WO2021175117A1 - 冷冻球囊控制装置、导管系统及温度显示方法 - Google Patents

冷冻球囊控制装置、导管系统及温度显示方法 Download PDF

Info

Publication number
WO2021175117A1
WO2021175117A1 PCT/CN2021/076770 CN2021076770W WO2021175117A1 WO 2021175117 A1 WO2021175117 A1 WO 2021175117A1 CN 2021076770 W CN2021076770 W CN 2021076770W WO 2021175117 A1 WO2021175117 A1 WO 2021175117A1
Authority
WO
WIPO (PCT)
Prior art keywords
balloon
temperature
circumferential
cryo
circumferential temperature
Prior art date
Application number
PCT/CN2021/076770
Other languages
English (en)
French (fr)
Inventor
沈刘娉
庞德贵
孙毅勇
刘金锋
张清淳
Original Assignee
上海微创电生理医疗科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微创电生理医疗科技股份有限公司 filed Critical 上海微创电生理医疗科技股份有限公司
Priority to US17/909,235 priority Critical patent/US20230097773A1/en
Priority to EP21764064.8A priority patent/EP4104781A4/en
Publication of WO2021175117A1 publication Critical patent/WO2021175117A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • A61B2018/00023Cooling or heating of the probe or tissue immediately surrounding the probe with fluids closed, i.e. without wound contact by the fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • A61B2018/0022Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00666Sensing and controlling the application of energy using a threshold value
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00714Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00744Fluid flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • A61B2018/00797Temperature measured by multiple temperature sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00898Alarms or notifications created in response to an abnormal condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0212Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques using an instrument inserted into a body lumen, e.g. catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0231Characteristics of handpieces or probes
    • A61B2018/0262Characteristics of handpieces or probes using a circulating cryogenic fluid

