WO2021175291A1 - 温度校验仪及对其炉芯的降温方法 - Google Patents

温度校验仪及对其炉芯的降温方法 Download PDF

Info

Publication number
WO2021175291A1
WO2021175291A1 PCT/CN2021/079101 CN2021079101W WO2021175291A1 WO 2021175291 A1 WO2021175291 A1 WO 2021175291A1 CN 2021079101 W CN2021079101 W CN 2021079101W WO 2021175291 A1 WO2021175291 A1 WO 2021175291A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
airflow
furnace core
cavity
air flow
Prior art date
Application number
PCT/CN2021/079101
Other languages
English (en)
French (fr)
Inventor
高洪军
刘宁
李学灿
张春莹
罗齐琦
王刚
张�浩
林建军
Original Assignee
北京康斯特仪表科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010153409.2A external-priority patent/CN111006794A/zh
Priority claimed from CN202020622012.9U external-priority patent/CN212869890U/zh
Application filed by 北京康斯特仪表科技股份有限公司 filed Critical 北京康斯特仪表科技股份有限公司
Priority to CN202180005280.3A priority Critical patent/CN114641677A/zh
Publication of WO2021175291A1 publication Critical patent/WO2021175291A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K15/00Testing or calibrating of thermometers

Definitions

  • the invention relates to the field of temperature control, in particular to a temperature calibrator and a method for cooling its furnace core.
  • the temperature calibrator is an indispensable tool for testing and verifying temperature industrial automation systems and meters. It is used to verify temperature sensors, thermal switches and other temperature sensing elements. It is widely used in industrial sites, measurement sites and laboratories.
  • Commonly used temperature calibrators (such as patents US15707061, GB2008006075) set the furnace core.
  • the temperature sensing element When the temperature sensing element is calibrated, insert the sensing end of the temperature sensing element into the insertion hole set on the furnace core, and the temperature calibrator controls the furnace core to reach the setting Set temperature.
  • the set temperature range of the furnace core usually ranges from tens of degrees to several hundred degrees, and tens of degrees to more than one thousand degrees.
  • the embodiment of the present invention provides a temperature calibrator and a method for cooling the furnace core, which can increase the temperature of the furnace core.
  • a temperature calibrator including:
  • the heating part is provided with a receiving cavity with an open end;
  • a furnace core whose shape matches the containing cavity, is inserted into the containing cavity and forms an airflow channel with an airflow outlet and an airflow inlet with the inner wall of the containing cavity;
  • the air source device blows the air flow into the air flow channel from the air flow inlet and discharges it from the air flow outlet.
  • an electric heating element is built in the heating part
  • the temperature calibrator also includes:
  • a controller which controls the electric heating element to heat and controls the operation of the air source device.
  • the airflow outlet is arranged at the opening of the accommodating cavity, and the airflow inlet is arranged at the bottom of the accommodating cavity.
  • the air flow inlet is at least one through hole penetrating the bottom wall of the containing cavity.
  • the air source device is a fan with an air outlet, the fan is arranged below the heating part, and the air outlet of the fan is connected to the air inlet;
  • the air source device is a container for storing pressurized gas, and the air outlet pipe of the container is connected to the air flow inlet.
  • a valve is provided on the air path between the air source device and the air flow inlet, and the degree of opening and closing of the valve is controlled to control the flow of air blown into the air flow inlet.
  • the inner wall of the accommodating cavity includes an inner side wall, a first gap for air flow is provided between the furnace core and the inner side wall, and the first gap constitutes at least a part of the air flow channel.
  • a first ventilation slot is provided at the outer wall of the furnace core corresponding to the inner side wall, and the first ventilation slot alone or in combination with the first gap constitutes at least a part of the air flow channel;
  • the inner side wall is provided with a second ventilation slot, and the second ventilation slot alone or in combination with the first gap constitutes at least a part of the air flow channel.
  • the inner wall of the accommodating cavity includes an inner bottom wall
  • a second gap for air flow is provided between the furnace core and the inner bottom wall, and the second gap constitutes a part of the air flow channel.
  • the inner bottom wall is provided with at least one raised point, and the at least one raised point supports the furnace core, so that the furnace core and the bottom wall of the accommodating cavity form the second gap.
  • a first chamfer is provided on the edge of one end of the furnace core inserted into the accommodating cavity, so that the air flow blown into the air flow inlet flows through the first chamfer;
  • the bottom of the accommodating cavity is provided with a second chamfer corresponding to the edge of the insertion end of the furnace core, so that the airflow blown into the airflow inlet flows through the second chamfer.
  • a method for cooling the furnace core of the above-mentioned temperature calibrator which includes:
  • a method for cooling the furnace core of the above-mentioned temperature calibrator which includes:
  • a furnace core cooling method of a temperature calibrator includes:
  • the heating part is provided with a receiving cavity with an open end;
  • a furnace core whose shape matches the containing cavity and is inserted into the containing cavity;
  • the method includes:
  • An airflow channel with an airflow outlet and an airflow inlet is arranged between the furnace core and the accommodating cavity;
  • the airflow outlet is arranged at the opening of the accommodating cavity, and the airflow inlet is arranged at the bottom of the accommodating cavity.
  • the air flow inlet is at least one through hole penetrating through the bottom wall of the containing cavity.
  • the temperature calibrator further includes:
  • An air source device that blows the air flow into the air flow channel through the air flow inlet and discharges it from the air flow outlet;
  • the method also includes:
  • a valve is provided on the air path between the air source device and the air flow inlet;
  • the valve When the temperature calibrator performs the calibration task, the valve is closed, and the air flow is blocked from blowing into the air flow channel through the air inlet;
  • the air source device When the furnace core is cooled down, the air source device is operated to open the valve, and the airflow is blown into the airflow channel through the airflow inlet and discharged from the airflow outlet.
  • the air source device is a fan with an air outlet, the fan is arranged below the heating part, and the air outlet of the fan is connected to the air inlet;
  • the air source device is a container for storing pressurized gas, and the air outlet pipe of the container is connected to the air flow inlet.
  • a temperature calibrator including:
  • the heating part is provided with a receiving cavity with an open end;
  • a furnace core whose shape matches the containing cavity, is inserted into the containing cavity and forms an airflow channel with an airflow outlet and an airflow inlet with the inner wall of the containing cavity;
  • An air source device comprising a damper assembly that blows the air flow into the air flow channel from the air flow inlet and discharges it from the air flow outlet;
  • the air valve assembly includes an air valve seat having a cavity, and an air outlet communicating with the cavity is provided on the top of the air valve seat, and the air outlet blows wind toward the heating part; the air valve seat An air guiding channel and a fan are arranged in the cavity, one end of the air guiding channel is connected to the air outlet of the fan, and the other end of the air guiding channel is connected to the air outlet.
  • the air exhaust port includes a first air exhaust port, the heating part has a built-in furnace core, and the air from the first air exhaust port blows toward the furnace core;
  • the air outlet includes at least one second air outlet, and the second air outlet surrounds the heating part in a circumferential direction.
  • it further includes a rotating plate for controlling the opening range of the air guide channel and a control motor, the rotating plate is connected with the control motor shaft, and the control motor controls the rotating range of the rotating plate.
  • the air valve assembly further includes an air guide plate, the air guide plate is provided with an air guide hole, and the air guide channel communicates with the air guide hole.
  • the rotating plate may be sealed and combined with the air guide hole, and the rotating plate is matched with the air guide hole, so that the opening width of the air guide channel can be controlled by controlling the opening width of the air guide hole.
  • a first protrusion and a second protrusion are provided on the end surface of the air deflector, and the first protrusion and the second protrusion are respectively connected with the first baffle and the second baffle provided on the inner wall of the air valve seat cavity.
  • the two surrounding baffles are buckled together to form a first cavity and a second cavity.
  • the air guide channel guides the airflow to the first cavity, a part of the airflow in the first cavity is divided to the second cavity, and the first vent communicates with the first cavity , The second vent communicates with the second cavity.
  • an airflow channel is set between the periphery of the furnace core and the inner wall of the accommodating cavity, and airflow is blown into the airflow channel through the airflow inlet and from the airflow
  • the outlet is discharged to realize that the air flow is directly blown to the furnace core, thereby directly cooling the furnace core, so as to increase the cooling speed of the furnace core.
  • Figure 1 is a schematic structural diagram of a temperature calibrator provided by an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of another temperature calibrator provided by an embodiment of the present invention.
  • Fig. 3 is a schematic structural diagram of another temperature calibrator provided by an embodiment of the present invention.
  • Fig. 4 is a schematic diagram of the arrangement of an electric heating element provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of another arrangement of electric heating elements provided by an embodiment of the present invention.
  • Figure 6 is one of the structural schematic diagrams of the damper assembly provided by the embodiment of the present invention.
  • FIG. 7 is the second structural diagram of the damper assembly provided by the embodiment of the invention.
  • FIG. 8 is a schematic structural diagram of a cavity in a damper assembly provided by an embodiment of the invention.
  • FIG. 9 is a flowchart of a method for cooling a furnace core of a temperature calibrator according to an embodiment of the present invention.
  • FIG. 10 is a flowchart of another method for cooling the furnace core of a temperature calibrator according to an embodiment of the present invention.
  • FIG. 11 is a flowchart of another method for cooling a furnace core of a temperature calibrator according to an embodiment of the present invention.
  • this embodiment provides a temperature calibrator, including:
  • the heating part 11 is provided with a receiving cavity 12 with an open end;
  • the furnace core 14 has a shape that matches the containing cavity, is inserted into the containing cavity and forms an air flow channel 13 with an air flow outlet 13B and an air flow inlet 13A between it and the inner wall of the containing cavity;
  • the air source device 15 blows the air flow into the air flow channel from the air flow inlet 13A and discharges it from the air flow outlet 13B.
  • the heating part 11 may be made of metal, ceramic or quartz, or a combination of part of metal and part of ceramic or quartz (for example, the cavity wall of the accommodating cavity 12 is made of ceramic or quartz) .
  • the furnace core 14 may be made of metal material, or part of a combination of metal material and part of ceramic material (for example, the top section of the furnace core 14 is constructed of ceramic material).
  • the air source device 15 may be a fan with an air outlet (for example, a vortex fan), the fan is arranged below the heating part, and the air outlet of the fan is connected to the air inlet 13A. Rotate to blow the airflow into the airflow inlet 13A. It should be understood that, in some embodiments, the air outlet of the fan may be sealed to the air inlet 13A to reduce airflow leakage and enhance the cooling effect.
  • an air outlet for example, a vortex fan
  • the air source device 15 may also be a container for storing pressurized gas, and the air outlet pipe of the container is connected to the air flow inlet 13A, so that the air flow released by the container is blown into the air flow inlet 13A.
  • the airflow outlet 13B is arranged at the opening of the containing cavity 12, and the airflow inlet 13A is arranged at the bottom of the containing cavity 12. It should be understood that the airflow outlet 13B may have different shapes and distribution modes, but the overall position is located at the top opening of the receiving cavity 12. Similarly, the air inlet 13A can have different shapes and distribution modes, but the overall position is located at the bottom of the containing cavity 12.
  • the air inlet 13A is at least one through hole penetrating the bottom wall of the containing cavity 12.
  • the at least one through hole penetrating the bottom wall of the accommodating cavity introduces the air flow provided by the air source device 15 into the air flow channel 13.
  • the at least one through hole penetrating the bottom wall of the accommodating cavity may be set in a shape in which the inner cavity is gradually narrowed, or a straight cylindrical shape or a straight cylindrical shape combined with a gradually narrowed inner cavity.
  • a valve is provided on the air path between the air source device 13 and the air flow inlet, and the valve can control the air path between the air flow inlet from fully closed, fully opened, and fully closed to fully closed. Different opening degrees between the openings, so as to control the opening and closing degree of the valve to control the flow of air blown into the air flow inlet.
  • the inner wall of the accommodating cavity 12 includes an inner side wall (vertical direction in FIG. 1), a first gap for air flow is provided between the furnace core 14 and the inner side wall, and the first The gap constitutes at least a part of the air flow channel 13.
  • the first gap may communicate with the gap at the bottom of the furnace core 14 (the second gap below) to form the air flow channel 13 together.
  • the outer wall of the furnace core 14 is provided with a first ventilation slot corresponding to the inner side wall, and the first ventilation slot alone or in combination with the first gap constitutes at least a part of the air flow channel 13.
  • the inner side wall is provided with a second ventilation slot, and the second ventilation slot alone or in combination with the first gap constitutes at least a part of the air flow channel 13. It should be understood that in order to increase the amount of ventilation of the flow channel 13, the first ventilation slot and the second ventilation slot may be provided on the basis of the first gap. The ventilation slot and the second ventilation slot together constitute at least a part of the air flow channel 13.
  • the first ventilation groove and the second ventilation groove are arranged in a spiral shape or a straight strip shape, or a spiral shape and a straight strip shape are combined.
  • the inner wall of the accommodating cavity 12 includes an inner bottom wall
  • a second gap for air flow is provided between the furnace core 14 and the inner bottom wall, and the second gap constitutes a part of the air flow channel.
  • the second gap may communicate with the first gap to form the air flow channel 13.
  • the second gap is set to be greater than twice the first gap.
  • the inner bottom wall is provided with at least one raised point, and the at least one raised point supports the furnace core 14 so that the furnace core 14 and the bottom wall of the receiving cavity 12 form the second gap .
  • the bottom of the furnace core 14 may be provided with a positioning hole, and the inner bottom wall is provided with a protruding rod inserted into the positioning hole to locate and support the furnace core 14, thereby facilitating the insertion of the furnace core 14
  • An airflow channel 13 with an airflow outlet 13B and an airflow inlet 13A is formed between the back of the accommodating cavity 12 and the inner wall of the accommodating cavity 12.
  • the top of the furnace core 14 may be provided with a laterally protruding extension, so that the furnace core 14 is T-shaped so that the top of the furnace core 14 is inserted into the receiving cavity 12 and the top is stuck at the port of the receiving cavity 12.
  • the air flow outlet 13B is arranged at the protruding extension of the furnace core 14.
  • the top of the furnace core 14 is located in the accommodating cavity 12
  • an insulating plug is provided on the furnace core 14
  • the air outlet 13B is provided Between the thermal insulation plug and the containing cavity 12.
  • the top edge of the furnace core 14 inserted into the receiving cavity 12 is provided with a first chamfer 14A, so that the airflow blown into the airflow inlet 13A flows through the first Chamfer 14A, thereby reducing airflow obstruction and enhancing airflow; in other embodiments, at the same time or separately, the second chamfer 12A is provided at the bottom of the accommodating cavity 12 corresponding to the edge of the insertion end of the furnace core 14, so as to blow into the The airflow at the airflow inlet flows through the second chamfer 12A.
  • the first chamfer 14A and the second chamfer 12A are set at the same time, the first chamfer 14A corresponds to the second chamfer 12A.
  • an airflow channel is set between the periphery of the furnace core and the inner wall of the accommodating cavity, and airflow is blown into the airflow channel through the airflow inlet and discharged from the airflow outlet, so that the airflow is directly blown to the furnace Therefore, the temperature of the furnace core is directly cooled to increase the temperature of the furnace core.
