WO2018110426A1 - Compressor provided with compression mechanism fixed to casing - Google Patents

Compressor provided with compression mechanism fixed to casing Download PDF

Info

Publication number
WO2018110426A1
WO2018110426A1 PCT/JP2017/044014 JP2017044014W WO2018110426A1 WO 2018110426 A1 WO2018110426 A1 WO 2018110426A1 JP 2017044014 W JP2017044014 W JP 2017044014W WO 2018110426 A1 WO2018110426 A1 WO 2018110426A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression mechanism
cylindrical portion
dimension
fixing
compressor
Prior art date
Application number
PCT/JP2017/044014
Other languages
French (fr)
Japanese (ja)
Inventor
直人 富岡
清文 白水
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to AU2017375095A priority Critical patent/AU2017375095B2/en
Priority to CN201780076190.7A priority patent/CN110073108A/en
Priority to EP17881953.8A priority patent/EP3557065A1/en
Publication of WO2018110426A1 publication Critical patent/WO2018110426A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/34Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
    • F01C1/356Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F01C1/3562Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • F01C1/3564Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with or adaptation to specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/12Vibration

Definitions

  • the present invention relates to a compressor including a compression mechanism fixed to a casing.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2006-144731 describes that a phenomenon occurs in a reciprocating compressor that the torque greatly fluctuates during a period in which the crankshaft rotates once. Such torque fluctuations cause vibrations or noise. Similar problems can occur with other types of compressors, such as rotary compressors.
  • One solution to reduce vibrations due to torque fluctuations is to ensure rotational inertia by enlarging the rotor of the motor and increasing the weight of the rotor.
  • an increase in the weight of the rotor may cause another vibration. It is a vibration due to weight imbalance. This vibration starts when the tip of the crankshaft, which is slightly inclined due to a slight imbalance in the weight distribution of the rotor, moves such as reciprocation and rotation. That movement then vibrates a compression mechanism having bearings that support the crankshaft. This vibration is transmitted to the casing, and finally the whole compressor vibrates. Such vibration due to weight imbalance is particularly noticeable when a heavy rotor is rotated at high speed.
  • An object of the present invention is to suppress the vibration of the compressor.
  • the compressor according to the first aspect of the present invention includes a casing, a motor, and a compression mechanism.
  • the casing has a cylindrical portion having an inner diameter of a first dimension.
  • the motor has a rotor having an outer diameter of the second dimension.
  • the compression mechanism generates a high-pressure refrigerant by compressing the low-pressure refrigerant.
  • the ratio of the first dimension to the second dimension is 1.8 or less.
  • the compression mechanism has a fixed portion configured to be in close contact with the inner peripheral surface of the cylindrical portion at the installation position of the compression mechanism.
  • the cylindrical portion of the casing and the fixed portion of the compression mechanism are in close contact. Therefore, since the compression mechanism is firmly fixed to the casing, the vibration of the compressor is suppressed.
  • the fixed portion is provided over a section corresponding to 80% or more of the entire circumference of the inner peripheral surface.
  • the fixed portion of the compression mechanism is located over a section corresponding to 80% or more of the entire circumference of the inner peripheral surface of the cylindrical portion. Therefore, since the casing and the compression mechanism are in close contact with each other over a wide range, vibration of the compressor is further suppressed.
  • the average value of the separation distance between the cylindrical portion and the compression mechanism for the entire circumference of the cylindrical portion is 0.00 mm or more. And it is 0.15 mm or less.
  • the average value of the separation distance between the inner peripheral surface of the cylindrical portion and the fixed portion of the compression mechanism is short. Therefore, since the degree of close contact between the inner peripheral surface and the fixed portion is higher, vibration of the compressor can be further suppressed.
  • the compressor according to the fourth aspect of the present invention is the compressor according to any one of the first aspect to the third aspect, and further includes four or more welds that fix the cylindrical portion and the compression mechanism.
  • a compressor according to a fifth aspect of the present invention is the compressor according to the fourth aspect, wherein six or more welded portions, Is provided.
  • the compressor according to the sixth aspect of the present invention is the compressor according to the fourth aspect or the fifth aspect, further comprising a crankshaft.
  • the crankshaft is fixed to the rotor and rotates around the rotation axis.
  • the compression mechanism includes a cylinder, a piston that moves in the cylinder, and a shaft support that rotatably supports the crankshaft. All of the welded portions fix the cylindrical portion and the shaft support portion.
  • a compressor according to a seventh aspect of the present invention is the compressor according to any one of the first to sixth aspects, wherein the cylindrical portion has eight or more inner diameter expansion portions and eight or more inner diameter reduction portions. And a multi-divided tube expansion.
  • the inner diameter expansion portion comes into contact with the compression mechanism, and the inner diameter reduction portion is firmly pressed against the compression mechanism with elastic deformation. Therefore, the vibration of the compressor can be further suppressed.
  • the manufacturing method according to the eighth aspect of the present invention manufactures a compressor.
  • the manufacturing method includes the steps of preparing a cylindrical portion having an inner diameter of a first dimension, a motor having a rotor having an outer diameter of a second dimension, and a compression mechanism that generates a high-pressure refrigerant by compressing the low-pressure refrigerant.
  • the manufacturing method includes a step of fixing the compression mechanism to the cylindrical portion so that the fixing portion of the compression mechanism is in close contact with the inner peripheral surface of the cylindrical portion.
  • the ratio of the first dimension to the second dimension is 1.8 or less.
  • the cylindrical portion and the compression mechanism are in close contact. Therefore, since the compression mechanism is firmly fixed to the casing, vibration of the compressor can be suppressed.
  • the fixing portion is provided over a section corresponding to 80% or more of the entire circumference of the inner peripheral surface.
  • the fixed portion of the compression mechanism is located over a section corresponding to 80% or more of the entire circumference of the inner peripheral surface of the cylindrical portion. Therefore, since the casing and the compression mechanism are in close contact with each other over a wide range, vibration of the compressor is further suppressed.
  • the fixing step includes a step of welding the cylindrical portion and the compression mechanism at four or more points.
  • the fixing step sets the average value of the separation distance between the inner peripheral surface and the fixing portion over the entire area of the fixing portion to 0.00 mm. Above and 0.15 mm or less.
  • the average distance between the inner peripheral surface of the cylindrical portion and the fixed portion of the compression mechanism is short. Therefore, since the degree of close contact between the inner peripheral surface and the fixed portion is higher, vibration of the compressor can be further suppressed.
  • the manufacturing method according to a twelfth aspect of the present invention is the manufacturing method according to the eighth aspect or the ninth aspect, wherein the fixing step includes a step in which the first dimension is expanded by heating the cylindrical portion, And a step of inserting a compression mechanism and a step of contracting the first dimension by radiating heat of the cylindrical portion.
  • the compression mechanism is fixed to the cylindrical portion by shrink fitting. Therefore, since the cylindrical portion and the compression mechanism can be brought into contact substantially over the entire circumference, the vibration of the compressor can be further suppressed.
  • the fixing step applies elastic force to the compression mechanism to cause elastic deformation in the cylindrical portion. Inserting the compressor into the cylindrical portion.
  • the compression mechanism is fixed to the cylindrical portion by press-fitting. Therefore, since the cylindrical portion and the compression mechanism can be brought into contact substantially over the entire circumference, the vibration of the compressor can be further suppressed.
  • the manufacturing method according to the fourteenth aspect of the present invention further includes a motor fixing step of fixing the motor to the cylindrical portion in the manufacturing method according to any one of the eighth to thirteenth aspects.
  • the motor fixing step includes a step in which the first dimension is expanded by heating the cylindrical part, a step in which the motor is inserted into the cylindrical part, and a step in which the first dimension is contracted by radiating heat from the cylindrical part. Including.
  • the motor is firmly fixed to the cylindrical portion by shrink fitting. Therefore, since the shaking with respect to the casing of a motor can be suppressed, the vibration of a compressor can be suppressed more.
  • the vibration of the compressor is suppressed.
  • vibration of the compressor can be suppressed.
  • FIG. 3 is a plan view of a cylindrical portion 11 and a motor 20 of the compressor 5.
  • FIG. 3 is a cross-sectional view of a stator 21 of the compressor 5.
  • FIG. 3 is a cross-sectional view of a rotor 22 of the compressor 5.
  • FIG. 3 is a partial cross-sectional view of the compressor 5.
  • FIG. 3 is a plan view of a cylindrical portion 11 and a compression mechanism 40 of the compressor 5.
  • FIG. 3 is a plan view of a compression mechanism 40.
  • FIG. 7 is a plan view of an alternative compression mechanism 40.
  • FIG. It is sectional drawing of the cylindrical part 11 which consists of multi-division pipe expansion based on the modification of this invention.
  • FIG. 1 shows a compressor 5 according to an embodiment of the present invention.
  • the compressor 5 is mounted on a refrigerating apparatus such as an air conditioner or a refrigerator, and compresses a gaseous refrigerant.
  • the compressor 5 includes a casing 10, a motor 20, a crankshaft 30, and a compression mechanism 40.
  • the casing 10 accommodates other components of the compressor 5 and can withstand the high pressure of the refrigerant.
  • the casing 10 has a cylindrical part 11, an upper part 12, and a lower part 13.
  • the cylindrical portion 11 is the largest of the components of the casing 10 and has a cylindrical shape. Both the upper part 12 and the lower part 13 are joined to the cylindrical part 11.
  • an oil storage part 14 for storing the refrigerator oil 141 is provided below the casing 10.
  • the suction pipe 15 is installed in the cylindrical part 11.
  • a discharge pipe 16 and a terminal 17 are installed on the upper part 12.
