radial direction end portion of the eighth electromagnetic steel plate 78 corresponds to the end 8C of the eighth electromagnetic steel plate 78 of the layer L4 shown in FIG.
  • the protrusion 81 of the third electromagnetic steel plate 73 of the layer L2 reaches the hole 82 of the fourth electromagnetic steel plate 74 of the layer L1, it returns to its original shape by the elastic force and fits into the hole 82. Thereby, the 3rd electromagnetic steel plate 73 of the layer L2 and the 4th electromagnetic steel plate 74 of the layer L1 are couple
  • the third electromagnetic steel plate 73 of the layer L6 and the fourth electromagnetic steel plate 74 of the layer L5 are also coupled in the same manner as the third electromagnetic steel plate 73 of the layer L2 and the fourth electromagnetic steel plate 74 of the layer L1.
  • the protrusion 83 of the seventh electromagnetic steel plate 77 of the layer L3 reaches the hole 84 of the eighth electromagnetic steel plate 78 of the layer L4, it returns to its original shape by the elastic force and fits into the hole 84. Thereby, the seventh electromagnetic steel plate 77 of the layer L3 and the eighth electromagnetic steel plate 78 of the layer L4 are also coupled.
  • the protrusion 81 of the tooth 61 and the protrusion 83 of the back yoke 62 protrude in directions different by 180 degrees. Therefore, when the tooth 61 and the back yoke 62 are connected, the protrusion 81 of the tooth 61 and the protrusion 83 of the back yoke 62 are unlikely to interfere with each other.

Abstract

A connecting iron core (60A) is a divided iron core having a structure wherein a first electromagnetic steel sheet (71) and a third electromagnetic steel sheet (73) are laminated in the axis direction. A connecting ion core (60B) is a divided iron core having a structure wherein a second electromagnetic steel sheet (72) and a fourth electromagnetic steel sheet (74) are laminated in the axis direction. The third electromagnetic steel sheet (73) has: a portion overlapping the first electromagnetic steel sheet (71); and a portion, which is provided with an elastic protrusion (81) diagonally extending in the direction to be close to the first electromagnetic steel sheet (71), and which is protruding further toward the outside than the first electromagnetic steel sheet (71). The fourth electromagnetic steel sheet (74) has: a portion overlapping the second electromagnetic steel sheet (72); and a portion 4B, which is provided with a hole (82), and which is protruding further toward the outside than the second electromagnetic steel sheet (72). When the connecting iron core (60A) and the connecting iron core (60B) are connected to each other, the protrusion (81) is fitted in the hole (82).