  • first and second in this embodiment are used to indicate names, and do not indicate any specific order.
  • first gap and the second gap should be understood as different gaps instead of sequential gaps; for example, the first chamfer and the second chamfer should be understood as different chamfers, not sequential chamfers.
  • an airflow channel is set between the periphery of the furnace core and the inner wall of the accommodating cavity, and airflow is blown into the airflow channel through the airflow inlet and discharged from the airflow outlet, so that the airflow is directly blown to the furnace Therefore, the temperature of the furnace core is directly cooled to increase the temperature of the furnace core.
  • this embodiment provides a temperature calibrator, including:
  • the heating part 11 has a built-in electric heating element 16 and is provided with a receiving cavity 12 with an open end;
  • the furnace core 14 whose shape matches the containing cavity 12, is inserted into the containing cavity 12 and formed between the containing cavity 12 and the inner wall of the containing cavity 12 to have an air flow outlet 13B (FIG. 1, FIG. 2) and an air flow inlet 13A (FIG. 1 , Figure 2) the air flow channel 13;
  • the air source device 15 blows the air flow into the air flow channel 13 from the air flow inlet 13A and discharges it from the air flow outlet 13B during operation;
  • the controller 17 controls the electric heating element 16 to heat and controls the operation of the air source device 15.
  • the electric heating element 16 is a heating device that converts electrical energy into thermal energy, including but not limited to an electric heating wire, an electric heating rod, and the like.
  • the electric heating rod may be inserted into the heating part 11 circumferentially around the receiving cavity 12; as shown in FIG. 5, the electric heating wire may be inserted into the heating part 11 to surround the receiving cavity 12 Axial winding.
  • the heating part 11 may be made of metal, ceramic or quartz, and may also be a combination of part of metal and part of ceramic or quartz (for example, the cavity wall of the accommodating cavity 12 is made of ceramic or quartz. Material).
  • the furnace core 14 may be made of metal material, or part of a combination of metal material and part of ceramic material (for example, the top section of the furnace core 14 is constructed of ceramic material).
  • the air source device 15 may be a fan with an air outlet (for example, a vortex fan), the fan is arranged below the heating part, and the air outlet of the fan is connected to the air inlet 13A. Rotate to blow the airflow into the airflow inlet 13A. It should be understood that, in some embodiments, the air outlet of the fan may be sealed to the air inlet 13A to reduce airflow leakage and enhance the cooling effect.
  • an air outlet for example, a vortex fan
  • the air source device 15 may also be a container for storing pressurized gas, the container may be arranged on one side of the heating part 11, and the air outlet pipe of the container is connected to the air flow inlet 13A, thereby connecting the container The released airflow is blown into the airflow inlet 13A.
  • the airflow outlet 13B is arranged at the opening of the containing cavity 12, and the airflow inlet 13A is arranged at the bottom of the containing cavity 12. It should be understood that the airflow outlet 13B may have different shapes and distribution modes, but the overall position is located at the top opening of the receiving cavity 12. Similarly, the air inlet 13A can have different shapes and distribution modes, but the overall position is located at the bottom of the containing cavity 12.
  • the air inlet 13A is at least one through hole penetrating the bottom wall of the containing cavity 12.
  • the at least one through hole penetrating the bottom wall of the accommodating cavity introduces the air flow provided by the air source device 15 into the air flow channel 13.
  • the at least one through hole penetrating the bottom wall of the accommodating cavity may be set in a shape in which the inner cavity is gradually narrowed, or a straight cylindrical shape or a straight cylindrical shape combined with a gradually narrowed inner cavity.
  • the second gap is set to be greater than twice the first gap.
  • a valve is provided on the air path between the air source device 13 and the air inlet, and the valve can control the air path between the air inlet from fully closed, fully opened, and fully closed to fully closed. Different opening degrees between the openings, so as to control the opening and closing degree of the valve to control the flow of air blown into the air flow inlet.
  • the inner wall of the accommodating cavity 12 includes an inner side wall (vertical direction in FIG. 1), a first gap for air flow is provided between the furnace core 14 and the inner side wall, and the first The gap constitutes at least a part of the air flow channel 13.
  • the first gap may communicate with the gap at the bottom of the furnace core 14 (the second gap below) to form the air flow channel 13 together.
  • the outer wall of the furnace core 14 is provided with a first ventilation slot corresponding to the inner side wall, and the first ventilation slot alone or in combination with the first gap constitutes at least a part of the air flow channel 13.
  • the inner side wall is provided with a second ventilation slot, and the second ventilation slot alone or in combination with the first gap constitutes at least a part of the air flow channel 13. It should be understood that in order to increase the amount of ventilation of the flow channel 13, the first ventilation slot and the second ventilation slot may be provided on the basis of the first gap. The ventilation slot and the second ventilation slot together constitute at least a part of the airflow channel 13.
  • the first ventilation groove and the second ventilation groove are arranged in a spiral shape or a straight strip shape, or a spiral shape and a straight strip shape are combined.
  • the inner wall of the accommodating cavity 12 includes an inner bottom wall
  • a second gap for air flow is provided between the furnace core 14 and the inner bottom wall, and the second gap constitutes a part of the air flow channel.
  • the second gap may communicate with the first gap to form the air flow channel 13.
  • the inner bottom wall is provided with at least one raised point, and the at least one raised point supports the furnace core 14 so that the furnace core 14 and the bottom wall of the receiving cavity 12 form the second gap .
  • the bottom of the furnace core 14 may be provided with a positioning hole, and the inner bottom wall is provided with a protruding rod inserted into the positioning hole to locate and support the furnace core 14, thereby facilitating the insertion of the furnace core 14
  • An airflow channel 13 with an airflow outlet 13B and an airflow inlet 13A is formed between the back of the accommodating cavity 12 and the inner wall of the accommodating cavity 12.
  • the top of the furnace core 14 may be provided with a laterally protruding extension, so that the furnace core 14 is T-shaped so that the top of the furnace core 14 is inserted into the receiving cavity 12 and the top is stuck at the port of the receiving cavity 12.
  • the air flow outlet 13B is arranged at the protruding extension of the furnace core 14.
  • the top of the furnace core 14 is located in the accommodating cavity 12
  • an insulating plug is provided on the furnace core 14
  • the air outlet 13B is provided Between the thermal insulation plug and the containing cavity 12.
  • the top edge of the furnace core 14 inserted into the receiving cavity 12 is provided with a first chamfer 14A, so that the airflow blown into the airflow inlet 13A flows through the first Chamfer 14A, thereby reducing airflow obstruction and enhancing airflow; in other embodiments, at the same time or separately, the second chamfer 12A is provided at the bottom of the accommodating cavity 12 corresponding to the edge of the insertion end of the furnace core 14, so as to blow into the The airflow at the airflow inlet flows through the second chamfer 12A.
  • the first chamfer 14A and the second chamfer 12A are set at the same time, the first chamfer 14A corresponds to the second chamfer 12A.
  • the air source device includes a damper assembly that blows the air flow into the air flow channel from the air flow inlet and discharges it from the air flow outlet;
  • the air valve assembly includes an air valve seat having a cavity, and an air outlet communicating with the cavity is provided on the top of the air valve seat, and the air outlet blows wind toward the heating part; the air valve seat An air guiding channel and a fan are arranged in the cavity, one end of the air guiding channel is connected to the air outlet of the fan, and the other end of the air guiding channel is connected to the air outlet.
  • the air exhaust port includes a first air exhaust port, the heating part has a built-in furnace core, and the first air exhaust port blows toward the furnace core;
  • the air outlet includes at least one second air outlet, and the second air outlet surrounds the heating part in a circumferential direction.
  • it further includes a rotating plate for controlling the opening range of the air guide channel and a control motor, the rotating plate is connected to the control motor shaft, and the control motor controls the rotating range of the rotating plate.
  • the air valve assembly further includes an air guide plate, the air guide plate is provided with an air guide hole, and the air guide channel communicates with the air guide hole.
  • the rotating plate can be sealed and combined with the air guide hole, and the rotating plate cooperates with the air guide hole, so that the opening of the air guide channel can be controlled by controlling the opening amplitude of the air guide hole. Amplitude.
  • a first protrusion and a second protrusion are provided on the end surface of the air deflector, and the first protrusion and the second protrusion are respectively connected to the first baffle plate provided on the inner wall of the air valve seat cavity. And the second enclosure baffle are buckled together to form a first cavity and a second cavity.
  • the air guiding channel guides the airflow to the first cavity, a part of the airflow in the first cavity is divided to the second cavity, and the first vent communicates with the first cavity.
  • a cavity, and the second vent communicates with the second cavity.
  • an airflow channel is set between the periphery of the furnace core and the inner wall of the accommodating cavity, and airflow is blown into the airflow channel through the airflow inlet and discharged from the airflow outlet, so that the airflow is directly blown to the furnace Therefore, the temperature of the furnace core is directly cooled to increase the temperature of the furnace core.
  • This embodiment provides a damper assembly, which is installed in a temperature calibrator having a heating part 11 as shown in FIG. 1 as the air source device 13, as shown in FIGS.
  • the air valve assembly includes an air valve seat 61 with a cavity.
  • the top of the air valve seat 61 is provided with an air outlet communicating with the cavity, and the air from the air outlet blows toward the heating part 11;
  • the air valve seat 61 is provided with an air guide in the cavity
  • the channel 621 and the fan 63, one end of the air guiding channel 621 is connected to the air outlet of the fan 63, and the other end of the air guiding channel 621 is connected to the air outlet.
  • the air exhaust port includes a first air exhaust port 611. As shown in FIG.
  • the air outlet includes at least one second air outlet 612, and the at least one second air outlet 612 surrounds the heating part 11 in a circumferential direction.
  • the at least one second air outlet 612 may surround the first air outlet 611 at even or non-uniform circumferential intervals.
  • the air valve assembly further includes a rotating plate 623 for controlling the opening range of the air guide channel 621.
  • the rotating plate 623 is connected to the rotating shaft of the control motor 625, and the control motor 625 controls the rotating plate 623 to rotate.
  • the motor 625 may be controlled to control the rotation of the rotating plate 623 as required, so that the air guide channel 621 is completely opened or completely closed or opened by a set range.
  • the air valve assembly further includes an air guide plate 62, the air guide plate 62 is provided with an air guide hole 622, and the air guide channel 621 communicates with the air guide hole 622.
  • the air guide hole 622 is provided at one end of the wind plate 62.
  • the rotating plate 623 is installed at the air guide hole 622, and the opening range of the air guide channel 621 is controlled by controlling the opening range of the air guide hole 622.
  • the rotating plate 623 can be sealed and combined with the air guide hole 622, and the rotating plate 623 cooperates with the air guide hole 622, so that the opening range of the air guide channel 623 can be controlled by controlling the opening range of the air guide hole 622.
  • a first protrusion 627 and a second protrusion 628 are provided on the end surface of the air deflector 62, and the first protrusion 627 and the second protrusion 628 are respectively connected to the first enclosure provided on the inner wall of the cavity of the air valve seat 61.
  • the baffle 613 and the second surrounding baffle 614 are buckled together to form a first cavity 64 and a second cavity 65 as shown in FIG. The middle part of the air flow is divided into the second cavity 65.
  • the first protrusion 627 has a ring shape
  • the second protrusion 628 has a square shape.
  • the first vent 611 communicates with the first cavity 64
  • the second vent 612 communicates with the second cavity 65
  • the air guide hole 622 is located at the bottom of the first cavity 64.
  • the air flow blown by the fan is blown out from the air outlet through the ventilation duct, and the air outlet forms a confluence to cool the temperature calibrator, thereby enhancing the cooling effect.
  • This embodiment details the structure and installation method of the air valve assembly.
  • the damper assembly of this embodiment includes a damper seat 61, a wind deflector 62, and a fan 63 (such as a vortex fan).
  • a large circular through hole is provided as the first vent 611, a plurality of small through holes are provided as the second vent 612 along the circumference of the first vent 611, and the top inner side of the damper seat 61 is provided with an annular shape along the circumference of the first vent 611
  • the first enclosure 613, a square second enclosure 614 is provided on the outer periphery of the first enclosure 613, and the four corners of the second enclosure 614 are respectively provided with first bolt sleeves 615;
  • the wind deflector 62 is a square plate body ,
  • the upper end surface of the air guide plate 62 is provided with an annular first protrusion 627 matching the annular plate 613 of the air valve seat 61, and the peripheral edge of the air guide plate 62 is provided with an upward square second protrusion 628, and the second protrusion 628 Matching
  • the rotating shaft 624 is connected to the output shaft of the control motor 625 (such as a stepping motor) installed on the air guiding plate 62.
  • the 624 is equipped with a rotating plate 623, and the rotation of the rotating shaft 624 drives the rotating plate 623 to rotate (the angle of rotation can be controlled), thereby controlling the opening and closing degree of the air guide hole 622.
  • the rotating plate 623 is matched and installed in the air guide channel 621.
  • the rotating plate 623 can be rotated (the direction is downward in the figure). When the rotating plate 623 rotates to the horizontal direction (in the figure), it is buckled and closed around the air guide hole 622.
  • the air guide channel 621 is opened when the rotating plate 623 rotates downward.
  • the control motor 625 is a stepping motor that can control the rotation range (angle) of the rotating plate 623, thereby controlling the opening range of the air guide channel 621, so as to achieve precise control of the air intake volume.
  • the second bolt sleeve 626 of the air deflector 62 is aligned and fixed with the first bolt sleeve 615 of the second baffle plate 614 of the air valve seat 61 (bolt tightening),
  • the annular protrusion 627 of the air guide plate 62 is buckled with the first enclosure baffle 613 of the air valve seat 61, and the first enclosure baffle 613 of the air valve seat 61 and the upper end surface of the air guide plate 62 form a first cavity 64
  • the second protrusion 628 of the air guide plate 62 is buckled with the second enclosure baffle 614 of the air valve seat 61.
  • the end surface forms an annular second cavity 65, and the first baffle plate 613 of the air valve seat 61 is provided with a plurality of through holes at intervals in the circumferential direction, so that part of the airflow in the first cavity 64 enters the second cavity through the plurality of through holes 65.
  • the air valve assembly is installed in such a way that the fan 63 with the horizontal air outlet is placed horizontally, the air outlet of the fan 63 is located laterally, and the air outlet of the fan 63 is sealed to the air guide channel provided at the lower end of the air guide plate 62 621.
  • the air channel 621 is connected to the air guide hole 622 provided on the air guide plate 62
  • the control motor 625 is clamped and fixed in the groove provided on the air guide plate 62
  • the rotating plate 623 is connected to the control motor 625
  • the rotating plate 623 The air guide hole 622 is blocked, and the motor 625 is controlled to control the rotation range of the rotating plate 623.
  • the air guide plate 62 and the air valve seat 61 are buckled to form a first cavity 64 and a second cavity 65.
  • the airflow in the second cavity 65 is divided from the first cavity 64, and the first cavity 64 is connected to the first cavity 64.
  • the vent 611 and the second cavity 64 are connected to the second vent 612.
  • the air guide channel 621 When the rotating plate 623 rotates downward, the air guide channel 621 is opened, and the air flow blown by the fan 63 enters the first cavity 64 through the air guide channel 621 and the air guide hole 622. Part of the air flow in the first cavity 64 is divided to the second cavity. 65.