  • the suction pipe 15 is for sucking low-pressure refrigerant.
  • the discharge pipe 16 is for discharging a high-pressure refrigerant.
  • the terminal 17 is for receiving power supply from the outside.
  • the motor 20 generates mechanical power using electric power supplied from the terminal 17 via a lead wire (not shown).
  • the motor 20 has a stator 21 and a rotor 22. As shown in FIG. 2, the stator 21 has a cylindrical shape and is fixed to the cylindrical portion 11 of the casing 10. A gap 23 is formed between the stator 21 and the rotor 22. The gap 23 functions as a refrigerant passage.
  • the stator 21 has a stator core 21a, an insulator 21b, and a winding 21c.
  • Stator core 21a consists of a plurality of laminated steel plates.
  • a space 213 for arranging the rotor 22 is formed in the stator core 21a.
  • the insulator 21b is made of resin.
  • the insulators 21b are provided on the stator core upper surface 211 and the stator core lower surface 212, respectively.
  • the winding 21c is for generating an alternating magnetic field, and is wound around a laminate of the stator core 21a and the insulator 21b.
  • the rotor 22 has a rotor core 22a, permanent magnets 22b, end plates 22c, balance weights 22d, and bolts 22e.
  • the rotor core 22a is composed of a plurality of laminated steel plates.
  • a space 223 for fixing the crankshaft 30 is formed in the rotor core 22a.
  • the permanent magnet 22b is for rotating the entire rotor 22 by interacting with the AC magnetic field generated by the winding 21c.
  • the permanent magnet 22b is disposed in the cavity 224 of the rotor core 22a.
  • the end plates 22c are provided on the rotor core upper surface 221 and the rotor core lower surface 222, respectively, and prevent the permanent magnet 22b from going out of the cavity 224.
  • the balance weight 22d is for adjusting the center of gravity of the rotating body composed of the rotor 22 and the components that rotate accompanying the rotor 22.
  • the balance weight 22d is provided on one of the end plates 22c.
  • the bolt 22e fixes the end plate 22c or the balance weight 22d to the rotor core 22a.
  • crankshaft 30 is for transmitting the power generated by the motor 20 to the compression mechanism 40.
  • the crankshaft 30 rotates around the rotation axis RA.
  • the crankshaft 30 has a main shaft portion 31 and an eccentric portion 32. A part of the main shaft portion 31 is fixed to the rotor 22.
  • the eccentric part 32 is eccentric with respect to the rotational axis RA.
  • the compression mechanism 40 is for compressing a low-pressure refrigerant to generate a high-pressure refrigerant.
  • the compression mechanism 40 includes a cylinder 41, a piston 42, a shaft support 61, an auxiliary shaft support 62, and a muffler 45.
  • the cylinder 41 is a metal member, and has an internal space that communicates with the outside of the casing 10 via the suction pipe 15.
  • the piston 42 is a cylindrical metal member that is smaller than the cylinder 41.
  • the piston 42 is attached to the eccentric part 32.
  • the eccentric portion 32 and the piston 42 are disposed in the internal space of the cylinder 41.
  • the shaft support portion 61 rotatably supports the main shaft portion 31 above the eccentric portion 32.
  • the shaft support 61 also has a function of closing the upper side of the internal space of the cylinder 41.
  • the shaft support portion 61 is fixed to the cylindrical portion 11 at the weld portion 50.
  • the auxiliary shaft support portion 62 rotatably supports the main shaft portion 31 below the eccentric portion 32.
  • the auxiliary shaft support part 62 also has a function of closing the lower side of the internal space of the cylinder 41.
  • the compression chamber 43 is defined by the cylinder 41, the piston 42, the shaft support 61, and the auxiliary shaft support 62.
  • a muffler 45 is attached to the shaft support 61.
  • the shaft support 61 and the muffler 45 define a muffler chamber.
  • the volume of the compression chamber 43 is increased or decreased by the revolution of the piston 42, whereby the low-pressure refrigerant is compressed and high-pressure refrigerant is generated.
  • the high-pressure refrigerant is discharged from the passage 44 formed in the shaft support portion 61 to the muffler chamber.
  • the passage 44 is provided with a discharge valve (not shown).
  • the discharge valve suppresses the high-pressure refrigerant from flowing back from the muffler chamber to the compression chamber 43.
  • the high-pressure refrigerant passes through the passage 44 every time the piston 42 makes one revolution. Such intermittent passage of the high-pressure refrigerant passage 44 can cause noise.
  • the muffler 45 smoothes the pressure fluctuation of the gas refrigerant in the muffler chamber, thereby reducing noise.
  • the high-pressure refrigerant is discharged out of the compression mechanism 40 through a discharge hole 46 formed in the muffler 45.
  • the rotor 22 of the compressor 5 according to the present invention is configured to rotate at 100 to 150 rps (rotation per second), preferably 120 to 130 rps. This rotational speed is higher than the rotational speed of the rotor in the conventional compressor, 15 to 75 rps.
  • FIG. 5 shows the dimensions of each part of the compressor 5.
  • the first dimension D1 is the inner diameter of the cylindrical portion 11 of the casing 10.
  • the second dimension D2 is the outer diameter of the rotor core 22a of the rotor 22.
  • the ratio D1 / D2 of the first dimension D1 to the second dimension D2 is designed to be 1.8 or less.
  • the first dimension D1 is 90 mm and the second dimension is 50 mm.
  • the ratio D1 / D2 may be designed to be “less than 1.8”.
  • the cylindrical part 11 of the casing 10 and the shaft support part 61 of the compression mechanism 40 are fixed by four or more welded parts 50.
  • the cylindrical portion 11 and the shaft support portion 61 are fixed by the six welded portions 50.
  • seven or more welds 50 may be fixed.
  • the plurality of welds 50 are preferably spaced evenly.
  • FIG. 7A shows the compression mechanism 40.
  • a fixing portion 49 is provided over the outer peripheral section of the compression mechanism 40 corresponding to the entire circumference of the cylindrical portion 11.
  • the fixing portion 49 is a portion configured to be in close contact with the inner peripheral surface of the cylindrical portion 11 of the casing 10 at the installation position of the compression mechanism 40, that is, the height position.
  • both the compression mechanism 40 and the cylindrical portion 11 are formed to have a precise circular shape.
  • the average value of the separation distance between the inner peripheral surface of the cylindrical portion 11 and the fixing portion 49 in the entire area of the fixing portion 49 is formed to be 0.00 mm or more and 0.15 mm or less. .
  • the compression mechanism 40 may have the configuration shown in FIG. 7B instead of the configuration shown in FIG. 7A.
  • a cutout portion 48 that does not contact the inner peripheral surface of the cylindrical portion 11 exists in a part of the outer periphery of the compression mechanism 40.
  • the fixed portion 49 is provided not over the entire circumference of the cylindrical portion 11 but over the outer circumferential section of the compression mechanism 40 corresponding to 80% or more of the entire circumference.
  • the average value of the separation distance between the inner peripheral surface of the cylindrical portion 11 and the fixing portion 49 over the entire area of the fixing portion 49 is formed to be 0.00 mm or more and 0.15 mm or less. .
  • the manufacturing method of the compressor 5 which concerns on this invention includes the following process.
  • the compression mechanism 40 is fixed to the cylindrical portion 11 by welding.
  • the welded portion 50 is formed with 4 points or more, preferably 6 points or more. Accordingly, the inner peripheral surface of the cylindrical portion 11 and the fixing portion 49 of the compression mechanism 40 are brought into close contact with each other at the installation position of the compression mechanism 40, that is, the height position.
  • the average value of the separation distance between the inner peripheral surface of the cylindrical portion 11 and the fixing portion 49 over the entire area of the fixing portion 49 is set to 0.00 mm or more and 0.15 mm or less.
  • the fixing portion 49 of the compression mechanism 40 is located over a section corresponding to 80% or more of the entire circumference of the inner peripheral surface of the cylindrical portion 11. Therefore, since the casing 10 and the compression mechanism 40 are in close contact with each other over a wide range, vibration of the compressor 5 is further suppressed.
  • the motor 20 is firmly fixed to the cylindrical portion 11 by shrink fitting. Therefore, since the vibration of the motor 20 with respect to the casing 10 can be suppressed, the vibration of the compressor 5 can be further suppressed.
  • the compression mechanism 40 is fixed to the cylindrical portion 11 by welding.
  • the compression mechanism 40 may be fixed to the cylindrical portion 11 by shrink fitting.
  • the first dimension D1 is slightly expanded by first heating the cylindrical portion 11.
  • the compression mechanism 40 is inserted into the cylindrical portion 11.
  • the first dimension D1 contracts.
  • 80% or more of the entire circumference of the cylindrical portion 11 is brought into contact with the compression mechanism 40 at the installation position of the compression mechanism 40, that is, the height position.
  • the average value of the separation distance between the cylindrical portion 11 and the compression mechanism 40 for the entire circumference of the cylindrical portion 11 is set to 0.00 mm or more and 0.15 mm or less.
  • the cylindrical portion 11 and the compression mechanism 40 can be brought into contact substantially over the entire circumference, so that the vibration of the compressor 5 can be further suppressed.
  • the compression mechanism 40 is fixed to the cylindrical portion 11 by welding.
  • the compression mechanism 40 may be fixed to the cylindrical portion 11 by press-fitting. Specifically, by applying a strong force to the compression mechanism 40, the compression mechanism 40 is inserted into the cylindrical portion 11 while causing the cylindrical portion 11 to be elastically deformed. As a result, 80% or more of the entire circumference of the cylindrical portion 11 is brought into contact with the compression mechanism 40 at the installation position of the compression mechanism 40, that is, the height position.
  • the average value of the separation distance between the cylindrical portion 11 and the compression mechanism 40 for the entire circumference of the cylindrical portion 11 is set to 0.00 mm or more and 0.15 mm or less.
  • the cylindrical portion 11 and the compression mechanism 40 can be brought into contact substantially over the entire circumference, so that the vibration of the compressor 5 can be further suppressed.
  • FIG. 8 shows the cylindrical portion 11 of the casing 10 used in the compressor 5 according to the modification of the above-described embodiment.
  • the cylindrical part 11 in this modification is a multi-division pipe expansion. That is, as a result of being manufactured by the tube expansion tool, the cylindrical portion 11 has eight or more inner diameter expansion portions 121 and eight or more inner diameter reduction portions 122.
  • the inner diameter expansion portion 121 comes into contact with the compression mechanism 40, and the inner diameter reduction portion 122 is firmly pressed against the compression mechanism 40 with elastic deformation. Therefore, vibration of the compressor 5 can be further suppressed.