Description

固定子鉄心、圧縮機及び冷凍サイクル装置Stator core, compressor and refrigeration cycle device
 本発明は、固定子鉄心、圧縮機及び冷凍サイクル装置に関するものである。 The present invention relates to a stator core, a compressor, and a refrigeration cycle apparatus.
 複数の分割鉄心を連結することでモータの固定子鉄心を製造する方法として、特許文献1に記載の技術が知られている。この技術では、各分割鉄心の一方の分割境界部に凸部が形成され、他方の分割境界部に凹部が形成される。連結される2個の分割鉄心のうち、一方の分割鉄心の凸部には、積厚方向に突き出した係止片と、他方の分割鉄心の凹部に形成された係止片を収納するための係止溝とが形成される。一方の分割鉄心の凹部には、積厚方向に突き出した係止片と、他方の分割鉄心の凸部に形成された係止片を収納するための係止溝とが形成される。一方の分割鉄心の凸部を他方の分割鉄心の凹部に嵌め、他方の分割鉄心の凸部を一方の分割鉄心の凹部に嵌めることで、各凸部に形成された係止片が各凹部に形成された係止溝に収納され、両方の分割鉄心が連結される。 As a method of manufacturing a stator core of a motor by connecting a plurality of divided cores, a technique described in Patent Document 1 is known. In this technique, a convex part is formed in one division | segmentation boundary part of each division | segmentation iron core, and a recessed part is formed in the other division | segmentation boundary part. Of the two split cores to be connected, the convex part of one split core stores the locking piece protruding in the stacking direction and the locking piece formed in the concave part of the other split core. A locking groove is formed. A locking piece protruding in the stacking direction and a locking groove for receiving the locking piece formed on the convex part of the other divided core are formed in the concave portion of one divided core. By fitting the convex part of one split iron core into the concave part of the other split iron core and fitting the convex part of the other split iron core into the concave part of one split iron core, the locking piece formed on each convex part is in each concave part It is accommodated in the formed locking groove, and both split iron cores are connected.
特開2009-118676号公報JP 2009-118676 A
 特許文献1に記載の技術では、分割鉄心の連結箇所ごとに、別々の方向に突き出した2個の係止片が係止溝に収納される。即ち、1つ1つの方向においては、1個の係止片のみによって分割鉄心同士が結合される。したがって、分割鉄心同士の結合力が弱い。 In the technique described in Patent Document 1, two locking pieces protruding in different directions are accommodated in the locking groove for each connection portion of the split iron core. That is, in each one direction, the divided iron cores are coupled together by only one locking piece. Therefore, the bonding force between the split iron cores is weak.
 本発明は、固定子鉄心の分割された部分同士の結合力を高めることを目的とする。 The present invention aims to increase the bonding force between the divided parts of the stator core.
 本発明の一態様に係る固定子鉄心は、
 第1電磁鋼板と、
 第2電磁鋼板と、
 前記第1電磁鋼板と重なっている部分と、弾性を持ち前記第1電磁鋼板に近づく方向に斜めに延びる突起が設けられ、前記第1電磁鋼板よりも外側に突き出している部分とを有し、前記第1電磁鋼板よりも外側に突き出した先の端が前記第2電磁鋼板と隣接している第3電磁鋼板と、
 前記第2電磁鋼板と重なっている部分と、前記第3電磁鋼板の突起が嵌っている穴が設けられ、前記第2電磁鋼板よりも外側に突き出している部分とを有し、前記第2電磁鋼板よりも外側に突き出した先の端が前記第1電磁鋼板と隣接している第4電磁鋼板とを備え、
 前記第1電磁鋼板と前記第2電磁鋼板と前記第3電磁鋼板と前記第4電磁鋼板との組み合わせが同じ向きで積層されている。
The stator core according to one aspect of the present invention is:
A first electromagnetic steel sheet;
A second electromagnetic steel sheet;
A portion overlapping with the first electromagnetic steel sheet, and a protrusion having an elasticity and extending obliquely in a direction approaching the first electromagnetic steel sheet, and a portion protruding outward from the first electromagnetic steel sheet; A third electromagnetic steel sheet having a tip end protruding outward from the first electromagnetic steel sheet and adjacent to the second electromagnetic steel sheet;
A portion overlapping with the second electromagnetic steel plate, and a portion provided with a hole into which a protrusion of the third electromagnetic steel plate is fitted, and a portion protruding outward from the second electromagnetic steel plate; A fourth electromagnetic steel sheet having a tip end protruding outward from the steel sheet and adjacent to the first electromagnetic steel sheet;
A combination of the first electromagnetic steel plate, the second electromagnetic steel plate, the third electromagnetic steel plate, and the fourth electromagnetic steel plate is laminated in the same direction.
 本発明では、第1電磁鋼板と、第2電磁鋼板と、突起のある第3電磁鋼板と、第3電磁鋼板の突起が嵌っている穴のある第4電磁鋼板との組み合わせが同じ向きで積層されている。即ち、少なくとも1つの方向においては、2個以上の突起によって固定子鉄心の分割された部分同士が結合されている。したがって、固定子鉄心の分割された部分同士の結合力が強い。 In the present invention, the combination of the first electromagnetic steel plate, the second electromagnetic steel plate, the third electromagnetic steel plate with the projection, and the fourth electromagnetic steel plate with the hole into which the projection of the third electromagnetic steel plate is fitted is laminated in the same direction. Has been. That is, in at least one direction, the divided portions of the stator core are joined by two or more protrusions. Therefore, the binding force between the divided parts of the stator core is strong.
実施の形態1に係る冷凍サイクル装置の回路図。1 is a circuit diagram of a refrigeration cycle apparatus according to Embodiment 1. FIG. 実施の形態1に係る冷凍サイクル装置の回路図。1 is a circuit diagram of a refrigeration cycle apparatus according to Embodiment 1. FIG. 実施の形態1に係る圧縮機の縦断面図。1 is a longitudinal sectional view of a compressor according to Embodiment 1. FIG. 実施の形態1に係る固定子鉄心の平面図。FIG. 3 is a plan view of the stator core according to the first embodiment. 実施の形態1に係る分割鉄心を形成する電磁鋼板の平面図及び部分拡大図。The top view and partial enlarged view of an electromagnetic steel sheet which form the split iron core which concerns on Embodiment 1. FIG. 実施の形態1に係る分割鉄心を形成する電磁鋼板の平面図及び部分拡大図。The top view and partial enlarged view of an electromagnetic steel sheet which form the split iron core which concerns on Embodiment 1. FIG. 実施の形態1に係る分割鉄心の部分横断面図。FIG. 3 is a partial cross-sectional view of the split iron core according to the first embodiment. 実施の形態1に係る分割鉄心を連結する手順を示す部分横断面図及び部分縦断面図。The partial cross-sectional view and the partial longitudinal cross-sectional view which show the procedure which connects the split iron core which concerns on Embodiment 1. FIG. 実施の形態1に係る分割鉄心を連結する手順を示す部分横断面図及び部分縦断面図。The partial cross-sectional view and the partial longitudinal cross-sectional view which show the procedure which connects the split iron core which concerns on Embodiment 1. FIG. 実施の形態1に係る分割鉄心を連結する手順を示す部分横断面図及び部分縦断面図。The partial cross-sectional view and the partial longitudinal cross-sectional view which show the procedure which connects the split iron core which concerns on Embodiment 1. FIG. 実施の形態1に係る分割鉄心を連結する手順を示す部分横断面図及び部分縦断面図。The partial cross-sectional view and the partial longitudinal cross-sectional view which show the procedure which connects the split iron core which concerns on Embodiment 1. FIG. 実施の形態1の変形例に係る分割鉄心の部分横断面図及び部分縦断面図。FIG. 6 is a partial cross-sectional view and a partial vertical cross-sectional view of a split iron core according to a modification of the first embodiment. 実施の形態2に係る分割鉄心の部分横断面図。FIG. 6 is a partial cross-sectional view of a split iron core according to a second embodiment. 実施の形態2に係る分割鉄心を形成する電磁鋼板の穴及び突起の平面図。The top view of the hole and protrusion of an electromagnetic steel plate which form the split iron core which concerns on Embodiment 2. FIG. 実施の形態3に係る固定子鉄心の分割片の部分横断面図。FIG. 6 is a partial cross-sectional view of a split piece of a stator core according to a third embodiment. 実施の形態4に係る固定子鉄心の平面図。FIG. 6 is a plan view of a stator core according to a fourth embodiment. 実施の形態4に係る固定子鉄心の分割片を形成する電磁鋼板の平面図及び部分拡大図。The top view and partial enlarged view of the electromagnetic steel plate which form the division | segmentation piece of the stator core which concerns on Embodiment 4. FIG. 実施の形態4に係る固定子鉄心の分割片を形成する電磁鋼板の平面図及び部分拡大図。The top view and partial enlarged view of the electromagnetic steel plate which form the division | segmentation piece of the stator core which concerns on Embodiment 4. FIG. 実施の形態4に係る固定子鉄心の分割片の部分横断面図。FIG. 10 is a partial cross-sectional view of a split piece of a stator core according to a fourth embodiment. 実施の形態4に係る固定子鉄心の分割片の部分横断面図及び部分縦断面図。FIG. 6 is a partial cross-sectional view and a partial vertical cross-sectional view of a split piece of a stator core according to a fourth embodiment. 実施の形態5に係る固定子鉄心の分割片の部分横断面図。FIG. 10 is a partial cross-sectional view of a split piece of a stator core according to a fifth embodiment. 実施の形態5に係る固定子鉄心の分割片の部分横断面図及び部分縦断面図。FIG. 10 is a partial cross-sectional view and a partial vertical cross-sectional view of a split piece of a stator core according to a fifth embodiment.
 以下、本発明の実施の形態について、図を用いて説明する。なお、各図中、同一又は相当する部分には、同一符号を付している。実施の形態の説明において、同一又は相当する部分については、その説明を適宜省略又は簡略化する。装置、器具、部品等の構成について、その材質、形状、大きさ等は、本発明の範囲内で適宜変更することができる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the part which is the same or it corresponds in each figure. In the description of the embodiments, the description of the same or corresponding parts will be omitted or simplified as appropriate. About the structure of an apparatus, an instrument, components, etc., the material, shape, size, etc. can be suitably changed within the scope of the present invention.
 実施の形態1.
 図1及び図2を参照して、本実施の形態に係る冷凍サイクル装置10の構成を説明する。
Embodiment 1 FIG.
With reference to FIG.1 and FIG.2, the structure of the refrigerating-cycle apparatus 10 which concerns on this Embodiment is demonstrated.
 図1は、冷房運転時の冷媒回路11を示している。図2は、暖房運転時の冷媒回路11を示している。 FIG. 1 shows the refrigerant circuit 11 during the cooling operation. FIG. 2 shows the refrigerant circuit 11 during heating operation.
 冷凍サイクル装置10は、本実施の形態では、空気調和機であるが、冷蔵庫、ヒートポンプサイクル装置といった空気調和機以外の装置であってもよい。 The refrigeration cycle apparatus 10 is an air conditioner in the present embodiment, but may be an apparatus other than an air conditioner such as a refrigerator or a heat pump cycle apparatus.
 冷凍サイクル装置10は、冷媒が循環する冷媒回路11を備える。冷凍サイクル装置10は、さらに、圧縮機12と、四方弁13と、室外熱交換器である第1熱交換器14と、膨張弁である膨張機構15と、室内熱交換器である第2熱交換器16とを備える。圧縮機12と、四方弁13と、第1熱交換器14と、膨張機構15と、第2熱交換器16は、冷媒回路11に接続されている。 The refrigeration cycle apparatus 10 includes a refrigerant circuit 11 in which a refrigerant circulates. The refrigeration cycle apparatus 10 further includes a compressor 12, a four-way valve 13, a first heat exchanger 14 that is an outdoor heat exchanger, an expansion mechanism 15 that is an expansion valve, and a second heat that is an indoor heat exchanger. And an exchanger 16. The compressor 12, the four-way valve 13, the first heat exchanger 14, the expansion mechanism 15, and the second heat exchanger 16 are connected to the refrigerant circuit 11.
 圧縮機12は、冷媒を圧縮する。四方弁13は、冷房運転時と暖房運転時とで冷媒の流れる方向を切り換える。第1熱交換器14は、冷房運転時には凝縮器として動作し、圧縮機12により圧縮された冷媒を放熱させる。即ち、第1熱交換器14は、圧縮機12により圧縮された冷媒を用いて熱交換を行う。第1熱交換器14は、暖房運転時には蒸発器として動作し、室外空気と膨張機構15で膨張した冷媒との間で熱交換を行って冷媒を加熱する。膨張機構15は、凝縮器で放熱した冷媒を膨張させる。第2熱交換器16は、暖房運転時には凝縮器として動作し、圧縮機12により圧縮された冷媒を放熱させる。即ち、第2熱交換器16は、圧縮機12により圧縮された冷媒を用いて熱交換を行う。第2熱交換器16は、冷房運転時には蒸発器として動作し、室内空気と膨張機構15で膨張した冷媒との間で熱交換を行って冷媒を加熱する。 Compressor 12 compresses the refrigerant. The four-way valve 13 switches the direction in which the refrigerant flows between the cooling operation and the heating operation. The first heat exchanger 14 operates as a condenser during the cooling operation, and dissipates the refrigerant compressed by the compressor 12. That is, the first heat exchanger 14 performs heat exchange using the refrigerant compressed by the compressor 12. The first heat exchanger 14 operates as an evaporator during the heating operation, and heats the refrigerant by exchanging heat between the outdoor air and the refrigerant expanded by the expansion mechanism 15. The expansion mechanism 15 expands the refrigerant radiated by the condenser. The second heat exchanger 16 operates as a condenser during the heating operation, and dissipates heat from the refrigerant compressed by the compressor 12. That is, the second heat exchanger 16 performs heat exchange using the refrigerant compressed by the compressor 12. The second heat exchanger 16 operates as an evaporator during the cooling operation, and heats the refrigerant by exchanging heat between the indoor air and the refrigerant expanded by the expansion mechanism 15.
 冷凍サイクル装置10は、さらに、制御装置17を備える。 The refrigeration cycle apparatus 10 further includes a control device 17.
 制御装置17は、具体的には、マイクロコンピュータである。図1及び図2では、制御装置17と圧縮機12との接続しか示していないが、制御装置17は、圧縮機12だけでなく、冷媒回路11に接続された各要素に接続される。制御装置17は、各要素の状態を監視したり、制御したりする。 The control device 17 is specifically a microcomputer. 1 and 2 show only the connection between the control device 17 and the compressor 12, the control device 17 is connected not only to the compressor 12 but also to each element connected to the refrigerant circuit 11. The control device 17 monitors and controls the state of each element.
 冷媒回路11を循環する冷媒としては、R32冷媒、R290(プロパン)冷媒、R407C冷媒、R410A冷媒、R744(CO2)冷媒、R1234yf冷媒等、任意の冷媒を使用することができる。 As the refrigerant circulating in the refrigerant circuit 11, any refrigerant such as R32 refrigerant, R290 (propane) refrigerant, R407C refrigerant, R410A refrigerant, R744 (CO2) refrigerant, R1234yf refrigerant, or the like can be used.
 図3を参照して、本実施の形態に係る圧縮機12の構成を説明する。 The configuration of the compressor 12 according to the present embodiment will be described with reference to FIG.
 図3は、圧縮機12の縦断面を示している。 FIG. 3 shows a longitudinal section of the compressor 12.
 圧縮機12は、本実施の形態では、密閉型圧縮機である。圧縮機12は、具体的には、1シリンダのロータリ圧縮機であるが、2シリンダ以上のロータリ圧縮機、スクロール圧縮機、或いは、レシプロ圧縮機であってもよい。 The compressor 12 is a hermetic compressor in the present embodiment. The compressor 12 is specifically a one-cylinder rotary compressor, but may be a two-cylinder or more rotary compressor, a scroll compressor, or a reciprocating compressor.
 圧縮機12は、密閉容器20と、圧縮機構30と、モータ40と、クランク軸50とを備える。 The compressor 12 includes a sealed container 20, a compression mechanism 30, a motor 40, and a crankshaft 50.
 密閉容器20には、冷媒を吸入するための吸入管21と、冷媒を吐出するための吐出管22とが取り付けられている。 The sealed container 20 is provided with a suction pipe 21 for sucking refrigerant and a discharge pipe 22 for discharging refrigerant.
 圧縮機構30は、密閉容器20に収納されている。具体的には、圧縮機構30は、密閉容器20の内側下部に設置されている。圧縮機構30は、モータ40によって駆動される。圧縮機構30は、吸入管21に吸入された冷媒を圧縮する。 The compression mechanism 30 is accommodated in the sealed container 20. Specifically, the compression mechanism 30 is installed in the lower part inside the sealed container 20. The compression mechanism 30 is driven by a motor 40. The compression mechanism 30 compresses the refrigerant sucked into the suction pipe 21.
 モータ40も、密閉容器20に収納されている。具体的には、モータ40は、密閉容器20の内側上部に設置されている。モータ40は、本実施の形態では、集中巻のモータであるが、分布巻のモータであってもよい。 The motor 40 is also housed in the sealed container 20. Specifically, the motor 40 is installed in the upper part inside the sealed container 20. In this embodiment, the motor 40 is a concentrated winding motor, but may be a distributed winding motor.
 密閉容器20の底部には、圧縮機構30の各摺動部を潤滑するための冷凍機油が貯留されている。冷凍機油は、クランク軸50の回転に伴い、クランク軸50の下部に設けられたオイルポンプによって汲み上げられ、圧縮機構30の各摺動部へ供給される。冷凍機油としては、合成油であるPOE(ポリオールエステル)、PVE(ポリビニルエーテル)、AB(アルキルベンゼン)等が使用される。 Refrigerator oil for lubricating the sliding portions of the compression mechanism 30 is stored at the bottom of the sealed container 20. As the crankshaft 50 rotates, the refrigeration oil is pumped up by an oil pump provided at the lower portion of the crankshaft 50 and supplied to each sliding portion of the compression mechanism 30. As the refrigerating machine oil, synthetic oils such as POE (polyol ester), PVE (polyvinyl ether), and AB (alkylbenzene) are used.
 以下では、モータ40の詳細を説明する。 Hereinafter, details of the motor 40 will be described.
 モータ40は、本実施の形態では、ブラシレスDC(Direct・Current)モータであるが、誘導電動機等、ブラシレスDCモータ以外のモータであってもよい。 In the present embodiment, the motor 40 is a brushless DC (Direct Current) motor, but may be a motor other than a brushless DC motor, such as an induction motor.
 モータ40は、固定子41と、回転子42とを備える。 The motor 40 includes a stator 41 and a rotor 42.
 固定子41は、円筒状であり、密閉容器20の内周面に接するように固定されている。回転子42は、円柱状であり、固定子41の内側に0.3ミリメートルから1.0ミリメートルの空隙を介して設置されている。 The stator 41 has a cylindrical shape and is fixed so as to be in contact with the inner peripheral surface of the sealed container 20. The rotor 42 has a cylindrical shape, and is installed inside the stator 41 via a gap of 0.3 mm to 1.0 mm.
 固定子41は、固定子鉄心43と、巻線44とを備える。固定子鉄心43は、鉄を主成分とする、厚さが0.1ミリメートルから1.5ミリメートルの複数枚の電磁鋼板を一定の形状に打ち抜き、軸方向に積層し、カシメ又は溶接等により固定して製作される。固定子鉄心43は、外径が密閉容器20の中間部の内径よりも大きく、密閉容器20の内側に焼き嵌めされて固定されている。巻線44は、固定子鉄心43に巻かれている。具体的には、巻線44は、固定子鉄心43に絶縁部材45を介して集中巻で巻かれている。巻線44は、芯線と、芯線を覆う少なくとも1層の被膜とからなる。本実施の形態において、芯線の材質は、銅である。被膜の材質は、AI(アミドイミド)/EI(エステルイミド)である。絶縁部材45の材質は、PET(ポリエチレンテレフタレート)である。なお、芯線の材質は、アルミニウムであってもよい。絶縁部材45の材質は、PBT(ポリブチレンテレフタレート)、FEP(テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体)、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)、PTFE(ポリテトラフルオロエチレン)、LCP(液晶ポリマー)、PPS(ポリフェニレンサルファイド)、又は、フェノール樹脂であってもよい。巻線44には、リード線25の一端が接続されている。 The stator 41 includes a stator core 43 and a winding 44. The stator core 43 is formed by punching a plurality of electromagnetic steel sheets having a thickness of 0.1 mm to 1.5 mm, which are mainly composed of iron, into a certain shape, stacked in an axial direction, and fixed by caulking or welding. Is produced. The stator core 43 has an outer diameter larger than the inner diameter of the intermediate portion of the sealed container 20 and is fixed by being shrink-fitted inside the sealed container 20. The winding 44 is wound around the stator core 43. Specifically, the winding 44 is wound around the stator core 43 by concentrated winding via an insulating member 45. The winding 44 is composed of a core wire and at least one layer of a coating covering the core wire. In the present embodiment, the material of the core wire is copper. The material of the coating is AI (amidoimide) / EI (ester imide). The material of the insulating member 45 is PET (polyethylene terephthalate). The material of the core wire may be aluminum. The material of the insulating member 45 is PBT (polybutylene terephthalate), FEP (tetrafluoroethylene / hexafluoropropylene copolymer), PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer), PTFE (polytetrafluoroethylene). , LCP (liquid crystal polymer), PPS (polyphenylene sulfide), or phenol resin. One end of a lead wire 25 is connected to the winding 44.
 回転子42は、回転子鉄心46と、永久磁石48とを備える。回転子鉄心46は、固定子鉄心43と同じように、鉄を主成分とする、厚さが0.1ミリメートルから1.5ミリメートルの複数枚の電磁鋼板を一定の形状に打ち抜き、軸方向に積層し、カシメ又は溶接等により固定して製作される。永久磁石48は、回転子鉄心46に形成された複数の挿入孔に挿入されている。永久磁石48は、磁極を形成する。永久磁石48としては、フェライト磁石、又は、希土類磁石が使用される。 The rotor 42 includes a rotor core 46 and a permanent magnet 48. As with the stator core 43, the rotor core 46 is formed by punching a plurality of electromagnetic steel sheets mainly composed of iron and having a thickness of 0.1 millimeters to 1.5 millimeters into a certain shape in the axial direction. Laminated and fixed by caulking or welding. The permanent magnet 48 is inserted into a plurality of insertion holes formed in the rotor core 46. The permanent magnet 48 forms a magnetic pole. As the permanent magnet 48, a ferrite magnet or a rare earth magnet is used.
 回転子鉄心46の平面視中心には、クランク軸50の主軸部52が焼き嵌め又は圧入される軸孔が形成されている。回転子鉄心46の軸孔の周囲には、軸方向に貫通する複数の貫通孔49が形成されている。それぞれの貫通孔49は、後述する吐出マフラ35から密閉容器20内の空間へ放出されるガス冷媒の通路の1つとなる。 A shaft hole in which the main shaft portion 52 of the crankshaft 50 is shrink-fitted or press-fitted is formed in the center of the rotor core 46 in plan view. A plurality of through holes 49 penetrating in the axial direction are formed around the shaft hole of the rotor core 46. Each through hole 49 becomes one of the passages of the gas refrigerant that is discharged from the discharge muffler 35 described later to the space in the sealed container 20.
 図示していないが、モータ40が誘導電動機として構成される場合には、回転子鉄心46に形成された複数のスロットにアルミニウム又は銅等で形成される導体が充填又は挿入される。そして、導体の両端をエンドリングで短絡したかご形巻線が形成される。 Although not shown, when the motor 40 is configured as an induction motor, a plurality of slots formed in the rotor core 46 are filled or inserted with a conductor formed of aluminum or copper. A squirrel-cage winding in which both ends of the conductor are short-circuited by end rings is formed.
