WO2021175140A1 - 一种低真空管道高速列车散热系统 - Google Patents
一种低真空管道高速列车散热系统 Download PDFInfo
- Publication number
- WO2021175140A1 WO2021175140A1 PCT/CN2021/077768 CN2021077768W WO2021175140A1 WO 2021175140 A1 WO2021175140 A1 WO 2021175140A1 CN 2021077768 W CN2021077768 W CN 2021077768W WO 2021175140 A1 WO2021175140 A1 WO 2021175140A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cooling
- train
- low
- group
- vacuum pipeline
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61B—RAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
- B61B13/00—Other railway systems
- B61B13/08—Sliding or levitation systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61B—RAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
- B61B13/00—Other railway systems
- B61B13/10—Tunnel systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61D—BODY DETAILS OR KINDS OF RAILWAY VEHICLES
- B61D27/00—Heating, cooling, ventilating, or air-conditioning
- B61D27/0072—Means for cooling only
Definitions
- the invention relates to the technical field of thermal management of ultra-high-speed magnetic levitation trains with low-vacuum pipelines, in particular to a heat dissipation system for low-vacuum pipelines high-speed trains.
- the high-speed operation of the train in the low-vacuum pipeline causes the pipeline temperature to continue to rise. On the one hand, it affects the normal operation and service life of the equipment in the low-vacuum pipeline high-speed train transportation system, and on the other hand, it adversely affects the safe operation of the low-vacuum pipeline transportation. Bring safety hazards.
- the reliability of the line heat dissipation technology and heat dissipation system of the high-speed train when the low-vacuum pipeline runs at high speed will directly affect the safety and economy of the low-vacuum pipeline transportation system.
- the gas in the low vacuum pipeline is thin, which greatly reduces the rate of heat conduction and convection.
- the airflow at the head of the train will be squeezed during the high-speed movement of the train, forming a denser airflow locally.
- the present invention provides a low-vacuum pipeline high-speed train heat dissipation system.
- the present invention adopts the following technical solutions:
- a low-vacuum pipeline high-speed train heat dissipation system is characterized in that, in the low-vacuum pipeline, near the periphery of the train is a component group that provides power or resistance for the movement and stop of the train, and the component group is equipped with a group A cooling assembly, and the A
- the group cooling components include group A cooling heat exchangers and/or group A nozzle components attached to the back of the component group.
- the low vacuum pipeline further includes cavities respectively located at the periphery of the train, the cavities extending in parallel along the advancing direction of the train, and the cavity near the periphery of the train is a component group that provides power or resistance for the movement and stopping of the train.
- the cavity has air inlets and outlets along the length direction.
- the low vacuum pipeline is provided with a group B cooling assembly
- the group B cooling assembly includes a group B cooling heat exchanger and/or a group B nozzle assembly.
- the cooling component when the cooling component includes a corresponding set of cooling heat exchangers, the cooling component further includes a cooling tower that provides a cold source for the cooling heat exchanger, and a transition unit is also provided between the cooling tower and the cooling heat exchanger , The cooling tower and the transition unit are arranged outside the low vacuum pipeline.
- the transition unit includes a heat dissipation plate exchange or refrigeration unit, a heat exchange loop is formed between the heat dissipation plate exchange or refrigeration unit and the cooling tower, and a heat exchange loop is formed between the heat dissipation plate exchange or refrigeration unit and the cooling heat exchanger. Heat exchange loop.
- the transition unit further includes a constant temperature water tank, which is arranged between the heat dissipation plate exchange or refrigeration unit and the cooling heat exchanger.
- the cooling component when the cooling component includes a corresponding set of nozzle components, the cooling component further includes a thermostatic water tank, an automatic water replenishment valve, a seventh on-off valve, and a seventh pump body, and the thermostatic water tank is connected to an external water source through the automatic water replenishment valve,
- the thermostatic water tank includes an output end that sequentially passes through the seventh on-off valve and the seventh pump body to supply water to the nozzle assembly.
- the cavity includes a first cavity arranged on the periphery of the train and along the line in the low vacuum pipeline, and the first cavity is close to a component group that provides power to the train.
- a plurality of first air inlets and outlets are opened on the upper end surface of the first cavity.
- the cavity includes a second cavity arranged at the bottom of the train and along the low vacuum pipeline.
- the upper end surface of the second cavity is a brake component, and the brake component is provided with a plurality of brake components along the traveling direction of the train.
- the second air inlet and outlet is provided at the bottom of the train and along the low vacuum pipeline.
- the present invention provides several solutions for cooling components. One is to cool the component group by cooling the heat exchanger, one is to spray liquid through the nozzle assembly to cool down, and the other is to cool the heat exchanger and the nozzle assembly. Combine to achieve cooling, according to different needs to achieve the most cost-effective cooling mode.
- the present invention provides multiple modes, including: 1. Exchange heat between the cooling tower and the radiating plate, and then exchange heat between the radiating plate and the cooling heat exchanger 2. The heat exchange between the cooling tower and the refrigeration unit, and then the heat exchange between the refrigeration unit and the multi-block cooling heat exchanger; 3. In Scheme 2 and Scheme 3, the radiating plate exchange, the refrigeration unit and the cooling heat exchanger Set a constant temperature water tank between, which ensures a better cooling effect of the cooling heat exchanger; 4.
- the refrigeration unit, radiator plate changer, and constant temperature water tank can be set at the same time, and different operating modes can be selected by setting different on-off valves.
- the present invention can also provide multiple modes.
- the cooling tower and the transition unit are arranged outside the low vacuum pipe, which can prevent the cooling tower and the transition unit from affecting the airflow in the low vacuum pipe.
- the present invention provides a cavity with inlet and outlet ports to make The air at the front of the car head flows from the air inlet and outlet of the cavity to the rear of the car body to form an air flow cycle. The heat generated during train operation is taken away by the cooling component, ensuring the safe and reliable operation of the low-vacuum pipeline high-speed train.
- the setting of the first cavity can control the temperature of the component group that provides power and resistance to the train.
- the gas enters the first cavity from the first air inlet and outlet near the front of the car, and flows from the component group at the front of the car to the car.
- the component group at the rear finally, flows out through the air inlet and outlet at the rear of the car body.
- this solution In order to increase the amount of air intake and reduce the resistance of the circulating gas; this solution also opens a plurality of first air inlets and outlets on the upper end surface of the first cavity, thereby increasing the amount of circulating gas, thereby improving the cooling efficiency.
- the second cavity is set to cool the brake components.
- the gas squeezed into the low vacuum pipe enters the second cavity from the second air inlet and outlet near the front of the train, and the flowing gas is in the brake component. Flow below the, so as to take away the heat generated by the brake components.
- the present invention also provides a cooling heat exchanger and/or nozzle assembly in the cavity to increase the gas heat exchange area.
- Figure 1 is a cross-sectional view of the train in the low vacuum pipeline.
