WO2021174749A1 - 一种蒸汽动力系统的运行操作优化方法及系统 - Google Patents

一种蒸汽动力系统的运行操作优化方法及系统 Download PDF

Info

Publication number
WO2021174749A1
WO2021174749A1 PCT/CN2020/103686 CN2020103686W WO2021174749A1 WO 2021174749 A1 WO2021174749 A1 WO 2021174749A1 CN 2020103686 W CN2020103686 W CN 2020103686W WO 2021174749 A1 WO2021174749 A1 WO 2021174749A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
power system
steam power
pressure
parameters
Prior art date
Application number
PCT/CN2020/103686
Other languages
English (en)
French (fr)
Inventor
曹雁青
Original Assignee
曹雁青
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 曹雁青 filed Critical 曹雁青
Publication of WO2021174749A1 publication Critical patent/WO2021174749A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Definitions

  • the invention relates to the technical field of steam power in industrial enterprises, and in particular to a method and system for optimizing the operation of a steam power system.
  • Industrial enterprises such as oil refining, petrochemical, chemical, coal chemical, iron and steel, metallurgy, electric power, thermal power and other industries are all high-energy-consuming enterprises.
  • steam power systems are an important part of industrial enterprises, and their task is to provide all industrial enterprises with what they need.
  • Public utilities such as power, electricity, and heat.
  • the steam power system is the most important utility system, which is huge, complex and consumes huge energy.
  • the consumption of steam and electricity accounts for more than 60% of the energy consumption of enterprises, and the annual cost of steam is as high as several hundred million to several billion yuan.
  • the operation diagnosis and energy-saving optimization of the steam power system play a very crucial role in the energy-saving and consumption-reduction of chemical enterprises.
  • the purpose of the present invention is to provide a method and system for optimizing the operation of a steam power system, which can reduce energy waste and reduce costs.
  • the present invention provides the following solutions:
  • a method for optimizing the operation of a steam power system including
  • the equipment includes power boilers, steam turbines, temperature and pressure reducers, deaerators, steam heaters, condensers, feed water pumps, waste heat boilers and Steam pipe network;
  • the performance characteristic parameters include the evaporation capacity, pressure and temperature of the power boiler, the steam intake of the steam turbine, the high-pressure extraction steam, the high-pressure extraction pressure, the high-pressure extraction temperature, the low-pressure extraction steam, and the low-pressure extraction steam pressure , Low-pressure extraction steam temperature, exhaust steam volume, exhaust steam vacuum degree and rated power, outlet flow, outlet pressure, outlet temperature of desuperheater and pressure reducer, pressure and temperature of desuperheating water, working pressure of deaerator, steam heater
  • the operation of the steam power system is operated according to the optimal operation operating parameters.
  • the construction of the mathematical model of the steam power system according to Kirchhoff's law, the energy conservation equation, the mass conservation equation of the steam power system, and the performance characteristic parameters, process parameters, and topology of the equipment includes:
  • the mathematical model of the steam power system is constructed according to the hydraulic model and the heat transfer model.
  • said solving the mathematical model of the steam power system to obtain the operating operation parameters specifically includes:
  • the Newton-Raphson algorithm is used to solve the mathematical model of the steam power system to obtain the operating parameters.
  • the step of solving the mathematical model of the steam power system to obtain the operating operating parameters also includes:
  • the mathematical model of the steam power system is optimized according to the verification result.
  • a steam power system operation optimization system including:
  • the data acquisition module is used to acquire the performance characteristic parameters, process parameters and topological structure of the equipment in the steam power system;
  • the equipment includes power boilers, steam turbines, temperature and pressure reducers, deaerators, steam heaters, condensers, Feedwater pumps, waste heat boilers and steam pipe networks;
  • the performance characteristic parameters include the evaporation, pressure and temperature of the power boiler, the steam intake of the steam turbine, the high-pressure extraction volume, the high-pressure extraction pressure, the high-pressure extraction temperature, and the low-pressure extraction steam , Low-pressure extraction pressure, low-pressure extraction temperature, exhaust volume, exhaust vacuum and rated power, the outlet flow, outlet pressure, outlet temperature of the desuperheater and pressure reducer, as well as the pressure and temperature of the deaerator Working pressure, steam heater tube number, tube diameter, tube length and outlet control temperature, condenser tube number, tube diameter, tube length, circulating cooling water flow and inlet temperature, feed water pump
  • the operation operation parameter determination module is used to solve the mathematical model of the steam power system to obtain operation operation parameters
  • the objective function establishment module is used to establish an objective function with the lowest energy consumption and cost as the goal, the operating parameters as decision variables, and the performance characteristic parameters, process parameters and topological structure of the equipment as constraints;
  • An optimal operation parameter determination module configured to determine the optimal operation parameter according to the objective function
  • the operation operation module is used to operate the steam power system according to the optimal operation operation parameters.
  • the running operation parameter model building module specifically includes:
  • the hydraulic model determination unit is used to determine the hydraulic model of the steam power system according to Kirchhoff's law, the energy conservation equation of the steam power system, the mass conservation equation, and the performance characteristic parameters, process parameters and topological structure of the equipment;
  • a heat transfer model determination unit for determining the heat transfer model of the steam power system according to Kirchhoff's law, the energy conservation equation of the steam power system, and the performance characteristic parameters, process parameters and topology of the equipment;
  • the steam power system mathematical model determining unit is configured to construct the steam power system mathematical model according to the hydraulic model and the heat transfer model.