 密閉容器20の頂部には、インバータ装置等の外部電源と接続する端子24が取り付けられている。端子24は、具体的には、ガラス端子である。本実施の形態において、端子24は、溶接により密閉容器20に固定されている。端子24には、リード線25の他端が接続されている。これにより、端子24とモータ40の巻線44とが電気的に接続されている。 A terminal 24 connected to an external power source such as an inverter device is attached to the top of the sealed container 20. The terminal 24 is specifically a glass terminal. In the present embodiment, the terminal 24 is fixed to the sealed container 20 by welding. The other end of the lead wire 25 is connected to the terminal 24. Thereby, the terminal 24 and the winding 44 of the motor 40 are electrically connected.
 密閉容器20の頂部には、さらに、軸方向両端が開口した吐出管22が取り付けられている。圧縮機構30から吐出されるガス冷媒は、密閉容器20内の空間から吐出管22を通って外部の冷媒回路11へ吐出される。 Further, a discharge pipe 22 having both ends opened in the axial direction is attached to the top of the sealed container 20. The gas refrigerant discharged from the compression mechanism 30 is discharged from the space in the sealed container 20 through the discharge pipe 22 to the external refrigerant circuit 11.
 以下では、圧縮機構30の詳細を説明する。 Hereinafter, details of the compression mechanism 30 will be described.
 圧縮機構30は、シリンダ31と、ピストン32と、主軸受け33と、副軸受け34と、吐出マフラ35とを備える。 The compression mechanism 30 includes a cylinder 31, a piston 32, a main bearing 33, a sub bearing 34, and a discharge muffler 35.
 シリンダ31の内周は、平面視円形である。シリンダ31の内部には、平面視円形の空間であるシリンダ室が形成されている。シリンダ31の外周面には、冷媒回路11からガス冷媒を吸入するための吸入口が設けられている。吸入口から吸入された冷媒は、シリンダ室で圧縮される。シリンダ31は、軸方向両端が開口している。 The inner circumference of the cylinder 31 is circular in plan view. A cylinder chamber that is a circular space in plan view is formed inside the cylinder 31. A suction port for sucking gas refrigerant from the refrigerant circuit 11 is provided on the outer peripheral surface of the cylinder 31. The refrigerant sucked from the suction port is compressed in the cylinder chamber. The cylinder 31 is open at both axial ends.
 ピストン32は、リング状である。よって、ピストン32の内周及び外周は、平面視円形である。ピストン32は、シリンダ室内で偏心回転する。ピストン32は、ピストン32の回転軸となるクランク軸50の偏心軸部51に摺動自在に嵌められている。 The piston 32 has a ring shape. Therefore, the inner periphery and outer periphery of the piston 32 are circular in plan view. The piston 32 rotates eccentrically in the cylinder chamber. The piston 32 is slidably fitted to an eccentric shaft portion 51 of the crankshaft 50 that serves as a rotation shaft of the piston 32.
 図示していないが、シリンダ31には、シリンダ室につながり、半径方向に延びるベーン溝が設けられている。ベーン溝の外側には、ベーン溝につながる平面視円形の空間である背圧室が形成されている。ベーン溝内には、シリンダ室を低圧の吸入室と高圧の圧縮室とに仕切るためのベーンが設置されている。ベーンは、先端が丸まった板状である。ベーンは、背圧室に設けられたベーンスプリングによって常にピストン32に押し付けられている。密閉容器20内が高圧であるため、圧縮機12の運転が開始すると、ベーンの背圧室側の面であるベーン背面に密閉容器20内の圧力とシリンダ室内の圧力との差による力が作用する。このため、ベーンスプリングは、主に密閉容器20内とシリンダ室内の圧力に差がない圧縮機12の起動時に、ベーンをピストン32に押し付ける目的で使用される。 Although not shown, the cylinder 31 is provided with a vane groove that is connected to the cylinder chamber and extends in the radial direction. A back pressure chamber that is a circular space in plan view connected to the vane groove is formed outside the vane groove. A vane for partitioning the cylinder chamber into a low-pressure suction chamber and a high-pressure compression chamber is installed in the vane groove. The vane has a plate shape with a rounded tip. The vane is always pressed against the piston 32 by a vane spring provided in the back pressure chamber. Since the inside of the sealed container 20 is at a high pressure, when the operation of the compressor 12 is started, a force due to the difference between the pressure in the sealed container 20 and the pressure in the cylinder chamber acts on the back surface of the vane, which is the surface of the vane on the back pressure chamber side. To do. For this reason, the vane spring is mainly used for the purpose of pressing the vane against the piston 32 at the start of the compressor 12 in which there is no difference in pressure between the sealed container 20 and the cylinder chamber.
 主軸受け33は、側面視逆T字状である。主軸受け33は、クランク軸50の偏心軸部51よりも上の部分である主軸部52に摺動自在に嵌められている。主軸受け33は、シリンダ31のシリンダ室及びベーン溝の上側を閉塞している。 The main bearing 33 has an inverted T shape when viewed from the side. The main bearing 33 is slidably fitted to a main shaft portion 52 that is a portion above the eccentric shaft portion 51 of the crankshaft 50. The main bearing 33 closes the cylinder chamber of the cylinder 31 and the upper side of the vane groove.
 副軸受け34は、側面視T字状である。副軸受け34は、クランク軸50の偏心軸部51よりも下の部分である副軸部53に摺動自在に嵌められている。副軸受け34は、シリンダ31のシリンダ室及びベーン溝の下側を閉塞している。 The secondary bearing 34 has a T shape when viewed from the side. The sub-bearing 34 is slidably fitted to a sub-shaft portion 53 that is a portion below the eccentric shaft portion 51 of the crankshaft 50. The secondary bearing 34 closes the cylinder chamber of the cylinder 31 and the lower side of the vane groove.
 主軸受け33と副軸受け34は、それぞれボルト等の締結具によってシリンダ31に固定され、ピストン32の回転軸であるクランク軸50を支持している。 The main bearing 33 and the sub bearing 34 are fixed to the cylinder 31 by fasteners such as bolts, respectively, and support a crankshaft 50 that is a rotating shaft of the piston 32.
 図示していないが、主軸受け33には、シリンダ室で圧縮された冷媒を冷媒回路11に吐出するための吐出口が設けられている。吐出口は、シリンダ室がベーンによって吸入室と圧縮室とに仕切られているときに圧縮室につながる位置にある。主軸受け33には、吐出口を開閉自在に閉塞する吐出弁が取り付けられている。 Although not shown, the main bearing 33 is provided with a discharge port for discharging the refrigerant compressed in the cylinder chamber to the refrigerant circuit 11. The discharge port is located at a position connected to the compression chamber when the cylinder chamber is partitioned by the vane into the suction chamber and the compression chamber. The main bearing 33 is provided with a discharge valve that closes and opens the discharge port.
 吐出マフラ35は、主軸受け33の外側に取り付けられている。吐出弁を介して吐出される高温かつ高圧のガス冷媒は、一旦吐出マフラ35に入り、その後吐出マフラ35から密閉容器20内の空間に放出される。なお、吐出口及び吐出弁は、副軸受け34、或いは、主軸受け33と副軸受け34との両方に設けられていてもよい。吐出マフラ35は、吐出口及び吐出弁が設けられている軸受けの外側に取り付けられる。 The discharge muffler 35 is attached to the outside of the main bearing 33. The high-temperature and high-pressure gas refrigerant discharged through the discharge valve once enters the discharge muffler 35 and is then discharged from the discharge muffler 35 into the space in the sealed container 20. The discharge port and the discharge valve may be provided in the sub bearing 34 or both the main bearing 33 and the sub bearing 34. The discharge muffler 35 is attached to the outside of a bearing provided with a discharge port and a discharge valve.
 密閉容器20の横には、吸入マフラ23が設けられている。吸入マフラ23は、冷媒回路11から低圧のガス冷媒を吸入する。吸入マフラ23は、液冷媒が戻る場合に液冷媒が直接シリンダ31のシリンダ室に入り込むことを抑制する。吸入マフラ23は、シリンダ31の外周面に設けられた吸入口に吸入管21を介して接続されている。吸入マフラ23の本体は、溶接等により密閉容器20の側面に固定されている。 A suction muffler 23 is provided beside the sealed container 20. The suction muffler 23 sucks low-pressure gas refrigerant from the refrigerant circuit 11. The suction muffler 23 prevents the liquid refrigerant from directly entering the cylinder chamber of the cylinder 31 when the liquid refrigerant returns. The suction muffler 23 is connected to a suction port provided on the outer peripheral surface of the cylinder 31 via a suction pipe 21. The main body of the suction muffler 23 is fixed to the side surface of the sealed container 20 by welding or the like.
 本実施の形態において、シリンダ31、主軸受け33及び副軸受け34の材質は、焼結鋼であるが、ねずみ鋳鉄又は炭素鋼であってもよい。ピストン32の材質は、クロム等を含有する合金鋼である。ベーンの材質は、高速度工具鋼である。 In the present embodiment, the material of the cylinder 31, the main bearing 33, and the sub bearing 34 is sintered steel, but may be gray cast iron or carbon steel. The material of the piston 32 is alloy steel containing chromium or the like. The material of the vane is high speed tool steel.
 図示していないが、圧縮機12がスイング式のロータリ圧縮機として構成される場合には、ベーンが、ピストン32と一体に設けられる。クランク軸50が駆動されると、ベーンは、ピストン32に回転自在に取り付けられた支持体の溝に沿って出入りする。ベーンは、ピストン32の回転に従って揺動しながら半径方向へ進退することによって、シリンダ室の内部を圧縮室と吸入室とに区画する。支持体は、横断面が半円形状の2個の柱状部材で構成される。支持体は、シリンダ31の吸入口と吐出口との中間部に形成された円形状の保持孔に回転自在に嵌められる。 Although not shown, when the compressor 12 is configured as a swing type rotary compressor, a vane is provided integrally with the piston 32. When the crankshaft 50 is driven, the vane enters and exits along a groove in a support that is rotatably attached to the piston 32. The vane moves back and forth in the radial direction while swinging according to the rotation of the piston 32, thereby dividing the inside of the cylinder chamber into a compression chamber and a suction chamber. The support is composed of two columnar members having a semicircular cross section. The support body is rotatably fitted in a circular holding hole formed in an intermediate portion between the suction port and the discharge port of the cylinder 31.
 以下では、圧縮機12の動作を説明する。 Hereinafter, the operation of the compressor 12 will be described.
 端子24からリード線25を介してモータ40の固定子41に電力が供給される。これにより、固定子41の巻線44に電流が流れ、巻線44から磁束が発生する。モータ40の回転子42は、巻線44から発生する磁束と、回転子42の永久磁石から発生する磁束との作用によって回転する。回転子42の回転によって、回転子42に固定されたクランク軸50が回転する。クランク軸50の回転に伴い、圧縮機構30のピストン32が圧縮機構30のシリンダ31のシリンダ室内で偏心回転する。シリンダ31とピストン32との間の空間であるシリンダ室は、ベーンによって吸入室と圧縮室とに分割されている。クランク軸50の回転に伴い、吸入室の容積と圧縮室の容積とが変化する。吸入室では、徐々に容積が拡大することにより、吸入マフラ23から低圧のガス冷媒が吸入される。圧縮室では、徐々に容積が縮小することにより、中のガス冷媒が圧縮される。圧縮され、高圧かつ高温となったガス冷媒は、吐出マフラ35から密閉容器20内の空間に吐出される。吐出されたガス冷媒は、さらに、モータ40を通過して密閉容器20の頂部にある吐出管22から密閉容器20の外へ吐出される。密閉容器20の外へ吐出された冷媒は、冷媒回路11を通って、再び吸入マフラ23に戻ってくる。 Electric power is supplied from the terminal 24 to the stator 41 of the motor 40 via the lead wire 25. As a result, a current flows through the winding 44 of the stator 41 and a magnetic flux is generated from the winding 44. The rotor 42 of the motor 40 rotates by the action of the magnetic flux generated from the winding 44 and the magnetic flux generated from the permanent magnet of the rotor 42. As the rotor 42 rotates, the crankshaft 50 fixed to the rotor 42 rotates. As the crankshaft 50 rotates, the piston 32 of the compression mechanism 30 rotates eccentrically in the cylinder chamber of the cylinder 31 of the compression mechanism 30. A cylinder chamber that is a space between the cylinder 31 and the piston 32 is divided into a suction chamber and a compression chamber by a vane. As the crankshaft 50 rotates, the volume of the suction chamber and the volume of the compression chamber change. In the suction chamber, the volume gradually increases, whereby low-pressure gas refrigerant is sucked from the suction muffler 23. In the compression chamber, the gas refrigerant therein is compressed by gradually reducing the volume. The compressed, high-pressure and high-temperature gas refrigerant is discharged from the discharge muffler 35 into the space in the sealed container 20. The discharged gas refrigerant further passes through the motor 40 and is discharged out of the sealed container 20 from the discharge pipe 22 at the top of the sealed container 20. The refrigerant discharged to the outside of the sealed container 20 returns to the suction muffler 23 again through the refrigerant circuit 11.
 以下では、モータ40の固定子41が備える固定子鉄心43の構成、その構成を実現するための手順、その構成により得られる効果を順番に説明する。 Hereinafter, the configuration of the stator core 43 provided in the stator 41 of the motor 40, the procedure for realizing the configuration, and the effects obtained by the configuration will be described in order.
 ***構成の説明***
 図4を参照して、固定子鉄心43の構成を説明する。
*** Explanation of configuration ***
The configuration of the stator core 43 will be described with reference to FIG.
 固定子鉄心43は、複数の分割鉄心60が周方向に連結された構造を持っている。「周方向」は、固定子鉄心43を含むようにモータ40が構成されたときに固定子鉄心43の内側に設置される回転子42の回転方向と同じ方向である。分割鉄心60の個数は、任意の数でよいが、本実施の形態では、9個である。 The stator core 43 has a structure in which a plurality of divided cores 60 are connected in the circumferential direction. The “circumferential direction” is the same direction as the rotation direction of the rotor 42 installed inside the stator core 43 when the motor 40 is configured to include the stator core 43. The number of divided cores 60 may be an arbitrary number, but in the present embodiment, it is nine.
 9個の分割鉄心60には、1個の連結鉄心60Aと、1個の連結鉄心60Bとが含まれる。連結鉄心60Aの個数は、任意の数でよく、2個以上の分割鉄心60が連結鉄心60Aに該当してもよい。連結鉄心60Bの個数は、連結鉄心60Aの個数と同じ数であり、2個以上の分割鉄心60が連結鉄心60Bに該当してもよい。2個以上の分割鉄心60が連結鉄心60Aに該当する場合、或いは、2個以上の分割鉄心60が連結鉄心60Bに該当する場合、連結鉄心60Aと連結鉄心60Bとを兼ねる分割鉄心60があってもよい。 The nine divided cores 60 include one connecting core 60A and one connecting core 60B. The number of the connecting cores 60A may be any number, and two or more divided cores 60 may correspond to the connecting core 60A. The number of connecting cores 60B is the same as the number of connecting cores 60A, and two or more split cores 60 may correspond to the connecting core 60B. When two or more split cores 60 correspond to the connecting core 60A, or when two or more split cores 60 correspond to the connecting core 60B, there is a split core 60 that serves as both the connecting core 60A and the connecting core 60B. Also good.
 それぞれの分割鉄心60は、ティース61とバックヨーク62とが一体に形成された構造を持っている。隣り合う分割鉄心60同士は、互いのバックヨーク62が結合されることで連結されている。連結鉄心60Aと連結鉄心60Bとの連結方法としては、後述する方法が用いられるが、少なくとも一方が連結鉄心60Aと連結鉄心60Bとのいずれにも該当しない分割鉄心60同士の連結方法としては、任意の方法を用いることができる。 Each divided iron core 60 has a structure in which a tooth 61 and a back yoke 62 are integrally formed. The adjacent divided iron cores 60 are connected to each other by connecting the back yokes 62 to each other. As a method of connecting the connecting iron core 60A and the connecting iron core 60B, a method to be described later is used. As a connecting method of the split iron cores 60 at least one of which does not correspond to either the connecting iron core 60A or the connecting iron core 60B, any method can be used. This method can be used.
 それぞれの分割鉄心60において、ティース61は、バックヨーク62の半径方向の内側から延びている。ティース61は、根元から一定の幅で半径方向の内側に延び、先端において幅が広がった形状となっている。ティース61の一定の幅で延びている部分には、巻線44が巻かれる。巻線44に電流が流されると、巻線44が巻きつけられたティース61が磁極となる。磁極の方向は、巻線44に流される電流の方向によって決まる。 In each divided iron core 60, the teeth 61 extend from the inner side in the radial direction of the back yoke 62. The teeth 61 have a shape that extends inward in the radial direction with a constant width from the root, and has a shape in which the width is widened at the tip. A winding 44 is wound around a portion of the tooth 61 extending at a certain width. When a current is passed through the winding 44, the tooth 61 around which the winding 44 is wound becomes a magnetic pole. The direction of the magnetic pole is determined by the direction of the current flowing through the winding 44.
 図5、図6及び図7を参照して、連結鉄心60Aと連結鉄心60Bとを形成する電磁鋼板の構造を説明する。 Referring to FIG. 5, FIG. 6 and FIG. 7, the structure of the electromagnetic steel sheet forming the connecting iron core 60A and the connecting iron core 60B will be described.
 連結鉄心60Aは、第1電磁鋼板71と第3電磁鋼板73とが軸方向に積層された構造の分割鉄心60である。具体的には、連結鉄心60Aは、第1電磁鋼板71と第3電磁鋼板73とが1枚ずつ交互に軸方向に配置された構造になっている。「軸方向」は、固定子鉄心43を含むようにモータ40が構成されたときに固定子鉄心43の内側に設置される回転子42の回転軸方向と同じ方向である。図5は、第1電磁鋼板71の形状を示しているとともに、第1電磁鋼板71の連結部を拡大して示している。図6は、第3電磁鋼板73の形状を示しているとともに、第3電磁鋼板73の連結部を拡大して示している。図7は、任意の連続する4つの層L1~L4における第1電磁鋼板71及び第3電磁鋼板73の連結部を示している。第1電磁鋼板71及び第3電磁鋼板73の積層数は、4つよりも多いことが望ましいが、ここでは、説明の便宜上、4つの層L1~L4だけを示している。 The connecting core 60A is a split core 60 having a structure in which a first electromagnetic steel plate 71 and a third electromagnetic steel plate 73 are laminated in the axial direction. Specifically, the connecting iron core 60A has a structure in which the first electromagnetic steel plates 71 and the third electromagnetic steel plates 73 are alternately arranged in the axial direction one by one. The “axial direction” is the same direction as the rotational axis direction of the rotor 42 that is installed inside the stator core 43 when the motor 40 is configured to include the stator core 43. FIG. 5 shows the shape of the first electromagnetic steel plate 71 and shows an enlarged connection portion of the first electromagnetic steel plate 71. FIG. 6 shows the shape of the third electromagnetic steel plate 73 and also shows an enlarged connection portion of the third electromagnetic steel plate 73. FIG. 7 shows a connecting portion of the first electromagnetic steel plate 71 and the third electromagnetic steel plate 73 in any four consecutive layers L1 to L4. Although it is desirable that the number of the first electromagnetic steel sheets 71 and the third electromagnetic steel sheets 73 be greater than four, only four layers L1 to L4 are shown here for convenience of explanation.
 連結鉄心60Bは、第2電磁鋼板72と第4電磁鋼板74とが軸方向に積層された構造の分割鉄心60である。具体的には、連結鉄心60Bは、第2電磁鋼板72と第4電磁鋼板74とが1枚ずつ交互に軸方向に配置された構造になっている。図5は、第4電磁鋼板74の形状を示しているとともに、第4電磁鋼板74の連結部を拡大して示している。図6は、第2電磁鋼板72の形状を示しているとともに、第2電磁鋼板72の連結部を拡大して示している。図7は、層L1~L4における第2電磁鋼板72及び第4電磁鋼板74の連結部を示している。第2電磁鋼板72及び第4電磁鋼板74の積層数は、第1電磁鋼板71及び第3電磁鋼板73の積層数と同じである。 The connecting iron core 60B is a divided iron core 60 having a structure in which a second electromagnetic steel plate 72 and a fourth electromagnetic steel plate 74 are laminated in the axial direction. Specifically, the connecting iron core 60B has a structure in which the second electromagnetic steel plates 72 and the fourth electromagnetic steel plates 74 are alternately arranged in the axial direction one by one. FIG. 5 shows the shape of the fourth electromagnetic steel plate 74 and shows an enlarged connection portion of the fourth electromagnetic steel plate 74. FIG. 6 shows the shape of the second electromagnetic steel plate 72 and shows an enlarged connection portion of the second electromagnetic steel plate 72. FIG. 7 shows a connecting portion of the second electromagnetic steel plate 72 and the fourth electromagnetic steel plate 74 in the layers L1 to L4. The number of laminations of the second electromagnetic steel plate 72 and the fourth electromagnetic steel plate 74 is the same as the number of laminations of the first electromagnetic steel plate 71 and the third electromagnetic steel plate 73.
 第3電磁鋼板73は、第1電磁鋼板71と重なっている部分3Aと、突起81が設けられ、第1電磁鋼板71よりも外側に突き出している部分3Bとを有する。連結鉄心60Aと連結鉄心60Bとが連結されているとき、第3電磁鋼板73は、第1電磁鋼板71よりも外側に突き出した先の端3Cが第2電磁鋼板72と隣接している。 The third electromagnetic steel plate 73 has a portion 3A that overlaps with the first electromagnetic steel plate 71 and a portion 3B that is provided with a protrusion 81 and protrudes outward from the first electromagnetic steel plate 71. When the connecting iron core 60 </ b> A and the connecting iron core 60 </ b> B are connected, the end 3 </ b> C of the third electromagnetic steel plate 73 protruding outward from the first electromagnetic steel plate 71 is adjacent to the second electromagnetic steel plate 72.
 第3電磁鋼板73の突起81は、弾性を持っている。突起81は、第1電磁鋼板71に近づく方向に斜めに延びている。突起81は、任意の方法で形成されてよいが、本実施の形態では、第3電磁鋼板73の一部が切り起こされることで形成されている。突起81は、任意の形状でよいが、本実施の形態では、平面視矩形状である。 The protrusion 81 of the third electromagnetic steel plate 73 has elasticity. The protrusion 81 extends obliquely in a direction approaching the first electromagnetic steel plate 71. The protrusion 81 may be formed by any method, but in the present embodiment, the protrusion 81 is formed by cutting and raising a part of the third electromagnetic steel plate 73. The projection 81 may have any shape, but in the present embodiment, the projection 81 has a rectangular shape in plan view.
 第4電磁鋼板74は、第2電磁鋼板72と重なっている部分4Aと、穴82が設けられ、第2電磁鋼板72よりも外側に突き出している部分4Bとを有する。連結鉄心60Aと連結鉄心60Bとが連結されているとき、第4電磁鋼板74は、第2電磁鋼板72よりも外側に突き出した先の端4Cが第1電磁鋼板71と隣接している。 The fourth electromagnetic steel plate 74 has a portion 4A that overlaps with the second electromagnetic steel plate 72, and a portion 4B that is provided with a hole 82 and protrudes outward from the second electromagnetic steel plate 72. When the connecting iron core 60 </ b> A and the connecting iron core 60 </ b> B are connected, the end 4 </ b> C of the fourth electromagnetic steel plate 74 protruding outward from the second electromagnetic steel plate 72 is adjacent to the first electromagnetic steel plate 71.