- Figure 2 is a side perspective view of the low-vacuum pipeline when a low-temperature storage/gas thermostat is installed in the train.
- Figure 3 is a cross-sectional view perpendicular to the direction of travel when a cavity is provided in the low vacuum pipeline.
- Fig. 4 is a cross-sectional view in the plan direction when a cavity is provided in the low vacuum pipeline.
- FIGS 5-9 are the structural diagrams of the cooling heat exchangers at the cooling tower, the transition unit and the group A cooling components and/or the cooling heat exchangers at the group B cooling components in different modes.
- Figure 10 is a structural diagram of the cooling tower and transition unit in different modes when the cooling components of group A and group B are used.
- Fig. 11 is a cross-sectional view perpendicular to the direction of travel when group B cooling components are arranged on the inner side wall of the low vacuum pipeline and a cavity is arranged at the bottom.
- Figure 12 is a cross-sectional view perpendicular to the direction of travel when the C group cooling components are arranged on the outer side wall of the train and the cavity is arranged at the bottom.
- Figure 13 shows the liquid/gas pipeline between the low-temperature storage/gas thermostat in the train when the C group cooling assembly is installed on the outer side wall of the train.
- Figure 14-16 is a structural diagram of the low vacuum pipeline including dual rails.
- a wind circulating heat dissipation system along the low-vacuum pipeline train includes one or more combinations of the following methods to cool the gas in the low-vacuum pipeline.
- the system includes cavities located at the periphery of the train 2.
- the cavities extend in parallel along the advancing direction of the train 2.
- the gas takes away the heat generated when the train is in motion.
- the cavity near the periphery of the train 2 is a component group that provides power or resistance for the movement and stop of the train 2.
- the component group includes a component group 10 that is evenly arranged on both sides of the train 2 to provide power for the train and below the train 2.
- the brake component 7 is provided, in which the circulating gas takes away the heat generated by the component group 10 and the brake component 7 that provide power for the train when the train is working.
- the component group 10 that provides power to the train can also be arranged horizontally below the train 2, or in other arrangements; the brake components 7 that provide resistance to the train can also be arranged vertically on both sides of the train 2, or in other arrangements. .
- the cavity In order to dissipate heat from the component group 10 and the brake component 7 that power the train, the cavity includes a first cavity 4.
- the inner side of the first cavity 4 against the train 2 is the component group 10 that powers the train, and the other sides are made of concrete. Structure or other supporting structure.
- the first cavity 4 is two rows, which are located on both sides of the train 2.
- first air inlets and outlets 3 are opened on the upper end of the first cavity 4 , These first air inlets and outlets 3 can be evenly arranged on the first cavity 4.
- the cavity further includes a second cavity 5 arranged at the bottom of the train 2.
- the upper end of the second cavity 5 is the brake component 7, and the other
- the side surface is a concrete structure or other supporting structure, and the brake component 7 is provided with a plurality of second air inlets and outlets 8 along the advancing direction of the train 2.
- two sides of the second cavity 5 are also provided with communicating pipes 12 which are connected to the first cavity 4 corresponding to the two sides.
- communicating pipes 12 which are connected to the first cavity 4 corresponding to the two sides.
- the cross section of the train 2 along the longitudinal direction is provided with a communication pipe 12.
- the group A cooling assembly includes a group A cooling heat exchanger 501 arranged in the cavity and attached to the back of the component group.
- the nozzle assembly 401 of the group A sprays the cooling liquid against the back of the component group or the cavity, and the direction of the nozzle assembly 401 of the group A can be automatically adjusted according to the internal temperature/pressure parameters of the low-pressure pipeline.
- the inner wall of the low vacuum pipeline is provided with a cold plate heat exchanger and a nozzle assembly.
- the group B cooling assembly includes a group B nozzle assembly 402 and a group B cooling heat exchanger 502.
- the direction of the nozzle assembly 402 of the group B can be automatically adjusted according to the internal temperature/pressure parameters of the low-pressure pipeline.
- the group B nozzle assembly 402 can spray the cooled liquid or gas onto the heating coil or the surface of the train along the line, and absorb the surface heat in the low vacuum pipe 1 and the train 2. Take the surface heat inside the low vacuum pipe 1 and the train 2.
- the group B cooling heat exchanger When the group B cooling heat exchanger is working, the circulating low-temperature liquid inside it can cool the airflow flowing through the surface of the group B cooling heat exchanger.
- the group C cooling components include a group C cooling heat exchanger 503 and a group C nozzle assembly 403.
- a low-temperature storage/gas thermostat 202 is also provided in the train, and the nozzle assembly 403 of Group C is provided on the outer side wall of the train 2 in FIG. 12.
- the circulation pipeline for supplying energy to the nozzle assembly 403 of the group C and the cooling heat exchanger 503 of the group C is shown in Fig. 13, and the first set on the pipeline connecting the low-temperature storage/gas thermostat 202 and the cooling heat exchanger 503 of the group C is provided.
- An eighth switch valve 201 is provided at the input end of the low-temperature storage/gas thermostat 202 for controlling the quantity of the low-temperature storage/gas thermostat 202.
- the eighth switch valve 201 is a low-temperature storage/gas thermostat. Automatic liquid/gas valve for thermostat box.
- each component When using scheme 2.1 and scheme 2.2, the components connected to the cooling heat exchanger and nozzle assembly of the corresponding group can be arranged on the outer side of the low vacuum pipe 1.
- the layout design of each component includes the A1 scheme, A2 scheme, A3 scheme and A4 plan, the specific structure is described as follows:
- the system includes a cooling tower 21 that provides a cold source for the cooling heat exchanger, and a transition unit is also provided between the cooling tower 21 and the cooling heat exchanger.
- the transition unit includes a refrigeration unit 25, the cooling tower 21 to the refrigeration unit 25 form a heat exchange cycle loop, and a second pump body 24 is provided on the pipeline between the cooling tower 21 and the condensing end of the refrigeration unit 25.
- the cooling tower 21 provides cooling water of a corresponding temperature for the condensing end of the refrigeration unit 25.
- a heat exchange loop is formed between the refrigeration unit 25 and a number of cooling heat exchangers, and the refrigeration unit 25 is provided with a first cooling medium on the pipe for conveying the cooling medium. ⁇ pump body 30.
- the refrigeration unit 25 may include various types of units such as a vapor compression cycle chiller, an absorption chiller, a combination of a compression condensing unit and an evaporator.
- the refrigeration unit 25 includes various types of units such as a vapor compression cycle chiller, an absorption chiller, a combination of a compression condensing unit and an evaporator.
- the evaporating end of the refrigeration unit 25 can cool down the temperature of the heat exchange medium to the target low temperature, and the cooled heat exchange medium flows into the cooling heat exchanger again to form a cycle, which can work repeatedly to achieve uninterrupted cooling.