  • the running operation parameter determining module specifically includes:
  • the operation operation parameter determination unit is used for solving the mathematical model of the steam power system by using the Newton-Raphson algorithm to obtain operation operation parameters.
  • it also includes:
  • the verification result determination module is used to verify the mathematical model of the steam power system to obtain a verification result
  • the optimization module is used to optimize the mathematical model of the steam power system according to the verification result.
  • the present invention has the advantages that: the method and system for optimizing the operation of the steam power system provided by the present invention, the steam power is constructed by the performance characteristic parameters, process parameters and topological structure of the equipment in the steam power system
  • the mathematical model of the system determines the operating parameters, and takes the lowest energy consumption and cost as the goal, takes the operating parameters as decision variables, and takes the performance characteristic parameters, process parameters and topological structure of the equipment as constraints to establish the objective function,
  • the optimal operating parameters are determined, and then the operation of the steam power system is operated according to the optimal operating parameters.
  • the blindness in the selection of the operation scheme of the steam system and the adjustment of the pipe network in the prior art is avoided, thereby reducing the waste of energy and reducing the cost.
  • Fig. 1 is a schematic flow chart of a method for optimizing the operation of a steam power system provided by the present invention
  • Fig. 2 is a schematic structural diagram of a steam power system operation optimization system provided by the present invention.
  • the purpose of the present invention is to provide a method and system for optimizing the operation of a steam power system, which can reduce energy waste and reduce costs.
  • Fig. 1 is a schematic flow chart of the method for optimizing the operation of a steam power system provided by the present invention. As shown in Fig. 1, the method for optimizing the operation of a steam power system provided by the present invention includes:
  • the equipment includes a power boiler, a steam turbine, a desuperheater, a deaerator, a steam heater, a condenser, a feed water pump, a waste heat boiler, and a steam pipe network;
  • the performance characteristic parameters include the evaporation capacity and pressure of the power boiler And temperature, steam turbine intake, high-pressure extraction, high-pressure extraction pressure, high-pressure extraction temperature, low-pressure extraction, low-pressure extraction pressure, low-pressure extraction temperature, exhaust volume, exhaust vacuum and rated power ,
  • S102 Construct a mathematical model of the steam power system according to Kirchhoff's law, the energy conservation equation, the mass conservation equation of the steam power system, and the performance characteristic parameters, process parameters and topological structure of the equipment. That is, Kirchhoff's law and the topological structure determine that there are m outer branch pipes, n inner pipes, and j nodes in the steam power system.
  • the pressure values at the outer ends of m outer branch pipes are respectively P1, P2, ..., Pm; find: two unknowns for each pipe section, namely the pressure drop ⁇ P and the flow rate G.
  • F represents the number of pipe sections that make up the loop
  • D represents the number of pipe sections that make up the passage
  • the hydraulic model of the steam power system is determined according to Kirchhoff's law, the energy conservation equation, the mass conservation equation of the steam power system, and the performance characteristic parameters, process parameters and topological structure of the equipment.
  • Kirchhoff the energy conservation equation of the steam power system, the mass conservation equation, and the performance characteristic parameters, process parameters and topological structure of the equipment, the relationship between the physical characteristics of the pipe network and the operating parameters, for example, pipe length, roughness
  • the relationship between the pressure drop and the flow rate of the pipe section forms a hydraulic model.
  • the heat transfer model of the steam power system is determined according to Kirchhoff's law, the energy conservation equation of the steam power system, and the performance characteristic parameters, process parameters and topological structure of the equipment. Steam pipes are usually insulated, but it is impossible to completely avoid heat loss to the surrounding environment. There is a heat dissipation simulation function in the system to calculate the temperature drop and condensate conditions of the pipe section.
  • the heat transfer process of a section of steam tube with thermal insulation layer includes the steam in the tube to the inner wall surface of the tube, the inner wall surface of the tube to the outer wall surface of the tube, the outer wall surface of the tube to the inner wall surface of the insulation layer, the inner wall surface of the insulation layer to the outer wall surface of the insulation layer, and the insulation layer Five links from the outer wall surface to the ambient atmosphere.
  • the mathematical model of the steam power system is constructed according to the hydraulic model and the heat transfer model.
  • the output result of the mathematical model of the steam power system is verified and optimized.
  • the mathematical model of the steam power system is optimized according to the verification result.
  • the collected process structure data, the model itself and the instrument measurement data can be verified.
  • Data verification is not entirely a mathematical problem. It is necessary to judge the accuracy and precision of the data from the physical level.
  • the steam power system model integrates the operation law of the steam power system at the physical level. Instrument data) are verified, and the model itself is also verified.
  • the structural data is prone to errors and has a greater impact on the accuracy of the model is the pipe diameter and insulation.
  • the pressure value calculated by simulation is compared with the pressure of the measured instrument to determine the accuracy of the pipe diameter; the temperature value calculated by the simulation is compared with the temperature of the measured instrument, and combined with the measurement result of the outer surface temperature, the heat preservation condition is corrected, and at the same time Judge the accuracy of measuring instruments.
  • the verification of the steam balance is the most complicated.
  • the steam of each pressure level has a balance relationship between production and use, and there is also a conversion relationship between the steam of each pressure level. Therefore, the model needs to be established with the function of linking calculation for each pressure level in order to reasonably verify the steam system data of each pressure level. .
  • the measured data and simulation calculation data obtained are close to the real value, which meets the accuracy requirements of this project.
  • the relative error between the measured parameters and the calculated parameters exceeds ⁇ 5%, the accuracy of the measured values is first judged, and then the model is corrected, and finally the measured parameters are relative to the calculated parameters.