 第4電磁鋼板74の穴82は、任意の形状でよいが、本実施の形態では、平面視矩形状である。連結鉄心60Aと連結鉄心60Bとが連結されているとき、穴82には、第3電磁鋼板73の突起81が嵌っている。これにより、少なくとも突起81が突き出している方向においては、第3電磁鋼板73の枚数と同じ個数の突起81によって、連結鉄心60Aと連結鉄心60Bとが結合される。したがって、突起81の個数が多いほど、連結鉄心60Aと連結鉄心60Bとの結合力が強くなる。 The hole 82 of the fourth electromagnetic steel plate 74 may have an arbitrary shape, but in the present embodiment, it has a rectangular shape in plan view. When the connecting iron core 60 </ b> A and the connecting iron core 60 </ b> B are connected, the projections 81 of the third electromagnetic steel plate 73 are fitted in the holes 82. Thereby, at least in the direction in which the protrusion 81 protrudes, the connecting iron core 60A and the connecting iron core 60B are coupled by the same number of protrusions 81 as the number of the third electromagnetic steel plates 73. Therefore, the greater the number of protrusions 81, the stronger the coupling force between the connecting iron core 60A and the connecting iron core 60B.
 ***手順の説明***
 図8、図9、図10及び図11を参照して、固定子鉄心43の構成を実現するための手順を説明する。具体的には、連結鉄心60Aと連結鉄心60Bとを連結する手順を説明する。この手順は、本実施の形態に係る固定子鉄心43の製造方法の一部の工程に相当する。
*** Explanation of procedure ***
A procedure for realizing the configuration of the stator core 43 will be described with reference to FIGS. Specifically, a procedure for connecting the connecting iron core 60A and the connecting iron core 60B will be described. This procedure corresponds to a part of the steps of the method for manufacturing the stator core 43 according to the present embodiment.
 まず、図8に示すように、突起81のある連結鉄心60Aが、穴82のある連結鉄心60Bに向かって、第4電磁鋼板74と第1電磁鋼板71とが同層になり、第2電磁鋼板72と第3電磁鋼板73とが同層になるように、周方向に移動される。 First, as shown in FIG. 8, the fourth electromagnetic steel plate 74 and the first electromagnetic steel plate 71 are in the same layer in the connecting iron core 60 </ b> A having the protrusion 81 toward the connecting iron core 60 </ b> B having the hole 82. The steel plate 72 and the third electromagnetic steel plate 73 are moved in the circumferential direction so that they are in the same layer.
 図9に示すように、層L2の第3電磁鋼板73は、1つ上の層L1の第4電磁鋼板74の下に生じる隙間に挿入される。層L2の第3電磁鋼板73が挿入される過程において、層L2の第3電磁鋼板73の突起81は、層L1の第4電磁鋼板74の周方向端部により、軸方向の突起81が突き出している側と逆側に力を受け、弾性変形する。具体的には、突起81は、層L2の第3電磁鋼板73が挿入されるに従い、突起81の傾斜面に接触する層L1の第4電磁鋼板74の周方向端部によって徐々に押しつぶされていく。この第4電磁鋼板74の周方向端部は、図7に示した層L1の第4電磁鋼板74の端4Cに相当する。 As shown in FIG. 9, the third electromagnetic steel plate 73 of the layer L2 is inserted into a gap generated under the fourth electromagnetic steel plate 74 of the upper layer L1. In the process of inserting the third electromagnetic steel plate 73 of the layer L2, the projection 81 of the third electromagnetic steel plate 73 of the layer L2 protrudes from the circumferential end of the fourth electromagnetic steel plate 74 of the layer L1. It receives force on the opposite side and elastically deforms. Specifically, as the third electromagnetic steel plate 73 of the layer L2 is inserted, the protrusion 81 is gradually crushed by the circumferential end of the fourth electromagnetic steel plate 74 of the layer L1 that contacts the inclined surface of the protrusion 81. Go. The circumferential end portion of the fourth electromagnetic steel plate 74 corresponds to the end 4C of the fourth electromagnetic steel plate 74 of the layer L1 shown in FIG.
 層L4の第3電磁鋼板73も、層L2の第3電磁鋼板73と同じように、1つ上の層L3の第4電磁鋼板74の下に生じる隙間に挿入される。 Similarly to the third electromagnetic steel plate 73 of the layer L2, the third electromagnetic steel plate 73 of the layer L4 is also inserted into the gap generated below the fourth electromagnetic steel plate 74 of the upper layer L3.
 上記のように、本実施の形態では、第3電磁鋼板73の突起81が弾性変形するため、圧入等の他の方法に比べて容易に第3電磁鋼板73を挿入することができる。 As described above, in the present embodiment, since the projection 81 of the third electromagnetic steel plate 73 is elastically deformed, the third electromagnetic steel plate 73 can be easily inserted as compared with other methods such as press fitting.
 図10に示すように、層L2の第3電磁鋼板73の突起81は、層L1の第4電磁鋼板74の穴82まで到達すると、弾性力によって元の形状に戻り、穴82に嵌る。これにより、層L2の第3電磁鋼板73と層L1の第4電磁鋼板74とが結合される。層L4の第3電磁鋼板73と層L3の第4電磁鋼板74も、層L2の第3電磁鋼板73と層L1の第4電磁鋼板74と同じように結合される。 As shown in FIG. 10, when the protrusion 81 of the third electromagnetic steel plate 73 of the layer L2 reaches the hole 82 of the fourth electromagnetic steel plate 74 of the layer L1, it returns to its original shape by the elastic force and fits into the hole 82. Thereby, the 3rd electromagnetic steel plate 73 of the layer L2 and the 4th electromagnetic steel plate 74 of the layer L1 are couple | bonded. The third electromagnetic steel plate 73 of the layer L4 and the fourth electromagnetic steel plate 74 of the layer L3 are also coupled in the same manner as the third electromagnetic steel plate 73 of the layer L2 and the fourth electromagnetic steel plate 74 of the layer L1.
 図11に示すように、仮に連結鉄心60Aが、連結鉄心60Bとは逆側に向かって、周方向に引っ張られたとしても、連結鉄心60Aの突起81が連結鉄心60Bの穴82に嵌っているため、突起81と穴82の内壁との接触力が働き、連結鉄心60Aが連結鉄心60Bから引き離されることはない。 As shown in FIG. 11, even if the connecting iron core 60A is pulled in the circumferential direction toward the opposite side to the connecting iron core 60B, the protrusion 81 of the connecting iron core 60A is fitted in the hole 82 of the connecting iron core 60B. Therefore, the contact force between the protrusion 81 and the inner wall of the hole 82 works and the connecting iron core 60A is not separated from the connecting iron core 60B.
 連結鉄心60Aは、上記のように、連結鉄心60Bとは逆側に向かって引っ張られても移動しないが、連結鉄心60Bに向かって押されれば、移動することができる。固定子鉄心43が圧縮機12の密閉容器20に焼き嵌めされる際には、固定子鉄心43を周方向に収縮させる力が働くが、本実施の形態では、連結鉄心60Aが連結鉄心60Bに向かって移動することで、その力を吸収することができる。そのため、固定子鉄心43の内径真円度が出しやすい。また、固定子鉄心43が焼き嵌めされる際に連結部に応力が集中しないため、連結部における鉄損の発生を回避することができる。 As described above, the connecting iron core 60A does not move even when pulled toward the opposite side of the connecting iron core 60B, but can move if pushed toward the connecting iron core 60B. When the stator core 43 is shrink-fitted into the sealed container 20 of the compressor 12, a force that contracts the stator core 43 in the circumferential direction works. In this embodiment, the connecting core 60A is connected to the connecting core 60B. The force can be absorbed by moving toward. For this reason, the roundness of the inner diameter of the stator core 43 is easily obtained. Moreover, since stress is not concentrated on the connecting portion when the stator core 43 is shrink-fitted, it is possible to avoid occurrence of iron loss in the connecting portion.
 ***実施の形態の効果の説明***
 本実施の形態では、第1電磁鋼板71と、第2電磁鋼板72と、突起81のある第3電磁鋼板73と、第3電磁鋼板73の突起81が嵌っている穴82のある第4電磁鋼板74との組み合わせが同じ向きで積層されている。いずれの組み合わせの突起81も、同じ方向に突き出しているため、少なくともその方向においては、2つ以上の突起81によって連結鉄心60Aと連結鉄心60Bとが結合されている。したがって、連結鉄心60Aと連結鉄心60Bとの結合力が強い。ここで、連結鉄心60Aと連結鉄心60Bは、固定子鉄心43の分割された部分に該当する。
*** Explanation of the effect of the embodiment ***
In the present embodiment, the first electromagnetic steel plate 71, the second electromagnetic steel plate 72, the third electromagnetic steel plate 73 with the projection 81, and the fourth electromagnetic with the hole 82 into which the projection 81 of the third electromagnetic steel plate 73 is fitted. The combination with the steel plate 74 is laminated in the same direction. Since the protrusions 81 of any combination protrude in the same direction, at least in that direction, the connecting iron core 60A and the connecting iron core 60B are coupled by the two or more protrusions 81. Therefore, the coupling force between the connecting iron core 60A and the connecting iron core 60B is strong. Here, the connecting iron core 60 </ b> A and the connecting iron core 60 </ b> B correspond to divided portions of the stator core 43.
 本実施の形態では、第4電磁鋼板74の穴82が、第3電磁鋼板73の突起81が設けられた層と異なる層に設けられている。したがって、溶接の必要がなく、安価かつ容易に連結鉄心60Aと連結鉄心60Bとを連結することができる。 In the present embodiment, the hole 82 of the fourth electromagnetic steel plate 74 is provided in a layer different from the layer provided with the protrusion 81 of the third electromagnetic steel plate 73. Therefore, there is no need for welding, and the connecting core 60A and the connecting core 60B can be connected inexpensively and easily.
 特許文献1に記載の技術では、分割境界部に形成される凸部の上下、及び、分割境界部に形成される凹部そのものに、積層方向に大きく延びる隙間が生じてしまう。このような隙間は、固定子の磁路を減らし、モータ効率を低下させる要因となる。これに対し、本実施の形態では、第1電磁鋼板71と、第1電磁鋼板71よりも外側に突き出している第3電磁鋼板73とが1枚ずつ交互に積層されているため、積層方向に生じる隙間が小さい。第2電磁鋼板72及び第4電磁鋼板74についても、同じである。したがって、固定子41の磁路を減らさずに済み、その結果、モータ効率が維持される。 In the technique described in Patent Document 1, gaps that extend greatly in the stacking direction are generated at the top and bottom of the projections formed at the division boundary and the depressions formed at the division boundary. Such a gap reduces the magnetic path of the stator and causes a reduction in motor efficiency. On the other hand, in the present embodiment, the first electromagnetic steel plates 71 and the third electromagnetic steel plates 73 protruding outward from the first electromagnetic steel plates 71 are alternately stacked one by one, and therefore in the stacking direction. The resulting gap is small. The same applies to the second electromagnetic steel plate 72 and the fourth electromagnetic steel plate 74. Therefore, it is not necessary to reduce the magnetic path of the stator 41, and as a result, the motor efficiency is maintained.
 ***他の構成***
 それぞれのティース61は、一体に形成される代わりに、一定の幅で延びている部分と先端とが半径方向に連結された構造を持っていてもよい。その連結方法としては、連結鉄心60Aと連結鉄心60Bとを連結する方法を用いることができる。即ち、電磁鋼板の突起81を別の電磁鋼板の穴82に嵌める方法を用いることができる。
*** Other configurations ***
Each of the teeth 61 may have a structure in which a portion extending at a certain width and a tip are connected in the radial direction instead of being integrally formed. As the connecting method, a method of connecting the connecting iron core 60A and the connecting iron core 60B can be used. That is, a method of fitting the projection 81 of the electromagnetic steel sheet into the hole 82 of another electromagnetic steel sheet can be used.
 本実施の形態では、第1電磁鋼板71と第2電磁鋼板72と第3電磁鋼板73と第4電磁鋼板74との組み合わせが同じ向きで連続して積層されているが、第1電磁鋼板71と第2電磁鋼板72と第3電磁鋼板73と第4電磁鋼板74との組み合わせ間に、別の電磁鋼板の組み合わせが配置されていてもよい。以下では、そのような例の1つについて、主に本実施の形態との差異を説明する。 In the present embodiment, a combination of the first electromagnetic steel plate 71, the second electromagnetic steel plate 72, the third electromagnetic steel plate 73, and the fourth electromagnetic steel plate 74 is continuously laminated in the same direction. Between the combination of the second electromagnetic steel plate 72, the third electromagnetic steel plate 73, and the fourth electromagnetic steel plate 74, another combination of electromagnetic steel plates may be disposed. In the following, a difference from this embodiment will be mainly described for one of such examples.
 図12を参照して、本実施の形態の変形例に係る固定子鉄心43の構成を説明する。 With reference to FIG. 12, the structure of the stator core 43 which concerns on the modification of this Embodiment is demonstrated.
 この変形例では、第1電磁鋼板71と第2電磁鋼板72と第3電磁鋼板73と第4電磁鋼板74との組み合わせ間に、第5電磁鋼板75と第6電磁鋼板76との組み合わせが配置されている。 In this modification, a combination of the fifth electromagnetic steel plate 75 and the sixth electromagnetic steel plate 76 is disposed between the combination of the first electromagnetic steel plate 71, the second electromagnetic steel plate 72, the third electromagnetic steel plate 73, and the fourth electromagnetic steel plate 74. Has been.
 連結鉄心60Aは、第1電磁鋼板71と第3電磁鋼板73と第5電磁鋼板75とが軸方向に積層された構造の分割鉄心60である。具体的には、連結鉄心60Aは、1枚の第1電磁鋼板71、1枚の第3電磁鋼板73、2枚の第5電磁鋼板75が順番に繰り返し軸方向に配置された構造になっている。図12は、任意の連続する6つの層L1~L6における第1電磁鋼板71、第3電磁鋼板73及び第5電磁鋼板75の連結部を示している。第1電磁鋼板71、第3電磁鋼板73及び第5電磁鋼板75の積層数は、6つよりも多いことが望ましいが、ここでは、説明の便宜上、6つの層L1~L6だけを示している。 The connecting iron core 60A is a divided iron core 60 having a structure in which a first electromagnetic steel plate 71, a third electromagnetic steel plate 73, and a fifth electromagnetic steel plate 75 are laminated in the axial direction. Specifically, the connecting iron core 60A has a structure in which one first electromagnetic steel plate 71, one third electromagnetic steel plate 73, and two fifth electromagnetic steel plates 75 are sequentially arranged in the axial direction. Yes. FIG. 12 shows a connecting portion of the first electromagnetic steel plate 71, the third electromagnetic steel plate 73, and the fifth electromagnetic steel plate 75 in any six consecutive layers L1 to L6. The number of laminations of the first electromagnetic steel plate 71, the third electromagnetic steel plate 73, and the fifth electromagnetic steel plate 75 is preferably greater than six, but here, for convenience of explanation, only six layers L1 to L6 are shown. .
 連結鉄心60Bは、第2電磁鋼板72と第4電磁鋼板74と第6電磁鋼板76とが軸方向に積層された構造の分割鉄心60である。具体的には、連結鉄心60Bは、1枚の第4電磁鋼板74、1枚の第2電磁鋼板72、2枚の第6電磁鋼板76が順番に繰り返し軸方向に配置された構造になっている。図12は、層L1~L6における第2電磁鋼板72、第4電磁鋼板74及び第6電磁鋼板76の連結部を示している。第2電磁鋼板72、第4電磁鋼板74及び第6電磁鋼板76の積層数は、第1電磁鋼板71、第3電磁鋼板73及び第5電磁鋼板75の積層数と同じである。 The connecting iron core 60B is a divided iron core 60 having a structure in which a second electromagnetic steel plate 72, a fourth electromagnetic steel plate 74, and a sixth electromagnetic steel plate 76 are laminated in the axial direction. Specifically, the connecting iron core 60B has a structure in which one fourth electromagnetic steel plate 74, one second electromagnetic steel plate 72, and two sixth electromagnetic steel plates 76 are sequentially arranged in the axial direction. Yes. FIG. 12 shows a connecting portion of the second electromagnetic steel plate 72, the fourth electromagnetic steel plate 74, and the sixth electromagnetic steel plate 76 in the layers L1 to L6. The number of laminations of the second electromagnetic steel plate 72, the fourth electromagnetic steel plate 74, and the sixth electromagnetic steel plate 76 is the same as the number of laminations of the first electromagnetic steel plate 71, the third electromagnetic steel plate 73, and the fifth electromagnetic steel plate 75.
 連結鉄心60Aと連結鉄心60Bとが連結されているとき、第6電磁鋼板76は、第5電磁鋼板75と隣接している。 When the connecting iron core 60 </ b> A and the connecting iron core 60 </ b> B are connected, the sixth electromagnetic steel plate 76 is adjacent to the fifth electromagnetic steel plate 75.
 この変形例では、連結部で積層方向に生じる隙間の数を減らすことができる。また、突起81も穴82もない層が存在する。したがって、固定子41の磁路を増やすことができ、その結果、モータ効率が向上する。 In this modification, the number of gaps generated in the stacking direction at the connecting portion can be reduced. There is also a layer without protrusions 81 and holes 82. Therefore, the magnetic path of the stator 41 can be increased, and as a result, the motor efficiency is improved.
 実施の形態2.
 本実施の形態について、主に実施の形態1との差異を説明する。
Embodiment 2. FIG.
In the present embodiment, differences from the first embodiment will be mainly described.
 図13及び図14を参照して、本実施の形態に係る固定子鉄心43の構成を説明する。 The configuration of the stator core 43 according to the present embodiment will be described with reference to FIGS.
 実施の形態1では、第3電磁鋼板73の突起81と、第4電磁鋼板74の穴82とが、いずれも平面視矩形状である。これに対し、本実施の形態では、第3電磁鋼板73の突起81が、平面視正方形状であり、第4電磁鋼板74の穴82が、平面視円形状である。突起81は、1辺の長さが穴82の半径Rの√2倍以下であることが望ましく、本実施の形態では、1辺の長さが穴82の半径Rの√2倍、即ち、√2Rである。 In Embodiment 1, the projection 81 of the third electromagnetic steel plate 73 and the hole 82 of the fourth electromagnetic steel plate 74 are both rectangular in plan view. On the other hand, in the present embodiment, the projection 81 of the third electromagnetic steel plate 73 has a square shape in plan view, and the hole 82 of the fourth electromagnetic steel plate 74 has a circular shape in plan view. It is desirable that the length of one side of the protrusion 81 is not more than √2 times the radius R of the hole 82. In this embodiment, the length of one side is √2 times the radius R of the hole 82, that is, √2R.
 連結鉄心60Aと連結鉄心60Bとが連結される際には、実施の形態1と同じように、層L2の第3電磁鋼板73が、1つ上の層L1の第4電磁鋼板74の下に生じる隙間に挿入される。層L2の第3電磁鋼板73が挿入される過程において、層L2の第3電磁鋼板73の突起81は、層L1の第4電磁鋼板74の周方向端部により、軸方向の突起81が突き出している側と逆側に力を受け、弾性変形する。層L4の第3電磁鋼板73も、層L2の第3電磁鋼板73と同じように、1つ上の層L3の第4電磁鋼板74の下に生じる隙間に挿入される。 When the connecting iron core 60A and the connecting iron core 60B are connected, the third electromagnetic steel plate 73 of the layer L2 is placed under the fourth electromagnetic steel plate 74 of the upper layer L1 as in the first embodiment. Inserted into the resulting gap. In the process of inserting the third electromagnetic steel plate 73 of the layer L2, the projection 81 of the third electromagnetic steel plate 73 of the layer L2 protrudes from the circumferential end of the fourth electromagnetic steel plate 74 of the layer L1. It receives force on the opposite side and elastically deforms. Similarly to the third electromagnetic steel plate 73 of the layer L2, the third electromagnetic steel plate 73 of the layer L4 is also inserted into the gap generated below the fourth electromagnetic steel plate 74 of the upper layer L3.
 層L2の第3電磁鋼板73の突起81は、層L1の第4電磁鋼板74の穴82まで到達すると、弾性力によって元の形状に戻り、穴82に嵌る。これにより、層L2の第3電磁鋼板73と層L1の第4電磁鋼板74とが結合される。層L4の第3電磁鋼板73と層L3の第4電磁鋼板74も、層L2の第3電磁鋼板73と層L1の第4電磁鋼板74と同じように結合される。 When the protrusion 81 of the third electromagnetic steel plate 73 of the layer L2 reaches the hole 82 of the fourth electromagnetic steel plate 74 of the layer L1, it returns to its original shape by the elastic force and fits into the hole 82. Thereby, the 3rd electromagnetic steel plate 73 of the layer L2 and the 4th electromagnetic steel plate 74 of the layer L1 are couple | bonded. The third electromagnetic steel plate 73 of the layer L4 and the fourth electromagnetic steel plate 74 of the layer L3 are also coupled in the same manner as the third electromagnetic steel plate 73 of the layer L2 and the fourth electromagnetic steel plate 74 of the layer L1.
 図14に示すように、本実施の形態では、突起81が、周方向に対して斜めの方向に移動しても、穴82に嵌りやすい。したがって、第3電磁鋼板73の挿入方向のずれに対する許容度が高まる。即ち、第3電磁鋼板73の挿入方向の自由度が高まる。 As shown in FIG. 14, in the present embodiment, even if the protrusion 81 moves in an oblique direction with respect to the circumferential direction, it easily fits into the hole 82. Therefore, the tolerance with respect to the shift | offset | difference of the insertion direction of the 3rd electromagnetic steel plate 73 increases. That is, the degree of freedom in the insertion direction of the third electromagnetic steel sheet 73 is increased.
 本実施の形態では、第1電磁鋼板71と第2電磁鋼板72と第3電磁鋼板73と第4電磁鋼板74との組み合わせが同じ向きで連続して積層されているが、第1電磁鋼板71と第2電磁鋼板72と第3電磁鋼板73と第4電磁鋼板74との組み合わせ間に、別の電磁鋼板の組み合わせが配置されていてもよい。具体的には、実施の形態1の変形例と同じように、第1電磁鋼板71と第2電磁鋼板72と第3電磁鋼板73と第4電磁鋼板74との組み合わせ間に、図12に示した第5電磁鋼板75と第6電磁鋼板76との組み合わせが配置されていてもよい。 In the present embodiment, a combination of the first electromagnetic steel plate 71, the second electromagnetic steel plate 72, the third electromagnetic steel plate 73, and the fourth electromagnetic steel plate 74 is continuously laminated in the same direction. Between the combination of the second electromagnetic steel plate 72, the third electromagnetic steel plate 73, and the fourth electromagnetic steel plate 74, another combination of electromagnetic steel plates may be disposed. Specifically, as in the modification of the first embodiment, a combination of the first electromagnetic steel plate 71, the second electromagnetic steel plate 72, the third electromagnetic steel plate 73, and the fourth electromagnetic steel plate 74 is shown in FIG. Further, a combination of the fifth electromagnetic steel plate 75 and the sixth electromagnetic steel plate 76 may be arranged.
 実施の形態3.
 本実施の形態について、主に実施の形態1との差異を説明する。
Embodiment 3 FIG.
In the present embodiment, differences from the first embodiment will be mainly described.
 図15を参照して、本実施の形態に係る固定子鉄心43の構成を説明する。 Referring to FIG. 15, the configuration of the stator core 43 according to the present embodiment will be described.