- the group A cooling heat exchanger 501 and the group B cooling heat exchanger 502 can be arranged in parallel by several cooling heat exchangers, such as the first cooling heat exchanger 9 and the second cooling heat exchanger 6 in Figs. 5-10.
- the system includes a cooling tower 21 that provides a cold source for the cooling heat exchanger, and a transition unit is also provided between the cooling tower 21 and the cooling heat exchanger.
- the transition unit includes a heat dissipation plate exchange 23, the cooling tower 21 to the heat dissipation plate exchange 23 form a heat exchange circulation path, and a first pump body 22 is provided on the pipeline between the cooling tower 21 and the condensing end of the heat dissipation plate exchange 23 .
- a heat exchange loop is formed between the heat sink 23 and several cooling heat exchangers, and a third pump body 26 is provided on the pipe for conveying the cooling medium by the heat sink 23.
- the heated heat exchange medium re-enters the cooling tower to cool down, forming a cycle, which can work repeatedly to achieve uninterrupted cooling.
- This kind of cold source supply mode does not require energy-consuming equipment such as refrigeration units to cool the heat exchange medium, and only uses the heat sink 23 as a natural cold source to cool down through the cooling tower, and makes full use of the heat sink 23 to achieve energy-saving and emission-reducing operation.
- a constant temperature water tank 29 is provided between the refrigeration unit 25 of the A1 scheme and a plurality of parallel cooling heat exchangers.
- the cooling tower 21 to the refrigeration unit 25 form a heat exchange circuit and cool
- a second pump body 24 is provided on the pipeline between the tower 21 and the condensing end of the refrigeration unit 25.
- a heat exchange loop is set between the refrigeration unit 25 and the constant temperature water tank 29. The evaporating end of the refrigeration unit can reduce the temperature of the heat exchange medium in the constant temperature water tank to the target low temperature.
- a heat exchange loop is formed between the constant temperature water tank 29 and a plurality of cooling heat exchangers, and a sixth pump body 30 is provided on the pipeline for conveying the cooling medium in the constant temperature water tank 29.
- This method is indirect cooling, and the first cooling heat exchanger and the second cooling heat exchanger can use water or other heat exchange media with low electrical conductivity and high thermal conductivity for circulating flow.
- a constant temperature water tank 29 is provided between the radiating plate exchange 23 of the A2 scheme and a plurality of parallel cooling heat exchangers.
- the cooling tower 21 to the radiating plate exchange 23 form a heat exchange circulation path.
- a first pump body 22 is provided on the pipeline between the cooling tower 21 and the condensing end of the heat sink 23.
- a heat exchange loop is provided between the heat sink 23 and the constant temperature water tank 29, a fourth pump body 27 is provided on the pipeline from the constant temperature water tank 29 to the heat sink 23, and the constant temperature water tank 29 exchanges heat with a number of cooling plates.
- a heat exchange loop is formed between the heat exchangers, and a sixth pump body 30 is provided on the pipeline for conveying the cooling medium in the thermostatic water tank 29.
- the temperature of the heat exchange medium in the constant temperature water tank 29 is cooled to the target low temperature by the cooling tower 21 through the radiator plate 23, and the treated heat exchange medium is transported by pumps and other power equipment to the first cooling heat exchanger 9 and the first cooling heat exchanger 9 and the first cooling heat exchanger in the system.
- the second cooling heat exchanger 6 (wherein the first cooling heat exchanger 9 and the second cooling heat exchanger 6 are several A group cooling heat exchangers 501 and B group cooling heat exchangers 502 arranged in parallel).
- the heat exchange medium re-enters the constant temperature water tank for cooling, forming a cycle, which can work repeatedly to achieve uninterrupted cooling.
- This cold source supply mode does not require energy-consuming equipment such as refrigeration units to cool the heat exchange medium, and only uses the natural cold source to cool the temperature through the cooling tower 21, and makes full use of the natural cold source to achieve energy-saving and emission-reduction operation.
- the system includes a cooling tower 21 that provides a cold source for the cooling heat exchanger, the cooling tower 21 and the cooling heat exchanger There is also a transition unit between.
- the transition unit includes a refrigeration unit 25, a heat dissipation plate changer 23, and a constant temperature water tank 29.
- the cooling tower 21 to the heat dissipation plate exchange 23 form a heat exchange circulation path, and the pipeline between the cooling tower 21 and the condensing end of the heat dissipation plate exchange 23 is provided with a first pump body 22.
- the cooling tower 21 to the refrigeration unit 25 can form a heat exchange circulation path, and the pipeline between the cooling tower 21 and the condensing end of the refrigeration unit 25 is provided with a second pump body 24.
- a heat exchange loop is formed between the heat sink 23 and a number of cooling heat exchangers, and a third pump body 26 is provided on the pipe for conveying the cooling medium of the heat sink 23.
- the refrigeration unit 25 is connected to a number of cooling heat exchangers.
- a heat exchange loop is formed between the heat exchangers, and a sixth pump body 30 is provided on the pipeline for conveying the cooling medium in the refrigeration unit 25.
- a heat exchange loop is provided between the heat sink 23 and the constant temperature water tank 29, a fourth pump body 27 is provided on the pipeline from the constant temperature water tank 29 to the heat sink 23, and the refrigeration unit 25 and the constant temperature water tank 29 A heat exchange loop is provided, and a fifth pump body 28 is provided on the pipeline from the constant temperature water tank 29 to the refrigeration unit 25.
- a heat exchange loop is formed between the constant temperature water tank 29 and a plurality of cooling heat exchangers, and a sixth pump body 30 is provided on the pipeline for conveying the cooling medium in the constant temperature water tank 29.
- a first on-off valve 31 is provided on the pipeline from the cooling heat exchanger to the thermostatic water tank 29, and a second on-off valve 32 is provided on the pipeline from the cooling heat exchanger to the heat sink 23.
- the third switch valve 33 is provided on the pipeline from the cooling heat exchanger to the refrigeration unit 25
- the fourth switch valve 34 is provided on the pipeline from the thermostatic water tank 29 to the sixth pump body 30, and the medium from the refrigeration unit 25 to
- the pipeline of the sixth pump body 30 is provided with a fifth switch valve 35
- the pipeline of the medium from the third pump body 26 to the cooling heat exchanger 6 and the cooling heat exchanger 9 is provided with a sixth switch valve 36.
- All of the above solutions can be selected by controlling the opening and closing states of the first on-off valve 31, the second on-off valve 32, the third on-off valve 33, the fourth on-off valve 34, the fifth on-off valve 35, and the sixth on-off valve 36.
- Refrigeration unit 5 second pump body 24, fifth pump body 28, and sixth pump body 30.
- a thermostatic water tank 29 can be used to connect to an external water source through an automatic water replenishment valve 37.
- the seventh pump body 39 supplies water to the nozzle assembly 401/402.
- the train 2 runs in the low vacuum pipe 1.