Abstract

A compressor (5) is provided with a casing (10), a motor (20), and a compression mechanism (40). The casing (10) comprises a cylindrical section (11) having an inner diameter of a first size (D1). The motor (20) comprises a rotor (22) having an outer diameter of a second size (D2). The compression mechanism (40) generates high-pressure refrigerant by compressing low-pressure refrigerant. The ratio (D1/D2) of the first size (D1) to the second size (D2) is 1.8 or less. The compression mechanism (40) comprises a fixing section (49) configured so as to be in close contact with the inner circumferential surface of the cylindrical section (11) in an installation position for the compression mechanism (40).

Description

ケーシングに固定された圧縮機構を備える圧縮機Compressor including a compression mechanism fixed to a casing
 本発明は、ケーシングに固定された圧縮機構を備える圧縮機に関する。 The present invention relates to a compressor including a compression mechanism fixed to a casing.
 空気調和装置および冷蔵庫などの冷凍装置には、圧縮機が搭載される。特許文献1(特開2006-144731号公報)は、クランク軸が1回転する期間にトルクが大きく変動する、という現象が往復型圧縮機に起こることを説明している。このようなトルク変動は、振動すなわち騒音を引き起こす。同様の問題は、ロータリ型圧縮機などの他の種類の圧縮機においても起こりうる。トルク変動に起因する振動を低減する解決策の1つは、モータのロータを大型化し、ロータの重量を増やすことによって、回転のイナーシャを確保することである。 Compressors are installed in refrigeration equipment such as air conditioners and refrigerators. Patent Document 1 (Japanese Patent Application Laid-Open No. 2006-144731) describes that a phenomenon occurs in a reciprocating compressor that the torque greatly fluctuates during a period in which the crankshaft rotates once. Such torque fluctuations cause vibrations or noise. Similar problems can occur with other types of compressors, such as rotary compressors. One solution to reduce vibrations due to torque fluctuations is to ensure rotational inertia by enlarging the rotor of the motor and increasing the weight of the rotor.
 しかしながら、ロータの重量増加は別の振動を引き起こすおそれがある。それは、重量の不均衡に起因する振動である。この振動は、ロータの重量分布の微妙な不均衡によってわずかに傾斜したクランク軸の先端が、往復や回転などの運動をすることによって始まる。その運動は、次いで、クランク軸を支える軸受を有する圧縮機構を振動させる。この振動はケーシングに伝達され、最終的には圧縮機全体が振動する。このような重量の不均衡に起因する振動は、重量の大きなロータを高速で回転させる場合にとりわけ顕著になる。 However, an increase in the weight of the rotor may cause another vibration. It is a vibration due to weight imbalance. This vibration starts when the tip of the crankshaft, which is slightly inclined due to a slight imbalance in the weight distribution of the rotor, moves such as reciprocation and rotation. That movement then vibrates a compression mechanism having bearings that support the crankshaft. This vibration is transmitted to the casing, and finally the whole compressor vibrates. Such vibration due to weight imbalance is particularly noticeable when a heavy rotor is rotated at high speed.
 本発明の課題は、圧縮機の振動を抑制することである。 An object of the present invention is to suppress the vibration of the compressor.
 本発明の第1観点に係る圧縮機は、ケーシングと、モータと、圧縮機構と、を備える。ケーシングは、第1寸法の内径を持つ円筒部を有する。モータは、第2寸法の外径を持つロータを有する。圧縮機構は、低圧冷媒を圧縮することによって高圧冷媒を生成する。第2寸法に対する第1寸法の比率は1.8以下である。圧縮機構は、圧縮機構の設置位置において、円筒部の内周面と密着するように構成された固定部を有する。 The compressor according to the first aspect of the present invention includes a casing, a motor, and a compression mechanism. The casing has a cylindrical portion having an inner diameter of a first dimension. The motor has a rotor having an outer diameter of the second dimension. The compression mechanism generates a high-pressure refrigerant by compressing the low-pressure refrigerant. The ratio of the first dimension to the second dimension is 1.8 or less. The compression mechanism has a fixed portion configured to be in close contact with the inner peripheral surface of the cylindrical portion at the installation position of the compression mechanism.
 この構成によれば、ケーシングの円筒部と圧縮機構の固定部が密着している。したがって、圧縮機構はケーシングに強固に固定されているので、圧縮機の振動が抑制される。 According to this configuration, the cylindrical portion of the casing and the fixed portion of the compression mechanism are in close contact. Therefore, since the compression mechanism is firmly fixed to the casing, the vibration of the compressor is suppressed.
 本発明の第2観点に係る圧縮機は、第1観点に係る圧縮機において、固定部が、内周面の全周の80%以上に相当する区間にわたって設けられている。 In the compressor according to the second aspect of the present invention, in the compressor according to the first aspect, the fixed portion is provided over a section corresponding to 80% or more of the entire circumference of the inner peripheral surface.
 この構成によれば、圧縮機構の固定部は円筒部の内周面の全周の80%以上に相当する区間にわたって位置する。したがって、ケーシングと圧縮機構とが広範囲にわたって密着するので、圧縮機の振動がより抑制される。 According to this configuration, the fixed portion of the compression mechanism is located over a section corresponding to 80% or more of the entire circumference of the inner peripheral surface of the cylindrical portion. Therefore, since the casing and the compression mechanism are in close contact with each other over a wide range, vibration of the compressor is further suppressed.
 本発明の第3観点に係る圧縮機は、第1観点または第2観点に係る圧縮機において、円筒部の全周についての、円筒部と圧縮機構の離間距離の平均値が、0.00mm以上かつ0.15mm以下である。 In the compressor according to the third aspect of the present invention, in the compressor according to the first aspect or the second aspect, the average value of the separation distance between the cylindrical portion and the compression mechanism for the entire circumference of the cylindrical portion is 0.00 mm or more. And it is 0.15 mm or less.
 この構成によれば、円筒部の内周面と圧縮機構の固定部との離間距離の平均値は短い。したがって、内周面と固定部の密着の度合いがより高いので、圧縮機の振動をより抑制できる。 According to this configuration, the average value of the separation distance between the inner peripheral surface of the cylindrical portion and the fixed portion of the compression mechanism is short. Therefore, since the degree of close contact between the inner peripheral surface and the fixed portion is higher, vibration of the compressor can be further suppressed.
 本発明の第4観点に係る圧縮機は、第1観点から第3観点のいずれか1つに係る圧縮機において、円筒部と圧縮機構とを固定する4点以上の溶接部、をさらに備える。 The compressor according to the fourth aspect of the present invention is the compressor according to any one of the first aspect to the third aspect, and further includes four or more welds that fix the cylindrical portion and the compression mechanism.
 この構成によれば、4点以上の溶接部が、円筒部と圧縮機構との接合の剛性に寄与する。したがって、圧縮機の振動をより抑制できる。 According to this configuration, four or more welded parts contribute to the rigidity of the joint between the cylindrical part and the compression mechanism. Therefore, the vibration of the compressor can be further suppressed.
 本発明の第5観点に係る圧縮機は、第4観点に係る圧縮機において、6点以上の溶接部、
を備える。
A compressor according to a fifth aspect of the present invention is the compressor according to the fourth aspect, wherein six or more welded portions,
Is provided.
 この構成によれば、6点以上の溶接部が、円筒部と圧縮機構との接合にさらなる剛性を与える。したがって、圧縮機の振動をさらに抑制できる。 According to this configuration, six or more welded portions give further rigidity to the connection between the cylindrical portion and the compression mechanism. Therefore, the vibration of the compressor can be further suppressed.
 本発明の第6観点に係る圧縮機は、第4観点または第5観点に係る圧縮機において、クランク軸、をさらに備える。クランク軸は、ロータに固定されており、回転軸心のまわりに回転する。圧縮機構は、シリンダと、シリンダの中で動くピストンと、クランク軸を回転可能に支える軸支部と、を有する。溶接部はいずれも、円筒部と軸支部とを固定している。 The compressor according to the sixth aspect of the present invention is the compressor according to the fourth aspect or the fifth aspect, further comprising a crankshaft. The crankshaft is fixed to the rotor and rotates around the rotation axis. The compression mechanism includes a cylinder, a piston that moves in the cylinder, and a shaft support that rotatably supports the crankshaft. All of the welded portions fix the cylindrical portion and the shaft support portion.
 この構成によれば、円筒部と圧縮機構の接合箇所からロータの重心までの高低差を短くすることができる。したがって、圧縮機の振動をより抑制できる。 According to this configuration, it is possible to shorten the height difference from the joint between the cylindrical portion and the compression mechanism to the center of gravity of the rotor. Therefore, the vibration of the compressor can be further suppressed.
 本発明の第7観点に係る圧縮機は、第1観点から第6観点のいずれか1つに係る圧縮機において、円筒部が、8つ以上の内径拡張部と、8つ以上の内径縮小部と、を有する多分割拡管である。 A compressor according to a seventh aspect of the present invention is the compressor according to any one of the first to sixth aspects, wherein the cylindrical portion has eight or more inner diameter expansion portions and eight or more inner diameter reduction portions. And a multi-divided tube expansion.
  この構成によれば、内径拡張部が圧縮機構と接触するとともに、内径縮小部が弾性変形を伴いながら強固に圧縮機構に押し付けられる。したがって、圧縮機の振動をより抑制できる。 According to this configuration, the inner diameter expansion portion comes into contact with the compression mechanism, and the inner diameter reduction portion is firmly pressed against the compression mechanism with elastic deformation. Therefore, the vibration of the compressor can be further suppressed.
 本発明の第8観点に係る製造方法は、圧縮機を製造する。製造方法は、第1寸法の内径を持つ円筒部と、第2寸法の外径を持つロータを有するモータと、低圧冷媒を圧縮することによって高圧冷媒を生成する圧縮機構と、を準備するステップを有する。製造方法は、圧縮機構の固定部が円筒部の内周面と密着するように、圧縮機構を円筒部に固定するステップと、を有する。第2寸法に対する第1寸法の比率は1.8以下である。 The manufacturing method according to the eighth aspect of the present invention manufactures a compressor. The manufacturing method includes the steps of preparing a cylindrical portion having an inner diameter of a first dimension, a motor having a rotor having an outer diameter of a second dimension, and a compression mechanism that generates a high-pressure refrigerant by compressing the low-pressure refrigerant. Have. The manufacturing method includes a step of fixing the compression mechanism to the cylindrical portion so that the fixing portion of the compression mechanism is in close contact with the inner peripheral surface of the cylindrical portion. The ratio of the first dimension to the second dimension is 1.8 or less.
 この方法によれば、円筒部と圧縮機構が密着する。したがって、圧縮機構はケーシングに強固に固定されるので、圧縮機の振動を抑制できる。 According to this method, the cylindrical portion and the compression mechanism are in close contact. Therefore, since the compression mechanism is firmly fixed to the casing, vibration of the compressor can be suppressed.