  • the air flow in the first cavity 64 is blown out from the first vent 611 and blown to the furnace core to achieve rapid cooling of the furnace core; the air flow in the second cavity 65 enters the second cavity 65 through the through hole on the annular plate 61, The air flow in the cavity 65 is blown out from the second vent 612 to cool the periphery of the heating assembly 2.
  • the air flow blown by the fan is blown out from the air outlet through the ventilation duct, and the air outlet forms a confluence to cool the temperature calibrator, thereby enhancing the cooling effect.
  • this embodiment provides a temperature calibrator, including:
  • the heating part 11 is provided with a receiving cavity 12 with an open end;
  • the furnace core 14 whose shape matches the containing cavity, is inserted into the containing cavity 12 and forms an airflow channel 13 with an airflow outlet 13B and an airflow inlet 13A between it and the inner wall of the containing cavity 12;
  • the air source device 15 blows the airflow into the airflow channel from the airflow inlet 13A and discharges it from the airflow outlet 13B.
  • the air source device 15 is the damper assembly provided in the above-mentioned Embodiment 2, Embodiment 3, and Embodiment 4, and the damper assembly blows the air flow into the air flow channel from the air inlet 13A and discharges it from the air outlet 13B.
  • the air source device 15 may be a fan with an air outlet (such as a vortex fan). The fan is arranged under the heating part 11, and the air outlet of the fan is connected to the air inlet 13A. The fan rotates to blow the air into the air. Entrance 13A.
  • the air outlet of the fan may be sealed to the air inlet 13A to reduce airflow leakage and enhance the cooling effect.
  • the air source device 15 may also be a container for storing pressurized gas, and the air outlet pipe of the container is connected to the air inlet 13A, so that the air flow released by the container is blown into the air inlet 13A.
  • the heating part 11 may be made of metal, ceramic or quartz, or a combination of part of metal and part of ceramic or quartz (for example, the cavity wall of the accommodating cavity 12 is made of ceramic or quartz) .
  • the furnace core 14 may be made of metal material, or part of a combination of metal material and part of ceramic material (for example, the top section of the furnace core 14 is constructed of ceramic material).
  • an insulating plug is provided on the top of the furnace core 14, and an exhaust groove is arranged in the circumferential direction of the insulating plug, and the exhaust groove communicates with the atmosphere to form an airflow outlet of an airflow channel.
  • the material of the inner wall of the containing cavity 12 includes corundum and/or quartz.
  • an electric heating element 16 is built in the heating part, and the temperature calibrator further includes: a controller 17, which controls the electric heating element 16 to heat and controls the air source device 15 (air valve assembly) Running.
  • the electric heating element 16 is a plurality of heating rods arranged circumferentially around the containing cavity; or, as shown in FIG. 5, the electric heating element 16 is one or more sections of heating wires surrounding the containing cavity 12 , One or more sections of heating wire are wound uniformly or unevenly.
  • a heat-insulating shell is provided on the periphery of the electric heating element 16, and the heat-insulating shell is made of heat-resistant materials.
  • the airflow outlet 13B is arranged at the opening of the containing cavity 12, and the airflow inlet 13A is arranged at the bottom of the containing cavity 12. It should be understood that the airflow outlet 13B may have different shapes and distribution modes, but the overall position is located at the top opening of the containing cavity 12. Similarly, the air inlet 13A can have different shapes and distribution modes, but the overall position is located at the bottom of the containing cavity 12.
  • the air inlet 13A is at least one through hole penetrating the bottom wall of the containing cavity 12. At least one through hole penetrating the bottom wall of the containing cavity 12 introduces the air flow provided by the air source device 15 (air valve assembly) into the air flow channel 13.
  • the at least one through hole penetrating the bottom wall of the accommodating cavity 12 may be set in a shape with a gradually narrowing inner cavity or a straight cylindrical shape or a straight cylindrical shape combined with a gradually narrowing inner cavity.
  • the damper assembly is disposed below the heating part 11, and the exhaust port (first exhaust port 611) of the damper assembly is connected to the air inlet 13A, and the air flow blown from the exhaust port at least partially enters the air inlet 13A, wherein the air flow blown from the first air outlet 611 enters the air inlet 13A, and the air from the second air outlet 612 surrounds the heating part 11 in a circumferential direction, cooling the periphery of the heating part 11.
  • a valve is provided on the air path between the air outlet of the fan 63 and the air inlet 13A in the damper assembly, and the valve can control the air path between the fan 63 and the air inlet 13A in the damper assembly from completely closed, The degree of opening is different from fully open and fully closed to fully open, thereby controlling the opening and closing degree of the valve to control the flow rate of air blown into the airflow inlet 13A.
  • the inner wall of the accommodating cavity 12 includes an inner side wall (in the vertical direction in FIG. 1), a first gap for air flow is provided between the furnace core 14 and the inner side wall, and the first gap constitutes at least a part of the air flow channel 13 .
  • the first gap may communicate with the gap at the bottom of the furnace core 14 (the second gap below) to form the air flow channel 13 together.
  • the outer wall of the furnace core 14 is provided with a first ventilation slot corresponding to the inner side wall, and the first ventilation slot alone or in combination with the first gap constitutes at least a part of the air flow channel 13.
  • the inner side wall is provided with a second ventilation slot, and the second ventilation slot alone or in combination with the first gap constitutes at least a part of the airflow channel 13. It should be understood that in order to increase the amount of ventilation of the flow channel 13, a first ventilation slot and a second ventilation slot can be provided on the basis of the first gap, and the first gap, the first ventilation slot and the second ventilation slot together constitute the air flow. At least part of the channel 13.
  • the first ventilation groove and the second ventilation groove are arranged in a spiral shape or a straight strip shape, or a spiral shape and a straight strip shape are combined.
  • the inner wall of the accommodating cavity 12 includes an inner bottom wall
  • a second gap for air flow is provided between the furnace core 14 and the inner bottom wall, and the second gap constitutes a part of the air flow channel.
  • the second gap may communicate with the above-mentioned first gap to form the air flow channel 13.
  • the second gap is set to be greater than twice the first gap.
  • the inner bottom wall is provided with at least one raised point, and the at least one raised point supports the furnace core 14 so that the furnace core 14 and the bottom wall of the accommodating cavity 12 form a second gap.
  • the bottom of the furnace core 14 may be provided with a positioning hole, and the inner bottom wall is provided with a protruding rod inserted into the positioning hole to locate and support the furnace core 14, so that the furnace core 14 is inserted into the accommodating cavity 12 and the inner wall of the accommodating cavity 12
  • An airflow channel 13 having an airflow outlet 13B and an airflow inlet 13A is formed therebetween.
  • the top of the furnace core 14 may be provided with a laterally protruding extension, so that the furnace core 14 is T-shaped so that the top of the furnace core 14 is inserted into the receiving cavity 12 and the top is clamped at the port of the receiving cavity 12.
  • the airflow outlet 13B is arranged at the protruding extension of the furnace core 14.
  • the top of the furnace core 14 is located in the accommodating cavity 12
  • an insulating plug is arranged on the furnace core 14 and the air outlet 13B is arranged between the insulating plug and the accommodating cavity 12. between.
  • the top edge of the furnace core 14 inserted into the receiving cavity 12 is provided with a first chamfer 14A, so that the air flow blown into the air inlet 13A flows through the first chamfer 14A, thereby reducing airflow obstruction Enhancing air flow; in other embodiments, at the same time or separately, a second chamfer 12A is provided at the bottom of the accommodating cavity 12 corresponding to the edge of the insertion end of the furnace core 14, so that the air blown into the air inlet flows through the second chamfer 12A.
  • the first chamfer 14A and the second chamfer 12A are set at the same time, the first chamfer 14A corresponds to the second chamfer 12A.
  • an airflow channel is set between the periphery of the furnace core and the inner wall of the accommodating cavity, and airflow is blown into the airflow channel through the airflow inlet and discharged from the airflow outlet, so that the airflow is directly blown to the furnace Therefore, the temperature of the furnace core is directly cooled to increase the temperature of the furnace core.
  • an airflow channel is set between the periphery of the furnace core and the inner wall of the accommodating cavity, and airflow is blown into the airflow channel through the airflow inlet and discharged from the airflow outlet, so that the airflow is directly blown to the furnace Therefore, the temperature of the furnace core is directly cooled to increase the temperature of the furnace core.
  • this embodiment provides a method for cooling the furnace core of the temperature calibrator provided in the above embodiments, including:
  • the target temperature is the temperature to which the furnace core is ultimately to be lowered, which can be set by the user.
  • the method in this embodiment can be implemented by the controller 17 in the second embodiment.
  • the airflow is blown into the airflow channel through the airflow inlet and discharged from the airflow outlet, so that the airflow is directly blown to the furnace core, thereby directly cooling the furnace core and reducing the temperature of the furnace core to the target temperature, which can increase the furnace temperature. Core cooling speed.
  • this embodiment provides a method for cooling the furnace core of the temperature calibrator provided in each of the foregoing embodiments, including:
  • determining the operating time of the air source device according to the current temperature of the furnace core includes:
  • the target temperature is the temperature to which the furnace core is ultimately to be reduced, which can be set by the user
  • the operating time length is obtained according to the target temperature of the current thermometer.
  • the method in this embodiment can be implemented by the controller 17 in the second embodiment.
  • the airflow is blown into the airflow channel through the airflow inlet and discharged from the airflow outlet, so that the airflow is directly blown to the furnace core, thereby directly cooling the furnace core and reducing the temperature of the furnace core to the target temperature, which can increase the furnace temperature. Core cooling speed.
  • This embodiment provides a furnace core cooling method of a temperature calibrator.
  • the temperature calibrator includes:
  • the heating part 11 is provided with a receiving cavity 12 with an open end;
  • the furnace core 14 has a shape that matches the accommodating cavity 12 and is inserted into the accommodating cavity 12;
  • the method includes:
  • An airflow channel 13 with an airflow outlet 13B and an airflow inlet 13A is provided between the furnace core 14 and the containing cavity 12;
  • the temperature calibrator as shown in FIG. 1, FIG. 2, and FIG. 3 further includes:
  • the air source device 15 blows the air flow into the air flow channel 13 through the air flow inlet 13A and discharges it from the air flow outlet 13B;
  • the method further includes:
  • the air source device When the temperature of the furnace core is lowered, the air source device is operated to open the valve, and the airflow is blown into the airflow channel 13 through the airflow inlet 13A and discharged from the airflow outlet 13B.
  • the heating part 11 may be made of metal or ceramic, and may also be a combination of a part of a metal material and a part of a ceramic material (for example, the cavity wall of the accommodating cavity 12 is made of ceramic material).
  • the furnace core 14 may be made of metal material, or part of a combination of metal material and part of ceramic material (for example, the top section of the furnace core 14 is constructed of ceramic material).
  • the air source device 15 may be a fan with an air outlet (for example, a vortex fan), the fan is arranged below the heating part, and the air outlet of the fan is connected to the air inlet 13A. Rotate to blow the airflow into the airflow inlet 13A. It should be understood that, in some embodiments, the air outlet of the fan may be sealed to the air inlet 13A to reduce airflow leakage and enhance the cooling effect.
  • an air outlet for example, a vortex fan
  • the air source device 15 may also be a container for storing pressurized gas, the container may be arranged on one side of the heating part 11, and the air outlet pipe of the container is connected to the air flow inlet 13A, thereby connecting the container The released airflow is blown into the airflow inlet 13A.
  • the airflow outlet 13B is arranged at the opening of the containing cavity 12, and the airflow inlet 13A is arranged at the bottom of the containing cavity 12. It should be understood that the airflow outlet 13B may have different shapes and distribution modes, but the overall position is located at the top opening of the receiving cavity 12. Similarly, the air inlet 13A can have different shapes and distribution modes, but the overall position is located at the bottom of the containing cavity 12.
  • the air inlet 13A is at least one through hole penetrating the bottom wall of the containing cavity 12.
  • the at least one through hole penetrating the bottom wall of the accommodating cavity introduces the air flow provided by the air source device 15 into the air flow channel 13.
  • a valve is provided on the air path between the air source device 13 and the air inlet, and the valve can control the air path between the air inlet from fully closed, fully opened, and fully closed to fully closed. Different opening degrees between the openings, so as to control the opening and closing degree of the valve to control the flow of air blown into the air flow inlet.
  • the inner wall of the accommodating cavity 12 includes an inner side wall (vertical direction in FIG. 1), a first gap for air flow is provided between the furnace core 14 and the inner side wall, and the first The gap constitutes at least a part of the air flow channel 13.
  • the first gap may communicate with the gap (second gap) at the bottom of the furnace core 14 to form the air flow channel 13.
  • the outer wall of the furnace core 14 is provided with a first ventilation slot corresponding to the inner side wall, and the first ventilation slot alone or in combination with the first gap constitutes at least a part of the air flow channel 13.
  • the inner side wall is provided with a second ventilation slot, and the second ventilation slot alone or in combination with the first gap constitutes at least a part of the air flow channel 13. It should be understood that in order to increase the amount of ventilation of the flow channel 13, the first ventilation slot and the second ventilation slot can be provided simultaneously on the basis of the first gap.
  • the two ventilation slots together constitute at least a part of the air flow channel 13.
  • the inner wall of the accommodating cavity 12 includes an inner bottom wall
  • a second gap for air flow is provided between the furnace core 14 and the inner bottom wall, and the second gap constitutes a part of the air flow channel.
  • the second gap may communicate with the first gap to form the air flow channel 13.
  • the inner bottom wall is provided with at least one raised point, and the at least one raised point supports the furnace core 14 so that the furnace core 14 and the bottom wall of the receiving cavity 12 form the second gap .
  • the bottom of the furnace core 14 may be provided with a positioning hole, and the inner bottom wall is provided with a protruding rod inserted into the positioning hole to locate and support the furnace core 14, thereby facilitating the insertion of the furnace core 14
  • An airflow channel 13 with an airflow outlet 13B and an airflow inlet 13A is formed between the back of the accommodating cavity 12 and the inner wall of the accommodating cavity 12.
  • the top of the furnace core 14 may be provided with a laterally protruding extension, so that the furnace core 14 is T-shaped so that the top of the furnace core 14 is inserted into the receiving cavity 12 and the top is stuck at the port of the receiving cavity 12.
  • the air flow outlet 13B is arranged at the protruding extension of the furnace core 14.
  • the top of the furnace core 14 is located in the accommodating cavity 12
  • an insulating plug is provided on the furnace core 14
  • the air outlet 13B is provided Between the thermal insulation plug and the accommodating cavity 12.
  • the top edge of the furnace core 14 inserted into the receiving cavity 12 is provided with a chamfer, so that the airflow blown into the airflow inlet 13A flows through the chamfer, thereby reducing airflow obstruction and enhancing airflow circulation.
  • the airflow is blown into the airflow channel through the airflow inlet and discharged from the airflow outlet, so that the airflow is directly blown to the furnace core, thereby directly cooling the furnace core and reducing the temperature of the furnace core to the target temperature, which can increase the furnace temperature.
  • Core cooling speed Precise airflow control can be achieved by setting the valve to prevent the airflow from affecting the normal calibration of the temperature calibrator.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Furnace Details (AREA)