- the chambers in the air circulation system are all located in the low vacuum pipe 1.
- the cooling tower 21 and the transition unit in the solution are arranged in the area along the outer line of the low vacuum pipeline 1, because the cooling tower and the transition unit are not suitable for use in a low vacuum environment.
- the low vacuum pipe 1 is divided into a first low vacuum pipe 101 and a second low vacuum pipe 102 using a partition 103.
- a channel is excavated inside the concrete base at the bottom of the second cavity 5, and the direction and specific dimensions of the channel can be designed as required, and the channel can be filled with water or others.
- "flood" feeding is carried out to the channel, and the flowing liquid is set, and the liquid evaporative cooling is used to realize the cooling of the airflow inside the pipeline.
- This scheme can be used alone or in combination of several schemes 1, scheme 2.1, scheme 2.2, scheme 2.3.
- the layout design of each component connected to the cooling heat exchanger and nozzle assembly of the corresponding group in scheme 2.1 and scheme 2.2 can be from Option A1, A2, A3, A4.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
Abstract
一种低真空管道高速列车散热系统,在低真空管道(1)内,靠近列车(2)的周边是为列车(2)运动和停止提供动力或阻力的部件组(10),部件组(10)配置有A组降温组件,A组降温组件包括贴覆在部件组背面的A组冷却换热器(501)和/或A组喷嘴组件(401)。通过在低真空管道内的部件组上设置A组降温组件,可以与低真空管道内的气体换热,从而起到降温的作用。
Description
本申请主张2020年03月05日申请的申请号为202010146656.X的“一种低真空管道列车沿线风循环散热系统”以及2020年08月14日申请的申请号为202010820687.9的“一种高速列车适用的低真空管道”的优先权,原受理机构均为中国。
本发明涉及低真空管道超高速磁悬浮列车的热管理技术领域,尤其涉及一种低真空管道高速列车散热系统。
我国的铁路建设和铁路交通运输处于快速发展阶段,在经过几次提速后,铁路交通的运输能力得到大幅提高。但是,随着我国国民经济高速平稳的发展,对铁路运输提出了更高的要求。高速、低噪、低碳环保的出行成为了未来地面交通工具的重要发展方向和必然选择。
目前,国内高速铁路的最快运营速度已经达到了350km/h,在进一步提高列车运行速度的过程中,地表稠密的大气层成为了阻碍地面高速交通运输系统发展的最大瓶颈。结合磁悬浮技术,并为了避免气流对高速列车的影响,沿线加入了低压管道或低真空管道,发展成为低真空管道运输系统或真空管道系统。这将是未来地面超高速载人交通工具的重要发展方向。
列车在低真空管道中高速运行造成管道温度持续升高,一方面影响低真空管道高速列车交通系统内各设备的正常工作及其使用寿命,另一方面对低真空管道交通的安全运营产生不利影响、带来安全隐患。高速列车在低真空管道高速运行时的线路散热技术和散热系统是否可靠,将直接影响低真空管道运输系统的安全性和经济性。
低真空管道内气体稀薄,大大降低了导热和对流换热速率。同时,列车高速运动过程中会挤压列车头部气流,形成局部较为密集的气流。
发明内容
为了能够实现低真空管道高速列车管道气流沿线散热,为此,本发明提供一种低真空管道高速列车散热系统。本发明采用以下技术方案:
一种低真空管道高速列车散热系统,其特征在于,低真空管道内,靠近列车的周边是为列车运动和停止提供动力或阻力的部件组,所述部件组配置有A组降温组件,所述A组降温组件包括贴覆在部件组背面的A组冷却换热器和/或A组喷嘴组件。
优选的,低真空管道内还包括分别位于列车周边的腔体,所述腔体沿着列车前进的方向并行延伸,所述腔体靠近列车的周边是为列车运动和停止提供动力或阻力的部件组,所述腔体沿着长度方向上有进出气口,列车前进时挤压低真空管道内部的气体使气体在腔体及管道内循环,所述循环的气体带走列车运动时产生的热量。
优选的,低真空管道上设置有B组降温组件,所述B组降温组件包括B组冷却换热器和/或B组喷嘴组件。
优选的,当降温组件包括对应组的冷却换热器时,所述降温组件还包括给冷却换热器提供冷源的冷却塔,所述冷却塔和冷却换热器之间还设置有过渡单元,冷却塔和过渡单元设置在低真空管道外部。
优选的,所述过渡单元包括散热板换或制冷机组,所述散热板换或制冷机组与冷却塔之间形成换热环路,所述散热板换或制冷机组与冷却换热器之间形成换热环路。
优选的,所述过渡单元还包括恒温水箱,所述恒温水箱设置在散热板换或制冷机组与冷却换热器之间。
优选的,当降温组件包括对应组的喷嘴组件时,所述降温组件还包括恒温水箱、自动补水阀、第七开关阀、第七泵体,所述恒温水箱通过自动补水阀与外部水源连接,恒温水箱包括输出端依次经过第七开关阀、第七泵体给喷嘴组件供水。
优选的,所述腔体包括设置在列车周边并在低真空管道内沿线的第一腔体, 所述第一腔体靠近列车的为列车提供动力的部件组。
优选的,沿着列车前进的方向,所述第一腔体上端面开设有多个第一进出气口。
优选的,所述腔体包括设置在列车底部并在低真空管道内沿线的第二腔体,所述第二腔体上端面为刹车部件,所述刹车部件沿着列车前进方向上设置有多个第二进出气口。
本发明的优点在于:
(1)由于列车高速运行,列车和低真空管道内的气体摩擦会产生大量的热,同时,低真空管道内的关键设备工作时也将产生大量的热及管道内其他原因带来的热;本申请通过在低真空管道内的部件组上设置A组降温组件,可以与低真空管道内的气体换热,从而起到降温的作用。
(2)本发明提供了降温组件的几种方案,一种是通过冷却换热器来给部件组降温,一种是通过喷嘴组件喷射液体降温,还有一种是冷却换热器和喷嘴组件的结合来实现降温,根据不同的需求实现性价比最高的降温模式。