Definitions

  • the present invention relates to the technical field of medical equipment, in particular to a cryo-balloon control device, a catheter system and a temperature display method.
  • Cryoablation is currently widely used to treat tachyarrhythmias, such as atrial fibrillation (AF).
  • the working principle of cryoablation is to take away the heat of the tissue through the heat absorption and evaporation of the liquid refrigerant, so that the temperature of the target ablation site is reduced, and the cell tissue is "frozen to death", thereby destroying the area with abnormal electrophysiological activity and achieving the purpose of treating arrhythmia.
  • a large amount of clinical data shows that compared with other ablation methods, cryoablation is easier for doctors to learn and operate, shorten the operation time, improve the effectiveness of treatment, and reduce serious complications such as thrombosis, and reduce the pain of patients.
  • the cryoablation system currently in use includes cryoablation equipment and cryo-balloon catheters. Temperature control and display are the main factors that influence whether cryoablation surgery can achieve effective ablation. It is generally believed that the tissue will form an effective "frostbite" at -60°C, which can isolate the pulmonary veins.
  • the current cryo-balloon catheter has only one temperature monitoring point, and it is inside the balloon. However, what the operator wants to know is the true temperature of the contact part of the tissue and the balloon. Therefore, the current design does not give the operator an intuitive experience, and needs to rely on the operator's experience.
  • general cryoablation equipment does not have the function of target temperature control. After the ablation starts, the ablation temperature drops rapidly and cannot be controlled.
  • cryoablation system provides an intuitive interface that can not only control the target temperature, but also provide the operator with an intuitive interface for changes in tissue temperature at multiple locations, it will provide the operator with more valuable surgical information, thereby enhancing the safety of the operation .
  • the purpose of the present invention is to provide a cryo-balloon control device, a catheter system and a temperature display method to solve the problem that the temperature display of the cryoablation equipment in the prior art is not intuitive and the temperature cannot be conveniently controlled.
  • the first aspect of the present invention provides a cryo-balloon control device, the control device is connected with the cryo-balloon catheter, and the control device is configured to obtain the data from the control device.
  • the flow rate of the refrigerant input to the freezing balloon is automatically adjusted to realize the temperature control of the freezing balloon, wherein the comparison temperature value It is the central temperature value of the balloon, any one of the plurality of circumferential temperature values of the balloon, or a calculated temperature value obtained by a preset algorithm according to the plurality of circumferential temperature values of the balloon.
  • the comparison temperature value is a calculated temperature value obtained by a preset algorithm according to the circumferential temperature values of the multiple balloons
  • the preset algorithm includes any one of the following:
  • the lowest value of the balloon circumferential temperature values lower than the temperature value of the balloon center is determined as the calculated temperature value.
  • the second aspect of the present invention provides a cryo-balloon catheter system, which includes the control device described above, a cryo-balloon catheter, and a display device.
  • the cryo-balloon catheter includes a cryo-balloon, A center temperature sensor arranged in the center of the freezing balloon, and a plurality of circumferential temperature sensors arranged on the freezing balloon along the circumferential direction of the freezing balloon, the center temperature sensor and the circumferential direction
  • the temperature sensors are respectively communicatively connected with the control device, the display device is communicatively connected with the control device, the display device is provided with an input area for the balloon setting temperature, and the cryo-balloon catheter system is configured as:
  • the corresponding balloon circumferential temperature icon includes a first warning state to prompt the operator to adjust the freezing The temperature of the balloon.
  • the balloon circumferential temperature diagram includes a balloon circumferential temperature state diagram, and the balloon circumferential temperature state diagram is used to display a normal state or display the first warning state; wherein the normal state It indicates that the circumferential temperature value of the balloon acquired by the corresponding circumferential temperature sensor is within the first threshold range, so as to prompt the operator that the temperature of the cryo-balloon catheter at the corresponding circumferential region is appropriate.
  • a plurality of the balloon circumferential temperature state diagrams are distributed in a ring shape to form a diagram ring; the circumferential position of each balloon circumferential temperature state diagram on the diagram ring corresponds to The circumferential temperature sensors of the cryo-balloons correspond to the circumferential positions on the freezing balloon one-to-one.
  • the first warning state includes a warning state exceeding a lower limit and a warning state exceeding an upper limit
  • the lower limit warning state indicates that the circumferential temperature value of the balloon acquired by the corresponding circumferential temperature sensor is lower than the lower limit of the first threshold range
  • the upper limit warning state indicates that the circumferential temperature value of the balloon acquired by the corresponding circumferential temperature sensor is higher than the upper limit of the first threshold range.
  • the balloon circumferential temperature diagram includes a balloon circumferential temperature graph, and the balloon circumferential temperature graph includes a balloon circumferential temperature value obtained by a corresponding circumferential temperature sensor over time. Curve.
  • the balloon circumferential temperature graph includes displaying the first warning state; the first warning state includes flashing or thickening of the balloon circumferential temperature graph; and/or, the The balloon circumferential temperature diagram also includes the lower limit temperature line of the first threshold range.
  • the balloon circumferential temperature diagram includes a balloon diagram, and the balloon diagram includes a plurality of schematic points corresponding to the plurality of circumferential temperature sensors and/or the central temperature sensor, each The distribution of the schematic points in the balloon schematic diagram corresponds to the distribution of the circumferential temperature sensor and/or the central temperature sensor on the cryo-balloon in a one-to-one correspondence.
  • cryo-balloon catheter system is further configured to display historical ablation data of multiple ablation regions on the display device, and provide a selection button for the current ablation region for the operator to click.
  • cryo-balloon catheter system is further configured to display the inflation state of the cryo-balloon on the display device, and the inflation state of the cryo-balloon includes: the internal pressure of the cryo-balloon , At least one of the balloon center temperature value, inflation duration, inflation flow, and inflation pressure.
  • the inflation state of the frozen balloon includes the second Alert status.
  • cryo-balloon catheter system is further configured to:
  • the cryo-balloon catheter executes according to the input balloon set temperature and ablation duration Cryoablation operation, and the system automatically adjusts the flow rate of the refrigerant according to the comparison result of the comparison temperature value and the set temperature of the balloon; when the pause button is clicked, the system pauses the execution of the Cryoablation operation; when the emergency stop button is clicked, the system stops performing the cryoablation operation.
  • the display device is also used to display at least one of the change curve of the calculated temperature value with time, the internal pressure of the cryo-balloon, and the ablation duration.
  • cryo-balloon catheter system is further configured to:
  • the display device After the refrigerating gas supply to the cryo-balloon catheter is stopped, the display device displays the multiple balloon circumferential temperature icons, the balloon center temperature icon, the temperature-recovery time, and the frozen ball The internal pressure of the sac.
  • the third aspect of the present invention provides a temperature display method using the cryo-balloon catheter system as described above, including:
  • a plurality of balloon circumferential temperature icons are displayed; according to the balloon center temperature value, a balloon center temperature icon is displayed; wherein, the plurality of balloons circumferentially The temperature diagram is arranged around the center temperature diagram of the balloon;
  • the corresponding balloon circumferential temperature icon displays the first warning state to prompt the operator to adjust the cryo-balloon catheter temperature.
  • the balloon circumferential temperature diagram includes a balloon circumferential temperature state diagram, and a plurality of the balloon circumferential temperature state diagrams are distributed in a ring shape to form a diagram ring; each of the balloons
  • the circumferential position of the circumferential temperature state diagram on the illustrated ring corresponds to the circumferential position of the corresponding circumferential temperature sensor on the freezing balloon.
  • the peripheral temperature value of the balloon obtained by a plurality of peripheral temperature sensors arranged on the cryo-balloon in the peripheral direction is , Display multiple balloon circumferential temperature icons on the display device; and display the balloon center temperature icon on the display device according to the balloon center temperature value obtained by the center temperature sensor disposed in the center of the cryo-balloon ,
  • the multiple balloon circumferential temperature diagrams are arranged around the balloon center temperature diagram, and the display mode is intuitive; wherein, if any one of the balloon circumferential temperature values exceeds the preset first threshold range, it corresponds to
  • the balloon circumferential temperature icon includes a first warning state to prompt the operator to adjust the temperature of the cryo-balloon; an input area for the balloon setting temperature is provided on the display device and is set according to the balloon The temperature is compared with a comparison temperature value, and the flow rate of the refrigerant input to the freezing balloon is automatically adjusted to realize the temperature control of the
  • This configuration can visually display whether the temperature of each area of the frozen balloon is within the appropriate temperature range. If the temperature of a certain area of the frozen balloon exceeds the preset first threshold range, the corresponding balloon circumferential temperature The figure will show the first warning state to guide the operator to adjust the temperature of the cryo-balloon; on the other hand, the balloon setting temperature input area provided on the display device can be used by the operator to input the balloon setting temperature.
  • the system compares the set temperature of the balloon with a comparison temperature value, and then automatically adjusts the flow of the refrigerant according to the comparison result, so as to control the temperature of the frozen balloon.
  • the temperature control process is simple and reliable.
  • the comparison temperature value is the balloon center temperature value, any one of the balloon circumferential temperature values, or a calculated temperature value obtained by a preset algorithm according to multiple balloon circumferential temperature values, so that the system has a wide adaptability. , High accuracy.
  • Fig. 1 is a schematic diagram of a cryo-balloon catheter system provided by an embodiment of the present invention
  • Fig. 2 is a schematic diagram of the freezing balloon in Fig. 1, wherein the circumferential temperature sensor is arranged along the circumferential direction of the freezing balloon and the center temperature sensor is arranged at the center of the freezing balloon.
  • FIG. 3 is a schematic diagram of a display device displaying a ready interface provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a display device displaying an inflation interface according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a display device displaying ablation interface one according to an embodiment of the present invention.
  • Fig. 6 is a schematic diagram of a second ablation interface displayed on a display device according to an embodiment of the present invention.
  • Fig. 7 is a graph of the circumferential temperature of the balloon provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a display device provided in an embodiment of the present invention displaying a temperature recovery interface.
  • 11-Balloon circumferential temperature state diagram 111-Normal state; 112-First warning state; 12-Balloon circumferential temperature graph; 120-Balloon center temperature value curve; 121-Balloon circumferential temperature value The curve of 13-lower temperature line; 14-balloon schematic diagram; 140-indicative point; 15-balloon filling diagram;
  • M1-ready interface M2-inflation interface; M3-ablation interface; M4-regeneration interface.
  • the singular forms “a”, “an” and “the” include plural objects, and the plural form “plurality” includes two or more objects, unless the content clearly indicates otherwise.
  • the term “or” is usually used to include the meaning of “and/or”, unless the content clearly indicates otherwise, the term “proximal” usually refers to the end close to the operator. The “distal” is usually the end close to the patient's lesion.
  • the present invention provides a cryo-balloon catheter system to solve the problem that the temperature display of cryoablation equipment in the prior art is not intuitive and the temperature cannot be conveniently controlled.
  • Figure 1 is a schematic diagram of a cryo-balloon catheter system provided by an embodiment of the present invention
  • Figure 2 is a schematic diagram of the cryo-balloon catheter system in Figure 1
  • Figure 3 is a schematic diagram of the cryo-balloon catheter system in Figure 1
  • FIG. 4 is a schematic diagram of a display device provided by an embodiment of the present invention displaying an inflation interface
  • FIG. 5 is a schematic diagram of a display device provided by an embodiment of the present invention displaying ablation interface 1
  • the display device provided by an embodiment of the present invention is a schematic diagram showing the second ablation interface. Schematic.
  • an embodiment of the present invention provides a cryo-balloon catheter system, which includes: a cryo-balloon catheter, a control device 2 and a display device 3.
  • the cryo-balloon catheter includes a cryo-balloon 1.
  • the control device 2 includes a readable storage medium with a program stored on the readable storage medium, and the cryo-balloon 1 includes a core temperature sensor 5 arranged in the center of the cryo-balloon 1 (as shown in FIG. 2 ), and a plurality of circumferential temperature sensors 4 (as shown in FIG.
  • the cryo-balloon catheter system further includes a cryoablation device connected to the cryo-balloon catheter.
  • the cryo-balloon 1 enters the left atrium through the vascular access to perform cryoablation.
  • the cryoablation device mainly provides freezing energy to the freezing balloon 1 and at the same time detects the temperature of the freezing balloon 1.
  • cryoablation procedure is roughly as follows: the cryo-balloon 1 of the cryo-balloon catheter enters the left atrium through the vascular access---fills the cryo-balloon 1----places the cryo-balloon 1 on the target ablation site by X-ray---imaging Confirm whether the cryo-balloon 1 is well sealed --- perform cryoablation --- stop ablation and perform balloon rewarming --- retract the cryo-balloon 1 and adjust the position to the next target ablation site.
  • Those skilled in the art can perform specific configuration of the cryo-balloon catheter system according to the prior art, and the present invention will not be described in detail.
  • the present invention improves the control device 2. A preferred embodiment of the present invention will be described in detail below.
  • Step S1 Obtain a plurality of balloon circumferential temperature values obtained by a plurality of the circumferential temperature sensors, and a balloon center temperature value obtained by the central temperature sensor (that is, each balloon circumferential temperature value is determined by the corresponding Obtained by the circumferential temperature sensor);
  • Step S2 Display a plurality of balloon circumferential temperature icons on the display device 2 according to the plurality of balloon circumferential temperature values; the plurality of balloon circumferential temperature icons surround the balloon center temperature icon Layout
  • Step S3 Display the balloon center temperature icon on the display device 2 according to the balloon center temperature value; it should be understood that step S2 and step S3 have no sequence, and they can be performed simultaneously or sequentially;
  • the corresponding balloon circumferential temperature icon displays the first warning state to prompt the operator to adjust the frozen balloon The temperature of the catheter; and providing an input area for the balloon setting temperature on the display device 2 and automatically adjusting the input to the freezing balloon 1 according to the comparison result of the balloon setting temperature and a comparison temperature value
  • the flow rate of the refrigerant is used to control the temperature of the frozen balloon, wherein the comparison temperature value is any one of the balloon center temperature value, a plurality of balloon circumferential temperature values, or according to a plurality of balloon circumferences.
  • the temperature value is calculated by the preset algorithm.
  • the temperature at each area of the freezing balloon 1 (mainly referring to each peripheral area in the circumferential direction of the freezing balloon 1) is within an appropriate temperature range. If the temperature in a certain area of the cryo-balloon 1 exceeds the preset first threshold range, the first warning state will be displayed in the corresponding balloon circumferential temperature diagram to guide the operator to check the temperature of the cryo-balloon catheter. Adjustment. In the cryoablation process, the good adhesion and sealing of the balloon at the ablation site is very important to the effectiveness of the entire ablation operation. The local temperature drop rate of the balloon can be used to judge whether the balloon is well sealed.
  • the local tissue temperature is too low will cause serious complications, which will directly affect the safety of the operation. Therefore, multiple balloon circumferential temperature icons can allow the operator to intuitively understand useful information (such as the temperature status of each area of the balloon circumference, etc.), and better guide the operator to complete the operation.
  • the balloon setting temperature input area provided on the display device 2 can be used by the operator to input the balloon setting temperature. The system compares the set temperature of the balloon with a comparison temperature value, and then automatically adjusts the flow rate of the refrigerant according to the comparison result, so as to control the temperature of the freezing balloon 1, and the temperature control process is simple and reliable.
  • the comparison temperature value is any one of the balloon center temperature value, a plurality of balloon circumferential temperature values, or a calculated temperature value obtained by a preset algorithm according to the plurality of balloon circumferential temperature values, so that the system's Wide adaptability and high accuracy.
  • one of the balloon circumferential temperature values can be selected as the calculated temperature value for PID (Proportion Integration Differentiation) control; it can also be selected by selecting all or part of multiple balloon circumferential temperature values through a preset algorithm Determine the final calculated temperature value.
  • the preset algorithm includes any one of the following:
  • F1 Determine the lowest value among all the balloon circumferential temperature values as the calculated temperature value; select all multiple balloon circumferential temperature values, and determine the balloon with the lowest balloon circumferential temperature value by comparison Circumferential area, and select the balloon circumferential temperature value of the balloon circumferential area to perform temperature control so that it is not lower than the set temperature of the balloon. This method can ensure that the lowest temperature of the entire balloon surface is not lower than the set temperature of the balloon to ensure the safety of cryoablation surgery.
  • F2 Determine the average value of all the balloon circumferential temperature values as the calculated temperature value; take the temperature of the entire balloon as the reference object, and averagely process all the balloon circumferential temperature values on the balloon surface to obtain Calculate the temperature value. This can reduce unnecessary flow control fluctuations caused by fluctuations in the circumferential temperature value of a single balloon.
  • F3 Select the balloon circumferential temperature values lower than the balloon center temperature value among all balloon circumferential temperature values, and average the balloon circumferential temperature values lower than the balloon center temperature value The value is determined as the calculated temperature value; based on the comparison results of a plurality of balloon circumferential temperature values and the balloon center temperature value, an appropriate method is selected for temperature control. For example: take the balloon center temperature as the comparison value, if only one balloon circumferential temperature value is lower than the balloon center temperature value, select the balloon circumferential temperature value as the calculated temperature value for target temperature control; If the peripheral temperature of each balloon is lower than the center temperature of the balloon, the average value of the peripheral temperature of the balloon lower than the center temperature of the balloon is selected as the calculated temperature value, and the target temperature is controlled.
  • F4 Select all the balloon circumferential temperature values that are lower than the balloon center temperature value among all the balloon circumferential temperature values, and set the balloon circumferential temperature values lower than the balloon center temperature value The lowest value is determined as the calculated temperature value. If multiple balloon circumferential temperature values are lower than the balloon center temperature value, the lowest temperature balloon circumferential temperature value among these balloon circumferential temperature values is selected as the calculated temperature value to perform target temperature control.
  • the balloon circumferential temperature diagram includes the balloon circumferential temperature state diagram 11, the balloon circumferential temperature state diagram 11 shows the normal state 111 or the first warning state 112; wherein the normal state 111 represents The circumferential temperature value of the balloon acquired by the corresponding circumferential temperature sensor is within the first threshold range, so as to prompt the operator that the temperature of the corresponding circumferential region of the freezing balloon 1 is appropriate.
  • a plurality of the balloon circumferential temperature state diagrams 11 are distributed in a ring shape to form a diagram ring; the circumferential position of each balloon circumferential temperature state diagram 11 on the diagram ring is the same as
  • the corresponding circumferential temperature sensors are in one-to-one correspondence with the circumferential positions on the freezing balloon 1.
  • the balloon center temperature graphic includes a numerical display of the balloon center temperature value, and the numerical display is preferably located in the central area of the graphic ring.