 実施の形態1では、第3電磁鋼板73の突起81が、第3電磁鋼板73の1箇所のみに設けられ、第4電磁鋼板74の穴82も、第4電磁鋼板74の1箇所のみに設けられている。これに対し、本実施の形態では、第3電磁鋼板73の突起81が、第3電磁鋼板73の複数箇所に設けられ、第4電磁鋼板74の穴82も、第4電磁鋼板74の複数箇所に設けられている。具体的には、突起81が、第3電磁鋼板73の2箇所に設けられ、穴82も、第4電磁鋼板74の2箇所に設けられている。 In the first embodiment, the projection 81 of the third electromagnetic steel plate 73 is provided only at one location of the third electromagnetic steel plate 73, and the hole 82 of the fourth electromagnetic steel plate 74 is provided only at one location of the fourth electromagnetic steel plate 74. It has been. On the other hand, in the present embodiment, the protrusions 81 of the third electromagnetic steel plate 73 are provided at a plurality of locations on the third electromagnetic steel plate 73, and the holes 82 of the fourth electromagnetic steel plate 74 are also provided at the plurality of locations on the fourth electromagnetic steel plate 74. Is provided. Specifically, the protrusions 81 are provided at two locations on the third electromagnetic steel plate 73, and the holes 82 are also provided at two locations on the fourth electromagnetic steel plate 74.
 連結鉄心60Aと連結鉄心60Bとが連結される際には、実施の形態1と同じように、層L2の第3電磁鋼板73が、1つ上の層L1の第4電磁鋼板74の下に生じる隙間に挿入される。層L2の第3電磁鋼板73が挿入される過程において、層L2の第3電磁鋼板73の2個の突起81は、層L1の第4電磁鋼板74の周方向端部により、軸方向のそれぞれの突起81が突き出している側と逆側に力を受け、弾性変形する。層L4の第3電磁鋼板73も、層L2の第3電磁鋼板73と同じように、1つ上の層L3の第4電磁鋼板74の下に生じる隙間に挿入される。 When the connecting iron core 60A and the connecting iron core 60B are connected, the third electromagnetic steel plate 73 of the layer L2 is placed under the fourth electromagnetic steel plate 74 of the upper layer L1 as in the first embodiment. Inserted into the resulting gap. In the process of inserting the third electromagnetic steel plate 73 of the layer L2, the two protrusions 81 of the third electromagnetic steel plate 73 of the layer L2 are axially arranged by the circumferential ends of the fourth electromagnetic steel plate 74 of the layer L1. The projection 81 is elastically deformed by receiving a force on the side opposite to the side from which the projection 81 protrudes. Similarly to the third electromagnetic steel plate 73 of the layer L2, the third electromagnetic steel plate 73 of the layer L4 is also inserted into the gap generated below the fourth electromagnetic steel plate 74 of the upper layer L3.
 層L2の第3電磁鋼板73の2個の突起81は、それぞれ層L1の第4電磁鋼板74の対応する穴82まで到達すると、弾性力によって元の形状に戻り、対応する穴82に嵌る。これにより、層L2の第3電磁鋼板73と層L1の第4電磁鋼板74とが結合される。層L4の第3電磁鋼板73と層L3の第4電磁鋼板74も、層L2の第3電磁鋼板73と層L1の第4電磁鋼板74と同じように結合される。 When the two protrusions 81 of the third electromagnetic steel sheet 73 of the layer L2 reach the corresponding holes 82 of the fourth electromagnetic steel sheet 74 of the layer L1, they return to the original shape by elastic force and fit into the corresponding holes 82. Thereby, the 3rd electromagnetic steel plate 73 of the layer L2 and the 4th electromagnetic steel plate 74 of the layer L1 are couple | bonded. The third electromagnetic steel plate 73 of the layer L4 and the fourth electromagnetic steel plate 74 of the layer L3 are also coupled in the same manner as the third electromagnetic steel plate 73 of the layer L2 and the fourth electromagnetic steel plate 74 of the layer L1.
 本実施の形態では、各層の突起81が、複数箇所に設けられているため、連結鉄心60Aと連結鉄心60Bとの結合力が高まる。 In the present embodiment, since the protrusions 81 of each layer are provided at a plurality of locations, the coupling force between the connecting iron core 60A and the connecting iron core 60B is increased.
 本実施の形態では、第1電磁鋼板71と第2電磁鋼板72と第3電磁鋼板73と第4電磁鋼板74との組み合わせが同じ向きで連続して積層されているが、第1電磁鋼板71と第2電磁鋼板72と第3電磁鋼板73と第4電磁鋼板74との組み合わせ間に、別の電磁鋼板の組み合わせが配置されていてもよい。具体的には、実施の形態1の変形例と同じように、第1電磁鋼板71と第2電磁鋼板72と第3電磁鋼板73と第4電磁鋼板74との組み合わせ間に、図12に示した第5電磁鋼板75と第6電磁鋼板76との組み合わせが配置されていてもよい。 In the present embodiment, a combination of the first electromagnetic steel plate 71, the second electromagnetic steel plate 72, the third electromagnetic steel plate 73, and the fourth electromagnetic steel plate 74 is continuously laminated in the same direction. Between the combination of the second electromagnetic steel plate 72, the third electromagnetic steel plate 73, and the fourth electromagnetic steel plate 74, another combination of electromagnetic steel plates may be disposed. Specifically, as in the modification of the first embodiment, a combination of the first electromagnetic steel plate 71, the second electromagnetic steel plate 72, the third electromagnetic steel plate 73, and the fourth electromagnetic steel plate 74 is shown in FIG. Further, a combination of the fifth electromagnetic steel plate 75 and the sixth electromagnetic steel plate 76 may be arranged.
 実施の形態4.
 本実施の形態について、主に実施の形態1との差異を説明する。
Embodiment 4 FIG.
In the present embodiment, differences from the first embodiment will be mainly described.
 以下では、本実施の形態に係る固定子鉄心43の構成、その構成を実現するための手順、その構成により得られる効果を順番に説明する。 Hereinafter, the configuration of the stator core 43 according to the present embodiment, the procedure for realizing the configuration, and the effects obtained by the configuration will be described in order.
 ***構成の説明***
 図16を参照して、固定子鉄心43の構成を説明する。
*** Explanation of configuration ***
The configuration of the stator core 43 will be described with reference to FIG.
 固定子鉄心43は、実施の形態1と同じように、複数の分割鉄心60が周方向に連結された構造を持っている。分割鉄心60の個数は、任意の数でよいが、本実施の形態でも、9個である。 The stator core 43 has a structure in which a plurality of divided cores 60 are connected in the circumferential direction as in the first embodiment. The number of divided cores 60 may be any number, but is nine in this embodiment.
 それぞれの分割鉄心60は、実施の形態1と異なり、ティース61とバックヨーク62とが半径方向に連結された構造を持っている。隣り合う分割鉄心60同士は、互いのバックヨーク62が結合されることで連結されている。分割鉄心60同士の連結方法としては、実施の形態1と同じ方法又はその他の任意の方法を用いることができる。 Each divided iron core 60 has a structure in which teeth 61 and a back yoke 62 are connected in the radial direction, unlike the first embodiment. The adjacent divided iron cores 60 are connected to each other by connecting the back yokes 62 to each other. As a method for connecting the divided iron cores 60, the same method as in the first embodiment or any other method can be used.
 それぞれの分割鉄心60において、ティース61は、バックヨーク62の半径方向の内側に連結されている。ティース61は、実施の形態1と同じように、根元から一定の幅で半径方向の内側に延び、先端において幅が広がった形状となっている。ティース61の一定の幅で延びている部分には、巻線44が巻かれる。 In each of the split iron cores 60, the teeth 61 are connected to the inner side in the radial direction of the back yoke 62. As in the first embodiment, the teeth 61 extend from the root to the inside in the radial direction with a constant width, and have a shape in which the width is widened at the tip. A winding 44 is wound around a portion of the tooth 61 extending at a certain width.
 上記のように、本実施の形態において、固定子鉄心43は、9個のティース61と9個のバックヨーク62とが半径方向に連結された構造を持っている。なお、固定子鉄心43は、周方向においては一体の構造を持っていてもよい。即ち、固定子鉄心43は、別々に形成された9個のティース61と、一体に形成された1個のバックヨーク62とが連結された構造を持っていてもよい。ティース61の個数は、分割鉄心60の個数と同じように、適宜変更されてよい。 As described above, in the present embodiment, the stator core 43 has a structure in which nine teeth 61 and nine back yokes 62 are connected in the radial direction. The stator core 43 may have an integral structure in the circumferential direction. That is, the stator core 43 may have a structure in which nine separately formed teeth 61 and one integrally formed back yoke 62 are connected. The number of teeth 61 may be appropriately changed in the same manner as the number of divided iron cores 60.
 圧縮機用モータであるモータ40の駆動時の電流により発生する磁束は、固定子鉄心43でヒステリシス損失と渦電流損失とを引き起こす。ヒステリシス損失と渦電流損失は、鉄損としてモータ効率を低下させる要因となる。鉄損を低減させる方法としては、方向性電磁鋼板等、鉄損の低い電磁鋼板を使用する方法がある。しかし、鉄損の低い電磁鋼板は、高価であるため、コストを増大させる要因となる。そのため、本実施の形態では、それぞれの分割鉄心60が、ティース61とバックヨーク62とに分割され、磁束密度が高くなるティース61に、鉄損の低い電磁鋼板が選択的に使用されている。異なる電磁鋼板からなるティース61とバックヨーク62は、連結箇所で生じる音振動が問題にならないように、強い結合力で連結されている必要がある。 The magnetic flux generated by the current at the time of driving the motor 40 that is a compressor motor causes hysteresis loss and eddy current loss in the stator core 43. Hysteresis loss and eddy current loss are factors that reduce motor efficiency as iron loss. As a method for reducing the iron loss, there is a method of using a magnetic steel sheet having a low iron loss, such as a grain-oriented electrical steel sheet. However, a magnetic steel sheet with a low iron loss is expensive, and thus increases the cost. Therefore, in the present embodiment, each divided iron core 60 is divided into a tooth 61 and a back yoke 62, and a magnetic steel sheet having a low iron loss is selectively used for the teeth 61 in which the magnetic flux density is increased. The teeth 61 and the back yoke 62 made of different electromagnetic steel plates need to be coupled with a strong coupling force so that the sound vibration generated at the coupling point does not become a problem.
 図17、図18、図19及び図20を参照して、ティース61とバックヨーク62とを形成する電磁鋼板の構造を説明する。 Referring to FIG. 17, FIG. 18, FIG. 19 and FIG. 20, the structure of the electromagnetic steel sheet forming the teeth 61 and the back yoke 62 will be described.
 それぞれのティース61は、第1電磁鋼板71と第3電磁鋼板73とが軸方向に積層された構造の分割片である。それぞれのティース61は、第1電磁鋼板71と第3電磁鋼板73のみが積層された構造になっていてもよいが、本実施の形態では、第1電磁鋼板71と第3電磁鋼板73と第6電磁鋼板76と第8電磁鋼板78とが積層された構造になっている。具体的には、それぞれのティース61は、1枚の第1電磁鋼板71、1枚の第3電磁鋼板73、1枚の第8電磁鋼板78、1枚の第6電磁鋼板76が順番に繰り返し軸方向に配置された構造になっている。図17は、第1電磁鋼板71の形状を示しているとともに、第1電磁鋼板71の連結部を拡大して示している。図18は、第3電磁鋼板73の形状を示しているとともに、第3電磁鋼板73の連結部を拡大して示している。図19は、任意の連続する4つの層L1~L4における第1電磁鋼板71、第3電磁鋼板73、第6電磁鋼板76及び第8電磁鋼板78の連結部を示している。第1電磁鋼板71、第3電磁鋼板73、第6電磁鋼板76及び第8電磁鋼板78の積層数は、4つよりも多いことが望ましいが、ここでは、説明の便宜上、4つの層L1~L4だけを示している。なお、図20は、層L1~L4を含む6つの層L1~L6を示している。 Each tooth 61 is a divided piece having a structure in which a first electromagnetic steel plate 71 and a third electromagnetic steel plate 73 are laminated in the axial direction. Each of the teeth 61 may have a structure in which only the first electromagnetic steel plate 71 and the third electromagnetic steel plate 73 are laminated, but in the present embodiment, the first electromagnetic steel plate 71, the third electromagnetic steel plate 73, and the first The sixth electromagnetic steel plate 76 and the eighth electromagnetic steel plate 78 are laminated. Specifically, each tooth 61 is composed of one first electromagnetic steel plate 71, one third electromagnetic steel plate 73, one eighth electromagnetic steel plate 78, and one sixth electromagnetic steel plate 76 in order. The structure is arranged in the axial direction. FIG. 17 shows the shape of the first electromagnetic steel plate 71 and shows an enlarged connection portion of the first electromagnetic steel plate 71. FIG. 18 shows the shape of the third electromagnetic steel sheet 73 and also shows an enlarged connection portion of the third electromagnetic steel sheet 73. FIG. 19 shows a connecting portion of the first electromagnetic steel plate 71, the third electromagnetic steel plate 73, the sixth electromagnetic steel plate 76, and the eighth electromagnetic steel plate 78 in any four consecutive layers L1 to L4. The number of laminations of the first electromagnetic steel plate 71, the third electromagnetic steel plate 73, the sixth electromagnetic steel plate 76, and the eighth electromagnetic steel plate 78 is preferably more than four. Here, for convenience of explanation, the four layers L1 to L1 are used. Only L4 is shown. FIG. 20 shows six layers L1 to L6 including the layers L1 to L4.
 それぞれのバックヨーク62は、第2電磁鋼板72と第4電磁鋼板74とが軸方向に積層された構造の分割片である。それぞれのバックヨーク62は、第2電磁鋼板72と第4電磁鋼板74のみが積層された構造になっていてもよいが、本実施の形態では、第2電磁鋼板72と第4電磁鋼板74と第5電磁鋼板75と第7電磁鋼板77とが積層された構造になっている。具体的には、それぞれのバックヨーク62は、1枚の第4電磁鋼板74、1枚の第2電磁鋼板72、1枚の第5電磁鋼板75、1枚の第7電磁鋼板77が順番に繰り返し軸方向に配置された構造になっている。図17は、第4電磁鋼板74の形状を示しているとともに、第4電磁鋼板74の連結部を拡大して示している。図18は、第2電磁鋼板72の形状を示しているとともに、第2電磁鋼板72の連結部を拡大して示している。図19は、層L1~L4における第2電磁鋼板72、第4電磁鋼板74、第5電磁鋼板75及び第7電磁鋼板77の連結部を示している。第2電磁鋼板72及び第4電磁鋼板74の積層数は、第2電磁鋼板72、第4電磁鋼板74、第5電磁鋼板75及び第7電磁鋼板77の積層数と同じである。 Each back yoke 62 is a divided piece having a structure in which a second electromagnetic steel plate 72 and a fourth electromagnetic steel plate 74 are laminated in the axial direction. Each back yoke 62 may have a structure in which only the second electromagnetic steel plate 72 and the fourth electromagnetic steel plate 74 are laminated, but in the present embodiment, the second electromagnetic steel plate 72, the fourth electromagnetic steel plate 74, The fifth electromagnetic steel plate 75 and the seventh electromagnetic steel plate 77 are laminated. Specifically, each back yoke 62 has one fourth electromagnetic steel plate 74, one second electromagnetic steel plate 72, one fifth electromagnetic steel plate 75, and one seventh electromagnetic steel plate 77 in order. It has a structure that is repeatedly arranged in the axial direction. FIG. 17 shows the shape of the fourth electromagnetic steel plate 74 and shows an enlarged connection portion of the fourth electromagnetic steel plate 74. FIG. 18 shows the shape of the second electromagnetic steel plate 72 and shows an enlarged connection portion of the second electromagnetic steel plate 72. FIG. 19 shows a connecting portion of the second electromagnetic steel plate 72, the fourth electromagnetic steel plate 74, the fifth electromagnetic steel plate 75, and the seventh electromagnetic steel plate 77 in the layers L1 to L4. The number of laminations of the second electromagnetic steel plate 72 and the fourth electromagnetic steel plate 74 is the same as the number of laminations of the second electromagnetic steel plate 72, the fourth electromagnetic steel plate 74, the fifth electromagnetic steel plate 75, and the seventh electromagnetic steel plate 77.
 第1電磁鋼板71は、第2電磁鋼板72、第4電磁鋼板74、第5電磁鋼板75及び第7電磁鋼板77よりも鉄損の低い電磁鋼板である。 The first electromagnetic steel plate 71 is an electromagnetic steel plate having a lower iron loss than the second electromagnetic steel plate 72, the fourth electromagnetic steel plate 74, the fifth electromagnetic steel plate 75, and the seventh electromagnetic steel plate 77.
 第3電磁鋼板73は、第1電磁鋼板71と同じように、第2電磁鋼板72、第4電磁鋼板74、第5電磁鋼板75及び第7電磁鋼板77よりも鉄損の低い電磁鋼板である。第3電磁鋼板73は、第1電磁鋼板71と重なっている部分3Aと、突起81が設けられ、第1電磁鋼板71よりも外側に突き出している部分3Bとを有する。それぞれのティース61と、対応するバックヨーク62とが連結されているとき、第3電磁鋼板73は、第1電磁鋼板71よりも外側に突き出した先の端3Cが第2電磁鋼板72と隣接している。 The third electromagnetic steel plate 73 is an electromagnetic steel plate having lower iron loss than the second electromagnetic steel plate 72, the fourth electromagnetic steel plate 74, the fifth electromagnetic steel plate 75, and the seventh electromagnetic steel plate 77, similarly to the first electromagnetic steel plate 71. . The third electromagnetic steel plate 73 includes a portion 3 </ b> A that overlaps the first electromagnetic steel plate 71, and a portion 3 </ b> B that is provided with a protrusion 81 and protrudes outward from the first electromagnetic steel plate 71. When each of the teeth 61 and the corresponding back yoke 62 are connected, the third electromagnetic steel plate 73 is adjacent to the second electromagnetic steel plate 72 at the end 3C that protrudes outward from the first electromagnetic steel plate 71. ing.
 第3電磁鋼板73の突起81については、実施の形態1のものと同じである。 The protrusion 81 of the third electromagnetic steel sheet 73 is the same as that of the first embodiment.
 第4電磁鋼板74は、第2電磁鋼板72と重なっている部分4Aと、穴82が設けられ、第2電磁鋼板72よりも外側に突き出している部分4Bとを有する。それぞれのティース61と、対応するバックヨーク62とが連結されているとき、第4電磁鋼板74は、第2電磁鋼板72よりも外側に突き出した先の端4Cが第1電磁鋼板71と隣接している。 The fourth electromagnetic steel plate 74 has a portion 4A that overlaps with the second electromagnetic steel plate 72, and a portion 4B that is provided with a hole 82 and protrudes outward from the second electromagnetic steel plate 72. When each of the teeth 61 and the corresponding back yoke 62 are connected, the fourth electromagnetic steel plate 74 is adjacent to the first electromagnetic steel plate 71 at the end 4C protruding beyond the second electromagnetic steel plate 72. ing.
 第4電磁鋼板74の穴82については、実施の形態1のものと同じである。それぞれのティース61と、対応するバックヨーク62とが連結されているとき、穴82には、第3電磁鋼板73の突起81が嵌っている。これにより、少なくとも突起81が突き出している方向においては、第3電磁鋼板73の枚数と同じ個数の突起81によって、それぞれのティース61と、対応するバックヨーク62とが結合される。したがって、突起81の個数が多いほど、ティース61とバックヨーク62との結合力が強くなる。 The hole 82 of the fourth electromagnetic steel sheet 74 is the same as that of the first embodiment. When each of the teeth 61 and the corresponding back yoke 62 are connected, the projections 81 of the third electromagnetic steel plate 73 are fitted in the holes 82. Accordingly, at least in the direction in which the protrusions 81 protrude, the teeth 61 and the corresponding back yokes 62 are coupled by the same number of protrusions 81 as the number of the third electromagnetic steel plates 73. Therefore, the greater the number of protrusions 81, the stronger the bonding force between the teeth 61 and the back yoke 62.
 第5電磁鋼板75は、それぞれのバックヨーク62の一部である。よって、それぞれのティース61と、対応するバックヨーク62とが連結されているとき、第5電磁鋼板75は、第1電磁鋼板71がある側と第2電磁鋼板72がある側とのうち第2電磁鋼板72がある側に配置されている。 The fifth electromagnetic steel plate 75 is a part of each back yoke 62. Therefore, when each tooth 61 and the corresponding back yoke 62 are connected, the fifth electromagnetic steel plate 75 is the second of the side having the first electromagnetic steel plate 71 and the side having the second electromagnetic steel plate 72. It arrange | positions at the side with the electromagnetic steel plate 72.
 第6電磁鋼板76は、第1電磁鋼板71と同じように、第2電磁鋼板72、第4電磁鋼板74、第5電磁鋼板75及び第7電磁鋼板77よりも鉄損の低い電磁鋼板である。第6電磁鋼板76は、それぞれのティース61の一部である。よって、それぞれのティース61と、対応するバックヨーク62とが連結されているとき、第6電磁鋼板76は、第1電磁鋼板71がある側と第2電磁鋼板72がある側とのうち第1電磁鋼板71がある側に配置されている。 The sixth electromagnetic steel plate 76 is an electromagnetic steel plate having a lower iron loss than the second electromagnetic steel plate 72, the fourth electromagnetic steel plate 74, the fifth electromagnetic steel plate 75, and the seventh electromagnetic steel plate 77, similarly to the first electromagnetic steel plate 71. . The sixth electromagnetic steel plate 76 is a part of each tooth 61. Therefore, when each tooth 61 and the corresponding back yoke 62 are connected, the sixth electromagnetic steel plate 76 is the first of the side having the first electromagnetic steel plate 71 and the side having the second electromagnetic steel plate 72. It arrange | positions at the side with the electromagnetic steel plate 71.
 第7電磁鋼板77は、第5電磁鋼板75と重なっている部分7Aと、突起81が設けられ、第5電磁鋼板75よりも外側に突き出している部分7Bとを有する。それぞれのティース61と、対応するバックヨーク62とが連結されているとき、第7電磁鋼板77は、第5電磁鋼板75よりも外側に突き出した先の端7Cが第6電磁鋼板76と隣接している。 The seventh electromagnetic steel plate 77 has a portion 7A that overlaps with the fifth electromagnetic steel plate 75 and a portion 7B that is provided with a protrusion 81 and protrudes outward from the fifth electromagnetic steel plate 75. When each of the teeth 61 and the corresponding back yoke 62 are connected, the seventh electromagnetic steel plate 77 is adjacent to the sixth electromagnetic steel plate 76 at the end 7C protruding outward from the fifth electromagnetic steel plate 75. ing.
 第7電磁鋼板77の突起83は、弾性を持っている。突起83は、第5電磁鋼板75に近づく方向に斜めに延びている。突起83は、任意の方法で形成されてよいが、本実施の形態では、第7電磁鋼板77の一部が切り起こされることで形成されている。突起83は、任意の形状でよいが、本実施の形態では、平面視矩形状である。それぞれのティース61と、対応するバックヨーク62とが連結されているとき、突起83は、積層方向において第3電磁鋼板73の突起81が突き出している側と同じ側に突き出している。 The projection 83 of the seventh electromagnetic steel plate 77 has elasticity. The protrusion 83 extends obliquely in a direction approaching the fifth electromagnetic steel plate 75. The protrusion 83 may be formed by any method, but in the present embodiment, the protrusion 83 is formed by cutting and raising a part of the seventh electromagnetic steel plate 77. The protrusion 83 may have an arbitrary shape, but in the present embodiment, the protrusion 83 has a rectangular shape in plan view. When each of the teeth 61 and the corresponding back yoke 62 are connected, the protrusion 83 protrudes on the same side as the protrusion 81 of the third electromagnetic steel sheet 73 protrudes in the stacking direction.