(3)其中使用冷却换热器降温时,本发明提供了多种模式,包括:1.通过冷却塔与散热板换之间进行换热,然后散热板换与冷却换热器之间换热;2.冷却塔和制冷机组之间进行换热,然后制冷机组与多块冷却换热器之间换热;3.在方案2和方案3中,散热板换、制冷机组与冷却换热器之间设置恒温水箱,恒温水箱保证冷却换热器更好的冷却效果;4.制冷机组、散热板换、恒温水箱同时可以设置,通过设置不同的开关阀选择不同的工作模式。
(4)其中使用喷嘴组件降温时,本发明亦可提供多种模式。
(5)其中冷却塔和过渡单元设置在低真空管道外,可以防止冷却塔和过渡单元影响低真空管道内的气流。
(6)并且低真空管道内部大量积聚了为列车运动和停止提供动力或阻力的部件组工作过程中、气体压缩和气体摩擦产生大量的热,本发明通过设置带有进出气口的腔体,使得车头前端的气体从腔体的进出气口流向车身的后方形成气流循环,列车运行时产生的热量被降温组件带走,确保低真空管道高速列 车运行过程安全可靠。
(7)第一腔体的设置可以控制为列车提供动力和阻力的部件组的温度,其中气体从靠近车头处的第一进出气口进入第一腔体,从车头处的部件组,流至车尾处的部件组,最后,经车身后方的进出气口流出。
(8)为了提高进气量,减少循环气体阻力;本方案还在第一腔体的上端面开设有多个第一进出气口,从而提高循环气体的量,从而提高降温的效率。
(9)其中第二腔体的设置是为了给刹车部件降温,列车前进时挤压低真空管道内部的气体从靠近车头处的第二进出气口进入到第二腔体内,流动的气体在刹车部件的下方流动,从而带走刹车部件产生的热量。
(10)本发明还在腔体内设置冷却换热器和/或喷嘴组件,增大了气体换热面积。
图1为列车在低真空管道内的剖视图。
图2为列车内设置低温储液/气恒温箱时低真空管道内的侧面透视图。
图3为低真空管道内设置腔体时在垂直于行进方向的剖面图。
图4为低真空管道内设置腔体时在俯视方向上的剖面图。
图5-9为冷却塔、过渡单元和A组降温组件处冷却换热器和/或B组降温组件处冷却换热器在不同模式下的结构图。
图10为A组降温组件和B组降温组件使用时的冷却塔、过渡单元不同模式下的结构图。
图11低真空管道内侧壁上设置B组降温组件、且在底部设置腔体时在垂直于行进方向的剖面图。
图12为列车外侧壁上设置C组降温组件、且在底部设置腔体时在垂直于行进方向的剖面图。
图13为列车外侧壁上设C组降温组件时与列车内的低温储液/气恒温箱之间的供液/气管路。
图14-16为低真空管道内包括双轨道的结构图。
图中标注符号的含义如下:
1-低真空管道
101-第一低真空管道 102-第二低真空管道 103-隔板
2-列车 3-第一进出气口 4-第一腔体
5-第二腔体 6-第二冷却换热器 7-刹车部件 8-第二进出气口
9-第一冷却换热器 10-为列车提供动力的部件组 12-连通管
21-冷却塔 22-第一泵体 23-散热板换 24-第二泵体
25-制冷机组 26-第三泵体 27-第四泵体 28-第五泵体
29-恒温水箱 30-第六泵体 31-第一开关阀 32-第二开关阀
33-第三开关阀 34-第四开关阀 35-第五开关阀 36-第六开关阀
37-自动补水阀 38-第七开关阀 39-第七泵体
401-A组喷嘴组件 402-B组喷嘴组件 403-C组喷嘴组件
501-A组冷却换热器 502-B组冷却换热器 503-C组冷却换热器
201-第八开关阀 202-低温储液/气恒温箱
203-第八泵体 204-第九泵体 205-第九开关阀
如图1-4所示,一种低真空管道列车沿线风循环散热系统,包括以下一种或者多种组合的方式给低真空管道内气体降温的方式。
方案1.通过增强低真空管道内气流扰动
系统包括分别位于列车2周边的腔体,所述腔体沿着列车2前进的方向并行延伸,列车2前进时挤压低真空管道内部的气体使气体在腔体及管道内循环,所述循环的气体带走列车运动时产生的热量。所述腔体靠近列车2的周边是为列车2运动和停止提供动力或阻力的部件组,在该方案中部件组包括列车2两侧均匀设置的为列车提供动力的部件组10和列车2下方设置的刹车部件7,其中循环的气体带走为列车提供动力的部件组10、刹车部件7在列车工作时产生 的热量。另外的,为列车提供动力的部件组10也可以水平设置在列车2的下方,或者其他布置方式;为列车提供阻力的刹车部件7也可以竖直设置在列车2的两侧,或者其他布置方式。
为了给为列车提供动力的部件组10和刹车部件7散热,腔体包括第一腔体4,第一腔体4靠列车2的内侧面是为列车提供动力的部件组10,其他侧面使用混凝土结构或其他支撑结构,在该方案中,第一腔体4为两列,分别为位于列车2的两侧,列车2前进时挤压低真空管道内部的气体从靠近车头处的第一进出气口3进入第一腔体4,从车头处的为列车提供动力的部件组10,流至车尾处的为列车提供动力的部件组10,最后,经车身后方的第一进出气口3流出,从而带走列车运行时产生的热量。
由于列车2前方存在着被挤压的气体,为提高第一腔体4的进气量,沿着列车2前进的方向,所述第一腔体4上端面开设有多个第一进出气口3,这些第一进出气口3可以均匀布置在第一腔体4上。
为了给列车2底部的刹车部件7散热,所述腔体还包括设置在列车2底部的第二腔体5,所述第二腔体5上端面为刹车部件7,第二腔体5的其他侧面为混凝土结构或其他支撑结构,所述刹车部件7沿着列车2前进方向上设置有多个第二进出气口8。列车2前进时挤压低真空管道内部的气体从靠近车头处的第二进出气口8进入到第二腔体5内,气体在刹车部件7的下方流动,经车身后方的第二进出气口8流出,从而带走列车运行时产生的热量。
为了实现气体的环流效果,第二腔体5两侧还设置有与两侧对应的第一腔体4导通的连通管12。详细地说,应该是列车2沿着长度方向的横截面设置有连通管12。
方案2.通过贴覆降温组件的方式来降温
2.1、在方案1的基础上,在腔体内设置A组降温组件。
具体设置在第一腔体4和第二腔体5内。在增大低真空管道内为列车提供动力的部件组10和刹车部件7降温。在图3中,腔体内同时设置有冷板换热器 和喷嘴组件,如图3所示,A组降温组件包括设置在腔体内且贴覆在部件组背面的A组冷却换热器501,对着部件组背面或所述腔体喷洒降温液体的A组喷嘴组件401,A组喷嘴组件401方向可根据低压管道内部温度/压力参数实现自动调节。A组冷却换热器工作时,其内部循环流动的低温液体可以实现流经A组冷却换热器表面的气流降温。
2.2、在低真空管道内壁上设置B组降温组件。
所述低真空管道内壁上设置有冷板换热器和喷嘴组件,如图11所述,B组降温组件包括B组喷嘴组件402和B组冷却换热器502。B组喷嘴组件402方向可根据低压管道内部温度/压力参数实现自动调节。B组喷嘴组件402可以将冷却的液体或气体喷洒至沿线发热线圈或列车表面,吸收低真空管道1内和列车2的表面热量,升温后的液体或气体经真空泵抽出低真空管道1,从而带走低真空管道1内和列车2的表面热量。B组冷却换热器工作时,其内部循环流动的低温液体可以实现流经B组冷却换热器表面的气流降温。
2.3、在列车2的外壁上设置C组降温组件。
如图12所示,C组降温组件包括C组冷却换热器503和C组喷嘴组件403。如图2所示,列车内还设置有低温储液/气恒温箱202,其中图12中设置在列车2外侧壁上为C组喷嘴组件403。给C组喷嘴组件403和C组冷却换热器503供能的循环管路如图13所示,在低温储液/气恒温箱202与C组冷却换热器503连接的管路上设置的第八泵体203、在低温储液/气恒温箱202与喷嘴组件403连接的管路上设置的第九泵体204或第九开关阀205。所述低温储液/气恒温箱202输入端设置有第八开关阀201,用于控制给低温储液/气恒温箱202的量,在该方案中第八开关阀201为低温储液/气恒温箱自动补液/气阀。
使用过程如下:
1)打开第八泵体203,储存于列车某节车厢处的低温储液/气恒温箱202中的工作液体/气体介质则通过相应的循环管路输送至列车外侧壁的C组冷却换热 器503,实现列车外的气温降低。
2)打开第九泵体204,储存于列车某节车厢处的低温储液/气恒温箱202中的工作液体/气体介质则通过相应的循环管路输送至C组喷嘴组件403,通过将低温工作液体/气体介质喷洒至低真空管道内部从而实现降温处理。
3)当低温储液/气恒温箱202中的工作液体/气体介质处于高压状态时,当列车或系统设备超出使用温度范围时,仅需打开第九开关阀205即可实现给喷嘴供液/气从而实现温度调节。
当使用方案2.1和方案2.2时,与对应组的冷却换热器和喷嘴组件连接的各部件可以设置在低真空管道1的外侧面,各部件的布局设计包括A1方案、A2方案、A3方案及A4方案,具体结构描述如下:
A1方案:
如图5所示,系统包括给冷却换热器提供冷源的冷却塔21,所述冷却塔21和冷却换热器之间还设置有过渡单元。所述过渡单元包括制冷机组25,所述冷却塔21到制冷机组25形成换热循环环路,并且冷却塔21与制冷机组25的冷凝端之间的管路上设置有第二泵体24。冷却塔21为制冷机组25的冷凝端提供相应温度的冷却水,所述制冷机组25与若干个冷却换热器之间形成换热环路,并且制冷机组25输送冷却介质的管路上设置有第六泵体30。制冷机组25可包括蒸气压缩循环冷水机组、吸收式冷水机组、压缩冷凝机组和蒸发器的组合等各类机组。制冷机组25包括蒸气压缩循环冷水机组、吸收式冷水机组、压缩冷凝机组和蒸发器的组合等各类机组。制冷机组25的蒸发端可以实现将换热介质的温度降温至目标低温,降温后的换热介质重新流入冷却换热器形成循环,可反复工作,实现不间断降温工作。其中A组冷却换热器501和B组冷却换热器502可以由若干个冷却换热器并行设置,如图5-10中第一冷却换热器9和第二冷却换热器6。
A2方案:
如图6所示,系统包括给冷却换热器提供冷源的冷却塔21,所述冷却塔21 和冷却换热器之间还设置有过渡单元。所述过渡单元包括散热板换23,所述冷却塔21到散热板换23形成换热循环路,并且冷却塔21与散热板换23的冷凝端之间的管路上设置有第一泵体22。所述散热板换23与若干个冷却换热器之间形成换热环路,并且散热板换23输送冷却介质的管路上设置有第三泵体26。升温后的换热介质重新进入冷却塔降温,形成循环,可反复工作,实现不间断降温工作。此种冷源供给模式不需要制冷机组等耗能设备对换热介质进行降温,仅通过冷却塔利用作为自然冷源的散热板换23实现降温,充分利用散热板换23实现节能减排运行。
A3方案:
如图7所示,在A1方案的制冷机组25与多块并行的冷却换热器之间设置恒温水箱29,具体的说,所述冷却塔21到制冷机组25形成换热循环路,并且冷却塔21与制冷机组25的冷凝端之间的管路上设置有第二泵体24。所述制冷机组25与恒温水箱29之间设置换热环路,制冷机组蒸发端可以实现将恒温水箱中换热介质的温度降温至目标低温,所述恒温水箱29到制冷机组25的管路上设置有第五泵体28,所述恒温水箱29与若干个冷却换热器之间形成换热环路,并且恒温水箱29输送冷却介质的管路上设置有第六泵体30。此种方法为间接冷却,第一冷却换热器和第二冷却换热器采用水或其他具有低导电率同时具有高导热率的换热介质进行循环流动均可。
A4方案
如图8所示,在A2方案的散热板换23与多块并行的冷却换热器之间设置恒温水箱29,具体地说,所述冷却塔21到散热板换23形成换热循环路,并且冷却塔21与散热板换23的冷凝端之间的管路上设置有第一泵体22。所述散热板换23与恒温水箱29之间设置换热环路,所述恒温水箱29到散热板换23的管路上设置有第四泵体27,所述恒温水箱29与若干个冷却换热器之间形成换热环路,并且恒温水箱29输送冷却介质的管路上设置有第六泵体30。由冷却塔21将恒温水箱29中的换热介质的温度经散热板换23降温至目标低温,处理后的换热介质由泵等动力设备输送至系统中的第一冷却换热器9和第二冷却换热 器6(其中,第一冷却换热器9和第二冷却换热器6为并行设置的若干个A组冷却换热器501和B组冷却换热器502),升温后的换热介质重新进入恒温水箱进行降温,形成循环,可反复工作,实现不间断降温工作。此种冷源供给模式不需要制冷机组等耗能设备对换热介质进行降温,仅通过冷却塔21利用自然冷源实现降温,充分利用自然冷源实现节能减排运行。
A5方案
为了在不同的状态下能够实现多重选择,或者以上多种方案同时进行,如图9所示,系统包括给冷却换热器提供冷源的冷却塔21,所述冷却塔21和冷却换热器之间还设置有过渡单元。所述过渡单元包括制冷机组25、散热板换23、恒温水箱29。
所述冷却塔21到散热板换23形成换热循环路,并且冷却塔21与散热板换23的冷凝端之间的管路上设置有第一泵体22。所述冷却塔21到制冷机组25可形成换热循环路,并且冷却塔21与制冷机组25的冷凝端之间的管路上设置有第二泵体24。
所述散热板换23与若干个冷却换热器之间形成换热环路,并且散热板换23输送冷却介质的管路上设置有第三泵体26,所述制冷机组25与若干个冷却换热器之间形成换热环路,并且制冷机组25输送冷却介质的管路上设置有第六泵体30。
所述散热板换23与恒温水箱29之间设置换热环路,所述恒温水箱29到散热板换23的管路上设置有第四泵体27,所述制冷机组25与恒温水箱29之间设置换热环路,所述恒温水箱29到制冷机组25的管路上设置有第五泵体28。
所述恒温水箱29与若干个冷却换热器之间形成换热环路,并且恒温水箱29输送冷却介质的管路上设置有第六泵体30。
为了能实现上述多种方案,介质从冷却换热器到恒温水箱29的管路上设置有第一开关阀31,介质从冷却换热器到散热板换23的管路上设置有第二开关阀32,介质从冷却换热器到制冷机组25的管路上设置有第三开关阀33,介质从恒温水箱29到第六泵体30的管路上设置有第四开关阀34,介质从制冷机组25到 第六泵体30的管路上设置有第五开关阀35,介质从第三泵体26到冷却换热器6、冷却换热器9的管路上设置有第六开关阀36。通过控制第一开关阀31、第二开关阀32、第三开关阀33、第四开关阀34、第五开关阀35、第六开关阀36的开闭状态可以选择以上所有方案。
当为实现A1方案时,需要打开第三开关阀33和第五开关阀35、关闭第一开关阀31、第二开关阀32、第四开关阀34和第六开关阀36,并且打开冷却塔21、制冷机组25、第二泵体24、第六泵体30。
当为实现A2方案时,需要打开第二开关阀32和第六开关阀36、关闭第一开关阀31、第三开关阀33、第四开关阀34和第五开关阀35,并且打开冷却塔21、散热板换23、第一泵体22、第三泵体26。
当为实现A3方案时,需要打开第一开关阀31和第四开关阀34、关闭第二开关阀32、第三开关阀33、第五开关阀35和第六开关阀36,并且打开冷却塔21、制冷机组5、第二泵体24、第五泵体28、第六泵体30。
当为实现A4方案时,需要打开第一开关阀31和第四开关阀34、关闭第二开关阀32、第三开关阀33、第五开关阀35和第六开关阀36,并且打开冷却塔21、散热板换23、第一泵体22、第四泵体27、第六泵体30。
如图10所示,当方案2.2和方案2.3仅仅使用喷嘴组件401/402时,可以使用恒温水箱29通过自动补水阀37与外部水源连接,恒温水箱29包括输出端依次经过第七开关阀38、第七泵体39给喷嘴组件401/402供水。
列车2位于低真空管道1内运行,风循环系统中腔体均位于低真空管道1内,当降温组件设置在腔体内和/或设置在低真空管道1的内侧壁上时,在以上五种方案中的所述冷却塔21和过渡单元设置在低真空管道1外沿线区域,这是因为冷却塔和过渡单元均不宜在低真空环境中使用。