  • the balloon circumferential temperature diagram includes 8 balloon circumferential temperature state diagrams 11, and the 8 balloon circumferential temperature state diagrams 11 are all arc-shaped segments, which are formed around the same circle center. Annular distribution, forming a ring as shown in the figure.
  • Each arc segment represents the circumferential temperature value of the balloon obtained by the circumferential temperature sensor at a circumferential area of the freezing balloon 1.
  • Circumferential temperature state of the balloon Figure 11 can indicate the temperature conditions of different areas on the periphery of the cryo-balloon 1 in different colors. For example, green (represented as a blank area in Figure 5) indicates the normal state 111, and red indicates the first warning state. 112 (shown as shaded area in Figure 5). In this way, through the illustrated ring, it is possible to intuitively understand whether the circumferential temperature value of the balloon obtained by the circumferential temperature sensor at each circumferential area on the freezing balloon 1 is normal.
  • the first warning state 112 includes an over-lower limit warning state and an over-upper limit warning state; the over-lower limit warning state indicates that the balloon circumferential temperature value obtained by the corresponding circumferential temperature sensor is lower than the first threshold value The lower limit of the range; the over-upper limit warning state indicates that the balloon circumferential temperature value obtained by the corresponding circumferential temperature sensor is higher than the upper limit of the first threshold range. For example, when the circumferential temperature value of the balloon obtained by the circumferential temperature sensor is lower than the lower limit of the first threshold range, the lower limit warning state is displayed as red flashing, indicating that the circumferential temperature sensor corresponds to the balloon circumferential area If the temperature is too low, serious injury may be caused to warn the operator to adjust the balloon temperature.
  • the warning state of exceeding the upper limit is displayed as a red steady state, indicating that the circumferential temperature sensor corresponds to the balloon circumferential direction
  • the temperature of the area does not reach (above) the preset temperature range. This may be caused by poor balloon occlusion, which will affect the ablation effect, thus reminding the operator to confirm the balloon occlusion or adjust the position of the balloon.
  • the first threshold range for effective ablation can be determined by a comparison method.
  • the temperature value of the balloon circumferential area where the surface and the ablation site is well attached should be lower than the temperature of the balloon center, so the cryoablation effect is good; while the temperature value of the balloon circumferential area that is not attached well The temperature is significantly higher than the center of the balloon, and effective ablation cannot be achieved.
  • the first threshold range can also be set according to the operator’s experience or conventional configurations in the field.
  • the normal state 111 and the first warning state 112 are not limited to being configured as green and red, and can also be other colors, Sound, vibration or flashing and other prompt methods.
  • the balloon circumferential temperature diagram includes a balloon circumferential temperature curve diagram 12, and the balloon circumferential temperature curve diagram 12 includes a balloon circumferential temperature value obtained by a corresponding circumferential temperature sensor over time.
  • the change curve Please refer to Figure 7, where the abscissa is time (unit: second/s) and the ordinate is temperature (unit: Celsius/°C).
  • the curve 120 representing the temperature value of the balloon center is around -35°C
  • the curve 121 representing the circumferential temperature value of a balloon is mainly located below -45°C, indicating that the curve 121 corresponds to the balloon circumferential region.
  • the balloon surface is in good contact with the ablation site.
  • the temperature of the curve 121' representing the circumferential temperature of the other balloon is higher than -10°C, indicating that the balloon surface and the ablation site in the corresponding balloon circumferential area are not in good contact with each other, and good freezing cannot be achieved.
  • the ablation effect which will directly affect the clinical ablation effectiveness. Therefore, the circumferential temperature profile of the balloon can intuitively prompt the operator of the ablation effect, which has great clinical value.
  • the operator can choose to adjust the position of the balloon and regulate the target temperature (for example, the center temperature of the balloon). After the target temperature is adjusted, the curve 120 representing the temperature of the balloon center in FIG. 7 also changes. At this time, the operator can refer to the change of the curve 120 to understand the temperature change history (that is, the change of the temperature change over time), so as to further provide an intuitive reference and basis for temperature control.
  • the balloon circumferential temperature graph 12 displays the first warning state; the first warning state includes flashing or thickening the balloon circumferential temperature graph. Similar to the balloon circumferential temperature diagram 11, the balloon circumferential temperature curve diagram 12 can also display the normal state or the first warning state.
  • the corresponding balloon circumferential temperature curve Figure 12 shows a normal state, such as a normal curve; and when a certain circumferential temperature sensor The balloon circumferential temperature value obtained by the temperature sensor exceeds the first threshold range, and the corresponding balloon circumferential temperature curve Fig. 12 displays the first warning state, such as the curve is configured to flash, thicken, or change color.
  • the first warning state can also be further divided into an over-lower limit warning state and an over-upper limit warning state.
  • the balloon circumferential temperature diagram further includes the lower limit temperature line 13 of the first threshold range.
  • the lower limit temperature line 13 is displayed together with the balloon circumferential temperature curve Fig. 12, and is displayed as a straight line, as shown in Fig. 7, so that the operator can observe the relationship between each temperature curve and the lower limit temperature line 13 to understand whether it appears The temperature is too low.
  • the lower limit temperature line 13 can be used together with the balloon circumferential temperature curve diagram 12 displayed as the first warning state.
  • the balloon circumferential temperature diagram includes a balloon diagram 14, and the balloon diagram 14 includes a plurality of schematic points 140 corresponding to the circumferential temperature sensor and/or the central temperature sensor, each The distribution of each of the schematic points 140 in the balloon diagram 14 corresponds to the distribution of the circumferential temperature sensor and/or the central temperature sensor on the freezing balloon 1 in a one-to-one correspondence.
  • each schematic point 140 corresponding to the circumferential temperature sensor corresponds to a balloon circumferential temperature curve graph 12 and a balloon circumferential temperature state graph 11 respectively.
  • the balloon circumferential temperature state Figure 11 is mainly a simple diagram, which only shows whether the temperature of a balloon circumferential area is within the first threshold range, so that the operator can quickly understand the different circumferential areas of the balloon.
  • the temperature situation When the operator needs a more detailed temperature display, he can enter the temperature details (such as by clicking or touching a button).
  • the position of the circumferential temperature sensor distributed on the surface of the balloon, the position of the center temperature sensor, and real-time temperature information (such as the circumferential temperature curve shown in Fig. 12, or Direct display temperature value) will be provided, so that the operator can obtain more detailed temperature information.
  • the display of multiple indicative points 140 can provide a lot of information for the operator.
  • the plurality of schematic points 140 may have the same arrangement as the illustrated ring, that is, the schematic points of the multiple circumferential temperature sensors are arranged around the schematic point of the central temperature sensor.
  • Each schematic point 140 may show the same state (normal state or first warning state) as the corresponding balloon circumferential temperature state shown in FIG. 11. For example, when a balloon circumferential temperature state diagram 11 shows the normal state in green, its corresponding indicator point 140 also shows the normal state in green; when a balloon circumferential temperature state diagram 11 shows the first warning state by flashing red At this time, the corresponding indicator point 140 also flashes red to display the first warning state.
  • the temperature of the peripheral area of the balloon will decrease slowly, and the schematic diagram 14 of the balloon shows a sign Point 140 is the first warning state.
  • the operator can perform one or more cryoablation procedures and check whether the peripheral area of the balloon reaches the preset temperature. If the peripheral area of the balloon still does not reach the preset temperature, the operator can also perform the cryoablation process after operating the catheter to adjust the position of the cryoballoon 1 to achieve the goal of complete ablation. If the temperature of some balloon circumferential regions is too low, which may cause serious injury, the operator can suspend the ablation or adjust the target temperature, and confirm whether there is any abnormality.
  • the program in the readable storage medium includes the following interface modules:
  • the ready interface M1, the inflation interface M2, the ablation interface M3, the warming interface M4, and the ablation history interface are described in detail below for each interface module.
  • the ready interface M1 includes historical ablation data of multiple ablation regions displayed on the display device 3, and provides a selection button for the current ablation region for the operator to click.
  • the control device 2 When the control device 2 is turned on, the self-check of the passage of the cryo-balloon catheter system and the self-check of the connection between the cryoablation device and the cryo-balloon 1 will be performed first.
  • the ready interface M1 may include the display of the temperature value of the balloon center (37°C in the upper left of FIG. 2).
  • the ready interface M1 also displays the historical ablation data of the pulmonary vein ablation, which includes ablation time and ablation times.
  • cryoablation surgery generally requires ablation of four pulmonary veins, namely the left upper pulmonary vein (LSPV), the left lower pulmonary vein (LIPV), the right upper pulmonary vein (RSPV) and the right lower pulmonary vein (RIPV).
  • LSPV left upper pulmonary vein
  • LIPV left lower pulmonary vein
  • RSPV right upper pulmonary vein
  • RIPV right lower pulmonary vein
  • the historical ablation data displayed on the ready interface M1 is classified by ablation location and reviewed.
  • a separate cryoablation history classification is performed for each pulmonary vein.
  • the ready interface M1 further includes the balloon circumferential temperature state diagram 11 as described above.
  • the operator can click on the schematic diagram of the pulmonary vein that needs to be ablated in the ready interface M1, and the information related to the cryoablation process to be performed in the next step, including the ablation time, temperature and other information will be changed It is recorded in the storage unit corresponding to the selected pulmonary vein diagram before ablation.
  • the historical ablation status of the pulmonary vein can also be displayed in the schematic diagram of the pulmonary vein, for example, refer to the description of FIG. 5 above.
  • the ready interface M1 it also includes the remaining content of the gas (expressed as a percentage, 30% in the lower left corner of Fig. 2).
  • the ready interface M1 is mainly used for the selection of the initial state and the pulmonary vein before ablation for subsequent operation data statistics.
  • the ready interface M1 also includes two buttons “next step” and “complete ablation”. When “Next” is clicked, it enters the inflation interface M2, and when “Complete ablation” is clicked, it means that the ablation operation is completed.
  • the inflation interface M2 displays the inflation status of the balloon on the display device 3.
  • the inflation status of the balloon includes: the internal pressure of the frozen balloon 1, the balloon center temperature value, and inflation At least one of duration, inflation flow, and inflation pressure.
  • the display device 3 displays the inflation interface M2, and the control device 2 controls the cryoablation device to start filling the cryoballoon 1, but the cryoballoon does not enter the cryoablation.
  • the inflation interface M2 also includes the inflation diagram 15 of the balloon.
  • the inflation interface M2 also includes balloon pressure (Pa) (ie, the internal pressure of the cryo-balloon 1), inflation flow rate (lower flow rate 0.41 in FIG. 4), and inflation pressure (lower pressure 0.5 in FIG. 4).
  • the pressure in the freezing balloon 1 is monitored in real time by the cryoablation device and displayed on the inflation interface M2 simultaneously, so the pressure change curve in the freezing balloon 1 will be displayed in real time during the entire inflation process.
  • the inflation time of the cryo-balloon 1 is generally fixed.
  • the flow of the inflation gas will be displayed, and the pressure in the cryo-balloon 1 will also be displayed in real time to help the doctor determine whether the inflation process is safe. , Or within the control range.
  • the entire inflation process is completed automatically. After the inflation is completed, the system enters the ablation-ready state, and normal ablation can be started.
  • the inflation state of the balloon includes a second warning Status (such as displaying the second warning status by sound, flashing, changing color, jumping out of the warning box, etc.).
  • a second warning Status such as displaying the second warning status by sound, flashing, changing color, jumping out of the warning box, etc.
  • the balloon center temperature value and the balloon circumferential temperature value of the cryo-balloon 1 are generally 37°C. If the temperature value has a large deviation, the system will prompt an abnormality. Based on this, those skilled in the art can set the third threshold range, such as 37°C ⁇ 1°C.
  • the inflation interface M2 also includes two buttons “next step” and “previous step”. When “Next” is clicked, it enters the ablation interface M3, and when "Previous” is clicked, it returns to the ready interface M1.
  • the ablation interface M3 displays the balloon setting temperature (temperature -55 in the upper right of Fig. 5) input button, ablation duration (time 180 in the upper right of Fig. 5) input button, and start button on the display device 3 , Pause button and emergency stop button for the operator to adjust or operate the system; when the start button is clicked, the cryo-balloon 1 performs cryoablation operation according to the input balloon setting temperature and ablation duration, according to the Compare the temperature value with the result of the balloon setting temperature, and automatically adjust the refrigerant flow rate; when the pause button is clicked, the freezing ablation operation is suspended; when the emergency stop button is clicked, the freezing ablation operation is stopped operate.
  • the cryoablation process first requires the operator to select a preset temperature (such as the balloon center temperature value, of course, in some embodiments, the balloon circumferential temperature value can also be preset), and the operator can input the balloon setting temperature Press the button to set, and at the same time, you can set the ablation duration through the ablation duration input button.
  • the preset temperature is used to make the cryoablation device enter the temperature control mode, that is, the lowest temperature of the balloon center temperature value during the cryoablation process will be controlled to not be lower than the preset value.
  • This temperature control function can be used for example by the cryoablation device The control algorithm in the implementation.
  • the ablation interface M3 further includes the balloon circumferential temperature diagram and the balloon center temperature diagram as described above.
  • the balloon circumferential temperature diagram may include, for example, a plurality of balloon circumferential temperature states distributed in a ring. Figure 11 and Figure 12 of the circumferential temperature curve.
  • the ablation interface M3 also includes the remaining content of the gas (expressed as a percentage, 30% in the lower left corner of Figure 2), the real-time flow display of inflation (the flow 0.41 at the bottom of Figure 5), and the inflation pressure (the bottom of Figure 5) The pressure of 0.5) and other real-time data, to provide more support for the operator.
  • the system obtains a calculated temperature value based on the balloon circumferential temperature value according to a preset algorithm, and compares the calculated temperature value with the balloon according to the calculated temperature value.
  • the comparison result of the set temperature is adjusted, and the freezing flow rate is adjusted to realize the adjustment of the temperature of the freezing balloon 1.
  • temperature control for cryoablation is often achieved by adjusting the flow of refrigerant. During the entire cryoablation process, PID control is performed during the rising phase of the flow and the relatively stable phase of the flow. In the rising phase of the flow, proportional control is needed to prevent flow overshoot.
  • the corresponding control ratios are 350psi, 400psi, 440psi, 470psi, 490psi.
  • the flow rate can be increased as soon as possible, and the proportion can also be adjusted according to different temperature control gears to prevent flow and temperature overshoot during the control process.
  • This kind of proportional control pressure can be completed by solenoid valve or proportional valve, and the control period can be adjusted by actual conditions, for example, set to 0.5s.
  • the target temperature can fluctuate within a certain range, such as ⁇ 3°C.
  • those skilled in the art can appropriately configure the temperature control of cryoablation according to the actual situation.
  • non-temperature controlled gears can also be provided for selection to enter the non-temperature controlled cryoablation mode .
  • the ablation interface M3 also displays the inflation diagram 15 of the balloon.
  • judging whether the effective ablation is completed can be set according to the experience of the operator, such as reaching the effective temperature and continuing at the effective temperature for a certain period of time.
  • the ablation duration and cryoablation temperature can also be preset by the doctor.
  • the operator can perform an emergency stop or pause by clicking the "emergency stop" or "pause” button.
  • the temperature recovery process is mainly displayed on the display device 3 through the temperature recovery interface M4.
  • the temperature-returning interface M4 displays a plurality of balloon circumferential temperature icons on the display device 3 (for example, the above-mentioned annularly distributed balloon circumference To the temperature diagram 11), the balloon center temperature diagram, the duration of reheating (time (s) 120 at the top of FIG. 8), and the internal pressure of the cryo-balloon catheter (the balloon pressure (Pa) in FIG. 8) )curve).
  • the warming process refers to the process of gradually returning from the frozen state to the temperature in the heart under the scouring of blood while the balloon is stopped supplying frozen gas but the balloon is continuously inflated.
  • This process is a passive process, and the operator generally only observes.
  • the operator Through the balloon circumferential temperature icon, the balloon center temperature icon, and the graph of the internal pressure of the frozen balloon 1 displayed on the rewarming interface M4, the operator can understand the state of the balloon during the rewarming process and the temperature of the rewarming process. Condition. It is mentioned in the best practice of cryoablation that the slower the temperature recovery rate, the better the balloon fits and the better the treatment effect. Therefore, the intuitive display of multiple balloon circumferential temperature diagrams has a certain value in helping the operator to judge the treatment effect.
  • the temperature return interface M4 also includes the remaining content of the gas (expressed as a percentage, 30% in the lower left corner of Figure 2), the real-time flow display of inflation (the flow 0.41 at the bottom of Figure 8), and the inflation pressure (as shown in Figure 8).
  • Real-time data such as the pressure 0.5 below
  • the inflation diagram of the balloon 15 and the total duration of this ablation (the total time (s) 400 in the upper right of Figure 8) provide more support for the operator.
  • the warming interface M4 also includes the buttons of "open vacuum pumping” and "complete ablation".
  • "open vacuum pumping” When “open vacuum pumping” is clicked, the freezing balloon 1 will be pumped to restore the balloon to its collapsed and contracted state. Status, so as to exit or move to other parts; when "Complete ablation” is clicked, the system returns to the ready interface M1.
  • a cryoablation process is completed. If repeated ablation is required, or the cryoballoon 1 needs to be moved to other pulmonary veins for ablation, the operator can click the "Complete ablation” button, thereby Enter the ready state again. This is repeated, and the ablation is performed cyclically according to the experience of the operator until the cryoablation operation is completed.
  • the peripheral temperature values of the balloon obtained by a plurality of peripheral temperature sensors arranged on a cryo-balloon catheter in the circumferential direction are displayed on the display device.
  • the circumferential temperature diagram is arranged around the balloon center temperature diagram, and the display mode is intuitive; where any one of the balloon circumferential temperature values exceeds the preset first threshold range, the corresponding balloon circumferential temperature diagram
  • the first warning state is displayed to prompt the operator to adjust the temperature of the cryo-balloon; an input area for the balloon setting temperature is provided on the display device and is based on the value of the balloon setting temperature and a comparison temperature value.
  • the flow rate of the refrigerant input to the freezing balloon is automatically adjusted to realize the temperature control of the freezing balloon, wherein the comparison temperature value is the center temperature value of the balloon or any one of the balloons.
  • Circumferential temperature value or calculated temperature value obtained by a preset algorithm according to multiple balloon circumferential temperature values. This configuration, on the one hand, can visually display whether the temperature of each area of the frozen balloon is within the appropriate temperature range.
  • the corresponding balloon circumferential temperature The figure will display the first warning state and guide the operator to adjust the temperature of the frozen balloon; on the other hand, the input area of the balloon setting temperature provided on the display device can be used for the operator to input the balloon setting temperature.
  • the set temperature of the balloon is compared with a comparison temperature value, and the flow rate of the refrigerant is automatically adjusted according to the comparison result, so as to control the temperature of the frozen balloon.
  • the temperature control process is simple and reliable.
  • the comparison temperature value is the balloon center temperature value, any one of the balloon circumferential temperature values, or a calculated temperature value obtained by a preset algorithm according to multiple balloon circumferential temperature values, so that the system has a wide adaptability. , High accuracy.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Otolaryngology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Surgical Instruments (AREA)