  • the error is controlled within ⁇ 5%, and the confirmation of the pipe network model is completed.
  • S103 Solve the mathematical model of the steam power system to obtain operating parameters.
  • the Newton-Raphson algorithm is used to solve the mathematical model of the steam power system to obtain the operating parameters.
  • some accelerating convergence techniques and necessary boundary conditions are used to make the equation solution have stable convergence. For example, for some pipelines with more segments, integrate before the equations are established, and integrate multi-segment pipelines into one pipeline, which greatly reduces the number of equations and increases the speed of calculation convergence; restricts the input conditions and improves the convergence of the equations Possibility.
  • S106 Operate the operation of the steam power system according to the optimal operation operation parameter.
  • the method for optimizing the operation of the steam power system provided by the present invention effectively solves the problem of reducing energy consumption and lowering costs.
  • the method for optimizing the operation of the steam power system performs steam balance analysis and overall optimization evaluation on the operation of the coal chemical steam power system, including bottleneck resolution, heat loss evaluation, temperature reduction and pressure reducer optimization, and project transformation suggestions And so on, comprehensively simulate the transformation schemes of some steam-using parts and draw optimization evaluation conclusions. It will be illustrated by the following examples.
  • the method for optimizing the operation of the steam power system searches and solves the bottleneck problem of the pipe network.
  • the flow velocity distribution and pressure drop curve of the pipe network are obtained; the pipeline with a fast flow velocity (more than 30m/s) or a large pressure drop (pressure drop per 1000 meters of pipeline is about 0.1MPa) is analyzed to find the pressure loss The cause of the bottleneck.
  • the method for optimizing the operation of the steam power system evaluates pipeline insulation: actual measurement of pipeline starting temperature, terminal temperature and surface temperature (evenly distributed on the pipeline), and comparison with simulation results, to obtain actual heat flow and design heat flow And qualified heat flow and other parameters, make a comprehensive evaluation of the pipeline heat dissipation.
  • This method is based on simulation technology to evaluate the insulation effect, which is more scientific and accurate than conventional evaluation methods.
  • the method for optimizing the operation of the steam power system optimizes the temperature and pressure reducer of the whole plant.
  • First understand the steam demand of the steam equipment inside each device (not limited to the entrance of the device, it must go deep into the equipment inside the device), including steam volume and steam quality; classify according to the real demand; understand the internal temperature reduction of each device
  • pressure reduction analyze the reasons for temperature reduction and pressure reduction; on the basis of meeting production requirements and ensuring safe operation, rationally optimize the matching of pipe networks and equipment, and propose measures to reduce temperature reduction and pressure reduction.
  • the method for optimizing the operation of the steam power system solves the problem of steam venting of the steam power system of industrial enterprises.
  • the steam output of A device is 270t/h larger than the demand of the whole plant; about 210t/h is recovered by the power station; therefore, 60t/h has to be vented, causing energy waste.
  • the steam production of A device is 230t/h larger than the demand of the whole plant; about 220t/h is recovered by the power station; therefore, about 10t/h has to be vented, causing energy waste.
  • the method for optimizing the operation of the steam power system analyzes the cause of the venting.
  • the results show that the diameter of the pipeline in the thermal power center boundary area is DN250.
  • the thermal power center recovers 60t/h of steam, and the flow rate reaches more than 50m/s, and the bottleneck effect is significant. Due to the bottleneck of the pipeline, the steam pressure drops very greatly, and the pressure reaching the thermal power center boundary area cannot meet the production needs, thus restricting the thermal power center to further recover steam and causing a large amount of venting.
  • the method for optimizing the operation of the steam power system analyzes the reformed system; in summer, when there is too much steam in the external pipe network, the new crossover is put into use, so that the final steam equipment can be used Vent steam from the outside; in winter conditions, the excess steam is consumed by increasing the heater temperature control.
  • the economic benefit brought by the present invention is 18.291 million yuan, of which, in summer conditions: the average reduction of steam and venting is calculated by 40t/h, the price of demineralized water per ton is calculated at 21 yuan, and the summer conditions (7 months)
  • the economic benefit of saving water is 4.23 million yuan; the recovered heat reduces the coal consumption of the power station.
  • the calorific value per ton of coal is 20,000 kJ/kg, and the price per ton of coal is calculated at 400 yuan.
  • the economic benefit in summer is about 12 million yuan; Therefore, the total economic benefit under summer conditions is about 16.23 million yuan.
  • the economic benefit of water saving in winter conditions is 675,000 yuan, and the economic benefit of reducing coal consumption is about 1.386 million yuan.
  • the total economic benefit is 2.061 million yuan.
  • FIG. 2 is a schematic structural diagram of the operation and operation optimization system of a steam power system provided by the present invention.
  • the operation and operation optimization system of a steam power system provided by the present invention includes: a data acquisition module 201, The operation parameter model construction module 202, the operation parameter determination module 203, the objective function establishment module 204, the optimal operation parameter determination module 205, and the operation operation module 206.