由于列车均为双向,如图14-16所示,低真空管道1内设置有两组平行的设置在对应列车2周边的腔体。低真空管道1使用隔板103分成第一低真空管道101和第二低真空管道102。
在方案1和/或方案2.1的技术上,所述第二腔体5的底部混凝土基座内部 开挖槽道,槽道走向及具体尺寸可根据需要进行设计,槽道内可通以水或其他低蒸发温度的液体,对槽道进行“漫灌式”给液,设置流动液体,利用液体蒸发冷却,实现管道内部气流降温。
本方案可以单独采用或若干种结合使用的方案1、方案2.1、方案2.2、方案2.3,另外方案2.1和方案2.2中与对应组的冷却换热器和喷嘴组件连接的各部件的布局设计可以从方案A1、A2、A3、A4中任选。
以上仅为本发明创造的较佳实施例而已,并不用以限制本发明创造,凡在本发明创造的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明创造的保护范围之内。
Claims (10)
- 一种低真空管道高速列车散热系统,其特征在于,低真空管道(1)内,靠近列车(2)的周边是为列车(2)运动和停止提供动力或阻力的部件组,所述部件组配置有A组降温组件,所述A组降温组件包括贴覆在部件组背面的A组冷却换热器(501)和/或A组喷嘴组件(401)。
- 根据权利要求1所述的一种低真空管道高速列车散热系统,其特征在于,低真空管道(1)内还包括分别位于列车(2)周边的腔体,所述腔体沿着列车(2)前进的方向并行延伸,所述腔体靠近列车(2)的周边是为列车(2)运动和停止提供动力或阻力的部件组,所述腔体沿着长度方向上有进出气口,列车(2)前进时挤压低真空管道内部的气体使气体在腔体及管道内循环,所述循环的气体带走列车运动时产生的热量。
- 根据权利要求2所述的一种低真空管道高速列车散热系统,其特征在于,低真空管道(1)上设置有B组降温组件,所述B组降温组件包括B组冷却换热器(502)和/或B组喷嘴组件(402)。
- 根据权利要求2或3所述的一种低真空管道高速列车散热系统,其特征在于,当降温组件包括对应组的冷却换热器时,所述降温组件还包括给冷却换热器提供冷源的冷却塔(21),所述冷却塔(21)和冷却换热器之间还设置有过渡单元,冷却塔(21)和过渡单元设置在低真空管道(1)外部。
- 根据权利要求4所述的一种低真空管道高速列车散热系统,其特征在于,所述过渡单元包括散热板换(23)或制冷机组(25),所述散热板换(23)或制冷机组(25)与冷却塔(21)之间形成换热环路,所述散热板换(23)或制冷机组(25)与冷却换热器之间形成换热环路。
- 根据权利要求4所述的一种低真空管道高速列车散热系统,其特征在于,所述过渡单元还包括恒温水箱(29),所述恒温水箱(29)设置在散热板换(23)或制冷机组(25)与冷却换热器之间。
- 根据权利要求2或3所述的一种低真空管道高速列车散热系统,其特征在于,当降温组件包括对应组的喷嘴组件时,所述降温组件还包括恒温水箱(29)、自动补水阀(37)、第七开关阀(38)、第七泵体(39),所述恒温 水箱(29)通过自动补水阀(37)与外部水源连接,恒温水箱(29)包括输出端依次经过第七开关阀(38)、第七泵体(39)给喷嘴组件(401/402)供水。
- 根据权利要求2所述的一种低真空管道高速列车散热系统,其特征在于,所述腔体包括设置在列车(2)周边并在低真空管道内沿线的第一腔体(4),所述第一腔体(4)靠近列车(2)的为列车提供动力的部件组(10)。
- 根据权利要求8所述的一种低真空管道高速列车散热系统,其特征在于,沿着列车(2)前进的方向,所述第一腔体(4)上端面开设有多个第一进出气口(3)。
- 根据权利要求3或9所述的一种低真空管道高速列车散热系统,其特征在于,所述腔体包括设置在列车(2)底部并在低真空管道内沿线的第二腔体(5),所述第二腔体(5)上端面为刹车部件(7),所述刹车部件(7)沿着列车(2)前进方向上设置有多个第二进出气口(8)。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/615,528 US11999387B2 (en) | 2020-03-05 | 2021-02-25 | Heat dissipation system for high-speed train running in low-vacuum tube |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010146656.X | 2020-03-05 | ||
CN202010146656.XA CN111409650B (zh) | 2020-03-05 | 2020-03-05 | 一种低真空管道列车沿线风循环散热系统 |
CN202010820687.9A CN112026795A (zh) | 2020-08-14 | 2020-08-14 | 一种高速列车适用的低真空管道 |
CN202010820687.9 | 2020-08-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021175140A1 true WO2021175140A1 (zh) | 2021-09-10 |
Family
ID=77612976
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/077768 WO2021175140A1 (zh) | 2020-03-05 | 2021-02-25 | 一种低真空管道高速列车散热系统 |
Country Status (2)
Country | Link |
---|---|
US (1) | US11999387B2 (zh) |
WO (1) | WO2021175140A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115158369A (zh) * | 2022-06-24 | 2022-10-11 | 中铁第一勘察设计院集团有限公司 | 预应力混凝土真空管道 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102079310A (zh) * | 2009-11-30 | 2011-06-01 | 刘本林 | 真空管道用于长途客运的一些关键技术 |
CN105620495A (zh) * | 2016-01-28 | 2016-06-01 | 北京九州动脉隧道技术有限公司 | 一种用于真空管道列车的阶段式驱动系统 |
CN108513498A (zh) * | 2018-03-29 | 2018-09-07 | 中国科学院理化技术研究所 | 一种真空磁悬浮列车的相变储热系统 |
US20180281820A1 (en) * | 2017-03-31 | 2018-10-04 | The Boeing Company | Vacuum transport tube vehicle, system, and method for evacuating a vacuum transport tube |
CN110696843A (zh) * | 2019-11-06 | 2020-01-17 | 中国铁路设计集团有限公司 | 一种应用于低真空磁浮系统的带有冷却及检漏功能的管道段 |
CN111409650A (zh) * | 2020-03-05 | 2020-07-14 | 合肥通用机械研究院有限公司 | 一种低真空管道列车沿线风循环散热系统 |