 本発明の第9観点に係る製造方法は、第8観点に係る製造方法において、固定部が、内周面の全周の80%以上に相当する区間にわたって設けられている。 In the manufacturing method according to the ninth aspect of the present invention, in the manufacturing method according to the eighth aspect, the fixing portion is provided over a section corresponding to 80% or more of the entire circumference of the inner peripheral surface.
 この方法によれば、圧縮機構の固定部は円筒部の内周面の全周の80%以上に相当する区間にわたって位置する。したがって、ケーシングと圧縮機構とが広範囲にわたって密着するので、圧縮機の振動がより抑制される。 According to this method, the fixed portion of the compression mechanism is located over a section corresponding to 80% or more of the entire circumference of the inner peripheral surface of the cylindrical portion. Therefore, since the casing and the compression mechanism are in close contact with each other over a wide range, vibration of the compressor is further suppressed.
 本発明の第10観点に係る製造方法は、第8観点または第9観点に係る製造方法において、固定するステップが、4点以上において円筒部と圧縮機構とを溶接するステップを含む。 In the manufacturing method according to the tenth aspect of the present invention, in the manufacturing method according to the eighth aspect or the ninth aspect, the fixing step includes a step of welding the cylindrical portion and the compression mechanism at four or more points.
 この方法によれば、4点以上の溶接部が、円筒部と圧縮機構との接合の剛性に寄与する。したがって、圧縮機の振動をより抑制できる。 According to this method, four or more welds contribute to the rigidity of the joint between the cylindrical part and the compression mechanism. Therefore, the vibration of the compressor can be further suppressed.
 本発明の第11観点に係る製造方法は、第10観点に係る製造方法において、固定するステップが、固定部の全域についての、内周面と固定部の離間距離の平均値を、0.00mm以上かつ0.15mm以下にする。 In the manufacturing method according to the eleventh aspect of the present invention, in the manufacturing method according to the tenth aspect, the fixing step sets the average value of the separation distance between the inner peripheral surface and the fixing portion over the entire area of the fixing portion to 0.00 mm. Above and 0.15 mm or less.
 この方法によれば、円筒部の内周面と圧縮機構の固定部との離間距離の平均値は短い。したがって、内周面と固定部の密着の度合いがより高いので、圧縮機の振動をより抑制できる。 According to this method, the average distance between the inner peripheral surface of the cylindrical portion and the fixed portion of the compression mechanism is short. Therefore, since the degree of close contact between the inner peripheral surface and the fixed portion is higher, vibration of the compressor can be further suppressed.
 本発明の第12観点に係る製造方法は、第8観点または第9観点に係る製造方法において、固定するステップが、円筒部を加熱することによって第1寸法が膨張するステップと、円筒部の中に圧縮機構を挿入するステップと、円筒部が放熱することによって第1寸法が収縮するステップと、を含む。 The manufacturing method according to a twelfth aspect of the present invention is the manufacturing method according to the eighth aspect or the ninth aspect, wherein the fixing step includes a step in which the first dimension is expanded by heating the cylindrical portion, And a step of inserting a compression mechanism and a step of contracting the first dimension by radiating heat of the cylindrical portion.
 この方法によれば、圧縮機構は焼き嵌めによって円筒部に固定される。したがって、円筒部と圧縮機構を実質的に全周において接触させることができるので、圧縮機の振動をより抑制できる。 According to this method, the compression mechanism is fixed to the cylindrical portion by shrink fitting. Therefore, since the cylindrical portion and the compression mechanism can be brought into contact substantially over the entire circumference, the vibration of the compressor can be further suppressed.
 本発明の第13観点に係る製造方法は、第8観点または第9観点に係る製造方法において、固定するステップが、圧縮機構に強い力を印加することによって、円筒部に弾性変形を生じさせながら、圧縮機を円筒部の中に挿入するステップ、を含む。 In the manufacturing method according to the thirteenth aspect of the present invention, in the manufacturing method according to the eighth aspect or the ninth aspect, the fixing step applies elastic force to the compression mechanism to cause elastic deformation in the cylindrical portion. Inserting the compressor into the cylindrical portion.
 この方法によれば、圧縮機構は圧入によって円筒部に固定される。したがって、円筒部と圧縮機構を実質的に全周において接触させることができるので、圧縮機の振動をより抑制できる。 According to this method, the compression mechanism is fixed to the cylindrical portion by press-fitting. Therefore, since the cylindrical portion and the compression mechanism can be brought into contact substantially over the entire circumference, the vibration of the compressor can be further suppressed.
 本発明の第14観点に係る製造方法は、第8観点から第13観点のいずれか1つに係る製造方法において、モータを円筒部に固定するモータ固定ステップ、をさらに含む。モータ固定ステップは、円筒部を加熱することによって第1寸法が膨張するステップと、円筒部の中にモータを挿入するステップと、円筒部が放熱することによって第1寸法が収縮するステップと、を含む。 The manufacturing method according to the fourteenth aspect of the present invention further includes a motor fixing step of fixing the motor to the cylindrical portion in the manufacturing method according to any one of the eighth to thirteenth aspects. The motor fixing step includes a step in which the first dimension is expanded by heating the cylindrical part, a step in which the motor is inserted into the cylindrical part, and a step in which the first dimension is contracted by radiating heat from the cylindrical part. Including.
 この方法によれば、モータは焼き嵌めによって円筒部に強固に固定される。したがって、モータのケーシングに対する揺れを抑制できるので、圧縮機の振動をより抑制できる。 According to this method, the motor is firmly fixed to the cylindrical portion by shrink fitting. Therefore, since the shaking with respect to the casing of a motor can be suppressed, the vibration of a compressor can be suppressed more.
 本発明の第1観点から第7観点のいずれか1つに係る圧縮機によれば、圧縮機の振動が抑制される。 According to the compressor according to any one of the first to seventh aspects of the present invention, the vibration of the compressor is suppressed.
 本発明の第8観点から第14観点のいずれか1つに係る製造方法によれば、圧縮機の振動を抑制できる。 According to the manufacturing method according to any one of the eighth to fourteenth aspects of the present invention, vibration of the compressor can be suppressed.
本発明の一実施形態に係る圧縮機5の断面図である。It is sectional drawing of the compressor 5 which concerns on one Embodiment of this invention. 圧縮機5の円筒部11およびモータ20の平面図である。3 is a plan view of a cylindrical portion 11 and a motor 20 of the compressor 5. FIG. 圧縮機5のステータ21の断面図である。3 is a cross-sectional view of a stator 21 of the compressor 5. FIG. 圧縮機5のロータ22の断面図である。3 is a cross-sectional view of a rotor 22 of the compressor 5. FIG. 圧縮機5の部分的な断面図である。3 is a partial cross-sectional view of the compressor 5. FIG. 圧縮機5の円筒部11および圧縮機構40の平面図である。3 is a plan view of a cylindrical portion 11 and a compression mechanism 40 of the compressor 5. FIG. 圧縮機構40の平面図である。3 is a plan view of a compression mechanism 40. FIG. 代替的な圧縮機構40の平面図である。7 is a plan view of an alternative compression mechanism 40. FIG. 本発明の変形例に係る、多分割拡管からなる円筒部11の断面図である。It is sectional drawing of the cylindrical part 11 which consists of multi-division pipe expansion based on the modification of this invention.
 以下、本発明に係る空気調和装置の実施形態について、図面を用いて説明する。なお、本発明にかかる空気調和装置の具体的な構成は、下記の実施形態に限られるものではなく、発明の要旨を逸脱しない範囲で適宜変更可能である。 Hereinafter, embodiments of an air conditioner according to the present invention will be described with reference to the drawings. In addition, the specific structure of the air conditioning apparatus concerning this invention is not restricted to the following embodiment, In the range which does not deviate from the summary of invention, it can change suitably.
 (1)全体構成
 (1-1)概要
 図1は、本発明の一実施形態に係る圧縮機5を示す。圧縮機5は、空気調和装置および冷蔵庫などの冷凍装置に搭載され、ガス状の冷媒の圧縮を行うものである。圧縮機5は、ケーシング10、モータ20、クランク軸30、圧縮機構40を有する。
(1) Overall Configuration (1-1) Outline FIG. 1 shows a compressor 5 according to an embodiment of the present invention. The compressor 5 is mounted on a refrigerating apparatus such as an air conditioner or a refrigerator, and compresses a gaseous refrigerant. The compressor 5 includes a casing 10, a motor 20, a crankshaft 30, and a compression mechanism 40.
 (1-2)ケーシング10
 ケーシング10は、圧縮機5の他の構成要素を収容するものであり、冷媒の高い圧力に耐えることができる。ケーシング10は、円筒部11、上部12、下部13を有する。円筒部11は、ケーシング10の構成要素の中で最も大きいものであり、円筒状である。上部12および下部13はいずれも円筒部11に接合されている。ケーシング10の下方には、冷凍機油141を貯留するための油貯留部14が設けられている。
(1-2) Casing 10
The casing 10 accommodates other components of the compressor 5 and can withstand the high pressure of the refrigerant. The casing 10 has a cylindrical part 11, an upper part 12, and a lower part 13. The cylindrical portion 11 is the largest of the components of the casing 10 and has a cylindrical shape. Both the upper part 12 and the lower part 13 are joined to the cylindrical part 11. Below the casing 10, an oil storage part 14 for storing the refrigerator oil 141 is provided.
 円筒部11には、吸入管15が設置されている。上部12には、吐出管16およびターミナル17が設置されている。吸入管15は、低圧冷媒を吸入するためのものである。吐出管16は、高圧冷媒を吐出するためのものである。ターミナル17は、外部から電力の供給を受けるためのものである。 The suction pipe 15 is installed in the cylindrical part 11. A discharge pipe 16 and a terminal 17 are installed on the upper part 12. The suction pipe 15 is for sucking low-pressure refrigerant. The discharge pipe 16 is for discharging a high-pressure refrigerant. The terminal 17 is for receiving power supply from the outside.
 (1-3)モータ20
 モータ20は、ターミナル17から図示しない導線を介して供給された電力を用いて、機械的な動力を発生するものである。モータ20は、ステータ21およびロータ22を有する。図2に示すように、ステータ21は円筒状であり、ケーシング10の円筒部11に固定されている。ステータ21とロータ22の間には間隙23が形成されている。間隙23は、冷媒の通路として機能する。
(1-3) Motor 20
The motor 20 generates mechanical power using electric power supplied from the terminal 17 via a lead wire (not shown). The motor 20 has a stator 21 and a rotor 22. As shown in FIG. 2, the stator 21 has a cylindrical shape and is fixed to the cylindrical portion 11 of the casing 10. A gap 23 is formed between the stator 21 and the rotor 22. The gap 23 functions as a refrigerant passage.
 図3に示すように、ステータ21は、ステータコア21a、インシュレータ21b、巻線21cを有する。ステータコア21aは、積層された複数の鋼板からなる。ステータコア21aには、ロータ22を配置するための空間213が形成されている。インシュレータ21bは樹脂からなる。インシュレータ21bは、ステータコア上面211とステータコア下面212にそれぞれ設けられる。巻線21cは、交流磁界を発するためのものであり、ステータコア21aとインシュレータ21bの積層体に巻きつけられている。 As shown in FIG. 3, the stator 21 has a stator core 21a, an insulator 21b, and a winding 21c. Stator core 21a consists of a plurality of laminated steel plates. A space 213 for arranging the rotor 22 is formed in the stator core 21a. The insulator 21b is made of resin. The insulators 21b are provided on the stator core upper surface 211 and the stator core lower surface 212, respectively. The winding 21c is for generating an alternating magnetic field, and is wound around a laminate of the stator core 21a and the insulator 21b.