Abstract

一种温度校验仪及对其炉芯(14)的降温方法,属于温度控制领域,能够提高炉芯(14)的降温速度。温度校验仪包括:加热部(11),其设置一端开口的容纳腔(12);炉芯(14),其形状与容纳腔(12)匹配,插入容纳腔(12)并与容纳腔(12)内壁之间形成具有气流出口(13B)和气流入口(13A)的气流通道(13);风源装置(15),其将气流从气流入口(13A)吹入气流通道(13)并从气流出口(13B)排出。温度校验仪对炉芯(14)的降温方法为:炉芯(14)插入容纳腔(12)后,炉芯(14)外围与容纳腔(12)内壁之间设置气流通道(13),通过气流入口(13A)向气流通道(13)吹入气流并从气流出口(13B)排出,实现气流直接吹向炉芯(14),从而直接对炉芯(14)进行降温,以提高炉芯(14)降温速度。

Description

温度校验仪及对其炉芯的降温方法
本申请要求于2020年3月6日提交的申请号为202010153409.2、发明名称为“温 度校验仪及对其炉芯的降温方法”的中国专利申请,以及2020年4月23日提 交的申请号为202020622012.9、发明名称为“风阀组件及温度校验仪”的中国专 利申请的优先权,它们的全部内容通过引用结合在本申请中。
技术领域
本发明涉及温度控制领域,尤其涉及一种温度校验仪及对其炉芯的降温方法。
背景技术
温度校验仪是测试和校验温度工业自动化系统及仪表必备的工具,用于对温度传感器、热控开关等温度感应元件进行校验,广泛应用于工业现场、计量场所和实验室。
常用的温度校验仪(例如专利US15707061、GB2008006075)设置炉芯,在校验温度感应元件时,将温度感应元件的感应端插入炉芯上设置的插入孔,温度校验仪控制炉芯达到设定温度。在校验过程中,根据温度感应元件的温度感应范围,炉芯的设定温度范围通常为几十度到几百度、几十度到一千余度不等。
由于炉芯温度较高,自然冷却至常温一般需耗时数小时,耗时较长。
发明内容
本发明实施例提供一种温度校验仪及对其炉芯的降温方法,能够提高炉芯降温速度。
本发明实施例采用如下技术方案:
第一方面,提供一种温度校验仪,包括:
加热部,其设置一端开口的容纳腔;
炉芯,其形状与所述容纳腔匹配,其插入所述容纳腔并与所述容纳腔内壁之间形成具有气流出口和气流入口的气流通道;
风源装置,其将气流从所述气流入口吹入所述气流通道并从所述气流出口排出。
可选的,所述加热部内置电加热件;
所述温度校验仪还包括:
控制器,其控制所述电加热件进行加热并控制所述风源装置运转。
可选的,所述气流出口设置在所述容纳腔开口处,所述气流入口设置在所述容纳腔底部。
可选的,所述气流入口为至少一个贯穿所述容纳腔底壁的通孔。
可选的,所述风源装置为具有出风口的风扇,所述风扇设置在所述加热部下方,所述风扇的出风口连所述气流入口;
或者
所述风源装置为存储压力气体的容器,所述容器出风管连所述气流入口。
可选的,所述风源装置与所述气流入口之间的气路上设置阀门,控制所述阀门开闭程度以控制吹入所述气流入口的气流量。
可选的,所述容纳腔内壁包括内侧壁,所述炉芯与所述内侧壁之间设置用于气流通过的第一空隙,所述第一空隙构成所述气流通道的至少一部分。
可选的,炉芯外壁与所述内侧壁对应处设置第一通风槽,所述第一通风槽单独或者与所述第一空隙结合组成所述气流通道的至少一部分;
和/或
所述内侧壁设置第二通风槽,所述第二通风槽单独或者与所述第一空隙结合组成所述气流通道的至少一部分。
可选的,所述容纳腔内壁包括内底壁;
所述炉芯与所述内底壁之间设置用于气流通过的第二空隙,所述第二空隙 构成所述气流通道的一部分。
可选的,所述内底壁设置至少一个凸起点,所述至少一个凸起点支撑所述炉芯,使得所述炉芯与所述容纳腔底壁形成所述第二空隙。
可选的,所述炉芯插入所述容纳腔一端的边缘设置第一倒角,使得吹入所述气流入口的气流流经所述第一倒角;
和/或
所述容纳腔底部对应所述炉芯插入端的边缘设置第二倒角,使得吹入所述气流入口的气流流经所述第二倒角。
第二方面,提供一种对上述温度校验仪的炉芯降温的方法,包括:
获取设置的炉芯目标温度;
检测所述炉芯当前温度;
如果所述炉芯当前温度大于所述炉芯目标温度,则控制所述风源装置运转将气流经所述气流入口进入所述气流通道并从所述气流出口排出;
如果所述炉芯当前温度小于或等于所述炉芯目标温度,则停止所述风源装置运转。
第三方面,提供一种对上述温度校验仪的炉芯降温的方法,包括:
检测炉芯当前温度;
根据所述炉芯当前温度确定风源装置运转时长;
控制所述风源装置持续将气流经所述气流入口进入所述气流通道并从所述气流出口排出;
到达风源装置运转时长时,停止所述风源装置运转。
第四方面,提供一种温度校验仪的炉芯降温方法,所述温度校验仪包括:
加热部,其设置一端开口的容纳腔;
炉芯,其形状与所述容纳腔匹配,其插入所述容纳腔;
所述方法包括:
在炉芯与所述容纳腔之间设置具有气流出口和气流入口的气流通道;
当所述温度校验仪执行校验任务时,阻断气流通过所述气流入口进入所述气流通道;
当所述炉芯降温时,将气流从所述气流入口吹入所述气流通道并从所述气流出口排出。
可选的,所述气流出口设置在所述容纳腔开口处,所述气流入口设置在所述容纳腔底部。
可选的,所述气流入口为至少一个贯穿所述容纳腔底壁的至少一个通孔。
可选的,所述温度校验仪还包括:
风源装置,其将气流经所述气流入口吹入所述气流通道并从所述气流出口排出;
所述方法还包括:
在所述风源装置与所述气流入口之间的气路上设置阀门;
当所述温度校验仪执行校验任务时,关闭所述阀门,阻断气流经所述气流入口吹入所述气流通道;
当所述炉芯降温时,运转所述风源装置打开所述阀门,将气流经所述气流入口吹入所述气流通道并从所述气流出口排出。
可选的,所述风源装置为具有出风口的风扇,所述风扇设置在所述加热部下方,所述风扇的出风口连所述气流入口;
或者
所述风源装置为存储压力气体的容器,所述容器出风管连所述气流入口。
第五方面,提供一种温度校验仪,包括:
加热部,其设置一端开口的容纳腔;
炉芯,其形状与所述容纳腔匹配,其插入所述容纳腔并与所述容纳腔内壁之间形成具有气流出口和气流入口的气流通道;
风源装置,所述风源装置包括风阀组件,其将气流从所述气流入口吹入所述气流通道并从所述气流出口排出;
所述风阀组件包括具有空腔的风阀座,所述风阀座顶部设置连通所述空腔的排风口,所述排风口出风吹向所述加热部;所述风阀座空腔内设置导风通道及风扇,所述导风通道一端连通所述风扇的出风口,所述导风通道另一端连通所述排风口。
可选的,所述排风口包括第一排风口,所述加热部内置炉芯,所述第一排风口出风吹向所述炉芯;
和/或
所述排风口包括至少一个第二排风口,所述第二排风口出风周向环绕所述加热部。
可选的,还包括用于控制导风通道打开幅度的转动板及控制电机,所述转动板与所述控制电机转轴相连,所述控制电机控制转动板转动幅度。
可选的,所述风阀组件还包括导风板,所述导风板上设置导风孔,所述导风通道连通所述导风孔。
可选的,所述转动板可与所述导风孔密封拼合,所述转动板与所述导风孔配合,使得通过控制所述导风孔打开幅度以控制所述导风通道打开幅度。
可选的,导风板端面上设置第一凸起和第二凸起,所述第一凸起和所述第二凸起分别与风阀座空腔内壁设置的第一围挡板及第二围挡板扣合,形成第一空腔和第二空腔。
可选的,所述导风通道将气流导向所述第一空腔,所述第一空腔中部分气流分流至所述第二空腔,所述第一通风口连通所述第一空腔,所述第二通风口连通所述第二空腔。
基于上述技术方案的温度校验仪及对其炉芯的降温方法,炉芯插入容纳腔后,炉芯外围与容纳腔内壁之间设置气流通道,通过气流入口向气流通道吹入气流并从气流出口排出,实现气流直接吹向炉芯,从而直接对炉芯进行降温,以提高炉芯降温速度。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性 的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1为本发明实施例提供的一种温度校验仪的结构示意图;
图2为本发明实施例提供的另一种温度校验仪的结构示意图;
图3为本发明实施例提供的又一种温度校验仪的结构示意图;
图4为本发明实施例提供的一种电加热件布置示意图;
图5为本发明实施例提供的另一种电加热件布置示意图;
图6为本发明实施例提供的风阀组件的结构示意图之一;
图7为发明实施例提供的风阀组件的结构示意图之二;
图8为发明实施例提供的风阀组件中空腔的结构示意图;
图9为本发明实施例提供的一种温度校验仪的炉芯降温方法的流程图;
图10为本发明实施例提供的另一种温度校验仪的炉芯降温方法的流程图;
图11为本发明实施例提供的又一种温度校验仪的炉芯降温方法的流程图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
需要说明的书,本说明书中,第一、第二用来表示名称,而并不表示任何特定的顺序。
实施例1
如图1所示,本实施例提供一种温度校验仪,包括:
加热部11,其设置一端开口的容纳腔12;
炉芯14,其形状与所述容纳腔匹配,其插入所述容纳腔并与所述容纳腔内壁之间形成具有气流出口13B和气流入口13A的气流通道13;
风源装置15,其将气流从所述气流入口13A吹入所述气流通道并从所述气流出口13B排出。
在一些实施例中,加热部11可以为金属材质,也可以为陶瓷或者石英材质,还可以为部分金属材质与部分陶瓷材质或者石英材质结合(例如容纳腔12腔壁为陶瓷材质或者石英材质)。炉芯14可以为金属材质,也可以为部分金属材质与部分陶瓷材质结合(例如炉芯14顶端一段构造为陶瓷材质)。
在一些实施例中,所述风源装置15可以为具有出风口的风扇(例如涡流风扇),所述风扇设置在所述加热部下方,所述风扇的出风口连所述气流入口13A,风扇转动将气流吹入气流入口13A。应当理解,在一些实施例中可以将风扇的出风口密封连接气流入口13A,以减少气流泄露增强降温效果。
在一些实施例中,所述风源装置15还可以为存储压力气体的容器,所述容器出风管连所述气流入口13A,从而将容器释放的气流吹入气流入口13A。
在一些实施例中,所述气流出口13B设置在所述容纳腔12开口处,所述气流入口13A设置在所述容纳腔12底部。应当理解,所述气流出口13B可以为不同形状及分布方式,但是总体位置位于所述容纳腔12顶端开口处。同样,所述气流入口13A可以为不同形状及分布方式,但是总体位置位于所述容纳腔12底部。
在一些实施例中,所述气流入口13A为至少一个贯穿所述容纳腔12底壁的通孔。所述至少一个贯穿所述容纳腔底壁的通孔将风源装置15提供的气流引入气流通道13。所述至少一个贯穿所述容纳腔底壁的通孔可以设置为内腔逐渐收窄的形状或者直筒状或者直筒状与内腔逐渐收窄状结合。
在一些实施例中,所述风源装置13与所述气流入口之间的气路上设置阀门,所述阀门可以控制所述气流入口之间的气路从完全关闭、完全打开以及完 全关闭至完全打开之间不同的开度,从而控制所述阀门开闭程度以控制吹入所述气流入口的气流量。
在一些实施例中,所述容纳腔12内壁包括内侧壁(图1中竖直方向),所述炉芯14与所述内侧壁之间设置用于气流通过的第一空隙,所述第一空隙构成所述气流通道13的至少一部分。例如,不同的实施例中,所述第一空隙可以与炉芯14底部的空隙(下述第二空隙)连通共同构成气流通道13。
在一些实施例中,炉芯14外壁与所述内侧壁对应处设置第一通风槽,所述第一通风槽单独或者与所述第一空隙结合组成所述气流通道13的至少一部分。在一些实施例中,所述内侧壁设置第二通风槽,所述第二通风槽单独或者与所述第一空隙结合组成所述气流通道13的至少一部分。应当理解,为了气增大流通道13的通风量可以在设置所述第一空隙的基础上同时设置所述第一通风槽及所述第二通风槽,所述第一空隙、所述第一通风槽及所述第二通风槽共同组成所述气流通道13的至少一部分。
在一些实施例中,所述第一通风槽、所述第二通风槽设置为螺旋状或者直条状或者螺旋状与直条状结合。
在一些实施例中,所述容纳腔12内壁包括内底壁;
所述炉芯14与所述内底壁之间设置用于气流通过的第二空隙,所述第二空隙构成所述气流通道的一部分。例如,不同的实施例中,所述第二空隙可以与上述第一空隙连通共同构成气流通道13。
在一些实施例中,所述第二空隙设置为大于所述第一空隙的2倍。
在一些实施例中,所述内底壁设置至少一个凸起点,所述至少一个凸起点支撑所述炉芯14,使得所述炉芯14与所述容纳腔12底壁形成所述第二空隙。
在一些实施例中,所述炉芯14底部可以设置一定位孔,所述内底壁设置一个凸起棒插入所述定位孔定位及支撑所述炉芯14,从而便于所述炉芯14插入所述容纳腔12后与所述容纳腔12内壁之间形成具有气流出口13B和气流入口13A的气流通道13。
在一些实施例中,所述炉芯14顶端可以设置横向突出的外延,使得所述炉芯14为T形便于所述炉芯14插入容纳腔12后顶部卡在容纳腔12端口。所述实施例中所述气流出口13B设置在所述炉芯14突出的外延处。
在一些实施例中,所述炉芯14插入所述容纳腔12后,所述炉芯14顶端位于容纳腔12内,在所述炉芯14上设置隔热塞件,所述气流出口13B设置在所述隔热塞件与所述容纳腔12之间。