Abstract

一种冷冻球囊控制装置(2)、导管系统及温度显示方法。控制装置(2)获取沿周向设置于冷冻球囊(1)内的周向温度传感器(4)所获取的多个球囊周向温度值、及设置于冷冻球囊(1)中心的中心温度传感器(5)所获取的球囊中心温度值,并根据球囊设定温度与一比较温度值的比较结果自动调节输入至冷冻球囊(1)中的冷冻剂的流量以调节冷冻球囊(1)的温度,其中,比较温度值为球囊中心温度值、任一个球囊周向温度值、或根据多个球囊周向温度值由预设的算法得到的计算温度值。冷冻球囊导管系统配置为在显示设备(3)上显示围绕球囊中心温度图示布置的多个球囊周向温度图示,其中,当一个球囊周向温度值超出预设的第一阈值范围,对应的球囊周向温度图示包括第一警示状态,以提示操作者调整冷冻球囊(1)的温度。

Description

冷冻球囊控制装置、导管系统及温度显示方法 技术领域
本发明涉及医疗器械技术领域,特别涉及一种冷冻球囊控制装置、导管系统及温度显示方法。
背景技术
冷冻消融目前被广泛应用于治疗快速心律失常,如房颤(AF)。冷冻消融的工作原理是通过液态制冷剂的吸热蒸发,带走组织热量,使目标消融部位温度降低,“冻死”细胞组织,从而破坏电生理活动异常的区域,达到治疗心律失常的目的。大量临床数据显示,和其他消融方式相比,冷冻消融更易于医生学习和操作,缩短了手术时间,提高治疗有效性,并减少血栓等严重并发症,降低患者疼痛度。
目前所使用的冷冻消融系统包括冷冻消融设备和冷冻球囊导管。温度的控制及显示是冷冻消融手术能否达到有效消融效果的主要影响因素。一般认为组织在-60℃会形成有效地“冻伤”,起到隔离肺静脉的效果。目前的冷冻球囊导管只有一个温度监测点,并且在球囊内部。然而,操作者希望知道的是组织和球囊接触部分的真实温度。因此,目前的设计并不能给操作者带来直观的感受,需要依靠操作者的经验。另外,一般的冷冻消融设备并没有目标温度控制的功能。在消融开始后,消融温度便快速下降,无法控制。温度过低可能导致严重的并发症。如果冷冻消融系统提供一种既能控制目标温度,又能提供操作者直观的多个部位处组织温度的变化的直观界面,将提供操作者更多有价值的手术信息,从而提升手术的安全性。
发明内容
本发明的目的在于提供一种冷冻球囊控制装置、导管系统及温度显示方法,以解决现有技术中冷冻消融设备的温度显示不直观,无法便利地控制温度的问题。
为解决上述技术问题,本发明的第一方面提供了一种冷冻球囊控制装置, 所述控制装置与所述冷冻球囊导管相连接,所述控制装置配置为:由所述控制装置获取多个所述周向温度传感器所获取的多个球囊周向温度值,以及所述中心温度传感器所获取的球囊中心温度值;以及
根据所述球囊设定温度与一比较温度值的比较结果,自动调节输入至所述冷冻球囊的冷冻剂的流量以实现对所述冷冻球囊的温度控制,其中,所述比较温度值为所述球囊中心温度值、多个所述球囊周向温度值中的任一个、或根据多个所述球囊周向温度值由预设的算法得到的计算温度值。
可选的,当所述比较温度值为根据所述多个球囊周向温度值由预设的算法得到的计算温度值时,所述预设的算法包括以下中的任一种:
将所述多个球囊周向温度值中的最低值确定为所述计算温度值;
将所述多个球囊周向温度值的平均值确定为所述计算温度值;
将低于所述球囊中心温度值的球囊周向温度值的平均值确定为所述计算温度值;以及
将低于所述球囊中心温度值的球囊周向温度值中的最低值确定为所述计算温度值。
可选的,本发明的第二方面提供了一种冷冻球囊导管系统,其包括如上所述的控制装置、、冷冻球囊导管及一显示设备,所述冷冻球囊导管包括冷冻球囊、设置于所述冷冻球囊之中心的中心温度传感器,以及多个沿所述冷冻球囊的周向设置于所述冷冻球囊上的周向温度传感器,所述中心温度传感器及所述周向温度传感器分别与所述控制装置通信连接,所述显示设备与所述控制装置通信连接,所述显示设备上提供有球囊设定温度的输入区,所述冷冻球囊导管系统配置为:
根据所述球囊中心温度值在所述显示设备上显示球囊中心温度图示;
根据所述多个球囊周向温度值在所述显示设备上显示多个球囊周向温度图示,所述多个球囊周向温度图示围绕所述球囊中心温度图示布置,
其中,当所述多个球囊周向温度值中的任一个超出预设的第一阈值范围,则对应的球囊周向温度图示包括第一警示状态,以提示操作者调节所述冷冻球囊的温度。
可选的,所述球囊周向温度图示包括球囊周向温度状态图,所述球囊周向温度状态图用于显示正常状态或显示所述第一警示状态;其中所述正常状态表示对应的周向温度传感器所获取的球囊周向温度值在所述第一阈值范围内,以提示操作者所述冷冻球囊导管在对应的周向区域处的温度合适。
可选的,多个所述球囊周向温度状态图呈环状分布,形成一图示环;每一个所述球囊周向温度状态图在所述图示环上的周向位置与对应的周向温度传感器于所述冷冻球囊上的周向位置一一对应。
可选的,所述第一警示状态包括超下限警示状态与超上限警示状态;
所述超下限警示状态表示对应的周向温度传感器所获取的球囊周向温度值低于所述第一阈值范围的下限;
所述超上限警示状态表示对应的周向温度传感器所获取的球囊周向温度值高于所述第一阈值范围的上限。
可选的,所述球囊周向温度图示包括球囊周向温度曲线图,所述球囊周向温度曲线图包括对应的周向温度传感器所获取的球囊周向温度值随时间的变化曲线。
可选的,所述球囊周向温度曲线图包括显示所述第一警示状态;所述第一警示状态包括所述球囊周向温度曲线图的闪烁或加粗;和/或,所述球囊周向温度图示还包括所述第一阈值范围的下限温度线。
可选的,所述球囊周向温度图示包括球囊示意图,所述球囊示意图包括与所述多个周向温度传感器和/或所述中心温度传感器相对应的多个示意点,每个所述示意点在所述球囊示意图中的分布,与所述周向温度传感器和/或所述中心温度传感器于所述冷冻球囊上的分布一一对应。
可选的,所述冷冻球囊导管系统还被配置为:在所述显示设备上显示多个消融区域的历史消融数据,并且提供当前消融区域的选择按键,以供操作者点选。
可选的,所述冷冻球囊导管系统还被配置为:在所述显示设备上显示所述冷冻球囊的充气状态,所述冷冻球囊的充气状态包括:所述冷冻球囊的内部压力、所述球囊中心温度值、充气时长、充气流量以及充气压力中的至少 一个。
可选的,所述冷冻球囊的内部压力超出预设的第二阈值范围,或者所述球囊中心温度值超出预设的第三阈值范围时,所述冷冻球囊的充气状态包括第二警示状态。
可选的,所述冷冻球囊导管系统还被配置为:
在所述显示设备上提供消融时长、开始、暂停及紧急停止的输入键或按键;所述开始按键被点击时,所述冷冻球囊导管按照输入的所述球囊设定温度和消融时长执行冷冻消融操作,并且所述系统根据所述比较温度值与所述球囊设定温度的比较结果,自动调节所述冷冻剂的流量;所述暂停按键被点击时,所述系统暂停执行所述冷冻消融操作;所述紧急停止按键被点击时,所述系统停止执行所述冷冻消融操作。
可选的,所述开始按键被点击时,所述显示设备还用于显示所述计算温度值随时间的变化曲线、所述冷冻球囊的内部压力以及所述消融时长中的至少一种。
可选的,所述冷冻球囊导管系统还被配置为:
在停止对所述冷冻球囊导管供应冷冻气体后,在所述显示设备上显示所述多个球囊周向温度图示、所述球囊中心温度图示、回温时长以及所述冷冻球囊的内部压力。
本发明的第三方面提供了一种采用如上所述的冷冻球囊导管系统的温度显示方法,包括:
获取由设置于冷冻球囊内的多个周向温度传感器所获取的多个球囊周向温度值,以及由设置于所述冷冻球囊中心的中心温度传感器所获取的球囊中心温度值;
根据多个所述球囊周向温度值,显示多个球囊周向温度图示;根据所述球囊中心温度值,显示球囊中心温度图示;其中,所述多个球囊周向温度图示围绕所述球囊中心温度图示布置;以及
当多个球囊周向温度值中的任一个超出预设的第一阈值范围时,对应的球囊周向温度图示显示第一警示状态,以提示操作者调节所述冷冻球囊导管 的温度。
可选地,所述球囊周向温度图示包括球囊周向温度状态图,多个所述球囊周向温度状态图呈环状分布,形成一图示环;每一个所述球囊周向温度状态图在所述图示环上的周向位置与对应的周向温度传感器于所述冷冻球囊上的周向位置一一对应。
综上所述,在本发明提供的冷冻球囊控制装置、导管系统及温度显示方法中,根据多个沿周向设置于冷冻球囊上的周向温度传感器所获取的球囊周向温度值,在显示设备上显示多个球囊周向温度图示;以及根据设置于所述冷冻球囊中心的中心温度传感器所获取的球囊中心温度值,在显示设备上显示球囊中心温度图示,所述多个球囊周向温度图示围绕所述球囊中心温度图示布置,显示方式直观;其中,任一个所述球囊周向温度值超出预设的第一阈值范围,则对应的球囊周向温度图示包括第一警示状态,以提示操作者调整所述冷冻球囊的温度;在所述显示设备上提供球囊设定温度的输入区并根据所述球囊设定温度与一比较温度值的比较结果,自动调节输入至所述冷冻球囊的冷冻剂的流量以实现对所述冷冻球囊的温度控制,其中所述比较温度值为所述球囊中心温度值、任一个所述球囊周向温度值、或根据多个球囊周向温度值由预设的算法得到的计算温度值。如此配置,一方面能够直观地显示冷冻球囊各区域的温度是否处于合适的温度范围内,如若冷冻球囊某一区域的温度超出预设的第一阈值范围,则对应的球囊周向温度图示将显示第一警示状态,从而引导操作者对冷冻球囊的温度进行调整;另一方面,显示设备上提供的球囊设定温度的输入区可以供操作者输入球囊设定温度,系统将所述球囊设定温度与一比较温度值进行比较,进而根据比较结果,自动调节冷冻剂的流量,以实现对冷冻球囊的温度的控制,控温的过程简单可靠。特别的,比较温度值为球囊中心温度值、任一个所述球囊周向温度值或根据多个球囊周向温度值由预设的算法得到的计算温度值,使得系统的适应性广,准确度高。
附图说明
本领域的普通技术人员将会理解,提供的附图用于更好地理解本发明,而不对本发明的范围构成任何限定。其中:
图1是本发明一实施例提供的冷冻球囊导管系统的示意图;
图2是图1中的冷冻球囊的示意图,其中,周向温度传感器沿冷冻球囊的周向设置和中心温度传感器设置于冷冻球囊的中心。
图3是本发明一实施例提供的显示设备显示就绪界面的示意图;
图4是本发明一实施例提供的显示设备显示充气界面的示意图;
图5是本发明一实施例提供的显示设备显示消融界面一的示意图;
图6是本发明一实施例提供的显示设备显示消融界面二的示意图;
图7是本发明一实施例提供的球囊周向温度曲线图;
图8是本发明一实施例提供的显示设备显示回温界面的示意图。
附图中:
1-冷冻消融;2-控制装置;3-显示设备;4-周向温度传感器;5-中心温度传感器;
11-球囊周向温度状态图;111-正常状态;112-第一警示状态;12-球囊周向温度曲线图;120-球囊中心温度值的曲线;121-球囊周向温度值的曲线;13-下限温度线;14-球囊示意图;140-示意点;15-球囊的充盈图示;
M1-就绪界面;M2-充气界面;M3-消融界面;M4-回温界面。
具体实施方式
为使本发明的目的、优点和特征更加清楚,以下结合附图和具体实施例对本发明作进一步详细说明。需说明的是,附图均采用非常简化的形式且未按比例绘制,仅用以方便、明晰地辅助说明本发明实施例的目的。此外,附图所展示的结构往往是实际结构的一部分。特别的,各附图需要展示的侧重点不同,有时会采用不同的比例。
如在本说明书中所使用的,单数形式“一”、“一个”以及“该”包括复数对象,复数形式“多个”包括两个及两个以上的对象,除非内容另外明确指出外。如在本说明书中所使用的,术语“或”通常是以包括“和/或”的含 义而进行使用的,除非内容另外明确指出外,术语“近端”通常是靠近操作者的一端,术语“远端”通常是靠近患者的病灶的一端。
本发明提供了一种冷冻球囊导管系统,以解决现有技术中冷冻消融设备温度显示不直观,无法便利地控制温度的问题。
以下参考附图进行描述。