 第8電磁鋼板78は、第6電磁鋼板76と重なっている部分8Aと、穴84が設けられ、第6電磁鋼板76よりも外側に突き出している部分8Bとを有する。それぞれのティース61と、対応するバックヨーク62とが連結されているとき、第8電磁鋼板78は、第6電磁鋼板76よりも外側に突き出した先の端8Cが第5電磁鋼板75と隣接している。 The eighth electromagnetic steel plate 78 has a portion 8A overlapping the sixth electromagnetic steel plate 76 and a portion 8B provided with a hole 84 and protruding outward from the sixth electromagnetic steel plate 76. When each of the teeth 61 and the corresponding back yoke 62 are connected, the end 8C of the eighth electromagnetic steel plate 78 protruding outward from the sixth electromagnetic steel plate 76 is adjacent to the fifth electromagnetic steel plate 75. ing.
 第8電磁鋼板78の穴84は、任意の形状でよいが、本実施の形態では、平面視矩形状である。それぞれのティース61と、対応するバックヨーク62とが連結されているとき、穴84には、第7電磁鋼板77の突起83が嵌っている。これにより、突起83が突き出している方向においても、第7電磁鋼板77の枚数と同じ個数の突起83によって、それぞれのティース61と、対応するバックヨーク62とが結合される。したがって、突起83の個数が多いほど、それぞれのティース61と、対応するバックヨーク62との結合力が強くなる。 The hole 84 of the eighth electromagnetic steel plate 78 may have an arbitrary shape, but in the present embodiment, it has a rectangular shape in plan view. When each of the teeth 61 and the corresponding back yoke 62 are connected, a projection 83 of a seventh electromagnetic steel plate 77 is fitted in the hole 84. Thus, even in the direction in which the protrusion 83 protrudes, each tooth 61 and the corresponding back yoke 62 are coupled by the same number of protrusions 83 as the number of the seventh electromagnetic steel plates 77. Therefore, as the number of the protrusions 83 increases, the coupling force between each tooth 61 and the corresponding back yoke 62 increases.
 ***手順の説明***
 図20を参照して、固定子鉄心43の構成を実現するための手順を説明する。具体的には、1個のティース61と1個のバックヨーク62とを連結する手順を説明する。この手順は、本実施の形態に係る固定子鉄心43の製造方法の一部の工程に相当する。
*** Explanation of procedure ***
A procedure for realizing the configuration of the stator core 43 will be described with reference to FIG. Specifically, a procedure for connecting one tooth 61 and one back yoke 62 will be described. This procedure corresponds to a part of the steps of the method for manufacturing the stator core 43 according to the present embodiment.
 まず、突起81及び穴84のあるティース61が、穴82及び突起83のあるバックヨーク62に向かって、第4電磁鋼板74と第1電磁鋼板71とが同層になり、第2電磁鋼板72と第3電磁鋼板73とが同層になり、第5電磁鋼板75と第8電磁鋼板78とが同層になり、第7電磁鋼板77と第6電磁鋼板76とが同層になるように、半径方向に移動される。 First, the teeth 61 having the protrusions 81 and the holes 84 are formed in the same layer as the fourth electromagnetic steel sheet 74 and the first electromagnetic steel sheet 71 toward the back yoke 62 having the holes 82 and the protrusions 83. And the third electromagnetic steel plate 73 are in the same layer, the fifth electromagnetic steel plate 75 and the eighth electromagnetic steel plate 78 are in the same layer, and the seventh electromagnetic steel plate 77 and the sixth electromagnetic steel plate 76 are in the same layer. , Moved in the radial direction.
 層L2の第3電磁鋼板73は、1つ上の層L1の第4電磁鋼板74の下に生じる隙間に挿入される。層L2の第3電磁鋼板73が挿入される過程において、層L2の第3電磁鋼板73の突起81は、層L1の第4電磁鋼板74の半径方向端部により、軸方向の突起81が突き出している側と逆側に力を受け、弾性変形する。具体的には、突起81は、層L2の第3電磁鋼板73が挿入されるに従い、突起81の傾斜面に接触する層L1の第4電磁鋼板74の半径方向端部によって徐々に押しつぶされていく。この第4電磁鋼板74の半径方向端部は、図19に示した層L1の第4電磁鋼板74の端4Cに相当する。 The third electromagnetic steel plate 73 of the layer L2 is inserted into a gap generated under the fourth electromagnetic steel plate 74 of the upper layer L1. In the process in which the third electromagnetic steel plate 73 of the layer L2 is inserted, the projection 81 of the third electromagnetic steel plate 73 of the layer L2 protrudes from the radial end of the fourth electromagnetic steel plate 74 of the layer L1. It receives force on the opposite side and elastically deforms. Specifically, as the third electromagnetic steel plate 73 of the layer L2 is inserted, the protrusion 81 is gradually crushed by the radial end of the fourth electromagnetic steel plate 74 of the layer L1 that contacts the inclined surface of the protrusion 81. Go. The radial direction end of the fourth electromagnetic steel plate 74 corresponds to the end 4C of the fourth electromagnetic steel plate 74 of the layer L1 shown in FIG.
 層L6の第3電磁鋼板73も、層L2の第3電磁鋼板73と同じように、1つ上の層L5の第4電磁鋼板74の下に生じる隙間に挿入される。 Similarly to the third electromagnetic steel plate 73 of the layer L2, the third electromagnetic steel plate 73 of the layer L6 is also inserted into the gap generated under the fourth electromagnetic steel plate 74 of the upper layer L5.
 層L4の第7電磁鋼板77は、1つ上の層L3の第8電磁鋼板78の下に生じる隙間に挿入される。層L4の第7電磁鋼板77が挿入される過程において、層L4の第7電磁鋼板77の突起83は、層L3の第8電磁鋼板78の半径方向端部により、軸方向の突起83が突き出している側と逆側に力を受け、弾性変形する。具体的には、突起83は、層L4の第7電磁鋼板77が挿入されるに従い、突起83の傾斜面に接触する層L3の第8電磁鋼板78の半径方向端部によって徐々に押しつぶされていく。この第8電磁鋼板78の半径方向端部は、図19に示した層L3の第8電磁鋼板78の端8Cに相当する。 The seventh electromagnetic steel plate 77 of the layer L4 is inserted into a gap generated below the eighth electromagnetic steel plate 78 of the upper layer L3. In the process of inserting the seventh electromagnetic steel plate 77 of the layer L4, the projection 83 of the seventh electromagnetic steel plate 77 of the layer L4 protrudes from the radial projection of the eighth electromagnetic steel plate 78 of the layer L3. It receives force on the opposite side and elastically deforms. Specifically, as the seventh electromagnetic steel plate 77 of the layer L4 is inserted, the protrusion 83 is gradually crushed by the radial end of the eighth electromagnetic steel plate 78 of the layer L3 that contacts the inclined surface of the protrusion 83. Go. The radial direction end of the eighth electromagnetic steel plate 78 corresponds to the end 8C of the eighth electromagnetic steel plate 78 of the layer L3 shown in FIG.
 上記のように、本実施の形態では、第3電磁鋼板73の突起81と、第7電磁鋼板77の突起83との両方が弾性変形するため、圧入等の他の方法に比べて容易に第3電磁鋼板73及び第7電磁鋼板77を挿入することができる。 As described above, in the present embodiment, both the projection 81 of the third electromagnetic steel plate 73 and the projection 83 of the seventh electromagnetic steel plate 77 are elastically deformed, so that it is easier than the other methods such as press-fitting. The third electromagnetic steel plate 73 and the seventh electromagnetic steel plate 77 can be inserted.
 層L2の第3電磁鋼板73の突起81は、層L1の第4電磁鋼板74の穴82まで到達すると、弾性力によって元の形状に戻り、穴82に嵌る。これにより、層L2の第3電磁鋼板73と層L1の第4電磁鋼板74とが結合される。層L6の第3電磁鋼板73と層L5の第4電磁鋼板74も、層L2の第3電磁鋼板73と層L1の第4電磁鋼板74と同じように結合される。 When the protrusion 81 of the third electromagnetic steel plate 73 of the layer L2 reaches the hole 82 of the fourth electromagnetic steel plate 74 of the layer L1, it returns to its original shape by the elastic force and fits into the hole 82. Thereby, the 3rd electromagnetic steel plate 73 of the layer L2 and the 4th electromagnetic steel plate 74 of the layer L1 are couple | bonded. The third electromagnetic steel plate 73 of the layer L6 and the fourth electromagnetic steel plate 74 of the layer L5 are also coupled in the same manner as the third electromagnetic steel plate 73 of the layer L2 and the fourth electromagnetic steel plate 74 of the layer L1.
 層L4の第7電磁鋼板77の突起83は、層L3の第8電磁鋼板78の穴84まで到達すると、弾性力によって元の形状に戻り、穴84に嵌る。これにより、層L4の第7電磁鋼板77と層L3の第8電磁鋼板78も結合される。 When the projection 83 of the seventh electromagnetic steel plate 77 of the layer L4 reaches the hole 84 of the eighth electromagnetic steel plate 78 of the layer L3, it returns to its original shape by the elastic force and fits into the hole 84. Thereby, the seventh electromagnetic steel plate 77 of the layer L4 and the eighth electromagnetic steel plate 78 of the layer L3 are also coupled.
 仮にティース61が、バックヨーク62とは逆側に向かって、半径方向に引っ張られたとしても、ティース61の突起81がバックヨーク62の穴82に嵌っているため、突起81と穴82の内壁との接触力が働き、ティース61がバックヨーク62から引き離されることはない。同じように、仮にバックヨーク62が、ティース61とは逆側に向かって、半径方向に引っ張られたとしても、バックヨーク62の突起83がティース61の穴84に嵌っているため、突起83と穴84の内壁との接触力が働き、バックヨーク62がティース61から引き離されることはない。 Even if the teeth 61 are pulled in the radial direction toward the opposite side of the back yoke 62, the protrusions 81 of the teeth 61 are fitted in the holes 82 of the back yoke 62. Thus, the tooth 61 is not pulled away from the back yoke 62. Similarly, even if the back yoke 62 is pulled in the radial direction toward the side opposite to the teeth 61, the projection 83 of the back yoke 62 fits into the hole 84 of the tooth 61. The contact force with the inner wall of the hole 84 works and the back yoke 62 is not pulled away from the teeth 61.
 ***実施の形態の効果の説明***
 本実施の形態では、第1電磁鋼板71と、第2電磁鋼板72と、突起81のある第3電磁鋼板73と、第3電磁鋼板73の突起81が嵌っている穴82のある第4電磁鋼板74との組み合わせが同じ向きで積層されている。本実施の形態では、さらに、第1電磁鋼板71と第2電磁鋼板72と第3電磁鋼板73と第4電磁鋼板74との組み合わせ間に、第5電磁鋼板75と、第6電磁鋼板76と、突起83のある第7電磁鋼板77と、第7電磁鋼板77の突起83が嵌っている穴84のある第8電磁鋼板78との組み合わせが配置されている。第7電磁鋼板77の突起83は、第3電磁鋼板73の突起81とは異なる方向に突き出しているため、2つ以上の方向において、2種類の突起81,83によってティース61とバックヨーク62とが結合されている。したがって、ティース61とバックヨーク62とが強固に固定される。ここで、ティース61とバックヨーク62は、固定子鉄心43の分割された部分に該当する。
*** Explanation of the effect of the embodiment ***
In the present embodiment, the first electromagnetic steel plate 71, the second electromagnetic steel plate 72, the third electromagnetic steel plate 73 with the projection 81, and the fourth electromagnetic with the hole 82 into which the projection 81 of the third electromagnetic steel plate 73 is fitted. The combination with the steel plate 74 is laminated in the same direction. In the present embodiment, a fifth electromagnetic steel plate 75, a sixth electromagnetic steel plate 76, and a combination of the first electromagnetic steel plate 71, the second electromagnetic steel plate 72, the third electromagnetic steel plate 73, and the fourth electromagnetic steel plate 74, A combination of the seventh electromagnetic steel plate 77 having the projection 83 and the eighth electromagnetic steel plate 78 having the hole 84 into which the projection 83 of the seventh electromagnetic steel plate 77 is fitted is disposed. Since the projection 83 of the seventh electromagnetic steel plate 77 protrudes in a direction different from the projection 81 of the third electromagnetic steel plate 73, the tooth 61 and the back yoke 62 are connected by the two types of projections 81 and 83 in two or more directions. Are combined. Therefore, the teeth 61 and the back yoke 62 are firmly fixed. Here, the teeth 61 and the back yoke 62 correspond to divided portions of the stator core 43.
 ***他の構成***
 ティース61を形成する電磁鋼板だけでなく、バックヨーク62を形成する電磁鋼板も、鉄損の低い電磁鋼板であってよい。即ち、第2電磁鋼板72及び第4電磁鋼板74は、第1電磁鋼板71及び第3電磁鋼板73と同じように、鉄損の低い電磁鋼板であってもよい。
*** Other configurations ***
Not only the electromagnetic steel sheet forming the teeth 61 but also the electromagnetic steel sheet forming the back yoke 62 may be an electromagnetic steel sheet with low iron loss. That is, the second electromagnetic steel plate 72 and the fourth electromagnetic steel plate 74 may be electromagnetic steel plates with low iron loss, like the first electromagnetic steel plate 71 and the third electromagnetic steel plate 73.
 第1電磁鋼板71と第2電磁鋼板72と第3電磁鋼板73と第4電磁鋼板74との組み合わせと、第5電磁鋼板75と第6電磁鋼板76と第7電磁鋼板77と第8電磁鋼板78との組み合わせとの間に、別の電磁鋼板の組み合わせが配置されていてもよい。具体的には、実施の形態1の変形例と同じように、第1電磁鋼板71と第2電磁鋼板72と第3電磁鋼板73と第4電磁鋼板74との組み合わせと、第5電磁鋼板75と第6電磁鋼板76と第7電磁鋼板77と第8電磁鋼板78との組み合わせとの間に、図12に示した第5電磁鋼板75と第6電磁鋼板76との組み合わせが配置されていてもよい。 A combination of the first electromagnetic steel plate 71, the second electromagnetic steel plate 72, the third electromagnetic steel plate 73, and the fourth electromagnetic steel plate 74, the fifth electromagnetic steel plate 75, the sixth electromagnetic steel plate 76, the seventh electromagnetic steel plate 77, and the eighth electromagnetic steel plate. Between the combination with 78, another combination of electromagnetic steel sheets may be arranged. Specifically, as in the modification of the first embodiment, the combination of the first electromagnetic steel plate 71, the second electromagnetic steel plate 72, the third electromagnetic steel plate 73, and the fourth electromagnetic steel plate 74, and the fifth electromagnetic steel plate 75. The combination of the fifth electromagnetic steel plate 75 and the sixth electromagnetic steel plate 76 shown in FIG. 12 is arranged between the combination of the sixth electromagnetic steel plate 76, the seventh electromagnetic steel plate 77, and the eighth electromagnetic steel plate 78. Also good.
 実施の形態5.
 本実施の形態について、主に実施の形態4との差異を説明する。
Embodiment 5 FIG.
In the present embodiment, differences from the fourth embodiment will be mainly described.
 図21及び図22を参照して、本実施の形態に係る固定子鉄心43の構成を説明する。 The configuration of the stator core 43 according to the present embodiment will be described with reference to FIGS.
 実施の形態4では、第7電磁鋼板77の突起83が、積層方向において第3電磁鋼板73の突起81が突き出している側と同じ側に突き出している。これに対し、本実施の形態では、第7電磁鋼板77の突起83が、積層方向において第3電磁鋼板73の突起81が突き出している側と逆側に突き出している。また、積層方向において、第5電磁鋼板75と第7電磁鋼板77との位置関係、及び、第6電磁鋼板76と第8電磁鋼板78との位置関係が、実施の形態4とは逆になる。 In Embodiment 4, the projection 83 of the seventh electromagnetic steel plate 77 protrudes on the same side as the side from which the projection 81 of the third electromagnetic steel plate 73 protrudes in the stacking direction. On the other hand, in the present embodiment, the protrusion 83 of the seventh electromagnetic steel plate 77 protrudes on the side opposite to the side where the protrusion 81 of the third electromagnetic steel plate 73 protrudes in the stacking direction. In the stacking direction, the positional relationship between the fifth electromagnetic steel plate 75 and the seventh electromagnetic steel plate 77 and the positional relationship between the sixth electromagnetic steel plate 76 and the eighth electromagnetic steel plate 78 are opposite to those in the fourth embodiment. .
 1個のティース61と1個のバックヨーク62とが連結される際には、実施の形態4と同じように、層L2の第3電磁鋼板73が、1つ上の層L1の第4電磁鋼板74の下に生じる隙間に挿入される。層L2の第3電磁鋼板73が挿入される過程において、層L2の第3電磁鋼板73の突起81は、層L1の第4電磁鋼板74の半径方向端部により、軸方向の突起81が突き出している側と逆側に力を受け、弾性変形する。層L6の第3電磁鋼板73も、層L2の第3電磁鋼板73と同じように、1つ上の層L5の第4電磁鋼板74の下に生じる隙間に挿入される。 When one tooth 61 and one back yoke 62 are connected, the third electromagnetic steel plate 73 of the layer L2 is connected to the fourth electromagnetic of the layer L1 that is one layer higher, as in the fourth embodiment. It is inserted into a gap generated under the steel plate 74. In the process in which the third electromagnetic steel plate 73 of the layer L2 is inserted, the projection 81 of the third electromagnetic steel plate 73 of the layer L2 protrudes from the radial end of the fourth electromagnetic steel plate 74 of the layer L1. It receives force on the opposite side and elastically deforms. Similarly to the third electromagnetic steel plate 73 of the layer L2, the third electromagnetic steel plate 73 of the layer L6 is also inserted into the gap generated below the fourth electromagnetic steel plate 74 of the upper layer L5.
 実施の形態4と異なり、層L3の第7電磁鋼板77は、1つ下の層L4の第8電磁鋼板78の上に生じる隙間に挿入される。層L3の第7電磁鋼板77が挿入される過程において、層L3の第7電磁鋼板77の突起83は、層L4の第8電磁鋼板78の半径方向端部により、軸方向の突起83が突き出している側と逆側に力を受け、弾性変形する。具体的には、突起83は、層L3の第7電磁鋼板77が挿入されるに従い、突起83の傾斜面に接触する層L4の第8電磁鋼板78の半径方向端部によって徐々に押しつぶされていく。この第8電磁鋼板78の半径方向端部は、図21に示した層L4の第8電磁鋼板78の端8Cに相当する。 Unlike the fourth embodiment, the seventh electromagnetic steel plate 77 of the layer L3 is inserted into a gap generated on the eighth electromagnetic steel plate 78 of the next lower layer L4. In the process of inserting the seventh electromagnetic steel plate 77 of the layer L3, the projection 83 of the seventh electromagnetic steel plate 77 of the layer L3 protrudes from the radial projection of the eighth electromagnetic steel plate 78 of the layer L4. It receives force on the opposite side and elastically deforms. Specifically, as the seventh electromagnetic steel plate 77 of the layer L3 is inserted, the protrusion 83 is gradually crushed by the radial end of the eighth electromagnetic steel plate 78 of the layer L4 that contacts the inclined surface of the protrusion 83. Go. The radial direction end portion of the eighth electromagnetic steel plate 78 corresponds to the end 8C of the eighth electromagnetic steel plate 78 of the layer L4 shown in FIG.
 層L2の第3電磁鋼板73の突起81は、層L1の第4電磁鋼板74の穴82まで到達すると、弾性力によって元の形状に戻り、穴82に嵌る。これにより、層L2の第3電磁鋼板73と層L1の第4電磁鋼板74とが結合される。層L6の第3電磁鋼板73と層L5の第4電磁鋼板74も、層L2の第3電磁鋼板73と層L1の第4電磁鋼板74と同じように結合される。 When the protrusion 81 of the third electromagnetic steel plate 73 of the layer L2 reaches the hole 82 of the fourth electromagnetic steel plate 74 of the layer L1, it returns to its original shape by the elastic force and fits into the hole 82. Thereby, the 3rd electromagnetic steel plate 73 of the layer L2 and the 4th electromagnetic steel plate 74 of the layer L1 are couple | bonded. The third electromagnetic steel plate 73 of the layer L6 and the fourth electromagnetic steel plate 74 of the layer L5 are also coupled in the same manner as the third electromagnetic steel plate 73 of the layer L2 and the fourth electromagnetic steel plate 74 of the layer L1.
 層L3の第7電磁鋼板77の突起83は、層L4の第8電磁鋼板78の穴84まで到達すると、弾性力によって元の形状に戻り、穴84に嵌る。これにより、層L3の第7電磁鋼板77と層L4の第8電磁鋼板78も結合される。 When the protrusion 83 of the seventh electromagnetic steel plate 77 of the layer L3 reaches the hole 84 of the eighth electromagnetic steel plate 78 of the layer L4, it returns to its original shape by the elastic force and fits into the hole 84. Thereby, the seventh electromagnetic steel plate 77 of the layer L3 and the eighth electromagnetic steel plate 78 of the layer L4 are also coupled.
 図22に示すように、本実施の形態では、ティース61の突起81と、バックヨーク62の突起83とが、180度異なる方向に突き出している。そのため、ティース61とバックヨーク62とが連結される際に、ティース61の突起81と、バックヨーク62の突起83とが互いに干渉しにくい。 As shown in FIG. 22, in the present embodiment, the protrusion 81 of the tooth 61 and the protrusion 83 of the back yoke 62 protrude in directions different by 180 degrees. Therefore, when the tooth 61 and the back yoke 62 are connected, the protrusion 81 of the tooth 61 and the protrusion 83 of the back yoke 62 are unlikely to interfere with each other.
 以上、本発明の実施の形態について説明したが、これらの実施の形態のうち、いくつかを組み合わせて実施しても構わない。或いは、これらの実施の形態のうち、いずれか1つ又はいくつかを部分的に実施しても構わない。具体的には、これらの実施の形態の説明において「部」として説明するもののうち、いずれか1つのみを採用してもよいし、いくつかの任意の組み合わせを採用してもよい。なお、本発明は、これらの実施の形態に限定されるものではなく、必要に応じて種々の変更が可能である。 As mentioned above, although embodiment of this invention was described, you may implement combining some of these embodiment. Alternatively, any one or some of these embodiments may be partially implemented. Specifically, any one of those described as “parts” in the description of these embodiments may be employed, or some arbitrary combinations may be employed. In addition, this invention is not limited to these embodiment, A various change is possible as needed.
 10 冷凍サイクル装置、11 冷媒回路、12 圧縮機、13 四方弁、14 第1熱交換器、15 膨張機構、16 第2熱交換器、17 制御装置、20 密閉容器、21 吸入管、22 吐出管、23 吸入マフラ、24 端子、25 リード線、30 圧縮機構、31 シリンダ、32 ピストン、33 主軸受け、34 副軸受け、35 吐出マフラ、40 モータ、41 固定子、42 回転子、43 固定子鉄心、44 巻線、45 絶縁部材、46 回転子鉄心、48 永久磁石、49 貫通孔、50 クランク軸、51 偏心軸部、52 主軸部、53 副軸部、60 分割鉄心、60A 連結鉄心、60B 連結鉄心、61 ティース、62 バックヨーク、71 第1電磁鋼板、72 第2電磁鋼板、73 第3電磁鋼板、74 第4電磁鋼板、75 第5電磁鋼板、76 第6電磁鋼板、77 第7電磁鋼板、78 第8電磁鋼板、81 突起、82 穴、83 突起、84 穴。 10 refrigeration cycle apparatus, 11 refrigerant circuit, 12 compressor, 13 four-way valve, 14 first heat exchanger, 15 expansion mechanism, 16 second heat exchanger, 17 control device, 20 sealed container, 21 suction pipe, 22 discharge pipe , 23 Suction muffler, 24 terminal, 25 lead wire, 30 compression mechanism, 31 cylinder, 32 piston, 33 main bearing, 34 sub bearing, 35 discharge muffler, 40 motor, 41 stator, 42 rotor, 43 stator core, 44 windings, 45 insulating members, 46 rotor cores, 48 permanent magnets, 49 through holes, 50 crankshafts, 51 eccentric shafts, 52 main shafts, 53 subshafts, 60 split cores, 60A connecting cores, 60B connecting cores , 61 teeth, 62 back yoke, 71 first electromagnetic steel plate, 72 second electromagnetic steel plate, 73 third Steel sheets, 74 fourth electromagnetic steel plates, 75 a fifth electromagnetic steel plates, 76 a sixth electromagnetic steel plates, 77 seventh electromagnetic steel plates, 78 eighth electromagnetic steel plates, 81 projections, 82 holes, 83 projection, 84 holes.