  • the data acquisition module 201 is used to acquire the performance characteristic parameters, process parameters and topological structure of the equipment in the steam power system;
  • the equipment includes power boilers, steam turbines, temperature and pressure reducers, deaerators, steam heaters, condensers, Feedwater pumps, waste heat boilers and steam pipe networks;
  • the performance characteristic parameters include the evaporation, pressure and temperature of the power boiler, the steam intake of the steam turbine, the high-pressure extraction volume, the high-pressure extraction pressure, the high-pressure extraction temperature, and the low-pressure extraction steam , Low-pressure extraction pressure, low-pressure extraction temperature, exhaust volume, exhaust vacuum and rated power, the outlet flow, outlet pressure, outlet temperature of the desuperheater and pressure reducer, as well as the pressure and temperature of the deaerator Working pressure, steam heater tube number, tube diameter, tube length and outlet control temperature, condenser tube number, tube diameter, tube length, circulating cooling water flow and inlet temperature, feed water pump
  • the operating parameter model construction module 202 is used to construct a mathematical model of the steam power system according to Kirchhoff's law, the energy conservation equation, the mass conservation equation of the steam power system, and the performance characteristic parameters, process parameters, and topological structure of the equipment.
  • the operation operation parameter determination module 203 is used to solve the mathematical model of the steam power system to obtain operation operation parameters.
  • the objective function establishment module 204 is used to establish an objective function with the lowest energy consumption and cost as the goal, the operating parameters as decision variables, and the performance characteristic parameters, process parameters, and topological structure of the equipment as constraints.
  • the optimal operation parameter determination module 205 is configured to determine the optimal operation parameter according to the objective function.
  • the operation operation module 206 is configured to operate the steam power system according to the optimal operation operation parameters.
  • the operating parameter model construction module 202 specifically includes: a hydraulic model determination unit, a heat transfer model determination unit, and a steam power system mathematical model determination unit.