请参考图1至图8,其中,图1是本发明一实施例提供的冷冻球囊导管系统的示意图,图2是图1中的冷冻球囊的示意图,图3是本发明一实施例提供的显示设备显示就绪界面的示意图,图4是本发明一实施例提供的显示设备显示充气界面的示意图,图5是本发明一实施例提供的显示设备显示消融界面一的示意图,图6是本发明一实施例提供的显示设备显示消融界面二的示意图,图7是本发明一实施例提供的球囊周向温度曲线图,图8是本发明一实施例提供的显示设备显示回温界面的示意图。
如图1所示,本发明一实施例提供的一种冷冻球囊导管系统,其包括:冷冻球囊导管、控制装置2及显示设备3,所述冷冻球囊导管包括一冷冻球囊1,所述控制装置2包括一可读存储介质,该可读存储介质上存储有程序,所述冷冻球囊1包括设置于所述冷冻球囊1之中心的中心温度传感器5(如图2所示),以及多个沿周向设置于所述冷冻球囊1上的周向温度传感器4(如图2所示),所述中心温度传感器及周向温度传感器分别与所述控制装置2通信连接,所述显示设备3与所述控制装置2通信连接。可选的,所述冷冻球囊导管系统还包括与冷冻球囊导管连接的冷冻消融设备。冷冻球囊1通过血管通路进入到左心房,以实施冷冻消融。冷冻消融设备主要向冷冻球囊1提供冷冻能量,同时会检测冷冻球囊1的温度。冷冻消融手术过程大致是,冷冻球囊导管的冷冻球囊1通过血管通路进入左心房---充盈冷冻球囊1---通过X射线将冷冻球囊1放置在目标消融部位---造影确认冷冻球囊1是否封堵良好---实施冷冻消融---停止消融并进行球囊回温---收起冷冻球囊1并调整位置至下一个目标消融部位。本领域技术人员可根据现有技术对冷冻球囊导管系统进行具体的配置,本发明不再详细描述。
为解决现有冷冻球囊导管系统的温度显示不直观,无法便利地控制温度 的问题,本发明对控制装置2进行了改进,下面就本发明的一较佳实施例进行详细的描述。
当控制装置2的可读存储介质上所存储的程序被运行时执行以下的步骤:
步骤S1:获取多个所述周向温度传感器所获取的多个球囊周向温度值,以及所述中心温度传感器所获取的球囊中心温度值(即每个球囊周向温度值由相应的周向温度传感器获取);
步骤S2:根据多个所述球囊周向温度值在显示设备2上显示多个球囊周向温度图示;所述多个球囊周向温度图示围绕所述球囊中心温度图示布置;
步骤S3:根据所述球囊中心温度值在所述显示设备2上显示球囊中心温度图示;需理解,步骤S2和步骤S3无先后顺序,其可以同时执行或先后执行;
其中,当多个球囊周向温度值中的任一个超出预设的第一阈值范围,则对应的球囊周向温度图示显示第一警示状态,以提示操作者调节所述冷冻球囊导管的温度;以及在所述显示设备2上提供球囊设定温度的输入区并根据所述球囊设定温度与一比较温度值的比较结果,自动调节输入至所述冷冻球囊1的冷冻剂的流量以实现对所述冷冻球囊的温度控制,其中所述比较温度值为所述球囊中心温度值、多个球囊周向温度值中的任一个或根据多个球囊周向温度值由预设的算法得到的计算温度值。
如此配置,能够直观地显示冷冻球囊1的各区域(主要指冷冻球囊1周向的各个外周区域)处的温度是否处于合适的温度范围内。如若冷冻球囊1的某一区域处的温度超出预设的第一阈值范围,则在对应的球囊周向温度图示中显示第一警示状态,引导操作者对冷冻球囊导管的温度进行调整。在冷冻消融过程中,球囊在消融部位的贴靠和封堵良好对整个消融手术的有效性至关重要,可以通过球囊的局部温度的下降速率来对球囊封堵是否良好进行判断。而在实施冷冻消融过程中,局部组织温度过低将会导致严重的并发症,将直接影响到手术的安全性。因此,多个球囊周向温度图示能够让操作者直观地了解到有用的信息(如球囊周向各区域的温度状态等),更好地指导操作者完成手术。进一步的,显示设备2上提供的球囊设定温度的输入区可以供 操作者输入球囊设定温度。系统将所述球囊设定温度与一比较温度值进行比较,进而根据比较结果,自动调节冷冻剂的流量,以实现对冷冻球囊1的温度进行控制,控温的过程简单可靠。特别的,比较温度值为球囊中心温度值、多个球囊周向温度值中的任一个或根据多个球囊周向温度值由预设的算法得到的计算温度值,使得该系统的适应性广,准确度高。
实际中,可以选用其中一个球囊周向温度值作为计算温度值,进行PID(Proportion Integration Differentiation)控制;也可以通过选取多个球囊周向温度值中的全部或部分,通过预设的算法确定最终的计算温度值。所述预设的算法包括以下任一种:
F1:将所有所述球囊周向温度值中的最低值确定为所述计算温度值;选取所有多个球囊周向温度值,通过比较法确定最低球囊周向温度值所在的球囊周向区域,并选择对该球囊周向区域的球囊周向温度值进行温度控制,使其不低于球囊设定温度。通过此方法可以确保整个球囊表面的最低温度不低于球囊设定温度,以确保冷冻消融手术的安全性。
F2:将所有所述球囊周向温度值的平均值确定为所述计算温度值;以整个球囊的温度为参考对象,将球囊表面所有球囊周向温度值进行平均处理,从而得出计算温度值。这样做可以减少由于单个球囊周向温度值测量波动而造成不必要的流量控制波动。
F3:选取所有球囊周向温度值中的低于所述球囊中心温度值的球囊周向温度值,将所述低于所述球囊中心温度值的球囊周向温度值的平均值确定为所述计算温度值;通过多个球囊周向温度值与球囊中心温度值的比较结果,选择合适的方法进行温度控制。比如:以球囊中心温度值为比较值,如果仅有一个球囊周向温度值低于球囊中心温度值时,选择该球囊周向温度值作为计算温度值进行目标温度控制;如果多个球囊周向温度都低于球囊中心温度,则选择这些低于球囊中心温度的球囊周向温度值的平均值作为计算温度值,进行目标温度控制。
F4:选取所有球囊周向温度值中的低于所述球囊中心温度值的球囊周向温度值,将所述低于所述球囊中心温度值的球囊周向温度值中的最低值确定 为所述计算温度值。如果多个球囊周向温度值都低于球囊中心温度值,则在这些球囊周向温度值中选择温度最低的球囊周向温度值作为计算温度值,进行目标温度控制。
请参考图5,其图示了在实际消融过程中,显示设备所显示的图像。所述球囊周向温度图示包括球囊周向温度状态图11,所述球囊周向温度状态图11显示正常状态111或显示所述第一警示状态112;其中所述正常状态111表示对应的周向温度传感器所获取的球囊周向温度值在所述第一阈值范围内,以提示操作者对应的所述冷冻球囊1的周向区域的温度合适。优选的,多个所述球囊周向温度状态图11呈环状分布,形成一图示环;每一个所述球囊周向温度状态图11在所述图示环上的周向位置与对应的周向温度传感器于所述冷冻球囊1上的周向位置一一对应。可选的,球囊中心温度图示包括球囊中心温度值的数值显示,该数值显示优选位于所述图示环的中心区域。
在一个示范性的实施例中,球囊周向温度图示包括8个球囊周向温度状态图11,该8个球囊周向温度状态图11均为弧形段,围绕同一个圆心呈环状分布,形成一个图示环。每个弧形段代表了冷冻球囊1上一个周向区域处的周向温度传感器所获取的球囊周向温度值。球囊周向温度状态图11可通过不同的颜色表示冷冻球囊1外周不同区域的温度状况,例如,用绿色(图5中表示为空白区域)表示正常状态111,用红色表示第一警示状态112(图5中表示为阴影区域)。如此,通过图示环,即可直观地了解冷冻球囊1上各个周向区域处的周向温度传感器所获取的球囊周向温度值是否正常。
进一步的,所述第一警示状态112包括超下限警示状态与超上限警示状态;所述超下限警示状态表示对应的周向温度传感器所获取的球囊周向温度值低于所述第一阈值范围的下限;所述超上限警示状态表示对应的周向温度传感器所获取的球囊周向温度值高于所述第一阈值范围的上限。例如,当周向温度传感器所获取的球囊周向温度值低于所述第一阈值范围的下限,超下限警示状态显示为红色闪烁,表明该周向温度传感器对应的球囊周向区域的温度过低,可能造成严重损伤,以警示操作者对球囊温度进行调整。又例如,当周向温度传感器所获取的球囊周向温度值高于所述第一阈值范围的上限, 超上限警示状态显示为红色稳定状态,表明该周向温度传感器对应的球囊周向区域的温度未达到(高于)预设的温度范围。这可能是由球囊封堵不佳导致的,其会影响消融效果,从而提醒操作者确认球囊封堵情况或调整球囊位置。实现有效消融的第一阈值范围可以通过比较法来确定。实验发现,表面与消融部位贴靠良好的球囊周向区域,其温度值应低于球囊中心温度,因此冷冻消融的效果良好;而贴靠不好的球囊周向区域,其温度值明显高于球囊中心温度,而无法达到有效的消融。需要说明的是,第一阈值范围也可根据操作者的经验或本领域常规配置进行设定,正常状态111和第一警示状态112也不限于配置为绿色和红色,还可以是其它的颜色、声音、振动或闪烁等提示方式。
优选的,所述球囊周向温度图示包括球囊周向温度曲线图12,所述球囊周向温度曲线图12包括对应的周向温度传感器所获取的球囊周向温度值随时间的变化曲线。请参考图7,其中横坐标为时间(单位:秒/s),纵坐标为温度(单位:摄氏度/℃)。在一个示例中,表示球囊中心温度值的曲线120在-35℃左右,表示一个球囊周向温度值的曲线121主要位于-45℃以下,说明曲线121对应的球囊周向区域内的球囊表面与消融部位贴靠良好。然而,表示另一个球囊周向温度值的曲线121'的温度均高于-10℃,说明对应的球囊周向区域内的球囊表面与消融部位未贴靠良好,无法达到良好的冷冻消融效果,这将直接影响临床消融有效性。因此,球囊周向温度曲线图能够直观地提示操作者消融效果,具有较大临床价值。操作者可选择调整球囊位置并对目标温度(例如球囊中心温度)进行调控。在目标温度调控后,图7中的表示球囊中心温度值的曲线120也即发生变化。此时,操作者可参考曲线120的变化,了解温度变化历史(即温度变化随时间的变化情况),从而进一步为温度调控提供直观的参考和依据。
可选的,所述球囊周向温度曲线图12显示所述第一警示状态;所述第一警示状态包括使所述球囊周向温度曲线图闪烁或加粗。与球囊周向温度图示11相似,球囊周向温度曲线图12也可以显示正常状态或第一警示状态。当某一个周向温度传感器所获取的球囊周向温度值在第一阈值范围内,则其对应 的球囊周向温度曲线图12显示正常状态,如正常的曲线;而当某一个周向温度传感器所获取的球囊周向温度值超出第一阈值范围,则其对应的球囊周向温度曲线图12显示第一警示状态,如曲线被配置为闪烁、加粗或变色等。当然,该第一警示状态也可以进一步区分为超下限警示状态与超上限警示状态,具体可参考上述关于球囊周向温度状态图11的说明。在其它的一些实施例中,所述球囊周向温度图示还包括所述第一阈值范围的下限温度线13。该下限温度线13与球囊周向温度曲线图12一同显示,并显示为一直线,如图7所示,以便于供操作者观察各温度曲线与该下限温度线13的关系,了解是否出现温度过低的情况。当然在一些实施例中,下限温度线13可以与显示为第一警示状态的球囊周向温度曲线图12共同使用。