在一些实施例中,如图2所示,所述炉芯14插入所述容纳腔12一端的顶部边缘设置第一倒角14A,使得吹入所述气流入口13A的气流流经所述第一倒角14A,从而减少气流阻碍增强气流流通;其他实施例中,同时或者单独的,所述容纳腔12底部对应所述炉芯14插入端的边缘设置所述第二倒角12A,使得吹入所述气流入口的气流流经所述第二倒角12A。同时设置所述第一倒角14A、所述第二倒角12A时,所述第一倒角14A与所述第二倒角12A相对应。
本实施例的温度校验仪,炉芯插入容纳腔后,炉芯外围与容纳腔内壁之间设置气流通道,通过气流入口向气流通道吹入气流并从气流出口排出,实现气流直接吹向炉芯,从而直接对炉芯进行降温,以提高炉芯降温速度。
需要说明的是,本实施例中第一、第二用来表示名称,而并不表示任何特定的顺序。例如,第一空隙、第二空隙应理解为不同的空隙,而并非先后顺序的空隙;例如,第一倒角、第二倒角应理解为不同的倒角,而并非先后顺序的倒角。
本实施例的温度校验仪,炉芯插入容纳腔后,炉芯外围与容纳腔内壁之间设置气流通道,通过气流入口向气流通道吹入气流并从气流出口排出,实现气流直接吹向炉芯,从而直接对炉芯进行降温,以提高炉芯降温速度。
实施例2
如图3所示,本实施例提供一种温度校验仪,包括:
加热部11,其内置电加热件16,其设置一端开口的容纳腔12;
炉芯14,其形状与所述容纳腔12匹配,其插入所述容纳腔12并与所述容纳腔12内壁之间形成具有气流出口13B(图1、图2)和气流入口13A(图1、图2)的气流通道13;
风源装置15,其运转时将气流从所述气流入口13A吹入所述气流通道13并从所述气流出口13B排出;
控制器17,控制所述电加热件16进行加热并控制所述风源装置15运转。
在一些实施例中,所述电加热件16为将电能转换为热能的加热器件,包括但不限于电加热丝、电加热棒等。具体的,如图4所示所述电加热棒可以周向围绕容纳腔12嵌入所述加热部11;如图5所示所述电加热丝可以嵌入所述加热部11围绕所述容纳腔12轴向缠绕。
在一些实施例中,所述加热部11可以为金属材质,也可以为陶瓷或者石英材质,还可以为部分金属材质与部分陶瓷材质或者石英材质结合(例如容纳腔12腔壁为陶瓷材质或者石英材质)。炉芯14可以为金属材质,也可以为部分金属材质与部分陶瓷材质结合(例如炉芯14顶端一段构造为陶瓷材质)。
在一些实施例中,所述风源装置15可以为具有出风口的风扇(例如涡流风扇),所述风扇设置在所述加热部下方,所述风扇的出风口连所述气流入口13A,风扇转动将气流吹入气流入口13A。应当理解,在一些实施例中可以将风扇的出风口密封连接气流入口13A,以减少气流泄露增强降温效果。
在一些实施例中,所述风源装置15还可以为存储压力气体的容器,所述容器可以设置在加热部11的一侧,所述容器出风管连所述气流入口13A,从而将容器释放的气流吹入气流入口13A。
在一些实施例中,所述气流出口13B设置在所述容纳腔12开口处,所述气流入口13A设置在所述容纳腔12底部。应当理解,所述气流出口13B可以为不同形状及分布方式,但是总体位置位于所述容纳腔12顶端开口处。同样,所述气流入口13A可以为不同形状及分布方式,但是总体位置位于所述容纳腔12底部。
在一些实施例中,所述气流入口13A为至少一个贯穿所述容纳腔12底壁的通孔。所述至少一个贯穿所述容纳腔底壁的通孔将风源装置15提供的气流引入气流通道13。所述至少一个贯穿所述容纳腔底壁的通孔可以设置为内腔逐渐收窄的形状或者直筒状或者直筒状与内腔逐渐收窄状结合。
在一些实施例中,所述第二空隙设置为大于所述第一空隙的2倍。
在一些实施例中,所述风源装置13与所述气流入口之间的气路上设置阀门,所述阀门可以控制所述气流入口之间的气路从完全关闭、完全打开以及完全关闭至完全打开之间不同的开度,从而控制所述阀门开闭程度以控制吹入所述气流入口的气流量。
在一些实施例中,所述容纳腔12内壁包括内侧壁(图1中竖直方向),所述炉芯14与所述内侧壁之间设置用于气流通过的第一空隙,所述第一空隙构成所述气流通道13的至少一部分。例如,不同的实施例中,第一空隙可以与炉芯14底部的空隙(下述第二空隙)连通共同构成气流通道13。
在一些实施例中,炉芯14外壁与所述内侧壁对应处设置第一通风槽,所述第一通风槽单独或者与所述第一空隙结合组成所述气流通道13的至少一部分。在一些实施例中,所述内侧壁设置第二通风槽,所述第二通风槽单独或者与所述第一空隙结合组成所述气流通道13的至少一部分。应当理解,为了气增大流通道13的通风量可以在设置所述第一空隙的基础上同时设置所述第一通风槽及所述第二通风槽,所述第一空隙、所述第一通风槽及第二通风槽共同组成所述气流通道13的至少一部分。
在一些实施例中,所述第一通风槽、所述第二通风槽设置为螺旋状或者直条状或者螺旋状与直条状结合。
在一些实施例中,所述容纳腔12内壁包括内底壁;
所述炉芯14与所述内底壁之间设置用于气流通过的第二空隙,所述第二空隙构成所述气流通道的一部分。例如,不同的实施例中,所述第二空隙可以与上述第一空隙连通共同构成气流通道13。
在一些实施例中,所述内底壁设置至少一个凸起点,所述至少一个凸起点支撑所述炉芯14,使得所述炉芯14与所述容纳腔12底壁形成所述第二空隙。
在一些实施例中,所述炉芯14底部可以设置一定位孔,所述内底壁设置一个凸起棒插入所述定位孔定位及支撑所述炉芯14,从而便于所述炉芯14插入所述容纳腔12后与所述容纳腔12内壁之间形成具有气流出口13B和气流入口13A的气流通道13。
在一些实施例中,所述炉芯14顶端可以设置横向突出的外延,使得所述炉芯14为T形便于所述炉芯14插入容纳腔12后顶部卡在容纳腔12端口。所述实施例中所述气流出口13B设置在所述炉芯14突出的外延处。
在一些实施例中,所述炉芯14插入所述容纳腔12后,所述炉芯14顶端位于容纳腔12内,在所述炉芯14上设置隔热塞件,所述气流出口13B设置在所述隔热塞件与所述容纳腔12之间。
在一些实施例中,如图2所示,所述炉芯14插入所述容纳腔12一端的顶部边缘设置第一倒角14A,使得吹入所述气流入口13A的气流流经所述第一倒角14A,从而减少气流阻碍增强气流流通;其他实施例中,同时或者单独的,所述容纳腔12底部对应所述炉芯14插入端的边缘设置所述第二倒角12A,使得吹入所述气流入口的气流流经所述第二倒角12A。同时设置所述第一倒角14A、所述第二倒角12A时,所述第一倒角14A与所述第二倒角12A相对应。
在一些实施例中,所述风源装置包括风阀组件,其将气流从所述气流入口吹入所述气流通道并从所述气流出口排出;
所述风阀组件包括具有空腔的风阀座,所述风阀座顶部设置连通所述空腔的排风口,所述排风口出风吹向所述加热部;所述风阀座空腔内设置导风通道及风扇,所述导风通道一端连通所述风扇的出风口,所述导风通道另一端连通所述排风口。
在一些实施例中,所述排风口包括第一排风口,所述加热部内置炉芯,所述第一排风口出风吹向所述炉芯;
和/或
所述排风口包括至少一个第二排风口,所述第二排风口出风周向环绕所述加热部。
在一些实施例中,还包括用于控制导风通道打开幅度的转动板及控制电机,所述转动板与所述控制电机转轴相连,所述控制电机控制转动板转动幅度。
在一些实施例中,所述风阀组件还包括导风板,所述导风板上设置导风孔,所述导风通道连通所述导风孔。
在一些实施例中,所述转动板可与所述导风孔密封拼合,所述转动板与所述导风孔配合,使得通过控制所述导风孔打开幅度以控制所述导风通道打开幅度。
在一些实施例中,导风板端面上设置第一凸起和第二凸起,所述第一凸起和所述第二凸起分别与风阀座空腔内壁设置的第一围挡板及第二围挡板扣合,形成第一空腔和第二空腔。
在一些实施例中,所述导风通道将气流导向所述第一空腔,所述第一空腔中部分气流分流至所述第二空腔,所述第一通风口连通所述第一空腔,所述第二通风口连通所述第二空腔。
本实施例的温度校验仪,炉芯插入容纳腔后,炉芯外围与容纳腔内壁之间设置气流通道,通过气流入口向气流通道吹入气流并从气流出口排出,实现气流直接吹向炉芯,从而直接对炉芯进行降温,以提高炉芯降温速度。
实施例3
本实施例提供一种风阀组件,该风阀组件安装在如图1所示的具有加热部11的温度校验仪中作为所述风源装置13,如图6、图7所示,该风阀组件包括具有空腔的风阀座61,风阀座61顶部设置连通所述空腔的排风口,排风口出风吹向加热部11;风阀座61空腔内设置导风通道621及风扇63,导风通道621一端连通风扇63的出风口,导风通道621另一端连通排风口。
在一个实施例中,排风口包括第一排风口611,如图1所示该加热部11内置炉芯14,第一排风口611出风吹向炉芯14。
在一个实施例中,该排风口包括至少一个第二排风口612,至少一个第二排风口612出风周向环绕加热部11,例如排风口612出风纵向沿着加热部11的外围。具体的,至少一个第二排风口612可以均匀或非均匀周向间隔围绕第一排风口611。
在一个实施例中,该风阀组件还包括用于控制导风通道621打开幅度的转动板623,转动板623与控制电机625转轴相连,控制电机625控制转动板623转动。具体的,不同实施例中,可以根据需要控制电机625控制转动板623转动,使得导风通道621完全打开或者完全关闭或者打开设定的幅度。
在一个实施例中,该风阀组件还包括导风板62,导风板62上设置导风孔622,导风通道621连通导风孔622。具体的,导风孔622设置在风板62的一端。
在一个实施例中,转动板623安装在导风孔622处,通过控制导风孔622打开幅度,实现控制导风通道621打开幅度。具体的,转动板623可与导风孔622密封拼合,转动板623与导风孔622配合,使得通过控制导风孔622打开幅度以控制导风通道623打开幅度。
在一个实施例中,导风板62端面上设置第一凸起627和第二凸起628,第一凸起627和第二凸起628分别与风阀座61空腔内壁设置的第一围挡板613及第二围挡板614扣合,形成如图3所示的第一空腔64和第二空腔65,导风通道621将气流导向第一空腔64,第一空腔64中部分气流分流至第二空腔65。第一凸起627为环形,第二凸起628为方形。
在一个实施例中,第一通风口611连通第一空腔64,第二通风口612连通第二空腔65,导风孔622位于第一空腔64底部。
本实施例的风阀组件,风扇转动吹出的气流经通风道从排风口吹出,排风口形成合流为温度校验仪降温,从而能够增强降温效果。
实施例4
本实施例详细说明风阀组件的结构及安装方式。
如图6至8所示,本实施例的风阀组件包括风阀座61、导风板62和风扇63(例如涡流风扇),风阀座61为开口向下的壳体,其顶部中间部位设置圆形大通孔作为第一通风口611,沿第一通风口611四周设置有多个小通孔作为第二通风口612,风阀座61的顶部内侧沿第一通风口611四周设置一环形第一围挡613,第一围挡板613的外周设置方形第二围挡板614,第二围挡板614的四个角部分别设置第一螺栓套615;导风板62为方形板体,导风板62的上端面设置与风阀座61的环形板613相匹配的环形第一凸起627,导风板62的四周边缘设置向上的方形第二凸起628,第二凸起628与风阀座61的第二围挡板614相匹配,第二凸起628的四个角部分别设置第二螺栓套626;导风板62上设置一导风孔622,导风孔622位于第一凸起627内,且与导风板62的下端面设置的导风通道621相连通;风扇63安装在导风板62的下端面,风扇63的出风口密封连接导风通道621的入口,导风通道621的出口对准导风孔622,导风孔622处安装有一转轴624,转轴624与安装在导风板62上的控制电机625(例如步进电机)的输出轴相连,转轴624安装有转动板623,转轴624转动带动转动板623转动(转动角度可控制),从而控制导风孔622开闭程度。具体的,转动板623匹配安装于导风通道621内,转动板623可以转动(图中方向向下),转动板623转动至水平方向(图中)时与导风孔622的四周扣合关闭导风通道621,当转动板623向下转动打开导风通道621。应当理解,控制电机625为步进电机可以控制转动板623转动幅度(角度),从而控制导风通道621打开幅度,以实现进风量精准控制。
当导风板62安装至风阀座61上时,将导风板62的第二螺栓套626与风阀座61的第二围挡板614的第一螺栓套615对齐固定(螺栓拧紧),导风板62的环形凸起627与风阀座61的第一围挡板613扣合,风阀座61的第一围挡板 613和导风板62的上端面形成第一空腔64,导风板62的第二凸起628与风阀座61的第二围挡板614扣合,风阀座61的第一围挡板613、第二围挡板614和导风板62的上端面形成环形的第二空腔65,风阀座61的第一围挡板613周向间隔设置多个通孔,使得第一空腔64中部分气流通过该多个通孔进入第二空腔65。
如图7所示,风阀组件安装方式为,横向出风口的风扇63平向放置,风扇63的出风口位于侧向,风扇63的出风口密封连接导风板62下端一端设置的导风通道621。如图6所示,风通道621连通导风板62上设置的导风孔622,控制电机625卡接在导风板62设置的凹槽中固定,转动板623连接控制电机625,转动板623封堵导风孔622,控制电机625控制转动板623转动幅度。导风板62与风阀座61扣合形成第一空腔64、第二空腔65,第二空腔65中的气流从第一空腔64分流而来,第一空腔64连通第一通风口611,第二空腔64连通第二通风口612。