  • the hydraulic model determining unit is used to determine the hydraulic model of the steam power system according to Kirchhoff's law, the energy conservation equation, the mass conservation equation of the steam power system, and the performance characteristic parameters, process parameters and topological structure of the equipment.
  • the heat transfer model determination unit is used to determine the heat transfer model of the steam power system according to Kirchhoff's law, the energy conservation equation of the steam power system, and the performance characteristic parameters, process parameters and topological structure of the equipment.
  • the steam power system mathematical model determining unit is used to construct the steam power system mathematical model according to the hydraulic model and the heat transfer model.
  • the running operation parameter determining module 203 specifically includes: a running operation parameter determining unit.
  • the operation operation parameter determination unit is used for solving the mathematical model of the steam power system by using the Newton-Raphson algorithm to obtain operation operation parameters.
  • the operation optimization system of the steam power system provided by the present invention further includes: a verification result determination module and an optimization module.
  • the verification result determination module is used to verify the mathematical model of the steam power system to obtain a verification result.
  • the optimization module is used to optimize the mathematical model of the steam power system according to the verification result.

Abstract

本发明涉及一种蒸汽动力系统的运行操作优化方法及系统。该方法包括获取蒸汽动力系统中设备的性能特征参数、工艺参数和拓扑结构;根据基尔霍夫定律、蒸汽动力系统的能量守恒方程、质量守恒方程以及所述设备的性能特征参数、工艺参数和拓扑结构构建蒸汽动力系统数学模型;对蒸汽动力系统数学模型进行求解,得到运行操作参数;以能源消耗和成本最低为目标,以运行操作参数为决策变量,以设备的性能特征参数、工艺参数和拓扑结构为约束条件,建立目标函数;根据目标函数确定最优运行操作参数;根据最优运行操作参数对所述蒸汽动力系统的运行进行操作。本发明所提供一种蒸汽动力系统的运行操作优化方法及系统,能够减少能源的浪费和降低成本。

Description

一种蒸汽动力系统的运行操作优化方法及系统
本申请要求于2020年03月04日提交中国专利局、申请号为202010143057.2、发明名称为“一种蒸汽动力系统的运行操作优化方法及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及工业企业蒸汽动力技术领域,特别是涉及一种蒸汽动力系统的运行操作优化方法及系统。
背景技术
炼油、石化、化工、煤化工、钢铁、冶金、电力、热电等工业企业都是高能耗企业,其中蒸汽动力系统是工业企业的重要组成部分,其任务是向各工业企业生产厂提供所需要的动力、电力、热能等公用工程。
大型工业企业中,蒸汽动力系统是最重要的公用工程系统,庞大、复杂且能耗巨大。蒸汽和电的消耗占企业能源消耗的60%以上,每年的蒸汽成本高达几亿到几十亿元。蒸汽动力系统的运行诊断与节能优化对化工企业的节能降耗起到非常关键的作用。
工业企业蒸汽动力系统从管网结构到设备配置均存在待优化的空间;尤其是管网系统,形成了多环、多级的复杂局面。在蒸汽系统的管理上主要依靠人工经验和有限的实时数据,由于在蒸汽管网内部或低压力等级的蒸汽系统中缺少测量仪表,造成了对蒸汽系统操作方案选择和管网调整上的盲目性,甚至蒸汽流向、流量不明,蒸汽减温减压等降质使用,放空现象得不到遏止,浪费了宝贵的能源,提高了成本。
发明内容
本发明的目的是提供一种蒸汽动力系统的运行操作优化方法及系统,能够减少能源的浪费和降低成本。
为实现上述目的,本发明提供了如下方案:
一种蒸汽动力系统的运行操作优化方法,包括
获取蒸汽动力系统中设备的性能特征参数、工艺参数和拓扑结构;所述设备包括动力锅炉、汽轮机、减温减压器、除氧器、蒸汽加热器、凝汽器、给水泵、余热锅炉和蒸汽管网;所述性能特征参数包括动力锅炉的蒸发量、压力和温度,汽轮机的进汽量、高压抽汽量、高压抽汽压力、高压抽汽温度、低压抽汽量、低压抽汽压力、低压抽汽温度、排汽量、排汽真空度和额定功率,减温减压器的出口流量、出口压力、出口温度以及减温水的压力和温度,除氧器的工作压力,蒸汽加热器的列管数、列管直径、列管长度以及出口控制温度,凝汽器的列管数、列管直径、列管长度以及循环冷却水的流量和进口温度,给水泵的扬程曲线、效率曲线、工作频率,余热锅炉的产汽量、产汽压力和产汽温度,蒸汽管网的流程拓扑结构,以及管线的管径、壁厚、管长、保温、弯头和阀门;所述工艺参数包括年操作时间、系统电力需求、燃料数据、工况条件和系统尾气排放;