 図4に示すように、ロータ22は、ロータコア22a、永久磁石22b、端板22c、バランスウェイト22d、ボルト22eを有する。ロータコア22aは、積層された複数の鋼板からなる。ロータコア22aには、クランク軸30を固定するための空間223が形成されている。永久磁石22bは、巻線21cが発する交流磁界と相互作用することによって、ロータ22の全体を回転させるためのものである。永久磁石22bは、ロータコア22aの空洞224の中に配置されている。端板22cは、ロータコア上面221およびロータコア下面222にそれぞれ設けられ、永久磁石22bが空洞224の外に出て行くことを防止する。バランスウェイト22dは、ロータ22およびそれに付随して回転する部品からなる回転体の重心を調整するためのものである。バランスウェイト22dは、いずれかの端板22cに設けられる。ボルト22eは、端板22cまたはバランスウェイト22dをロータコア22aに固定する。 As shown in FIG. 4, the rotor 22 has a rotor core 22a, permanent magnets 22b, end plates 22c, balance weights 22d, and bolts 22e. The rotor core 22a is composed of a plurality of laminated steel plates. A space 223 for fixing the crankshaft 30 is formed in the rotor core 22a. The permanent magnet 22b is for rotating the entire rotor 22 by interacting with the AC magnetic field generated by the winding 21c. The permanent magnet 22b is disposed in the cavity 224 of the rotor core 22a. The end plates 22c are provided on the rotor core upper surface 221 and the rotor core lower surface 222, respectively, and prevent the permanent magnet 22b from going out of the cavity 224. The balance weight 22d is for adjusting the center of gravity of the rotating body composed of the rotor 22 and the components that rotate accompanying the rotor 22. The balance weight 22d is provided on one of the end plates 22c. The bolt 22e fixes the end plate 22c or the balance weight 22d to the rotor core 22a.
 (1-4)クランク軸30
 図1に戻り、クランク軸30は、モータ20が発生させた動力を圧縮機構40に伝達するためのものである。クランク軸30は、回転軸心RAのまわりに回転する。クランク軸30は、主軸部31と偏心部32を有する。主軸部31の一部はロータ22に固定されている。偏心部32は、回転軸心RAに対して偏心している。
(1-4) Crankshaft 30
Returning to FIG. 1, the crankshaft 30 is for transmitting the power generated by the motor 20 to the compression mechanism 40. The crankshaft 30 rotates around the rotation axis RA. The crankshaft 30 has a main shaft portion 31 and an eccentric portion 32. A part of the main shaft portion 31 is fixed to the rotor 22. The eccentric part 32 is eccentric with respect to the rotational axis RA.
 (1-5)圧縮機構40
 圧縮機構40は、低圧冷媒を圧縮して高圧冷媒を生成するためのものである。圧縮機構40は、シリンダ41、ピストン42、軸支部61、補助軸支部62、マフラ45を有する。
(1-5) Compression mechanism 40
The compression mechanism 40 is for compressing a low-pressure refrigerant to generate a high-pressure refrigerant. The compression mechanism 40 includes a cylinder 41, a piston 42, a shaft support 61, an auxiliary shaft support 62, and a muffler 45.
 シリンダ41は金属部材であり、吸入管15を介してケーシング10の外部と連通する内部空間を有する。ピストン42は、シリンダ41よりも小さな円筒状の金属部材である。ピストン42は、偏心部32に取り付けられている。偏心部32およびピストン42は、シリンダ41の内部空間に配置されている。クランク軸30の回転に伴い、ピストン42は公転する。軸支部61は、偏心部32よりも上方の主軸部31を回転可能に支える。軸支部61は、シリンダ41の内部空間の上側を塞ぐ機能も有する。軸支部61は、溶接部50において円筒部11に固定されている。補助軸支部62は、偏心部32よりも下方の主軸部31を回転可能に支える。補助軸支部62は、シリンダ41の内部空間の下側を塞ぐ機能も有する。シリンダ41、ピストン42、軸支部61、補助軸支部62によって、圧縮室43が規定される。軸支部61にはマフラ45が取り付けられている。軸支部61とマフラ45は、マフラ室を規定する。 The cylinder 41 is a metal member, and has an internal space that communicates with the outside of the casing 10 via the suction pipe 15. The piston 42 is a cylindrical metal member that is smaller than the cylinder 41. The piston 42 is attached to the eccentric part 32. The eccentric portion 32 and the piston 42 are disposed in the internal space of the cylinder 41. As the crankshaft 30 rotates, the piston 42 revolves. The shaft support portion 61 rotatably supports the main shaft portion 31 above the eccentric portion 32. The shaft support 61 also has a function of closing the upper side of the internal space of the cylinder 41. The shaft support portion 61 is fixed to the cylindrical portion 11 at the weld portion 50. The auxiliary shaft support portion 62 rotatably supports the main shaft portion 31 below the eccentric portion 32. The auxiliary shaft support part 62 also has a function of closing the lower side of the internal space of the cylinder 41. The compression chamber 43 is defined by the cylinder 41, the piston 42, the shaft support 61, and the auxiliary shaft support 62. A muffler 45 is attached to the shaft support 61. The shaft support 61 and the muffler 45 define a muffler chamber.
 圧縮室43の容積は、ピストン42の公転により増減し、それによって低圧冷媒が圧縮され、高圧冷媒が生成される。高圧冷媒は、軸支部61に形成された通路44からマフラ室へ吐出される。通路44には、図示しない吐出弁が設けられている。吐出弁は、高圧冷媒がマフラ室から圧縮室43へ逆流することを抑制する。高圧冷媒は、ピストン42が公転を1回するたびに通路44を通過する。高圧冷媒の通路44の通過がこのように断続的であることは、騒音の原因となり得る。マフラ45は、マフラ室においてガス冷媒の圧力変動を平滑化し、それによって騒音を低減する。高圧冷媒は、マフラ45に形成された吐出孔46から圧縮機構40の外へ吐出される。 The volume of the compression chamber 43 is increased or decreased by the revolution of the piston 42, whereby the low-pressure refrigerant is compressed and high-pressure refrigerant is generated. The high-pressure refrigerant is discharged from the passage 44 formed in the shaft support portion 61 to the muffler chamber. The passage 44 is provided with a discharge valve (not shown). The discharge valve suppresses the high-pressure refrigerant from flowing back from the muffler chamber to the compression chamber 43. The high-pressure refrigerant passes through the passage 44 every time the piston 42 makes one revolution. Such intermittent passage of the high-pressure refrigerant passage 44 can cause noise. The muffler 45 smoothes the pressure fluctuation of the gas refrigerant in the muffler chamber, thereby reducing noise. The high-pressure refrigerant is discharged out of the compression mechanism 40 through a discharge hole 46 formed in the muffler 45.
 なお、軸支部61が溶接部50において円筒部11に固定されている上述の構成に代えて、シリンダ41などの、軸支部61以外の圧縮機構40の部品が溶接部50において円筒部11に固定される構成を採用してもよい。 In addition, instead of the above-described configuration in which the shaft support portion 61 is fixed to the cylindrical portion 11 in the weld portion 50, components of the compression mechanism 40 other than the shaft support portion 61 such as the cylinder 41 are fixed to the cylindrical portion 11 in the weld portion 50. A configuration may be adopted.
 (2)基本動作
 図1の矢印は冷媒の流れを示す。低圧冷媒は吸入管15から圧縮機構40の圧縮室43へ吸入される。圧縮機構40の圧縮動作によって生成した高圧冷媒は、通路44および吐出孔46を通過して、圧縮機構40から吐出される。その後、高圧冷媒は、ロータ22に向かって吹きつけられた後、間隙23へ向かって進む。高圧冷媒は、間隙23の中を上昇した後、吐出管16からケーシング10の外部へ吐出される。
(2) Basic operation The arrows in FIG. 1 indicate the flow of the refrigerant. The low-pressure refrigerant is sucked from the suction pipe 15 into the compression chamber 43 of the compression mechanism 40. The high-pressure refrigerant generated by the compression operation of the compression mechanism 40 passes through the passage 44 and the discharge hole 46 and is discharged from the compression mechanism 40. Thereafter, the high-pressure refrigerant is blown toward the rotor 22 and then proceeds toward the gap 23. The high-pressure refrigerant rises in the gap 23 and is then discharged from the discharge pipe 16 to the outside of the casing 10.
 (3)詳細構成
 本発明に係る圧縮機5のロータ22は、100~150rps(回転毎秒)、好ましくは120~130rpsで回転するよう構成されている。この回転速度は、従来の圧縮機におけるロータの回転速度の15~75rpsと比較して速いものである。
(3) Detailed Configuration The rotor 22 of the compressor 5 according to the present invention is configured to rotate at 100 to 150 rps (rotation per second), preferably 120 to 130 rps. This rotational speed is higher than the rotational speed of the rotor in the conventional compressor, 15 to 75 rps.
 図5は、圧縮機5の各部の寸法を示している。第1寸法D1は、ケーシング10の円筒部11の内径である。第2寸法D2は、ロータ22のロータコア22aの外径である。第2寸法D2に対する第1寸法D1の比率D1/D2は、1.8以下となるように設計されている。例えば、第1寸法D1は90mmであり、第2寸法は50mmである。比率D1/D2は、1.8“未満”となるように設計されてもよい。 FIG. 5 shows the dimensions of each part of the compressor 5. The first dimension D1 is the inner diameter of the cylindrical portion 11 of the casing 10. The second dimension D2 is the outer diameter of the rotor core 22a of the rotor 22. The ratio D1 / D2 of the first dimension D1 to the second dimension D2 is designed to be 1.8 or less. For example, the first dimension D1 is 90 mm and the second dimension is 50 mm. The ratio D1 / D2 may be designed to be “less than 1.8”.
 ケーシング10の円筒部11と圧縮機構40の軸支部61とを固定するのは4点以上の溶接部50である。好ましくは、図6に示すように6点の溶接部50によって、円筒部11と軸支部61が固定される。あるいは、7点以上の溶接部50が固定を担ってもよい。これらの複数の溶接部50は、均等に離間していることが好ましい。 The cylindrical part 11 of the casing 10 and the shaft support part 61 of the compression mechanism 40 are fixed by four or more welded parts 50. Preferably, as shown in FIG. 6, the cylindrical portion 11 and the shaft support portion 61 are fixed by the six welded portions 50. Alternatively, seven or more welds 50 may be fixed. The plurality of welds 50 are preferably spaced evenly.
 図7Aは、圧縮機構40を示す。円筒部11の全周に相当する圧縮機構40の外周区間にわたり、固定部49が設けられている。固定部49は、圧縮機構40の設置位置、すなわち高さ位置において、ケーシング10の円筒部11の内周面に密着するように構成された箇所である。密着の度合いを高めるために、圧縮機構40および円筒部11はいずれも精度のよい真円となるよう形成されている。具体的には、固定部49の全域についての、円筒部11の内周面と固定部49との離間距離の平均値は、0.00mm以上かつ0.15mm以下となるように形成されている。 FIG. 7A shows the compression mechanism 40. A fixing portion 49 is provided over the outer peripheral section of the compression mechanism 40 corresponding to the entire circumference of the cylindrical portion 11. The fixing portion 49 is a portion configured to be in close contact with the inner peripheral surface of the cylindrical portion 11 of the casing 10 at the installation position of the compression mechanism 40, that is, the height position. In order to increase the degree of close contact, both the compression mechanism 40 and the cylindrical portion 11 are formed to have a precise circular shape. Specifically, the average value of the separation distance between the inner peripheral surface of the cylindrical portion 11 and the fixing portion 49 in the entire area of the fixing portion 49 is formed to be 0.00 mm or more and 0.15 mm or less. .
 圧縮機構40は、図7Aに示す構成に代えて、図7Bに示す構成としてもよい。この構成では、圧縮機構40の外周の一部に、円筒部11の内周面と接触しない切欠部48が存在する。固定部49は、円筒部11の全周ではなく、全周の80%以上に相当する圧縮機構40の外周区間にわたり設けられている。この構成においても、固定部49の全域についての、円筒部11の内周面と固定部49との離間距離の平均値は、0.00mm以上かつ0.15mm以下となるように形成されている。 The compression mechanism 40 may have the configuration shown in FIG. 7B instead of the configuration shown in FIG. 7A. In this configuration, a cutout portion 48 that does not contact the inner peripheral surface of the cylindrical portion 11 exists in a part of the outer periphery of the compression mechanism 40. The fixed portion 49 is provided not over the entire circumference of the cylindrical portion 11 but over the outer circumferential section of the compression mechanism 40 corresponding to 80% or more of the entire circumference. Also in this configuration, the average value of the separation distance between the inner peripheral surface of the cylindrical portion 11 and the fixing portion 49 over the entire area of the fixing portion 49 is formed to be 0.00 mm or more and 0.15 mm or less. .