当转动板623向下转动,使导风通道621开启,风扇63吹出的气流经导风通道621、导风孔622进入第一空腔64,第一空腔64部分气流分流至第二空腔65。第一空腔64中气流从第一通风口611吹出,吹向炉芯实现炉芯快速降温;第二空腔65中气流气流经环形板61上的通孔进入第二空腔65,第二空腔65中气流从第二通风口612吹出,对加热组件2的外围进行降温。
本实施例的风阀组件,风扇转动吹出的气流经通风道从排风口吹出,排风口形成合流为温度校验仪降温,从而能够增强降温效果。
实施例5
如图1所示,本实施例提供一种温度校验仪,包括:
加热部11,其设置一端开口的容纳腔12;
炉芯14,其形状与容纳腔匹配,其插入容纳腔12并与容纳腔12内壁之间形成具有气流出口13B和气流入口13A的气流通道13;
风源装置15,其将气流从气流入口13A吹入气流通道并从气流出口13B排出。其中,该风源装置15为上述实施例2、实施例3、实施例4提供的风阀组件,该风阀组件将气流从气流入口13A吹入气流通道并从气流出口13B排出。应当理解,在其他实施例中,风源装置15可以为具有出风口的风扇(例如涡流风扇),风扇设置在加热部11下方,风扇的出风口连气流入口13A,风扇转动将气流吹入气流入口13A。应当理解,在一些实施例中可以将风扇的出风口密封连接气流入口13A,以减少气流泄露增强降温效果。应当理解,在其他实施例中,风源装置15还可以为存储压力气体的容器,容器出风管连气流入口13A,从而将容器释放的气流吹入气流入口13A。
在一些实施例中,加热部11可以为金属材质,也可以为陶瓷或者石英材质,还可以为部分金属材质与部分陶瓷材质或者石英材质结合(例如容纳腔12腔壁为陶瓷材质或者石英材质)。炉芯14可以为金属材质,也可以为部分金属材质与部分陶瓷材质结合(例如炉芯14顶端一段构造为陶瓷材质)。
在一些实施例中,炉芯14顶端设置隔热塞,隔热塞的周向设置排风槽,排风槽连通大气形成气流通道的气流出口。
在一些实施例中,容纳腔12内壁的制作物料包括刚玉和/或石英。
在一些实施例中,如图3所示,加热部内置电加热件16,该温度校验仪还包括:控制器17,控制电加热件16进行加热并控制风源装置15(风阀组件)运转。
在一些实施例中,如图4所示电加热件16为围绕容纳腔周向设置的多根加热棒;或者,如图5所示电加热件16为围绕容纳腔12的一段或多段加热丝,一段或多段加热丝均匀或者不均匀的缠绕。
在一些实施例中,电加热件16外围设置隔热壳体,隔热壳体由耐高温的隔热材料制成。
在一些实施例中,气流出口13B设置在容纳腔12开口处,气流入口13A设置在容纳腔12底部。应当理解,气流出口13B可以为不同形状及分布方式, 但是总体位置位于容纳腔12顶端开口处。同样,气流入口13A可以为不同形状及分布方式,但是总体位置位于容纳腔12底部。
在一些实施例中,气流入口13A为至少一个贯穿容纳腔12底壁的通孔。至少一个贯穿容纳腔12底壁的通孔将风源装置15(风阀组件)提供的气流引入气流通道13。所述至少一个贯穿容纳腔12底壁的通孔可以设置为内腔逐渐收窄的形状或者直筒状或者直筒状与内腔逐渐收窄状结合。
在一些实施例中,该风阀组件设置在加热部11下方,风阀组件的排风口(第一排风口611)连通所述气流入口13A,排风口吹出的气流至少部分进入气流入口13A,其中第一排风口611吹出的气流进入气流入口13A,第二排风口612出风周向环绕加热部11,为加热部11外围降温。
在一些实施例中,风阀组件中风扇63的出风口与气流入口13A之间的气路上设置阀门,该阀门可以控制风阀组件中风扇63与气流入口13A之间的气路从完全关闭、完全打开以及完全关闭至完全打开之间不同的开度,从而通过控制该阀门开闭程度以控制吹入气流入口13A的气流量。
在一些实施例中,容纳腔12内壁包括内侧壁(图1中竖直方向),炉芯14与内侧壁之间设置用于气流通过的第一空隙,第一空隙构成气流通道13的至少一部分。例如,不同的实施例中,第一空隙可以与炉芯14底部的空隙(下述第二空隙)连通共同构成气流通道13。
在一些实施例中,炉芯14外壁与内侧壁对应处设置第一通风槽,第一通风槽单独或者与第一空隙结合组成气流通道13的至少一部分。在一些实施例中,内侧壁设置第二通风槽,第二通风槽单独或者与第一空隙结合组成气流通道13的至少一部分。应当理解,为了气增大流通道13的通风量可以在设置第一空隙的基础上同时设置第一通风槽及第二通风槽,第一空隙、第一通风槽及第二通风槽共同组成气流通道13的至少一部分。
在一些实施例中,第一通风槽、第二通风槽设置为螺旋状或者直条状或者螺旋状与直条状结合。
在一些实施例中,容纳腔12内壁包括内底壁;
炉芯14与内底壁之间设置用于气流通过的第二空隙,第二空隙构成气流通道的一部分。例如,不同的实施例中,第二空隙可以与上述第一空隙连通共同构成气流通道13。
在一些实施例中,第二空隙设置为大于第一空隙的2倍。
在一些实施例中,内底壁设置至少一个凸起点,至少一个凸起点支撑炉芯14,使得炉芯14与容纳腔12底壁形成第二空隙。
在一些实施例中,炉芯14底部可以设置一定位孔,内底壁设置一个凸起棒插入定位孔定位及支撑炉芯14,从而便于炉芯14插入容纳腔12后与容纳腔12内壁之间形成具有气流出口13B和气流入口13A的气流通道13。
在一些实施例中,炉芯14顶端可以设置横向突出的外延,使得炉芯14为T形便于炉芯14插入容纳腔12后顶部卡在容纳腔12端口。实施例中气流出口13B设置在炉芯14突出的外延处。
在一些实施例中,炉芯14插入容纳腔12后,炉芯14顶端位于容纳腔12内,在炉芯14上设置隔热塞件,气流出口13B设置在隔热塞件与容纳腔12之间。
在一些实施例中,如图2所示,炉芯14插入容纳腔12一端的顶部边缘设置第一倒角14A,使得吹入气流入口13A的气流流经第一倒角14A,从而减少气流阻碍增强气流流通;其他实施例中,同时或者单独的,容纳腔12底部对应炉芯14插入端的边缘设置第二倒角12A,使得吹入气流入口的气流流经第二倒角12A。同时设置第一倒角14A、第二倒角12A时,第一倒角14A与第二倒角12A相对应。
本实施例的温度校验仪,炉芯插入容纳腔后,炉芯外围与容纳腔内壁之间设置气流通道,通过气流入口向气流通道吹入气流并从气流出口排出,实现气流直接吹向炉芯,从而直接对炉芯进行降温,以提高炉芯降温速度。
本实施例的温度校验仪,炉芯插入容纳腔后,炉芯外围与容纳腔内壁之间 设置气流通道,通过气流入口向气流通道吹入气流并从气流出口排出,实现气流直接吹向炉芯,从而直接对炉芯进行降温,以提高炉芯降温速度。
实施例6
如图9所示,本实施例提供一种对上述各个实施例提供的温度校验仪的炉芯降温的方法,包括:
41、获取设置的炉芯目标温度,检测所述炉芯当前温度;
42、判断所述炉芯当前温度是否大于所述炉芯目标温度;
43、如果所述炉芯当前温度大于所述炉芯目标温度,则控制所述风源装置运转将气流经所述气流入口进入所述气流通道并从所述气流出口排出;
44、如果所述炉芯当前温度不大于(小于或等于)所述炉芯目标温度,则停止所述风源装置运转。
其中,所述目标温度为所述炉芯最终欲降低到的温度,可以由用户设置。
本实施例的方法可以由实施例2中控制器17实现。
本实施例的方法,通过气流入口向气流通道吹入气流并从气流出口排出,实现气流直接吹向炉芯,从而直接对炉芯进行降温,将炉芯的温度降至目标温度,能够提高炉芯降温速度。
实施例7
如图10所示,本实施例提供一种对上述各个实施例提供的温度校验仪的炉芯降温的方法,包括:
51、检测炉芯当前温度;
52、根据所述炉芯当前温度确定风源装置运转时长;
53、控制所述风源装置持续将气流经所述气流入口进入所述气流通道并从所述气流出口排出;
54、到达风源装置运转时长时,停止所述风源装置运转。
其中,根据所述炉芯当前温度确定风源装置运转时长包括:
获取设置的炉芯目标温度(所述目标温度为所述炉芯最终欲降低到的温度,可以由用户设置);
根据所述当前温度计所述目标温度得出所述运转时长。
本实施例的方法可以由实施例2中控制器17实现。
本实施例的方法,通过气流入口向气流通道吹入气流并从气流出口排出,实现气流直接吹向炉芯,从而直接对炉芯进行降温,将炉芯的温度降至目标温度,能够提高炉芯降温速度。
实施例8
本实施例提供一种温度校验仪的炉芯降温方法,如图1、图2、图3所示所述温度校验仪包括:
加热部11,其设置一端开口的容纳腔12;
炉芯14,其形状与所述容纳腔12匹配,其插入所述容纳腔12;
所述方法包括:
在炉芯14与所述容纳腔12之间设置具有气流出口13B和气流入口13A的气流通道13;
当所述温度校验仪执行校验任务时,阻断气流通过所述气流入口13A进入所述气流通道13;
当所述炉芯降温时,将气流从所述气流入口13A吹入所述气流通道13并从所述气流出口13B排出。
在一些实施例中,如图1、图2、图3所示所述温度校验仪还包括:
风源装置15,其将气流经所述气流入口13A吹入所述气流通道13并从所述气流出口13B排出;
如图11所示,所述方法还包括:
71、在所述风源装置15与所述气流入口13A之间的气路上设置阀门;
72、当所述温度校验仪执行校验任务时,关闭所述阀门,阻断气流经所述气流入口13A吹入所述气流通道13;
73、当所述炉芯降温时,运转所述风源装置打开所述阀门,将气流经所述气流入口13A吹入所述气流通道13并从所述气流出口13B排出。
在一些实施例中,加热部11可以为金属材质,也可以为陶瓷材质,还可以为部分金属材质与部分陶瓷材质结合(例如容纳腔12腔壁为陶瓷材质)。炉芯14可以为金属材质,也可以为部分金属材质与部分陶瓷材质结合(例如炉芯14顶端一段构造为陶瓷材质)。
在一些实施例中,所述风源装置15可以为具有出风口的风扇(例如涡流风扇),所述风扇设置在所述加热部下方,所述风扇的出风口连所述气流入口13A,风扇转动将气流吹入气流入口13A。应当理解,在一些实施例中可以将风扇的出风口密封连接气流入口13A,以减少气流泄露增强降温效果。
在一些实施例中,所述风源装置15还可以为存储压力气体的容器,所述容器可以设置在加热部11的一侧,所述容器出风管连所述气流入口13A,从而将容器释放的气流吹入气流入口13A。
在一些实施例中,所述气流出口13B设置在所述容纳腔12开口处,所述气流入口13A设置在所述容纳腔12底部。应当理解,所述气流出口13B可以为不同形状及分布方式,但是总体位置位于所述容纳腔12顶端开口处。同样,所述气流入口13A可以为不同形状及分布方式,但是总体位置位于所述容纳腔12底部。
在一些实施例中,所述气流入口13A为至少一个贯穿所述容纳腔12底壁的通孔。所述至少一个贯穿所述容纳腔底壁的通孔将风源装置15提供的气流引入气流通道13。
在一些实施例中,所述风源装置13与所述气流入口之间的气路上设置阀门,所述阀门可以控制所述气流入口之间的气路从完全关闭、完全打开以及完全关闭至完全打开之间不同的开度,从而控制所述阀门开闭程度以控制吹入所 述气流入口的气流量。
在一些实施例中,所述容纳腔12内壁包括内侧壁(图1中竖直方向),所述炉芯14与所述内侧壁之间设置用于气流通过的第一空隙,所述第一空隙构成所述气流通道13的至少一部分。例如,不同的实施例中,第一空隙可以与炉芯14底部的空隙(第二空隙)连通共同构成气流通道13。
在一些实施例中,炉芯14外壁与所述内侧壁对应处设置第一通风槽,所述第一通风槽单独或者与所述第一空隙结合组成所述气流通道13的至少一部分。在一些实施例中,所述内侧壁设置第二通风槽,所述第二通风槽单独或者与所述第一空隙结合组成所述气流通道13的至少一部分。应当理解,为了气增大流通道13的通风量可以在设置所述第一空隙的基础上同时设置所述第一通风槽及所述第二通风槽,第一空隙、第一通风槽及第二通风槽共同组成所述气流通道13的至少一部分。
在一些实施例中,所述容纳腔12内壁包括内底壁;
所述炉芯14与所述内底壁之间设置用于气流通过的第二空隙,所述第二空隙构成所述气流通道的一部分。例如,不同的实施例中,所述第二空隙可以与上述第一空隙连通共同构成气流通道13。
在一些实施例中,所述内底壁设置至少一个凸起点,所述至少一个凸起点支撑所述炉芯14,使得所述炉芯14与所述容纳腔12底壁形成所述第二空隙。
在一些实施例中,所述炉芯14底部可以设置一定位孔,所述内底壁设置一个凸起棒插入所述定位孔定位及支撑所述炉芯14,从而便于所述炉芯14插入所述容纳腔12后与所述容纳腔12内壁之间形成具有气流出口13B和气流入口13A的气流通道13。
在一些实施例中,所述炉芯14顶端可以设置横向突出的外延,使得所述炉芯14为T形便于所述炉芯14插入容纳腔12后顶部卡在容纳腔12端口。所述实施例中所述气流出口13B设置在所述炉芯14突出的外延处。
在一些实施例中,所述炉芯14插入所述容纳腔12后,所述炉芯14顶端 位于容纳腔12内,在所述炉芯14上设置隔热塞件,所述气流出口13B设置在所述隔热塞件与所述容纳腔12之间。
在一些实施例中,所述炉芯14插入所述容纳腔12一端的顶部边缘设置倒角,使得吹入所述气流入口13A的气流流经所述倒角,从而减少气流阻碍增强气流流通。
本实施例的方法,通过气流入口向气流通道吹入气流并从气流出口排出,实现气流直接吹向炉芯,从而直接对炉芯进行降温,将炉芯的温度降至目标温度,能够提高炉芯降温速度。通过设置阀门能够实现气流精准控制,防止气流影响温度校验仪正常校验。
需要说明的是,以上实施例1至8提供的技术方案各有侧重,不同的实施例可以相互组合构建新的实施例。
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (25)