优选的,所述球囊周向温度图示包括球囊示意图14,所述球囊示意图14包括多个与所述周向温度传感器和/或所述中心温度传感器相对应的示意点140,每个所述示意点140在所述球囊示意图14中的分布,与所述周向温度传感器和/或所述中心温度传感器于所述冷冻球囊1上的分布一一对应。较佳的,每个与周向温度传感器对应的示意点140均分别与一个球囊周向温度曲线图12及一个球囊周向温度状态图11相对应。实际中,球囊周向温度状态图11主要是一种简易图,其只显示一个球囊周向区域的温度是否在第一阈值范围内,以供操作者快速地了解球囊不同周向区域的温度情况。而当操作者需要更加精细的温度显示时,可以进入温度详情(如通过按键点击或触摸等方式)。在“温度详情”图像显示中,分布在球囊表面的周向温度传感器的位置、中心温度传感器的位置以及实时的温度信息(如通过图7所示的周向温度曲线图12的方式,或直接显示温度数值)将会被提供,使操作者能够获得更为详尽的温度信息。这里,多个示意点140的显示,可以为操作者提供很多的信息。具体的,多个示意点140可以与图示环具有相同的布置,即多个周向温度传感器的示意点围绕中心温度传感器的示意点布置。每个示意点140可以与对应的球囊周向温度状态图11显示相同的状态(正常状态或第一警示状态)。例如,当一个球囊周向温度状态图11通过绿色显示正常状态时,其对应的示意点140也通过绿色显示正常状态;当一个球囊周向温度状态图11 通过红色闪烁显示第一警示状态时,其对应的示意点140也通过红色闪烁显示第一警示状态。如球囊周向区域没有完全贴靠在预定的消融部位,或者与预定的消融部位发生了虚接触,该球囊周向区域的温度下降会较为缓慢,而在球囊示意图14上显示出示意点140的第一警示状态。在一些球囊周向区域没有达到预设的温度时,操作者可以再进行一次或多次的冷冻消融过程,并查看该球囊周向区域是否达到预设温度。如若该球囊周向区域仍然没有达到预设温度,操作者还可以在操作导管调整冷冻球囊1的位置后,再进行冷冻消融过程,以达到完全消融的目的。若一些球囊周向区域温度太低,可能造成严重的损伤,则操作者可暂停消融或调整目标温度,并确认是否有异常情况发生。
在一个优选的实施例中,所述可读存储介质中的程序包括以下界面模块:
就绪界面M1、充气界面M2、消融界面M3、回温界面M4、以及消融历史界面,下面对各个界面模块进行详细说明。
请参考图2,就绪界面M1包括在所述显示设备3上显示的多个消融区域的历史消融数据,并且提供当前消融区域的选择按键,以供操作者点选。当控制装置2被开启后,首先会进行对冷冻球囊导管系统的通路的自检以及冷冻消融设备和冷冻球囊1之间的连接的自检。在自检阶段,就绪界面M1可以包括球囊中心温度值的显示(如图2左上的37℃)。此外,就绪界面M1还显示了肺静脉消融的历史消融数据,其包括消融时间和消融次数等。一般的,冷冻消融手术的术式一般需要消融四个肺静脉,分别是左上肺静脉(LSPV),左下肺静脉(LIPV),右上肺静脉(RSPV)和右下肺静脉(RIPV)。对于每个肺静脉,操作者都可以进行一次或多次消融。就绪界面M1所显示的历史消融数据按消融部位分类并进行回顾。针对每一个肺静脉进行单独的冷冻消融历史归类。可选的,在就绪界面M1中,还包括如上所述的球囊周向温度状态图11。
进一步的,在单次冷冻消融开始前,操作者在就绪界面M1中可以点选需要消融的肺静脉示意图,则与下一步将进行的冷冻消融过程相关的信息,包括消融时间、温度等信息均将被记录到消融前所点选的肺静脉示意图所对应的存储单元中。同时,该肺静脉的历史消融情况也可以在肺静脉示意图中 进行显示,例如可参考上述关于图5的描述。在就绪界面M1中,还包括气体的剩余含量(使用百分比表示,如图2左下角的30%)。系统可以通过现有技术中的多种方式进行剩余气体的检测,比如称重量、气体压力检测等。因此,该就绪界面M1主要是进行初始状态以及消融前肺静脉的选择,以用于后续的手术数据统计。可选的,就绪界面M1还包括“下一步”和“完成消融”两个按键。“下一步”被点击时,进入充气界面M2,“完成消融”被点击时,即表示完成消融手术。
请参考图4,充气界面M2在所述显示设备3上显示球囊的充气状态,所述球囊的充气状态包括:所述冷冻球囊1的内部压力、所述球囊中心温度值、充气时长、充气流量以及充气压力中的至少一个。在就绪界面M1上点击“下一步”后,显示设备3即显示充气界面M2,同时控制装置2控制冷冻消融设备开始对冷冻球囊1进行充盈,但冷冻球囊并未进入冷冻消融。充气界面M2还包括球囊的充盈图示15。较佳的,充气界面M2还包括球囊压力(Pa)(即冷冻球囊1的内部压力),充气流量(图4中下方的流量0.41)以及充气压力(图4中下方的压力0.5)。
可选的,冷冻球囊1内的压力由冷冻消融设备进行实时监测,并在充气界面M2上同步显示,因此在整个充气过程中将实时显示冷冻球囊1内的压力变化曲线。冷冻球囊1的充气时间一般为固定,在充气的过程中,会显示充气气体的流量,也会实时显示冷冻球囊1内的压力随着时间的变化,来帮助医生判断该充气过程是否安全,或在控制范围内。整个充气过程是自动完成的,完成充气后系统进入消融就绪的状态,即可开始正常消融。优选的,所述冷冻球囊1的内部压力超出预设的第二阈值范围,或者所述球囊中心温度值超出预设的第三阈值范围时,所述球囊的充气状态包括第二警示状态(如通过声音、闪烁、变色、跳出警示框等各种方式显示第二警示状态)。一般的,在充盈过程中,由于还未开始冷冻消融,冷冻球囊1的球囊中心温度值和球囊周向温度值一般均为37℃。如果温度值发生较大偏差,则系统将提示异常。基于此,本领域技术人员可对第三阈值范围进行设定,如37℃±1℃。同样的,若冷冻球囊1内的压力值高于或低于第二阈值范围,系统将自动报警,并给 出错误提示。本领域技术人员可以通过对第二阈值范围的设定,保证冷冻球囊1的内部压力处于合适的范围。可选的,充气界面M2还包括“下一步”和“上一步”两个按键。“下一步”被点击时,进入消融界面M3,“上一步”被点击时,返回就绪界面M1。
请参考图5,消融界面M3在所述显示设备3上显示球囊设定温度(如图5右上的温度-55)输入按键、消融时长(如图5右上的时间180)输入按键、开始按键、暂停按键及紧急停止按键,以供操作者调整或操作系统;所述开始按键被点击时,所述冷冻球囊1按照输入的球囊设定温度和消融时长执行冷冻消融操作,根据所述比较温度值与所述球囊设定温度的比较结果,自动调节所述冷冻剂流量;所述暂停按键被点击时,暂停执行冷冻消融操作;所述紧急停止按键被点击时,停止执行冷冻消融操作。冷冻消融过程首先需要操作者选定预设的温度(如球囊中心温度值,当然一些实施例中也可以对球囊周向温度值进行预设),操作者可通过球囊设定温度输入按键进行设定,同时可通过消融时长输入按键进行消融时长的设定。预设的温度用于使冷冻消融设备进入温度控制模式,即冷冻消融过程中球囊中心温度值的最低温度将被控制为不低于该预设值,该温度控制功能如可通过冷冻消融设备中的控制算法实现。优选的,消融界面M3还包括如上所述的球囊周向温度图示和球囊中心温度图示,球囊周向温度图示如可包括呈环状分布的多个球囊周向温度状态图11及周向温度曲线图12。在手术过程中,根据消融界面M3所显示的球囊周向温度图示和球囊中心温度图示,一旦发现有某个点温度过高或过低的情况,操作者可及时在消融界面M3上对预设的温度进行调整,从而使得球囊周向温度图示和球囊中心温度图示能够为操作者对于冷冻消融的温度决策提供实时的支持。可选的,消融界面M3还包括气体的剩余含量(使用百分比表示,如图2左下角的30%)、充气的实时流量显示(如图5下方的流量0.41)及充气压力(如图5下方的压力0.5)等实时数据,为操作者提供更多的支持。
优选的,在消融界面M3中,所述开始按键被点击时,系统基于所述球囊周向温度值,根据预设的算法得到计算温度值,并根据所述计算温度值与所述球囊设定温度的比较结果,调节冷冻流量,以实现对所述冷冻球囊1的 温度的调节。一般的,对于冷冻消融的温度控制常通过调节冷冻剂流量来实现。在整个冷冻消融过程中,在流量上升阶段和流量相对稳定阶段进行PID控制。在流量上升阶段,需要通过比例控制来防止流量过冲。例如,当控制温度设置为-45℃时,对应的控制比例为350psi、400psi、440psi、470psi、490psi。通过这种前期比例方式能让流量尽快上升的同时,也能根据不同的温度控制档位调整比例,防止在控制过程中出现流量和温度过冲。这种比例控制压力可通过电磁阀或比例阀来完成,控制周期可通过实际情况调整,比如设置为0.5s。目标温度可在一定范围内波动,如±3℃。当然本领域技术人员可根据实际情况对冷冻消融的温度控制进行适当的配置。
可选的,对于球囊设定温度,可有多个温度档位供操作者进行选择,当然在一些实施例中,也可提供无控温档位供选择,以进入非控温冷冻消融模式。优选的,在完成球囊设定温度和消融时长的预设后,操作者点击开始按键,在消融的过程中会显示当前消融时长以及消融的总时长。优选的,消融界面M3还显示球囊的充盈图示15。
优选的,判断是否完成有效消融可根据操作者的经验进行设置,如达到了有效温度并在有效温度下持续一定时间。此外,消融时长和冷冻消融温度等也可以由医生进行预设。在消融界面M3中,如发生异常,操作者可以通过点击“紧急停止”或“暂停”按键进行紧急停止或暂停。
在完成对一处消融部位的冷冻消融后,即进入了回温过程。回温过程主要通过回温界面M4在显示设备3上显示。请参考图8,停止对所述冷冻球囊导管供应冷冻气体后,回温界面M4在所述显示设备3上显示多个球囊周向温度图示(例如上述呈环状分布的球囊周向温度图示11)、球囊中心温度图示、回温时长(如图8上方的时间(s)120)以及所述冷冻球囊导管的内部压力(如图8中的球囊压力(Pa)曲线)。回温过程是指在停止给球囊供应冷冻气体,但持续保持球囊的充气状态下,球囊在血液的冲刷下,逐步由冷冻状态回温至心脏内的温度的过程。这一过程是被动过程,操作者一般仅进行观察。通过回温界面M4所显示的球囊周向温度图示、球囊中心温度图示及冷冻球囊1的内部压力的曲线图,操作者可以了解回温过程中球囊的状态以及回温的情 况。冷冻消融最佳实践中提到,回温速度越慢,说明球囊贴靠得越好,治疗效果也就越好。因此,直观的多个球囊周向温度图示的显示,对于帮助操作者判断治疗效果具有一定的价值。可选的,回温界面M4还包括气体的剩余含量(使用百分比表示,如图2左下角的30%)、充气的实时流量显示(如图8下方的流量0.41)、充气压力(如图8下方的压力0.5)、球囊的充盈图示15以及本次消融的总时长(如图8右上的总时间(s)400)等实时数据,为操作者提供更多的支持。
优选的,回温界面M4还包括“开启真空抽气”和“完成消融”按键,当“开启真空抽气”被点击时,执行对冷冻球囊1的抽气,使球囊恢复至折叠收缩状态,以便于退出或移至其它部位;“完成消融”被点击时,系统返回至就绪界面M1。在完成回温和抽气操作后,即完成了一次冷冻消融的过程,如再需要进行重复消融,或者需要移动冷冻球囊1到其他肺静脉进行消融,操作者可点击“完成消融”的按键,从而再次进入就绪状态。如此反复,按照操作者的经验进行循环地消融,直到完成冷冻消融手术。
综上,本发明提供的冷冻球囊导管系统中,根据多个沿周向设置于一冷冻球囊导管上的周向温度传感器所获取的球囊周向温度值,在显示设备上显示多个球囊周向温度图示;以及根据设置于所述冷冻球囊导管中心的中心温度传感器所获取的球囊中心温度值,在显示设备上显示球囊中心温度图示,所述多个球囊周向温度图示围绕所述球囊中心温度图示布置,显示方式直观;其中,任一个所述球囊周向温度值超出预设的第一阈值范围,则对应的球囊周向温度图示显示第一警示状态,以提示操作者调整所述冷冻球囊的温度;在所述显示设备上提供球囊设定温度的输入区并根据所述球囊设定温度与一比较温度值的比较结果,自动调节输入至所述冷冻球囊的冷冻剂的流量以实现对所述冷冻球囊的温度控制,其中所述比较温度值为所述球囊中心温度值、任一个所述球囊周向温度值或根据多个球囊周向温度值由预设的算法得到的计算温度值。如此配置,一方面能够直观地显示冷冻球囊各区域的温度是否处于合适的温度范围内,如若冷冻球囊某一区域的温度超出预设的第一阈值范围,则对应的球囊周向温度图示将显示第一警示状态,引导操作者对冷冻 球囊的温度进行调整;另一方面,显示设备上提供的球囊设定温度的输入区可以供操作者输入球囊设定温度,系统将所述球囊设定温度与一比较温度值进行比较,进而根据比较结果,自动调节冷冻剂的流量,以实现对冷冻球囊的温度的控制,控温的过程简单可靠。特别的,比较温度值为球囊中心温度值、任一个所述球囊周向温度值或根据多个球囊周向温度值由预设的算法得到的计算温度值,使得系统的适应性广,准确度高。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (17)