 (4)製造方法
 本発明に係る圧縮機5の製造方法は、下記の工程を含む。
(4) Manufacturing method The manufacturing method of the compressor 5 which concerns on this invention includes the following process.
 (4-1)第1工程:構成要素の準備
 第1寸法D1の内径を持つ円筒部11と、第2寸法D2の外径を持つロータ22を有するモータ20と、圧縮機構40と、を準備する。ここで、第2寸法D2に対する第1寸法D1の比率D1/D2は1.8以下である。
(4-1) First Step: Preparation of Components Prepared are a cylindrical portion 11 having an inner diameter of a first dimension D1, a motor 20 having a rotor 22 having an outer diameter of a second dimension D2, and a compression mechanism 40. To do. Here, the ratio D1 / D2 of the first dimension D1 to the second dimension D2 is 1.8 or less.
 (4-2)第2工程:圧縮機構40の固定
 圧縮機構40を円筒部11に溶接によって固定する。具体的には、4点以上、好ましくは6点以上の溶接部50を形成する。これにより、圧縮機構40の設置位置、すなわち高さ位置において、円筒部11の内周面と圧縮機構40の固定部49とを密着させる。具体的には、固定部49の全域についての、円筒部11の内周面と固定部49との離間距離の平均値が、0.00mm以上かつ0.15mm以下にする。
(4-2) Second Step: Fixing of Compression Mechanism 40 The compression mechanism 40 is fixed to the cylindrical portion 11 by welding. Specifically, the welded portion 50 is formed with 4 points or more, preferably 6 points or more. Accordingly, the inner peripheral surface of the cylindrical portion 11 and the fixing portion 49 of the compression mechanism 40 are brought into close contact with each other at the installation position of the compression mechanism 40, that is, the height position. Specifically, the average value of the separation distance between the inner peripheral surface of the cylindrical portion 11 and the fixing portion 49 over the entire area of the fixing portion 49 is set to 0.00 mm or more and 0.15 mm or less.
 (4-3)第3工程:モータ20の固定
 モータ20が円筒部11に焼き嵌めによって固定される。具体的には、まず円筒部11を加熱することによって第1寸法D1がわずかに膨張する。次に、円筒部11の中にモータ20を挿入する。最後に、円筒部11が放熱することによって冷却された結果、第1寸法D1が収縮する。これにより、円筒部11はしっかりとモータ20のステータ21を保持する。
(4-3) Third Step: Fixing of Motor 20 The motor 20 is fixed to the cylindrical portion 11 by shrink fitting. Specifically, the first dimension D1 is slightly expanded by first heating the cylindrical portion 11. Next, the motor 20 is inserted into the cylindrical portion 11. Finally, as a result of cooling the cylindrical portion 11 by radiating heat, the first dimension D1 contracts. Thereby, the cylindrical portion 11 firmly holds the stator 21 of the motor 20.
 (5)特徴
 (5-1)
 ケーシング10の円筒部11と圧縮機構40の固定部49は密着している。したがって、圧縮機構40はケーシング10に強固に固定されているので、圧縮機5の振動が抑制される。
(5) Features (5-1)
The cylindrical portion 11 of the casing 10 and the fixing portion 49 of the compression mechanism 40 are in close contact. Therefore, since the compression mechanism 40 is firmly fixed to the casing 10, vibration of the compressor 5 is suppressed.
 (5-2)
 圧縮機構40の固定部49は円筒部11の内周面の全周の80%以上に相当する区間にわたって位置する。したがって、ケーシング10と圧縮機構40とが広範囲にわたって密着するので、圧縮機5の振動がより抑制される。
(5-2)
The fixing portion 49 of the compression mechanism 40 is located over a section corresponding to 80% or more of the entire circumference of the inner peripheral surface of the cylindrical portion 11. Therefore, since the casing 10 and the compression mechanism 40 are in close contact with each other over a wide range, vibration of the compressor 5 is further suppressed.
 (5-3)
 円筒部11の内周面と圧縮機構40の固定部49の離間距離の平均値は短い。したがって、内周面と固定部49の密着の度合いがより高いので、圧縮機5の振動をより抑制できる。
(5-3)
The average value of the separation distance between the inner peripheral surface of the cylindrical portion 11 and the fixing portion 49 of the compression mechanism 40 is short. Therefore, since the degree of close contact between the inner peripheral surface and the fixing portion 49 is higher, vibration of the compressor 5 can be further suppressed.
 (5-4)
 4点以上、好ましくは6点以上の溶接部50が、円筒部11と圧縮機構40との接合の剛性に寄与する。したがって、圧縮機5の振動をより抑制できる。
(5-4)
Four or more, preferably six or more welded parts 50 contribute to the rigidity of the joint between the cylindrical part 11 and the compression mechanism 40. Therefore, vibration of the compressor 5 can be further suppressed.
 (5-5)
 溶接部50によって円筒部11に固定されるのは軸支部61であるので、円筒部11と圧縮機構40の接合箇所である溶接部50からロータ22の重心までの高低差を短くすることができる。したがって、圧縮機5の振動をより抑制できる。
(5-5)
Since the shaft support 61 is fixed to the cylindrical part 11 by the welded part 50, the height difference from the welded part 50, which is a joining point of the cylindrical part 11 and the compression mechanism 40, to the center of gravity of the rotor 22 can be shortened. . Therefore, vibration of the compressor 5 can be further suppressed.
 (5-6)
 モータ20は焼き嵌めによって円筒部11に強固に固定される。したがって、モータ20のケーシング10に対する揺れを抑制できるので、圧縮機5の振動をより抑制できる。
(5-6)
The motor 20 is firmly fixed to the cylindrical portion 11 by shrink fitting. Therefore, since the vibration of the motor 20 with respect to the casing 10 can be suppressed, the vibration of the compressor 5 can be further suppressed.
 (6)変形例
 (6-1)焼き嵌めによる固定
 上述の実施形態では、圧縮機構40は溶接によって円筒部11に固定される。これに代えて、圧縮機構40が焼き嵌めによって円筒部11に固定されてもよい。具体的には、まず円筒部11を加熱することによって第1寸法D1がわずかに膨張する。次に、円筒部11の中に圧縮機構40を挿入する。最後に、円筒部11が放熱することによって冷却された結果、第1寸法D1が収縮する。これにより、円筒部11はしっかりと圧縮機構40の軸支部61を保持する。これにより、圧縮機構40の設置位置、すなわち高さ位置において、円筒部11の全周の80%以上を圧縮機構40と接触させる。円筒部11の全周についての、円筒部11と圧縮機構40の離間距離の平均値は、0.00mm以上かつ0.15mm以下にする。
(6) Modifications (6-1) Fixing by shrink fitting In the above-described embodiment, the compression mechanism 40 is fixed to the cylindrical portion 11 by welding. Instead of this, the compression mechanism 40 may be fixed to the cylindrical portion 11 by shrink fitting. Specifically, the first dimension D1 is slightly expanded by first heating the cylindrical portion 11. Next, the compression mechanism 40 is inserted into the cylindrical portion 11. Finally, as a result of cooling the cylindrical portion 11 by radiating heat, the first dimension D1 contracts. Thereby, the cylindrical part 11 hold | maintains the axial support part 61 of the compression mechanism 40 firmly. As a result, 80% or more of the entire circumference of the cylindrical portion 11 is brought into contact with the compression mechanism 40 at the installation position of the compression mechanism 40, that is, the height position. The average value of the separation distance between the cylindrical portion 11 and the compression mechanism 40 for the entire circumference of the cylindrical portion 11 is set to 0.00 mm or more and 0.15 mm or less.
 この方法によれば、円筒部11と圧縮機構40を実質的に全周において接触させることができるので、圧縮機5の振動をより抑制できる。 According to this method, the cylindrical portion 11 and the compression mechanism 40 can be brought into contact substantially over the entire circumference, so that the vibration of the compressor 5 can be further suppressed.
 (6-2)圧入による固定
 上述の実施形態では、圧縮機構40は溶接によって円筒部11に固定される。これに代えて、圧縮機構40が圧入によって円筒部11に固定されてもよい。具体的には、圧縮機構40に強い力を印加することによって、円筒部11に弾性変形を生じさせながら、圧縮機構40を円筒部11の中へ挿入する。これにより、圧縮機構40の設置位置、すなわち高さ位置において、円筒部11の全周の80%以上を圧縮機構40と接触させる。円筒部11の全周についての、円筒部11と圧縮機構40の離間距離の平均値は、0.00mm以上かつ0.15mm以下にする。
(6-2) Fixing by press fitting In the above-described embodiment, the compression mechanism 40 is fixed to the cylindrical portion 11 by welding. Instead of this, the compression mechanism 40 may be fixed to the cylindrical portion 11 by press-fitting. Specifically, by applying a strong force to the compression mechanism 40, the compression mechanism 40 is inserted into the cylindrical portion 11 while causing the cylindrical portion 11 to be elastically deformed. As a result, 80% or more of the entire circumference of the cylindrical portion 11 is brought into contact with the compression mechanism 40 at the installation position of the compression mechanism 40, that is, the height position. The average value of the separation distance between the cylindrical portion 11 and the compression mechanism 40 for the entire circumference of the cylindrical portion 11 is set to 0.00 mm or more and 0.15 mm or less.
 この方法によれば、円筒部11と圧縮機構40を実質的に全周において接触させることができるので、圧縮機5の振動をより抑制できる。 According to this method, the cylindrical portion 11 and the compression mechanism 40 can be brought into contact substantially over the entire circumference, so that the vibration of the compressor 5 can be further suppressed.
 (6-3)多分割拡管の使用
 図8は、上述の実施形態の変形例に係る圧縮機5に用いられるケーシング10の円筒部11を示す。本変形例における円筒部11は多分割拡管である。すなわち、円筒部11は拡管工具によって製造された結果、8つ以上の内径拡張部121と、8つ以上の内径縮小部122とを有する。
(6-3) Use of Multi-Division Tube Expansion FIG. 8 shows the cylindrical portion 11 of the casing 10 used in the compressor 5 according to the modification of the above-described embodiment. The cylindrical part 11 in this modification is a multi-division pipe expansion. That is, as a result of being manufactured by the tube expansion tool, the cylindrical portion 11 has eight or more inner diameter expansion portions 121 and eight or more inner diameter reduction portions 122.
 この構成によれば、内径拡張部121が圧縮機構40と接触するとともに、内径縮小部122が弾性変形を伴いながら強固に圧縮機構40に押し付けられる。したがって、圧縮機5の振動をより抑制できる。 According to this configuration, the inner diameter expansion portion 121 comes into contact with the compression mechanism 40, and the inner diameter reduction portion 122 is firmly pressed against the compression mechanism 40 with elastic deformation. Therefore, vibration of the compressor 5 can be further suppressed.
     5  圧縮機
    10  ケーシング
    11  円筒部
    12  上部
    13  下部
    20  モータ
    21  ステータ
    22  ロータ
    30  クランク軸
    40  圧縮機構
    41  シリンダ
    42  ピストン
    43  圧縮室
    44  通路
    45  マフラ
    46  吐出孔
    49  固定部
    50  溶接部
    61  軸支部
    62  補助軸支部
    RA  回転軸心
DESCRIPTION OF SYMBOLS 5 Compressor 10 Casing 11 Cylindrical part 12 Upper part 13 Lower part 20 Motor 21 Stator 22 Rotor 30 Crankshaft 40 Compression mechanism 41 Cylinder 42 Piston 43 Compression chamber 44 Passage 45 Muffler 46 Discharge hole 49 Fixing part 50 Welding part 61 Axis support part 62 Branch RA axis of rotation
特開2006-144731号公報JP 2006-144731 A