CN112026795A (zh) * | 2020-08-14 | 2020-12-04 | 合肥通用机械研究院有限公司 | 一种高速列车适用的低真空管道 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4820215B1 (zh) * | 1969-09-11 | 1973-06-19 | ||
US5666883A (en) * | 1994-05-24 | 1997-09-16 | Power Superconductor Applications Co., Inc. | Method and apparatus for use of alternating current in primary suspension magnets for electrodynamic guidance with superconducting fields |
US5950543A (en) * | 1997-10-10 | 1999-09-14 | Et3.Com Inc. | Evacuated tube transport |
US9085304B2 (en) * | 2013-03-15 | 2015-07-21 | Daryl Oster | Evacuated tube transport system with improved cooling for superconductive elements |
US11787448B2 (en) * | 2017-08-29 | 2023-10-17 | Krri | Hypertube transport system |
-
2021
- 2021-02-25 US US17/615,528 patent/US11999387B2/en active Active
- 2021-02-25 WO PCT/CN2021/077768 patent/WO2021175140A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102079310A (zh) * | 2009-11-30 | 2011-06-01 | 刘本林 | 真空管道用于长途客运的一些关键技术 |
CN105620495A (zh) * | 2016-01-28 | 2016-06-01 | 北京九州动脉隧道技术有限公司 | 一种用于真空管道列车的阶段式驱动系统 |
US20180281820A1 (en) * | 2017-03-31 | 2018-10-04 | The Boeing Company | Vacuum transport tube vehicle, system, and method for evacuating a vacuum transport tube |
CN108513498A (zh) * | 2018-03-29 | 2018-09-07 | 中国科学院理化技术研究所 | 一种真空磁悬浮列车的相变储热系统 |
CN110696843A (zh) * | 2019-11-06 | 2020-01-17 | 中国铁路设计集团有限公司 | 一种应用于低真空磁浮系统的带有冷却及检漏功能的管道段 |
CN111409650A (zh) * | 2020-03-05 | 2020-07-14 | 合肥通用机械研究院有限公司 | 一种低真空管道列车沿线风循环散热系统 |
CN112026795A (zh) * | 2020-08-14 | 2020-12-04 | 合肥通用机械研究院有限公司 | 一种高速列车适用的低真空管道 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115158369A (zh) * | 2022-06-24 | 2022-10-11 | 中铁第一勘察设计院集团有限公司 | 预应力混凝土真空管道 |
CN115158369B (zh) * | 2022-06-24 | 2023-08-29 | 中铁第一勘察设计院集团有限公司 | 预应力混凝土真空管道 |
Also Published As
Publication number | Publication date |
---|---|
US20220315066A1 (en) | 2022-10-06 |
US11999387B2 (en) | 2024-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111409650B (zh) | 一种低真空管道列车沿线风循环散热系统 | |
US10356949B2 (en) | Server rack heat sink system with combination of liquid cooling device and auxiliary heat sink device | |
WO2021169837A1 (zh) | 一种相变冷却系统及其工作方法 | |
CN111029496B (zh) | 一种可高效散热的储能电池散热支架 | |
WO2021175140A1 (zh) | 一种低真空管道高速列车散热系统 | |
CN112339614A (zh) | 一种适用于燃料电池汽车热系统的协同管理方法 | |
CN112026795A (zh) | 一种高速列车适用的低真空管道 | |
KR102270023B1 (ko) | 다중 공기유동 및 수분배 방식이 적용된 프리쿨링 냉각탑 | |
CN111231602A (zh) | 基于热管与热泵空调的新能源汽车电池热管理系统及方法 | |
CN106848478A (zh) | 用于电池的冷却系统及其冷却方法 | |
JPH03233265A (ja) | 吸収ヒートポンプ | |
CN111994098A (zh) | 一种低真空管道高速列车系统 | |
CN103411350B (zh) | 一种基于太阳能制冷板冷热两联供系统 | |
CN114845529B (zh) | 一种用于电力机车牵引系统的相变蓄冷式散热装置 | |
CN207247612U (zh) | 一种水路耦合复叠式低温风冷热泵系统 | |
CN107026295A (zh) | 用于电池的冷却方法 | |
CN114745900A (zh) | 数据中心 | |
CN114518005A (zh) | 管道壁面套管式冷却循环散热方法 | |
CN114518043A (zh) | 用于真空管道磁悬浮运输系统的管道间隔式散热方法 | |
CN216659606U (zh) | 一种液冷充电桩 | |
CN114516345B (zh) | 管道壁面喷淋式冷却循环散热系统及磁悬浮运输系统 | |
CN205209305U (zh) | 一种适应于小空间、多点热源的高效散热系统 | |
CN213636151U (zh) | 冷水机组与储能系统 | |
CN110940214A (zh) | 一种可制冷、制热的环路热管 | |
CN216783280U (zh) | 一种充电桩 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21765082 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21765082 Country of ref document: EP Kind code of ref document: A1 |