  1. 一种用于冷冻球囊导管的控制装置,所述控制装置与所述冷冻球囊导管相连接,其特征在于,所述控制装置配置为:
    获取所述冷冻球囊导管的多个周向温度传感器所获取的多个球囊周向温度值,以及所述冷冻球囊导管的中心温度传感器所获取的球囊中心温度值;以及
    根据一球囊设定温度与一比较温度值的比较结果,自动调节输入至所述冷冻球囊导管的冷冻球囊中的冷冻剂的流量以实现对所述冷冻球囊的温度控制,其中,所述比较温度值为所述球囊中心温度值、所述多个球囊周向温度值中的任一个、或根据所述多个球囊周向温度值由预设的算法得到的计算温度值。
  2. 根据权利要求1所述的用于冷冻球囊导管的控制装置,其特征在于,当所述比较温度值为根据所述多个球囊周向温度值由预设的算法得到的计算温度值时,所述预设的算法包括以下中的任一种:
    将所述多个球囊周向温度值中的最低值确定为所述计算温度值;
    将所述多个球囊周向温度值的平均值确定为所述计算温度值;
    将低于所述球囊中心温度值的球囊周向温度值的平均值确定为所述计算温度值;以及
    将低于所述球囊中心温度值的球囊周向温度值中的最低值确定为所述计算温度值。
  3. 一种冷冻球囊导管系统,其特征在于,包括如权利要求1-2中的任一项所述的控制装置、冷冻球囊导管及一显示设备,所述冷冻球囊导管包括冷冻球囊、设置于所述冷冻球囊之中心的中心温度传感器,以及多个沿所述冷冻球囊的周向设置于所述冷冻球囊上的周向温度传感器,所述中心温度传感器及所述周向温度传感器分别与所述控制装置通信连接,所述显示设备与所述控制装置通信连接,所述显示设备上提供有球囊设定温度的输入区,所述冷冻球囊导管系统配置为:
    根据所述球囊中心温度值在所述显示设备上显示球囊中心温度图示;
    根据所述多个球囊周向温度值在所述显示设备上显示多个球囊周向温度图示,所述多个球囊周向温度图示围绕所述球囊中心温度图示布置,
    其中,当所述多个球囊周向温度值中的任一个超出预设的第一阈值范围,则对应的球囊周向温度图示包括第一警示状态,以提示操作者调节所述冷冻球囊的温度。
  4. 根据权利要求3所述的冷冻球囊导管系统,其特征在于,所述球囊周向温度图示包括球囊周向温度状态图,所述球囊周向温度状态图用于显示正常状态或显示所述第一警示状态;其中所述正常状态表示对应的周向温度传感器所获取的球囊周向温度值在所述第一阈值范围内,以提示操作者所述冷冻球囊导管的温度合适。
  5. 根据权利要求4所述的冷冻球囊导管系统,其特征在于,多个所述球囊周向温度状态图呈环状分布,形成一图示环;每一个所述球囊周向温度状态图在所述图示环上的周向位置与对应的周向温度传感器于所述冷冻球囊上的周向位置一一对应。
  6. 根据权利要求3所述的冷冻球囊导管系统,其特征在于,所述第一警示状态包括超下限警示状态与超上限警示状态;
    所述超下限警示状态表示对应的周向温度传感器所获取的球囊周向温度值低于所述第一阈值范围的下限;
    所述超上限警示状态表示对应的周向温度传感器所获取的球囊周向温度值高于所述第一阈值范围的上限。
  7. 根据权利要求3所述的冷冻球囊导管系统,其特征在于,所述球囊周向温度图示包括球囊周向温度曲线图,所述球囊周向温度曲线图包括对应的周向温度传感器所获取的球囊周向温度值随时间的变化曲线。
  8. 根据权利要求7所述的冷冻球囊导管系统,其特征在于,所述球囊周向温度曲线图包括显示所述第一警示状态;所述第一警示状态包括所述球囊周向温度曲线图的闪烁或加粗;和/或,所述球囊周向温度图示还包括所述第一阈值范围的下限温度线。
  9. 根据权利要求3所述的冷冻球囊导管系统,其特征在于,所述球囊周 向温度图示包括球囊示意图,所述球囊示意图包括与所述多个周向温度传感器和/或所述中心温度传感器相对应的多个示意点,每个所述示意点在所述球囊示意图中的分布,与所述周向温度传感器和/或所述中心温度传感器于所述冷冻球囊上的分布一一对应。
  10. 根据权利要求3所述的冷冻球囊导管系统,其特征在于,所述冷冻球囊导管系统还被配置为:在所述显示设备上显示多个消融区域的历史消融数据,并且提供当前消融区域的选择按键,以供操作者点选。
  11. 根据权利要求3所述的冷冻球囊导管系统,其特征在于,所述冷冻球囊导管系统还被配置为:在所述显示设备上显示所述冷冻球囊的充气状态,所述冷冻球囊的充气状态包括:所述冷冻球囊的内部压力、所述球囊中心温度值、充气时长、充气流量以及充气压力中的至少一个。
  12. 根据权利要求11所述的冷冻球囊导管系统,其特征在于,所述冷冻球囊的内部压力超出预设的第二阈值范围,或者所述球囊中心温度值超出预设的第三阈值范围时,所述冷冻球囊的充气状态包括第二警示状态。
  13. 根据权利要求3所述的冷冻球囊导管系统,其特征在于,所述冷冻球囊导管系统还被配置为:
    在所述显示设备上提供消融时长、开始、暂停及紧急停止输入键或按键;其中,所述开始按键被点击时,所述冷冻球囊导管按照输入的所述球囊设定温度和消融时长执行冷冻消融操作,并且所述系统根据所述比较温度值与所述球囊设定温度的比较结果,自动调节所述冷冻剂的流量;所述暂停按键被点击时,所述系统暂停执行所述冷冻消融操作;所述紧急停止按键被点击时,所述系统停止执行所述冷冻消融操作。
  14. 根据权利要求13所述的冷冻球囊导管系统,其特征在于,所述开始按键被点击时,所述显示设备还用于显示所述计算温度值随时间的变化曲线、所述冷冻球囊的内部压力以及消融时长中的至少一种。
  15. 根据权利要求3所述的冷冻球囊导管系统,其特征在于,所述冷冻球囊导管系统还被配置为:
    在停止对所述冷冻球囊导管供应冷冻气体后,在所述显示设备上显示所 述多个球囊周向温度图示、所述球囊中心温度图示、回温时长以及所述冷冻球囊的内部压力。
  16. 一种采用根据权利要求3所述的冷冻球囊导管系统的温度显示方法,其特征在于,包括:
    获取由设置于冷冻球囊内的多个周向温度传感器所获取的多个球囊周向温度值,以及由设置于冷冻球囊中心的中心温度传感器所获取的球囊中心温度值;
    根据多个所述球囊周向温度值,显示多个球囊周向温度图示;根据所述球囊中心温度值,显示球囊中心温度图示;其中,所述多个球囊周向温度图示围绕所述球囊中心温度图示布置;以及
    当多个球囊周向温度值中的任一个超出预设的第一阈值范围时,对应的球囊周向温度图示显示第一警示状态,以提示操作者调节所述冷冻球囊导管的温度。
  17. 根据权利要求16所述的温度显示方法,其特征在于,所述球囊周向温度图示包括球囊周向温度状态图,
    多个所述球囊周向温度状态图呈环状分布,形成一图示环;每一个所述球囊周向温度状态图在所述图示环上的周向位置与对应的周向温度传感器于所述冷冻球囊上的周向位置一一对应。
PCT/CN2021/076770 2020-03-04 2021-02-18 冷冻球囊控制装置、导管系统及温度显示方法 WO2021175117A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/909,235 US20230097773A1 (en) 2020-03-04 2021-02-18 Cryoballoon control apparatus, catheter system, and temperature display method
EP21764064.8A EP4104781A4 (en) 2020-03-04 2021-02-18 CRYOBALLONET CONTROL APPARATUS, CATHETER SYSTEM AND TEMPERATURE DISPLAY METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010144050.2A CN111329575B (zh) 2020-03-04 2020-03-04 冷冻球囊导管系统
CN202010144050.2 2020-03-04