Claims (14)

  1.  第1寸法(D1)の内径を持つ円筒部(11)を有するケーシング(10)と、
     第2寸法(D2)の外径を持つロータ(22)を有するモータ(20)と、
     低圧冷媒を圧縮することによって高圧冷媒を生成する圧縮機構(40)と、
    を備え、
     前記第2寸法に対する前記第1寸法の比率(D1/D2)は1.8以下であり、
     前記圧縮機構は、前記圧縮機構の設置位置において、前記円筒部の内周面と密着するように構成された固定部(49)を有する、
    圧縮機(5)。
    A casing (10) having a cylindrical portion (11) having an inner diameter of a first dimension (D1);
    A motor (20) having a rotor (22) having an outer diameter of a second dimension (D2);
    A compression mechanism (40) for generating a high-pressure refrigerant by compressing the low-pressure refrigerant;
    With
    The ratio of the first dimension to the second dimension (D1 / D2) is 1.8 or less,
    The compression mechanism includes a fixing portion (49) configured to be in close contact with an inner peripheral surface of the cylindrical portion at an installation position of the compression mechanism.
    Compressor (5).
  2.  前記固定部は、前記内周面の全周の80%以上に相当する区間にわたって設けられている、
    請求項1に記載の圧縮機。
    The fixing portion is provided over a section corresponding to 80% or more of the entire circumference of the inner peripheral surface.
    The compressor according to claim 1.
  3.  前記固定部の全域についての、前記内周面と前記固定部の離間距離の平均値は、0.00mm以上かつ0.15mm以下である、
    請求項1または請求項2に記載の圧縮機。
    The average value of the separation distance between the inner peripheral surface and the fixing portion for the entire fixing portion is 0.00 mm or more and 0.15 mm or less.
    The compressor according to claim 1 or 2.
  4.  前記円筒部と前記圧縮機構とを固定する4点以上の溶接部(50)、
    をさらに備える、
    請求項1から3のいずれか1つに記載の圧縮機。
    4 or more welded parts (50) for fixing the cylindrical part and the compression mechanism,
    Further comprising
    The compressor according to any one of claims 1 to 3.
  5.  6点以上の前記溶接部、
    を備える、
    請求項4に記載の圧縮機。
    6 or more of the welds,
    Comprising
    The compressor according to claim 4.
  6.  前記ロータに固定されており、回転軸心(RA)のまわりに回転するクランク軸(30)、
    をさらに備え、
     前記圧縮機構(40)は、
      シリンダ(41)と、
      前記シリンダの中で動くピストン(42)と、
      前記クランク軸を回転可能に支える軸支部(61)と、
    を有し、
     前記溶接部はいずれも、前記円筒部と前記軸支部とを固定している、
    請求項4または請求項5に記載の圧縮機。
    A crankshaft (30) fixed to the rotor and rotating about a rotational axis (RA);
    Further comprising
    The compression mechanism (40)
    A cylinder (41);
    A piston (42) moving in the cylinder;
    A shaft support (61) for rotatably supporting the crankshaft;
    Have
    All of the welded portions fix the cylindrical portion and the pivot support portion,
    The compressor according to claim 4 or 5.
  7.  前記円筒部は、
      8つ以上の内径拡張部(121)と、
      8つ以上の内径縮小部(122)と、
    を有する多分割拡管である、
    請求項1から6のいずれか1つに記載の圧縮機。
    The cylindrical portion is
    Eight or more inner diameter extensions (121);
    Eight or more inner diameter reduction portions (122);
    A multi-division tube having
    The compressor according to any one of claims 1 to 6.
  8.  第1寸法(D1)の内径を持つ円筒部(11)と、第2寸法(D2)の外径を持つロータ(22)を有するモータ(20)と、低圧冷媒を圧縮することによって高圧冷媒を生成する圧縮機構(40)と、を準備するステップと、
     前記圧縮機構の固定部(49)が前記円筒部の内周面と密着するように、前記圧縮機構を前記円筒部に固定するステップと、
    を有し、
     前記第2寸法に対する前記第1寸法の比率(D1/D2)は1.8以下である、
    圧縮機(5)の製造方法。
    The cylinder (11) having an inner diameter of the first dimension (D1), a motor (20) having a rotor (22) having an outer diameter of the second dimension (D2), and a high-pressure refrigerant by compressing the low-pressure refrigerant. Preparing a compression mechanism (40) to generate;
    Fixing the compression mechanism to the cylindrical portion such that the fixing portion (49) of the compression mechanism is in close contact with the inner peripheral surface of the cylindrical portion;
    Have
    The ratio of the first dimension to the second dimension (D1 / D2) is 1.8 or less.
    Manufacturing method of compressor (5).
  9.  前記固定部は、前記内周面の全周の80%以上に相当する区間にわたって設けられている、
    請求項8に記載の製造方法。
    The fixing portion is provided over a section corresponding to 80% or more of the entire circumference of the inner peripheral surface.
    The manufacturing method according to claim 8.
  10.  前記固定するステップは、4点以上において前記円筒部と前記圧縮機構とを溶接するステップを含む、
    請求項8または請求項9に記載の製造方法。
    The fixing step includes a step of welding the cylindrical portion and the compression mechanism at four or more points.
    The manufacturing method of Claim 8 or Claim 9.
  11.  前記固定するステップは、前記固定部の全域についての、前記内周面と前記固定部の離間距離の平均値を、0.00mm以上かつ0.15mm以下にする、
    請求項10に記載の製造方法。
    In the fixing step, the average value of the separation distance between the inner peripheral surface and the fixing portion for the entire area of the fixing portion is set to 0.00 mm or more and 0.15 mm or less.
    The manufacturing method according to claim 10.
  12.  前記固定するステップは、
      前記円筒部を加熱することによって前記第1寸法が膨張するステップと、
      前記円筒部の中に前記圧縮機構を挿入するステップと、
      前記円筒部が放熱することによって前記第1寸法が収縮するステップと、
    を含む、
    請求項8または請求項9に記載の製造方法。
    The fixing step includes
    Expanding the first dimension by heating the cylindrical portion;
    Inserting the compression mechanism into the cylindrical portion;
    The first dimension shrinks as the cylindrical part dissipates heat;
    including,
    The manufacturing method of Claim 8 or Claim 9.
  13.  前記固定するステップは、前記圧縮機構に強い力を印加することによって、前記円筒部に弾性変形を生じさせながら、前記圧縮機構を前記円筒部の中に挿入するステップ、を含む、
    請求項8または請求項9に記載の製造方法。
    The fixing step includes a step of inserting the compression mechanism into the cylindrical portion while applying elastic force to the cylindrical portion by applying a strong force to the compression mechanism.
    The manufacturing method of Claim 8 or Claim 9.
  14.  前記モータを前記円筒部に固定するモータ固定ステップ、
    をさらに含み、
     前記モータ固定ステップは、
      前記円筒部を加熱することによって前記第1寸法が膨張するステップと、
      前記円筒部の中に前記モータを挿入するステップと、
      前記円筒部が放熱することによって前記第1寸法が収縮するステップと、
    を含む、
    請求項8から13のいずれか1つに記載の製造方法。
    A motor fixing step for fixing the motor to the cylindrical portion;
    Further including
    The motor fixing step includes
    Expanding the first dimension by heating the cylindrical portion;
    Inserting the motor into the cylindrical portion;
    The first dimension shrinks as the cylindrical part dissipates heat;
    including,
    The manufacturing method according to any one of claims 8 to 13.
PCT/JP2017/044014 2016-12-13 2017-12-07 Compressor provided with compression mechanism fixed to casing WO2018110426A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2017375095A AU2017375095B2 (en) 2016-12-13 2017-12-07 Compressor including compression mechanism fixed to casing
CN201780076190.7A CN110073108A (en) 2016-12-13 2017-12-07 Compressor with the compression mechanism for being fixed on shell
EP17881953.8A EP3557065A1 (en) 2016-12-13 2017-12-07 Compressor provided with compression mechanism fixed to casing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-241042 2016-12-13
JP2016241042A JP2018096272A (en) 2016-12-13 2016-12-13 Compressor equipped with compression mechanism fixed to casing