根据基尔霍夫定律、蒸汽动力系统的能量守恒方程、质量守恒方程以及所述设备的性能特征参数、工艺参数和拓扑结构构建蒸汽动力系统数学模型;
对所述蒸汽动力系统数学模型进行求解,得到运行操作参数;
以能源消耗和成本最低为目标,以所述运行操作参数为决策变量,以所述设备的性能特征参数、工艺参数和拓扑结构为约束条件,建立目标函 数;
根据所述目标函数确定最优运行操作参数;
根据所述最优运行操作参数对所述蒸汽动力系统的运行进行操作。
可选的,所述根据基尔霍夫定律、蒸汽动力系统的能量守恒方程、质量守恒方程以及所述设备的性能特征参数、工艺参数和拓扑结构构建蒸汽动力系统数学模型,具体包括:
根据基尔霍夫定律、蒸汽动力系统的能量守恒方程、质量守恒方程以及所述设备的性能特征参数、工艺参数和拓扑结构确定所述蒸汽动力系统的水力模型;
根据基尔霍夫定律、蒸汽动力系统的能量守恒方程以及所述设备的性能特征参数、工艺参数和拓扑结构确定所述蒸汽动力系统的传热模型;
根据所述水力模型和所述传热模型构建所述蒸汽动力系统数学模型。
可选的,所述对所述蒸汽动力系统数学模型进行求解,得到运行操作参数,具体包括:
利用牛顿—拉夫森算法对所述蒸汽动力系统数学模型进行求解,得到运行操作参数。
可选的,所述对所述蒸汽动力系统数学模型进行求解,得到运行操作参数,之前还包括:
对所述蒸汽动力系统数学模型进行验证,得到验证结果;
根据所述验证结果对所述蒸汽动力系统数学模型进行优化。
一种蒸汽动力系统的运行操作优化系统,包括:
数据获取模块,用于获取蒸汽动力系统中设备的性能特征参数、工艺 参数和拓扑结构;所述设备包括动力锅炉、汽轮机、减温减压器、除氧器、蒸汽加热器、凝汽器、给水泵、余热锅炉和蒸汽管网;所述性能特征参数包括动力锅炉的蒸发量、压力和温度,汽轮机的进汽量、高压抽汽量、高压抽汽压力、高压抽汽温度、低压抽汽量、低压抽汽压力、低压抽汽温度、排汽量、排汽真空度和额定功率,减温减压器的出口流量、出口压力、出口温度以及减温水的压力和温度,除氧器的工作压力,蒸汽加热器的列管数、列管直径、列管长度以及出口控制温度,凝汽器的列管数、列管直径、列管长度以及循环冷却水的流量和进口温度,给水泵的扬程曲线、效率曲线、工作频率,余热锅炉的产汽量、产汽压力和产汽温度,蒸汽管网的流程拓扑结构,以及管线的管径、壁厚、管长、保温、弯头和阀门;所述工艺参数包括年操作时间、系统电力需求、燃料数据、工况条件和系统尾气排放;
运行操作参数模型构建模块,用于根据基尔霍夫定律、蒸汽动力系统的能量守恒方程、质量守恒方程以及所述设备的性能特征参数、工艺参数和拓扑结构构建蒸汽动力系统数学模型;
运行操作参数确定模块,用于对所述蒸汽动力系统数学模型进行求解,得到运行操作参数;
目标函数建立模块,用于以能源消耗和成本最低为目标,以所述运行操作参数为决策变量,以所述设备的性能特征参数、工艺参数和拓扑结构为约束条件,建立目标函数;
最优运行操作参数确定模块,用于根据所述目标函数确定最优运行操作参数;
运行操作模块,用于根据所述最优运行操作参数对所述蒸汽动力系统的运行进行操作。
可选的,所述运行操作参数模型构建模块具体包括:
水力模型确定单元,用于根据基尔霍夫定律、蒸汽动力系统的能量守恒方程、质量守恒方程以及所述设备的性能特征参数、工艺参数和拓扑结构确定所述蒸汽动力系统的水力模型;
传热模型确定单元,用于根据基尔霍夫定律、蒸汽动力系统的能量守恒方程以及所述设备的性能特征参数、工艺参数和拓扑结构确定所述蒸汽动力系统的传热模型;
蒸汽动力系统数学模型确定单元,用于根据所述水力模型和所述传热模型构建所述蒸汽动力系统数学模型。
可选的,所述运行操作参数确定模块具体包括:
运行操作参数确定单元,用于利用牛顿—拉夫森算法对所述蒸汽动力系统数学模型进行求解,得到运行操作参数。
可选的,还包括:
验证结果确定模块,用于对所述蒸汽动力系统数学模型进行验证,得到验证结果;
优化模块,用于根据所述验证结果对所述蒸汽动力系统数学模型进行优化。
本发明与现有技术相比的优点在于:本发明所提供的一种蒸汽动力系统的运行操作优化方法及系统,通过蒸汽动力系统中设备的性能特征参数、工艺参数和拓扑结构构建的蒸汽动力系统数学模型确定运行操作参 数,并以能源消耗和成本最低为目标,以所述运行操作参数为决策变量,以所述设备的性能特征参数、工艺参数和拓扑结构为约束条件,建立目标函数,确定最优运行操作参数,进而根据最优运行操作参数对所述蒸汽动力系统的运行进行操作。避免了现有技术中对蒸汽系统操作方案选择和管网调整上的盲目性,进而能够减少能源的浪费和降低成本。
说明书附图
图1为本发明所提供的一种蒸汽动力系统的运行操作优化方法流程示意图;
图2为本发明所提供的一种蒸汽动力系统的运行操作优化系统结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种蒸汽动力系统的运行操作优化方法及系统,能够减少能源的浪费和降低成本。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1为本发明所提供的一种蒸汽动力系统的运行操作优化方法流程示意图,如图1所示,本发明所提供的一种蒸汽动力系统的运行操作优化 方法包括:
S101,获取蒸汽动力系统中设备的性能特征参数、工艺参数和拓扑结构。所述设备包括动力锅炉、汽轮机、减温减压器、除氧器、蒸汽加热器、凝汽器、给水泵、余热锅炉和蒸汽管网;所述性能特征参数包括动力锅炉的蒸发量、压力和温度、汽轮机的进汽量、高压抽汽量、高压抽汽压力、高压抽汽温度、低压抽汽量、低压抽汽压力、低压抽汽温度、排汽量、排汽真空度和额定功率,减温减压器的出口流量、出口压力、出口温度以及减温水的压力和温度,除氧器的工作压力,蒸汽加热器的列管数、列管直径、列管长度以及出口控制温度,凝汽器的列管数、列管直径、列管长度以及循环冷却水的流量和进口温度,给水泵的扬程曲线、效率曲线、工作频率,余热锅炉的产汽量、产汽压力和产汽温度,蒸汽管网的流程拓扑结构,以及管线的管径、壁厚、管长、保温、弯头和阀门;所述工艺参数包括年操作时间、系统电力需求、燃料数据、工况条件和系统尾气排放。