Publications (1)

Publication Number Publication Date
WO2021175117A1 true WO2021175117A1 (zh) 2021-09-10

Family

ID=71174482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076770 WO2021175117A1 (zh) 2020-03-04 2021-02-18 冷冻球囊控制装置、导管系统及温度显示方法

Country Status (4)

Country Link
US (1) US20230097773A1 (zh)
EP (1) EP4104781A4 (zh)
CN (1) CN111329575B (zh)
WO (1) WO2021175117A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111329575B (zh) * 2020-03-04 2021-10-26 上海微创电生理医疗科技股份有限公司 冷冻球囊导管系统
CN113425402B (zh) * 2021-08-27 2021-12-17 上海安钛克医疗科技有限公司 可判断球囊贴靠的导管及消融系统
CN113760003B (zh) * 2021-09-07 2022-03-29 苏州海宇新辰医疗科技有限公司 一种温度控制方法、装置及存储介质
CN114469311B (zh) * 2021-12-30 2022-10-28 心诺普医疗技术(北京)有限公司 具有温度限制功能的冷冻消融系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1980287A2 (en) * 2004-03-23 2008-10-15 Cryocath Technologies inc. Method and apparatus for inflating and deflating balloon catheters
CN105682589A (zh) * 2013-10-30 2016-06-15 美敦力 用于心脏组织的冷冻消融的反馈系统
CN106963344A (zh) * 2017-04-01 2017-07-21 武汉大学 用于泌尿生殖道腔内手术的温度压力实时监控调节装置
CN109549703A (zh) * 2017-09-25 2019-04-02 上海微创电生理医疗科技股份有限公司 冷冻消融系统及其电生理导管
CN109589169A (zh) * 2017-09-30 2019-04-09 上海微创电生理医疗科技股份有限公司 射频消融装置
CN110573100A (zh) * 2017-04-27 2019-12-13 美敦力 具有多功能感测元件的治疗设备和使用方法
CN111329575A (zh) * 2020-03-04 2020-06-26 上海微创电生理医疗科技股份有限公司 冷冻球囊导管系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5501681A (en) * 1993-11-12 1996-03-26 Neuwirth; Robert S. Intrauterine cryoablation cauterizing apparatus and method
JP4649506B2 (ja) * 2008-09-16 2011-03-09 有限会社日本エレクテル 高周波加温バルーンカテーテル
CN103442631A (zh) * 2010-11-27 2013-12-11 Securus医药集团股份有限公司 消融和温度测量设备
JP6066217B2 (ja) * 2011-04-13 2017-01-25 クライオセラピューティクス ゲーエムベーハー システムおよびクライオエネルギーを供給するシステムを動作させる方法
US9956025B2 (en) * 2014-12-05 2018-05-01 Medtronic Cryocath Lp Contrast agent to assess quality of occlusion through impedance measurement
US10448838B2 (en) * 2015-10-19 2019-10-22 Biosense Webster (Israel) Ltd. Illustrating error in a temperature distribution map
CN209332253U (zh) * 2018-08-24 2019-09-03 康沣生物科技(上海)有限公司 一种利用流量控制冷冻温度的冷冻消融系统
CN109498145B (zh) * 2019-01-04 2023-07-18 科塞尔医疗科技(苏州)有限公司 一种冷冻消融球囊系统
CN109646106B (zh) * 2019-03-12 2019-06-07 上海微创电生理医疗科技股份有限公司 球囊导管及电生理系统
CN109738027A (zh) * 2019-03-01 2019-05-10 上海安钛克医疗科技有限公司 带有温度场测量技术及应变测量的新型冷冻球囊

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1980287A2 (en) * 2004-03-23 2008-10-15 Cryocath Technologies inc. Method and apparatus for inflating and deflating balloon catheters
CN105682589A (zh) * 2013-10-30 2016-06-15 美敦力 用于心脏组织的冷冻消融的反馈系统
CN106963344A (zh) * 2017-04-01 2017-07-21 武汉大学 用于泌尿生殖道腔内手术的温度压力实时监控调节装置
CN110573100A (zh) * 2017-04-27 2019-12-13 美敦力 具有多功能感测元件的治疗设备和使用方法
CN109549703A (zh) * 2017-09-25 2019-04-02 上海微创电生理医疗科技股份有限公司 冷冻消融系统及其电生理导管
CN109589169A (zh) * 2017-09-30 2019-04-09 上海微创电生理医疗科技股份有限公司 射频消融装置
CN111329575A (zh) * 2020-03-04 2020-06-26 上海微创电生理医疗科技股份有限公司 冷冻球囊导管系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4104781A4 *

Also Published As

Publication number Publication date
CN111329575A (zh) 2020-06-26
US20230097773A1 (en) 2023-03-30
EP4104781A4 (en) 2023-09-06
CN111329575B (zh) 2021-10-26
EP4104781A1 (en) 2022-12-21

Similar Documents

Publication Publication Date Title
WO2021175117A1 (zh) 冷冻球囊控制装置、导管系统及温度显示方法
US6468268B1 (en) Cryogenic catheter system
CN103025377B (zh) 管腔内消融低温气囊以及方法
CN110709036A (zh) 低温球囊压力传感器组件
CN107205665B (zh) 用于通过阻抗测量来评价阻塞质量的造影剂
US20140276698A1 (en) Method and apparatus for cryoadhesion
EP3445222B1 (en) Systems for controlling energy delivery in medical devices
CN107205651B (zh) 在冷盐水注射之后使用温度曲线来确定肺静脉和其他血管阻塞
US20230053149A1 (en) Contact pressure assessment for cryoballoon ablation catheters
US9033968B1 (en) Methods and systems of temperature based alarms, esophageal cooling and/or automatic interrupt (shut-off) during a cardic ablation procedure
EP3709916B1 (en) Timing system for use during ablation procedure
WO2019005501A1 (en) GRAPHIC DISPLAY FOR INTRAVASCULAR CATHETER SYSTEM
EP3651820B1 (en) Infusion pressure control system
CA2547953C (en) Cryogenic catheter system
JP2023518131A (ja) 神経損傷の治療のための血圧調節システム
US20210169545A1 (en) Active pressure control and method of fault monitoring
US11832868B2 (en) Measuring the presence time of a catheter in a patient during a medical procedure
US20220226034A1 (en) Occlusion detection using blood flow measurement
US11779391B2 (en) Forming a lesion based on pre-determined amount of abaltive energy vs lesion size curve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21764064

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021764064

Country of ref document: EP

Effective date: 20220915

NENP Non-entry into the national phase

Ref country code: DE