  1. 一种温度校验仪,其特征在于,包括:
    加热部,其设置一端开口的容纳腔;
    炉芯,其形状与所述容纳腔匹配,其插入所述容纳腔并与所述容纳腔内壁之间形成具有气流出口和气流入口的气流通道;
    风源装置,其将气流从所述气流入口吹入所述气流通道并从所述气流出口排出。
  2. 根据权利要求1所述的温度校验仪,其特征在于,所述加热部内置电加热件;
    所述温度校验仪还包括:
    控制器,其控制所述电加热件进行加热并控制所述风源装置运转。
  3. 根据权利要求1所述的温度校验仪,其特征在于,所述气流出口设置在所述容纳腔开口处,所述气流入口设置在所述容纳腔底部。
  4. 根据权利要求3所述的温度校验仪,其特征在于,所述气流入口为至少一个贯穿所述容纳腔底壁的通孔。
  5. 根据权利要求1所述的温度校验仪,其特征在于,
    所述风源装置为具有出风口的风扇,所述风扇设置在所述加热部下方,所述风扇的出风口连所述气流入口;
    或者
    所述风源装置为存储压力气体的容器,所述容器出风管连所述气流入口。
  6. 根据权利要求1所述的温度校验仪,其特征在于,所述风源装置与所 述气流入口之间的气路上设置阀门,控制所述阀门开闭程度以控制吹入所述气流入口的气流量。
  7. 根据权利要求1所述的温度校验仪,其特征在于,所述容纳腔内壁包括内侧壁,所述炉芯与所述内侧壁之间设置用于气流通过的第一空隙,所述第一空隙构成所述气流通道的至少一部分。
  8. 根据权利要求7所述的温度校验仪,其特征在于,炉芯外壁与所述内侧壁对应处设置第一通风槽,所述第一通风槽单独或者与所述第一空隙结合组成所述气流通道的至少一部分;
    和/或
    所述内侧壁设置第二通风槽,所述第二通风槽单独或者与所述第一空隙结合组成所述气流通道的至少一部分。
  9. 根据权利要求1所述的温度校验仪,其特征在于,所述容纳腔内壁包括内底壁;
    所述炉芯与所述内底壁之间设置用于气流通过的第二空隙,所述第二空隙构成所述气流通道的一部分。
  10. 根据权利要求9所述的温度校验仪,其特征在于,所述内底壁设置至少一个凸起点,所述至少一个凸起点支撑所述炉芯,使得所述炉芯与所述容纳腔底壁形成所述第二空隙。
  11. 根据权利要求1所述的温度校验仪,其特征在于,所述炉芯插入所述容纳腔一端的边缘设置第一倒角,使得吹入所述气流入口的气流流经所述第一倒角;
    和/或
    所述容纳腔底部对应所述炉芯插入端的边缘设置第二倒角,使得吹入所述气流入口的气流流经所述第二倒角。
  12. 根据权利要求11所述的温度校验仪,其特征在于,所述风源装置包括风阀组件,其将气流从所述气流入口吹入所述气流通道并从所述气流出口排出;
    所述风阀组件包括具有空腔的风阀座,所述风阀座顶部设置连通所述空腔的排风口,所述排风口出风吹向所述加热部;所述风阀座空腔内设置导风通道及风扇,所述导风通道一端连通所述风扇的出风口,所述导风通道另一端连通所述排风口。
  13. 根据权利要求12所述的温度校验仪,其特征在于,所述排风口包括第一排风口,所述加热部内置炉芯,所述第一排风口出风吹向所述炉芯;
    和/或
    所述排风口包括至少一个第二排风口,所述第二排风口出风周向环绕所述加热部。
  14. 根据权利要求13所述的温度校验仪,其特征在于,还包括用于控制导风通道打开幅度的转动板及控制电机,所述转动板与所述控制电机转轴相连,所述控制电机控制转动板转动幅度。
  15. 根据权利要求14所述的温度校验仪,其特征在于,所述风阀组件还包括导风板,所述导风板上设置导风孔,所述导风通道连通所述导风孔。
  16. 根据权利要求15所述的温度校验仪,其特征在于,所述转动板可与所述导风孔密封拼合,所述转动板与所述导风孔配合,使得通过控制所述导风孔打开幅度以控制所述导风通道打开幅度。
  17. 根据权利要求16所述的温度校验仪,其特征在于,导风板端面上设置第一凸起和第二凸起,所述第一凸起和所述第二凸起分别与风阀座空腔内壁设置的第一围挡板及第二围挡板扣合,形成第一空腔和第二空腔。
  18. 根据权利要求17所述的温度校验仪,其特征在于,所述导风通道将气流导向所述第一空腔,所述第一空腔中部分气流分流至所述第二空腔,所述第一通风口连通所述第一空腔,所述第二通风口连通所述第二空腔。
  19. 一种对权利要求1至18中任一项所述的温度校验仪的炉芯降温的方法,其特征在于,包括:
    获取设置的炉芯目标温度;
    检测所述炉芯当前温度;
    如果所述炉芯当前温度大于所述炉芯目标温度,则控制所述风源装置运转将气流经所述气流入口进入所述气流通道并从所述气流出口排出;
    如果所述炉芯当前温度小于或等于所述炉芯目标温度,则停止所述风源装置运转。
  20. 一种对权利要求1至18中任一项所述的温度校验仪的炉芯降温的方法,其特征在于,包括:
    检测炉芯当前温度;
    根据所述炉芯当前温度确定风源装置运转时长;
    控制所述风源装置持续将气流经所述气流入口进入所述气流通道并从所述气流出口排出;
    到达风源装置运转时长时,停止所述风源装置运转。
  21. 一种温度校验仪的炉芯降温方法,其特征在于,所述温度校验仪包括:
    加热部,其设置一端开口的容纳腔;
    炉芯,其形状与所述容纳腔匹配,其插入所述容纳腔;
    所述方法包括:
    在炉芯与所述容纳腔之间设置具有气流出口和气流入口的气流通道;
    当所述温度校验仪执行校验任务时,阻断气流通过所述气流入口进入所述气流通道;
    当所述炉芯降温时,将气流从所述气流入口吹入所述气流通道并从所述气流出口排出。
  22. 根据权利要求21所述的方法,其特征在于,所述气流出口设置在所述容纳腔开口处,所述气流入口设置在所述容纳腔底部。
  23. 根据权利要求22所述的方法,其特征在于,所述气流入口为至少一个贯穿所述容纳腔底壁的至少一个通孔。
  24. 根据权利要求21至23中任一项所述的方法,其特征在于,所述温度校验仪还包括:
    风源装置,其将气流经所述气流入口吹入所述气流通道并从所述气流出口排出;
    所述方法还包括:
    在所述风源装置与所述气流入口之间的气路上设置阀门;
    当所述温度校验仪执行校验任务时,关闭所述阀门,阻断气流经所述气流入口吹入所述气流通道;
    当所述炉芯降温时,运转所述风源装置打开所述阀门,将气流经所述气流入口吹入所述气流通道并从所述气流出口排出。
  25. 根据权利要求24所述的方法,其特征在于,
    所述风源装置为具有出风口的风扇,所述风扇设置在所述加热部下方,所述风扇的出风口连所述气流入口;
    或者
    所述风源装置为存储压力气体的容器,所述容器出风管连所述气流入口。
PCT/CN2021/079101 2020-03-06 2021-03-04 温度校验仪及对其炉芯的降温方法 WO2021175291A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180005280.3A CN114641677A (zh) 2020-04-23 2021-03-04 温度校验仪及对其炉芯的降温方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010153409.2 2020-03-06
CN202010153409.2A CN111006794A (zh) 2020-03-06 2020-03-06 温度校验仪及对其炉芯的降温方法
CN202020622012.9 2020-04-23
CN202020622012.9U CN212869890U (zh) 2020-04-23 2020-04-23 风阀组件及温度校验仪