S102,根据基尔霍夫定律、蒸汽动力系统的能量守恒方程、质量守恒方程以及所述设备的性能特征参数、工艺参数和拓扑结构构建蒸汽动力系统数学模型。即基尔霍夫定律和所述拓扑结构,确定蒸汽动力系统中有m根外支管,n根内管,j个节点。m根外支管外端的压力值分别为P1、P2、……、Pm;求:每根管段的两个未知数,即压降ΔP和流量G。
(1)按质量守恒原则:对于任意节点j,都有
Figure PCTCN2020103686-appb-000001
式中:E表示与该节点直接连接的管段数;r表示管段内流体流向,流向指向该节点,则r=1;流向指出该节点,则r=2。
(2)按能量守恒原则:对于任意一个回路,都有
Figure PCTCN2020103686-appb-000002
式中: F表示组成该回路的管段数;r表示管段内流体流向,流向与回路方向相反,则r=1;流向与回路方向相同,则r=2。
对于任意一个通路,都有
Figure PCTCN2020103686-appb-000003
式中:D表示组成该通路的管段数;r表示管段内流体流向,流向与通路方向相反,则r=1;流向与通路方向相同,则r=2。
根据基尔霍夫定律、蒸汽动力系统的能量守恒方程、质量守恒方程以及所述设备的性能特征参数、工艺参数和拓扑结构确定所述蒸汽动力系统的水力模型。根据基尔霍夫定律、蒸汽动力系统的能量守恒方程、质量守恒方程以及所述设备的性能特征参数、工艺参数和拓扑结构,确定管网物理特性与操作参数的关系,例如,管段长度、粗糙度等与管段压降和流量的关系,形成水力学模型。蒸汽在管道中压力损失较大,气体密度的变化会很明显,此时必须考虑气体的压缩效应。如果管内压降较小,则可以用平均密度来计算压降,如下式Δp=C mG 2
根据基尔霍夫定律、蒸汽动力系统的能量守恒方程以及所述设备的性能特征参数、工艺参数和拓扑结构确定所述蒸汽动力系统的传热模型。蒸汽管道通常都有保温处理,但不可完全避免热能向周围环境散失。在系统中有散热模拟功能,计算管段温降和凝结水情况等。一段有保温层的蒸汽圆管的传热过程,包括管内蒸汽到管内侧壁面、管内侧壁面到管外侧壁面、管外侧壁面到保温层内侧壁面、保温层内侧壁面到保温层外侧壁面、保温层外侧壁面到环境大气等五个环节。热损失Q可按下式计算:Q=kAΔT。
根据所述水力模型和所述传热模型构建所述蒸汽动力系统数学模型。
在确定了所述蒸汽动力系统数学模型之后,为了保证蒸汽动力系统数 学模型的准确性,对所述蒸汽动力系统数学模型的输出结果进行验证优化。
对所述蒸汽动力系统数学模型进行验证,得到验证结果。
根据所述验证结果对所述蒸汽动力系统数学模型进行优化。
具体为蒸汽动力系统数学模型建立以后,即可以对收集的流程结构数据、模型本身和仪表测量数据进行校验。数据校验工作不完全是数学问题,要先从物理层面判断数据的准确度和精度,蒸汽动力系统模型集成了蒸汽动力系统在物理层面的运行规律,因此需要借助模型,对数据(结构数据、仪表数据)进行校验,同时也对模型本身进行了校验。结构数据容易出错、且对模型准确度影响比较大的是管径和保温情况。通过模拟计算的压力值和实测仪表压力进行对比,以确定管径的准确性;通过模拟计算的温度值和实测仪表温度进行对比,并结合外表面温度测量结果,对保温的状况进行修正,同时判断测量仪表的准确性。
蒸汽平衡的校验最为复杂。每个压力等级的蒸汽有产用平衡关系,各个压力等级的蒸汽之间也有转化关系,因此需要建立的模型具备各个压力等级联动计算的功能,才能对各个压力等级的蒸汽系统数据进行合理校验。对于产汽和用汽不平衡的问题(通常情况下,产汽总量总是大于用汽总量),(1)要找到哪些用汽点或产汽点没有被计量,如低压等级大量的伴热管线都没有计量仪表,部分高压等级的小用户没有计量等;(2)可以通过设备功率、热平衡等工艺测的数据和设备运行数据对蒸汽用量进行修正;(3)对计量仪表的温压校正等数据进行校验,确认仪表数据的准确性,对于不准确的仪表给出修正参数;(4)通过管径流速、温度压力的计算值 和测量值对比,对流量数据做修正;(5)最后,仪表偶然误差、信号误差等问题可以通过统计、去噪等数学方法进行校验。最终使得到的测量数据和模拟计算数据接近真实值,达到本项目的准确度要求。在模型中输入设备运行的流量、压力和温度参数,计算功率、热负荷、热效率等参数。然后根据实测参数与计算参数进行对比,如果实测参数与计算参数的相对误差超过±5%,则首先判断实测值的准确度,然后对模型进行校正,最终使实测参数与计算参数的相对误差控制在±5%,完成设备模型的确认。输入产汽设备和用汽设备的流量和部分压力、温度作为已知参数,利用模型可以计算得到所有产、用汽点的流量、压力和温度等参数。同样的,根据实测参数与计算参数进行对比,如果实测参数与计算参数的相对误差超过±5%,则首先判断实测值的准确度,然后对模型进行校正,最终使实测参数与计算参数的相对误差控制在±5%,完成管网模型的确认。
S103,对所述蒸汽动力系统数学模型进行求解,得到运行操作参数。利用牛顿—拉夫森算法对所述蒸汽动力系统数学模型进行求解,得到运行操作参数。为了提高计算速度,采用了一些加速收敛的技巧和必要的边界条件,使得方程解算有稳定的收敛性。例如对一些分段较多的管线,在立方程前进行整合,把多段管线整合为一根管线,大量减少方程的数量,提高计算收敛速度;对输入条件做了限制,提高了方程组收敛的可能性。
S104,以能源消耗和成本最低为目标,以所述运行操作参数为决策变量,以所述设备的性能特征参数、工艺参数和拓扑结构为约束条件,建立目标函数。
S105,根据所述目标函数确定最优运行操作参数。
S106,根据所述最优运行操作参数对所述蒸汽动力系统的运行进行操作。
本发明所提供的一种蒸汽动力系统的运行操作优化方法有效的解决减少了能源的消耗和降低了成本。
本发明所提供的一种蒸汽动力系统的运行操作优化方法对煤化工蒸汽动力系统运行情况进行蒸汽平衡分析及整体优化评估,包含瓶颈解决、热损评价、减温减压器优化、项目改造建议等,对部分用汽部位的改造方案进行综合模拟并得出优化评估结论。并通过如下实施例进行说明。
本发明所提供的一种蒸汽动力系统的运行操作优化方法进行管网瓶颈问题查找与解决。通过模型计算,得到管网流速分布和压降曲线;对流速较快(超过30m/s)或压降较大的管线(每1000米管线的压降大约0.1MPa)进行分析,查找造成压损瓶颈的原因。