Claims (12)

  1.  第1電磁鋼板と、
     第2電磁鋼板と、
     前記第1電磁鋼板と重なっている部分と、弾性を持ち前記第1電磁鋼板に近づく方向に斜めに延びる突起が設けられ、前記第1電磁鋼板よりも外側に突き出している部分とを有し、前記第1電磁鋼板よりも外側に突き出した先の端が前記第2電磁鋼板と隣接している第3電磁鋼板と、
     前記第2電磁鋼板と重なっている部分と、前記第3電磁鋼板の突起が嵌っている穴が設けられ、前記第2電磁鋼板よりも外側に突き出している部分とを有し、前記第2電磁鋼板よりも外側に突き出した先の端が前記第1電磁鋼板と隣接している第4電磁鋼板と
    を備え、
     前記第1電磁鋼板と前記第2電磁鋼板と前記第3電磁鋼板と前記第4電磁鋼板との組み合わせが同じ向きで積層されている固定子鉄心。
    A first electromagnetic steel sheet;
    A second electromagnetic steel sheet;
    A portion overlapping with the first electromagnetic steel sheet, and a protrusion having an elasticity and extending obliquely in a direction approaching the first electromagnetic steel sheet, and a portion protruding outward from the first electromagnetic steel sheet; A third electromagnetic steel sheet having a tip end protruding outward from the first electromagnetic steel sheet and adjacent to the second electromagnetic steel sheet;
    A portion overlapping with the second electromagnetic steel plate, and a portion provided with a hole into which a protrusion of the third electromagnetic steel plate is fitted, and a portion protruding outward from the second electromagnetic steel plate; A fourth electromagnetic steel sheet having a tip end protruding outward from the steel sheet and adjacent to the first electromagnetic steel sheet;
    A stator core in which a combination of the first electromagnetic steel plate, the second electromagnetic steel plate, the third electromagnetic steel plate, and the fourth electromagnetic steel plate is laminated in the same direction.
  2.  前記第1電磁鋼板と前記第2電磁鋼板と前記第3電磁鋼板と前記第4電磁鋼板との組み合わせが同じ向きで連続して積層されている請求項1に記載の固定子鉄心。 The stator core according to claim 1, wherein a combination of the first electromagnetic steel plate, the second electromagnetic steel plate, the third electromagnetic steel plate, and the fourth electromagnetic steel plate is continuously laminated in the same direction.
  3.  第5電磁鋼板と、
     前記第5電磁鋼板と隣接している第6電磁鋼板と
    をさらに備え、
     前記第1電磁鋼板と前記第2電磁鋼板と前記第3電磁鋼板と前記第4電磁鋼板との組み合わせ間に、前記第5電磁鋼板と前記第6電磁鋼板との組み合わせが配置されている請求項1に記載の固定子鉄心。
    A fifth electrical steel sheet;
    A sixth electrical steel sheet adjacent to the fifth electrical steel sheet;
    A combination of the fifth electromagnetic steel plate and the sixth electromagnetic steel plate is disposed between the first electromagnetic steel plate, the second electromagnetic steel plate, the third electromagnetic steel plate, and the fourth electromagnetic steel plate. The stator core according to 1.
  4.  前記第1電磁鋼板がある側と前記第2電磁鋼板がある側とのうち前記第2電磁鋼板がある側に配置されている第5電磁鋼板と、
     前記第1電磁鋼板がある側と前記第2電磁鋼板がある側とのうち前記第1電磁鋼板がある側に配置されている第6電磁鋼板と、
     前記第5電磁鋼板と重なっている部分と、弾性を持ち前記第5電磁鋼板に近づく方向に斜めに延びる突起が設けられ、前記第5電磁鋼板よりも外側に突き出している部分とを有し、前記第5電磁鋼板よりも外側に突き出した先の端が前記第6電磁鋼板と隣接している第7電磁鋼板と、
     前記第6電磁鋼板と重なっている部分と、前記第7電磁鋼板の突起が嵌っている穴が設けられ、前記第6電磁鋼板よりも外側に突き出している部分とを有し、前記第6電磁鋼板よりも外側に突き出した先の端が前記第5電磁鋼板と隣接している第8電磁鋼板と
    をさらに備え、
     前記第1電磁鋼板と前記第2電磁鋼板と前記第3電磁鋼板と前記第4電磁鋼板との組み合わせ間に、前記第5電磁鋼板と前記第6電磁鋼板と前記第7電磁鋼板と前記第8電磁鋼板との組み合わせが配置されている請求項1に記載の固定子鉄心。
    A fifth electromagnetic steel sheet disposed on the side where the second electromagnetic steel sheet is present among the side where the first electromagnetic steel sheet is present and the side where the second electromagnetic steel sheet is present;
    A sixth electromagnetic steel sheet disposed on the side where the first electromagnetic steel sheet is located among the side where the first electromagnetic steel sheet is present and the side where the second electromagnetic steel sheet is present;
    A portion that overlaps with the fifth electromagnetic steel plate, and a protrusion that has elasticity and extends obliquely in a direction approaching the fifth electromagnetic steel plate, and has a portion protruding outward from the fifth electromagnetic steel plate, A seventh electromagnetic steel sheet in which the end protruding beyond the fifth electromagnetic steel sheet is adjacent to the sixth electromagnetic steel sheet;
    A portion overlapping with the sixth electromagnetic steel plate; and a hole in which a projection of the seventh electromagnetic steel plate is fitted and protruding outward from the sixth electromagnetic steel plate; An 8th electrical steel sheet in which the end protruding beyond the steel sheet is adjacent to the 5th electrical steel sheet;
    Between the first electromagnetic steel plate, the second electromagnetic steel plate, the third electromagnetic steel plate, and the fourth electromagnetic steel plate, the fifth electromagnetic steel plate, the sixth electromagnetic steel plate, the seventh electromagnetic steel plate, and the eighth The stator core according to claim 1, wherein a combination with an electromagnetic steel sheet is arranged.
  5.  前記第7電磁鋼板の突起は、積層方向において前記第3電磁鋼板の突起が突き出している側と同じ側に突き出している請求項4に記載の固定子鉄心。 The stator iron core according to claim 4, wherein the protrusion of the seventh electromagnetic steel sheet protrudes in the same direction as the protrusion of the protrusion of the third electromagnetic steel sheet in the stacking direction.
  6.  前記第7電磁鋼板の突起は、積層方向において前記第3電磁鋼板の突起が突き出している側と逆側に突き出している請求項4に記載の固定子鉄心。 The stator iron core according to claim 4, wherein the protrusions of the seventh electromagnetic steel sheet protrude in a direction opposite to a side where the protrusions of the third electromagnetic steel sheet protrude in the stacking direction.
  7.  前記第4電磁鋼板の穴は、平面視円形状であり、
     前記第3電磁鋼板の突起は、平面視正方形状であり、1辺の長さが前記第4電磁鋼板の穴の半径の√2倍以下である請求項1から6のいずれか1項に記載の固定子鉄心。
    The hole of the fourth electromagnetic steel sheet has a circular shape in plan view,
    7. The projection according to claim 1, wherein the protrusion of the third electromagnetic steel sheet has a square shape in plan view, and the length of one side is not more than √2 times the radius of the hole of the fourth electromagnetic steel sheet. Stator iron core.
  8.  前記第3電磁鋼板の突起は、前記第3電磁鋼板の複数箇所に設けられ、
     前記第4電磁鋼板の穴は、前記第4電磁鋼板の複数箇所に設けられている請求項1から7のいずれか1項に記載の固定子鉄心。
    The protrusions of the third electromagnetic steel plate are provided at a plurality of locations of the third electromagnetic steel plate,
    The stator iron core according to any one of claims 1 to 7, wherein the holes of the fourth electromagnetic steel plate are provided at a plurality of locations of the fourth electromagnetic steel plate.
  9.  前記第1電磁鋼板と前記第3電磁鋼板とが軸方向に積層された構造の分割鉄心と、前記第2電磁鋼板と前記第4電磁鋼板とが軸方向に積層された構造の分割鉄心とを含む複数の分割鉄心が周方向に連結された構造を持っている請求項1から8のいずれか1項に記載の固定子鉄心。 A divided core having a structure in which the first electromagnetic steel sheet and the third electromagnetic steel sheet are laminated in the axial direction, and a divided iron core having a structure in which the second electromagnetic steel sheet and the fourth electromagnetic steel sheet are laminated in the axial direction. The stator core according to any one of claims 1 to 8, wherein the stator core includes a structure in which a plurality of divided cores are connected in a circumferential direction.
  10.  前記第1電磁鋼板と前記第3電磁鋼板とが軸方向に積層された構造の分割片と、前記第2電磁鋼板と前記第4電磁鋼板とが軸方向に積層された構造の分割片とが半径方向に連結された構造を持っている請求項1から8のいずれか1項に記載の固定子鉄心。 A divided piece having a structure in which the first electromagnetic steel plate and the third electromagnetic steel plate are laminated in the axial direction, and a divided piece having a structure in which the second electromagnetic steel plate and the fourth electromagnetic steel plate are laminated in the axial direction. The stator core according to any one of claims 1 to 8, wherein the stator core has a structure connected in a radial direction.
  11.  請求項1から10のいずれか1項に記載の固定子鉄心と、
     内側に前記固定子鉄心が焼き嵌めされて固定されている密閉容器と
    を備える圧縮機。
    The stator iron core according to any one of claims 1 to 10,
    A compressor provided with an airtight container in which the stator iron core is fixed by shrink fitting.
  12.  請求項11に記載の圧縮機を備える冷凍サイクル装置。 A refrigeration cycle apparatus comprising the compressor according to claim 11.
PCT/JP2015/079113 2015-10-15 2015-10-15 Stator core, compressor, and refrigeration cycle device WO2017064782A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CZ2018-174A CZ2018174A3 (en) 2015-10-15 2015-10-15 An iron stator core, a compressor and a cooling cycle device
JP2017545044A JP6395948B2 (en) 2015-10-15 2015-10-15 Stator core, compressor and refrigeration cycle device
KR1020187006453A KR102018472B1 (en) 2015-10-15 2015-10-15 Stator iron core, compressor and refrigeration cycle unit
PCT/JP2015/079113 WO2017064782A1 (en) 2015-10-15 2015-10-15 Stator core, compressor, and refrigeration cycle device
CN201610893813.7A CN106981935B (en) 2015-10-15 2016-10-13 Stator core, compressor, and refrigeration cycle device
CN201910130808.4A CN109936225A (en) 2015-10-15 2016-10-13 Stator core, compressor and freezing cycle device
CN201621120105.1U CN206302218U (en) 2015-10-15 2016-10-13 Stator core, compressor and freezing cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/079113 WO2017064782A1 (en) 2015-10-15 2015-10-15 Stator core, compressor, and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2017064782A1 true WO2017064782A1 (en) 2017-04-20