Publications (1)

Publication Number Publication Date
WO2018110426A1 true WO2018110426A1 (en) 2018-06-21

Family

ID=62558502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044014 WO2018110426A1 (en) 2016-12-13 2017-12-07 Compressor provided with compression mechanism fixed to casing

Country Status (5)

Country Link
EP (1) EP3557065A1 (en)
JP (1) JP2018096272A (en)
CN (1) CN110073108A (en)
AU (1) AU2017375095B2 (en)
WO (1) WO2018110426A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190051A1 (en) * 2022-03-31 2023-10-05 ダイキン工業株式会社 Compressor and air conditioner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4930166B1 (en) * 1969-05-19 1974-08-10
JPS559856U (en) * 1978-07-06 1980-01-22
JPS6040793A (en) * 1983-08-12 1985-03-04 Matsushita Refrig Co Rotary compressor
JPS6336087A (en) * 1986-07-29 1988-02-16 Matsushita Refrig Co Rotary type compressor
JPS6361794A (en) * 1986-09-02 1988-03-17 Matsushita Refrig Co Rotary type compressor
JP2006144731A (en) 2004-11-24 2006-06-08 Matsushita Electric Ind Co Ltd Compressor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138889A (en) * 1984-12-11 1986-06-26 Matsushita Electric Ind Co Ltd Enclosed type electric motor driven compressor
JPH1025552A (en) * 1996-07-10 1998-01-27 Nippon Steel Corp Nonoriented silicon steel sheet excellent in punching dimensional precision
JP2006115581A (en) * 2004-10-13 2006-04-27 Matsushita Electric Ind Co Ltd Closed electric compressor
JP2008106738A (en) * 2006-09-29 2008-05-08 Fujitsu General Ltd Rotary compressor and heat pump system
CN101153600A (en) * 2006-09-29 2008-04-02 富士通将军股份有限公司 Rotary compressor and heat pump system
JP4932640B2 (en) * 2007-08-23 2012-05-16 新日本製鐵株式会社 Iron loss optimization system
WO2009145232A1 (en) * 2008-05-28 2009-12-03 東芝キヤリア株式会社 Enclosed compressor and refrigeration cycle device
JP2010206956A (en) * 2009-03-04 2010-09-16 Daikin Ind Ltd Compressor
JP5732716B2 (en) * 2009-11-26 2015-06-10 Jfeスチール株式会社 Motor core
JP2011163142A (en) * 2010-02-05 2011-08-25 Toshiba Carrier Corp Hermetic compressor and refrigeration cycle device
CN105275811A (en) * 2014-06-17 2016-01-27 广东美芝制冷设备有限公司 Rotary compressor and refrigeration system with rotary compressor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4930166B1 (en) * 1969-05-19 1974-08-10
JPS559856U (en) * 1978-07-06 1980-01-22
JPS6040793A (en) * 1983-08-12 1985-03-04 Matsushita Refrig Co Rotary compressor
JPS6336087A (en) * 1986-07-29 1988-02-16 Matsushita Refrig Co Rotary type compressor
JPS6361794A (en) * 1986-09-02 1988-03-17 Matsushita Refrig Co Rotary type compressor
JP2006144731A (en) 2004-11-24 2006-06-08 Matsushita Electric Ind Co Ltd Compressor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3557065A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190051A1 (en) * 2022-03-31 2023-10-05 ダイキン工業株式会社 Compressor and air conditioner
JP7381975B2 (en) 2022-03-31 2023-11-16 ダイキン工業株式会社 Compressor and air conditioner

Also Published As

Publication number Publication date
JP2018096272A (en) 2018-06-21
CN110073108A (en) 2019-07-30
AU2017375095A1 (en) 2019-07-25
AU2017375095B2 (en) 2020-09-10
EP3557065A4 (en) 2019-10-23
EP3557065A1 (en) 2019-10-23

Similar Documents

Publication Publication Date Title
EP3236069B1 (en) Linear compressor
EP2963301B1 (en) Compressor and method for assembling a compressor
JP5117503B2 (en) Multi-cylinder rotary compressor and refrigeration cycle apparatus
JP4750551B2 (en) Method for manufacturing two-cylinder rotary hermetic compressor
CN107431394B (en) Compressor and refrigeration cycle device
WO2011037062A1 (en) Hermetically sealed compressor and refrigeration cycle device employing the same
JP2007255332A (en) Compressor
JP2013096280A (en) Rotary compressor
WO2018110426A1 (en) Compressor provided with compression mechanism fixed to casing
JP2007162641A (en) Compressor
WO2018131436A1 (en) Compressor comprising shaft support
JP5135779B2 (en) Compressor
JP7472861B2 (en) Compressor
JP2004293446A (en) Hermetic compressor
WO2024085066A1 (en) Electric compressor
JP2008138591A5 (en)
JP7472862B2 (en) Compressor
WO2024085064A1 (en) Electric compressor
JP6832897B2 (en) Sealed electric compressor
JP2023002085A (en) compressor
JP2011027048A (en) Sealed electric compressor
JP2013079653A (en) Sealed electric compressor
KR102268253B1 (en) Compressor
JP6558346B2 (en) Compressor capable of suppressing refrigeration oil discharge
WO2016151907A1 (en) Sealed rotary compressor and refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17881953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017881953

Country of ref document: EP

Effective date: 20190715

ENP Entry into the national phase

Ref document number: 2017375095

Country of ref document: AU

Date of ref document: 20171207

Kind code of ref document: A