Publications (1)

Publication Number Publication Date
WO2021175291A1 true WO2021175291A1 (zh) 2021-09-10

Family

ID=77613887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079101 WO2021175291A1 (zh) 2020-03-06 2021-03-04 温度校验仪及对其炉芯的降温方法

Country Status (1)

Country Link
WO (1) WO2021175291A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202255688U (zh) * 2011-07-25 2012-05-30 北京斯贝克科技有限责任公司 一种双区加热装置
CN104502000A (zh) * 2014-12-26 2015-04-08 上海市计量测试技术研究院 一种浅式微型温度校验炉及校验方法
US9927308B1 (en) * 2014-05-13 2018-03-27 Maxim Integrated Products, Inc. Temperature sensor calibration of an entire wafer in a liquid bath
CN207675336U (zh) * 2018-01-09 2018-07-31 北京康斯特仪表科技股份有限公司 具有风阀的炉体和干体温度校验仪
CN110017914A (zh) * 2018-01-09 2019-07-16 北京康斯特仪表科技股份有限公司 导流散热干体温度校验仪
CN111006794A (zh) * 2020-03-06 2020-04-14 北京康斯特仪表科技股份有限公司 温度校验仪及对其炉芯的降温方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202255688U (zh) * 2011-07-25 2012-05-30 北京斯贝克科技有限责任公司 一种双区加热装置
US9927308B1 (en) * 2014-05-13 2018-03-27 Maxim Integrated Products, Inc. Temperature sensor calibration of an entire wafer in a liquid bath
CN104502000A (zh) * 2014-12-26 2015-04-08 上海市计量测试技术研究院 一种浅式微型温度校验炉及校验方法
CN207675336U (zh) * 2018-01-09 2018-07-31 北京康斯特仪表科技股份有限公司 具有风阀的炉体和干体温度校验仪
CN110017914A (zh) * 2018-01-09 2019-07-16 北京康斯特仪表科技股份有限公司 导流散热干体温度校验仪
CN111006794A (zh) * 2020-03-06 2020-04-14 北京康斯特仪表科技股份有限公司 温度校验仪及对其炉芯的降温方法

Similar Documents

Publication Publication Date Title
TWI497023B (zh) 立式熱處理設備及此設備之冷卻方法
TWI495836B (zh) 立式熱處理設備、及壓力檢測系統與溫度感測器之組合體
CN212622332U (zh) 一种高温箱
CN101762661A (zh) 色谱柱箱以及气相色谱仪
WO2021175291A1 (zh) 温度校验仪及对其炉芯的降温方法
CN105222597A (zh) 一种卧式扩散炉快速降温炉体
CN207675335U (zh) 导流散热干体温度校验仪
CN212869890U (zh) 风阀组件及温度校验仪
JP7019543B2 (ja) 環境試験装置用給排気装置及び環境試験装置
CN111006794A (zh) 温度校验仪及对其炉芯的降温方法
CN109982548B (zh) 一种电控箱及控制方法
CN110017914A (zh) 导流散热干体温度校验仪
CN109237941A (zh) 钟罩炉
CN209116748U (zh) 钟罩炉
JP2003083007A (ja) タービンにおける温度調節機構
CN219104800U (zh) 一种半导体型检测燃气的传感器模组
JPH109679A (ja) 蓄熱暖房装置
CN215002253U (zh) 一种热风加热装置
CN218812250U (zh) 扩散炉
CN216203214U (zh) 用于iv测试仪灯箱的散热装置
JPH0933103A (ja) ガス瞬間温水器
CN117190213A (zh) 定向排渣的阴燃炉
KR102169709B1 (ko) 유도가열기 및 이를 이용한 히터
JP2000274790A (ja) 換気装置
JP2021032747A (ja) 熱分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21764561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21764561

Country of ref document: EP

Kind code of ref document: A1