Family

ID=58518006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079113 WO2017064782A1 (en) 2015-10-15 2015-10-15 Stator core, compressor, and refrigeration cycle device

Country Status (5)

Country Link
JP (1) JP6395948B2 (en)
KR (1) KR102018472B1 (en)
CN (3) CN106981935B (en)
CZ (1) CZ2018174A3 (en)
WO (1) WO2017064782A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102018472B1 (en) * 2015-10-15 2019-09-04 미쓰비시덴키 가부시키가이샤 Stator iron core, compressor and refrigeration cycle unit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009118676A (en) * 2007-11-08 2009-05-28 Hitachi Koki Co Ltd Power tool
JP2011188650A (en) * 2010-03-09 2011-09-22 Mitsui High Tec Inc Laminated core and manufacturing method for the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3137510B2 (en) * 1993-08-26 2001-02-26 トヨタ自動車株式会社 Stator for synchronous machine, method of manufacturing the same, teeth piece and yoke piece
JP2003304654A (en) * 2002-04-08 2003-10-24 Mitsui High Tec Inc Stacked iron core
JP2007267493A (en) * 2006-03-28 2007-10-11 Mitsui High Tec Inc Laminated iron core and manufacturing method of laminated iron core
JP5738167B2 (en) * 2011-12-22 2015-06-17 三菱電機株式会社 Laminated iron core
CN103855815A (en) * 2012-11-30 2014-06-11 中山大洋电机股份有限公司 Brushless external rotor motor stator and manufacturing method thereof
CN203883562U (en) * 2014-04-23 2014-10-15 广东威灵电机制造有限公司 Stator core, stator and motor
KR102018472B1 (en) * 2015-10-15 2019-09-04 미쓰비시덴키 가부시키가이샤 Stator iron core, compressor and refrigeration cycle unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009118676A (en) * 2007-11-08 2009-05-28 Hitachi Koki Co Ltd Power tool
JP2011188650A (en) * 2010-03-09 2011-09-22 Mitsui High Tec Inc Laminated core and manufacturing method for the same

Also Published As

Publication number Publication date
CN106981935A (en) 2017-07-25
CN109936225A (en) 2019-06-25
CZ2018174A3 (en) 2018-08-01
CN106981935B (en) 2020-04-10
KR102018472B1 (en) 2019-09-04
KR20180037040A (en) 2018-04-10
JPWO2017064782A1 (en) 2017-12-14
JP6395948B2 (en) 2018-09-26
CN206302218U (en) 2017-07-04

Similar Documents

Publication Publication Date Title
JP6742402B2 (en) Electric motor, compressor, and refrigeration cycle device
CN108604835B (en) Stator and compressor
JP6227160B2 (en) Compressor and compressor manufacturing method
JP6351734B2 (en) Electric motor, compressor and refrigeration cycle apparatus
WO2020170390A1 (en) Motor, compressor, and air conditioning device
JP2010279126A (en) Stator core of electric motor, electric motor, sealed compressor, and refrigeration cycle device
JP6290065B2 (en) Compressor manufacturing apparatus and compressor manufacturing method
WO2019102574A1 (en) Electric motor, compressor, and refrigeration cycle device
JP6395948B2 (en) Stator core, compressor and refrigeration cycle device
KR102328761B1 (en) Compressors and refrigeration cycle units
KR102320908B1 (en) Compressors and refrigeration cycle units
JP6407432B2 (en) Compressor and refrigeration cycle apparatus
JP6556342B2 (en) Stator, motor, compressor and refrigeration cycle equipment
WO2023248404A1 (en) Stator production method, stator of electric motor, electric motor, hermetic compressor, and refrigeration cycle device
WO2023007644A1 (en) Stator, rotating armature, compressor, and refrigeration cycle device
WO2021229742A1 (en) Electric motor, compressor, and refrigeration cycle device
WO2022264318A1 (en) Electric motor for compressor, compressor, refrigeration cycle device, and manufacturing method for electric motor for compressor
WO2021260882A1 (en) Electric motor, compressor, and refrigeration cycle device
JP6590904B2 (en) Compressor manufacturing apparatus and compressor manufacturing method
WO2023112078A1 (en) Stator, motor, compressor, and refrigeration cycle device
WO2017098567A1 (en) Compressor and refrigeration cycle device
JP2016021837A (en) Motor and compressor
WO2019198229A1 (en) Compressor and method for manufacturing same
WO2020165962A1 (en) Compressor and air conditioning device
JPWO2018042507A1 (en) Compressor and refrigeration cycle equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15906246

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017545044

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187006453

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PV2018-174

Country of ref document: CZ

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15906246

Country of ref document: EP

Kind code of ref document: A1