本发明所提供的一种蒸汽动力系统的运行操作优化方法进行管线保温的评价:实测管线起点温度、末端温度和表面温度(均匀分布在管线上),与模拟结果对比,得到实际热流、设计热流和合格热流等参数,对管线散热做全面的评价。本方法基于模拟技术对保温效果进行评价,比常规的评价方法更科学、更准确。
本发明所提供的一种蒸汽动力系统的运行操作优化方法进行全厂减温减压器优化。先了解各装置内部用汽设备(不能局限于装置入口,一定要深入到装置内设备)的蒸汽需求情况,包括蒸汽量和蒸汽品质的;按照真实的需求情况进行分类;了解各装置内部减温减压的情况,分析进行减温减压的原因;在满足生产需求、保障安全运行的基础上,合理优化管网 与设备的匹配,提出减少减温减压量的措施。
本发明所提供的一种蒸汽动力系统的运行操作优化方法解决了工业企业蒸汽动力系统蒸汽放空问题。企业夏季典型工况下,A装置产汽量比全厂装置需求量大270t/h;电站回收了约210t/h;因此还要放空60t/h,造成能源浪费。冬季工况下,A装置产汽量比全厂装置需求量大230t/h;电站回收了约220t/h;因此还要放空约10t/h,造成能源浪费。
本发明所提供的一种蒸汽动力系统的运行操作优化方法进行了放空原因分析。结果显示热电中心界区管线管径为DN250。夏季典型工况下,热电中心回收蒸汽60t/h,流速达到50m/s以上,瓶颈效应显著。由于管线瓶颈问题,所以蒸汽压力下降非常大,到达热电中心界区压力不能满足生产需要,因此限制了热电中心进一步回收蒸汽,造成大量的放空。
进一步的提供解决方案:找到合理的用汽点,消除蒸汽过剩。A装置等内部无法增加新的用汽点,因此只能考虑替换热电中心的加热蒸汽。冬季工况下蒸汽过剩较少,可以通过稍微调高操作参数来增加回收的蒸汽量,达到消除放空的目的。夏季工况下,蒸汽过剩较多,由于前述的热电中心界区瓶颈等原因,大量的蒸汽无法回收,因此需要对热电中心的管线进行改造。
即热电中心界区增加一条DN400的复线;热电中心内部也需要增加两条DN200管线至最终用汽设备。
本发明所提供的一种蒸汽动力系统的运行操作优化方法对改造后的系统进行分析;夏季工况下,当外管网蒸汽过剩较多时,投用新增跨线,使最终用汽设备使用外界的放空蒸汽;冬季工况下,通过提高加热器温度 控制消耗掉多余的蒸汽。
进而,通过本发明带来的经济效益为1829.1万元,其中,夏季工况下:按平均减少蒸汽放空40t/h计算,每吨除盐水价格按21元计算,夏季工况(7个月)节约用水的经济效益为423万元;回收的热量减少电站煤耗量每吨煤的热值按20000kJ/kg,每吨煤的价格按400元计算,夏季工况下经济效益约为1200万元;因此夏季工况下总的经济效益约为1623万元。冬季工况下按平均回收9t/h除盐水计,冬季工况(5个月)节约用水的经济效益为67.5万元,减少燃煤消耗的经济效益约为138.6万元,因此冬季工况的总经济效益为206.1万元。
图2为本发明所提供的一种蒸汽动力系统的运行操作优化系统结构示意图,如图2所示,本发明所提供的一种蒸汽动力系统的运行操作优化系统,包括:数据获取模块201、运行操作参数模型构建模块202、运行操作参数确定模块203、目标函数建立模块204、最优运行操作参数确定模块205和运行操作模块206。
数据获取模块201用于获取蒸汽动力系统中设备的性能特征参数、工艺参数和拓扑结构;所述设备包括动力锅炉、汽轮机、减温减压器、除氧器、蒸汽加热器、凝汽器、给水泵、余热锅炉和蒸汽管网;所述性能特征参数包括动力锅炉的蒸发量、压力和温度,汽轮机的进汽量、高压抽汽量、高压抽汽压力、高压抽汽温度、低压抽汽量、低压抽汽压力、低压抽汽温度、排汽量、排汽真空度和额定功率,减温减压器的出口流量、出口压力、出口温度以及减温水的压力和温度,除氧器的工作压力,蒸汽加热器的列管数、列管直径、列管长度以及出口控制温度,凝汽器的列管数、列管直 径、列管长度以及循环冷却水的流量和进口温度,给水泵的扬程曲线、效率曲线、工作频率,余热锅炉的产汽量、产汽压力和产汽温度,蒸汽管网的流程拓扑结构,以及管线的管径、壁厚、管长、保温、弯头和阀门;所述工艺参数包括年操作时间、系统电力需求、燃料数据、工况条件和系统尾气排放。
运行操作参数模型构建模块202用于根据基尔霍夫定律、蒸汽动力系统的能量守恒方程、质量守恒方程以及所述设备的性能特征参数、工艺参数和拓扑结构构建蒸汽动力系统数学模型。
运行操作参数确定模块203用于对所述蒸汽动力系统数学模型进行求解,得到运行操作参数。
目标函数建立模块204用于以能源消耗和成本最低为目标,以所述运行操作参数为决策变量,以所述设备的性能特征参数、工艺参数和拓扑结构为约束条件,建立目标函数。
最优运行操作参数确定模块205用于根据所述目标函数确定最优运行操作参数。
运行操作模块206用于根据所述最优运行操作参数对所述蒸汽动力系统的运行进行操作。
所述运行操作参数模型构建模块202具体包括:水力模型确定单元、传热模型确定单元和蒸汽动力系统数学模型确定单元。
水力模型确定单元用于根据基尔霍夫定律、蒸汽动力系统的能量守恒方程、质量守恒方程以及所述设备的性能特征参数、工艺参数和拓扑结构确定所述蒸汽动力系统的水力模型。
传热模型确定单元用于根据基尔霍夫定律、蒸汽动力系统的能量守恒方程以及所述设备的性能特征参数、工艺参数和拓扑结构确定所述蒸汽动力系统的传热模型。
蒸汽动力系统数学模型确定单元用于根据所述水力模型和所述传热模型构建所述蒸汽动力系统数学模型。
所述运行操作参数确定模块203具体包括:运行操作参数确定单元。
运行操作参数确定单元用于利用牛顿—拉夫森算法对所述蒸汽动力系统数学模型进行求解,得到运行操作参数。
本发明所提供的一种蒸汽动力系统的运行操作优化系统还包括:验证结果确定模块和优化模块。
验证结果确定模块用于对所述蒸汽动力系统数学模型进行验证,得到验证结果。
优化模块用于根据所述验证结果对所述蒸汽动力系统数学模型进行优化。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (8)

  1. 一种蒸汽动力系统的运行操作优化方法,其特征在于,包括:
    获取蒸汽动力系统中设备的性能特征参数、工艺参数和拓扑结构;所述设备包括动力锅炉、汽轮机、减温减压器、除氧器、蒸汽加热器、凝汽器、给水泵、余热锅炉和蒸汽管网;所述性能特征参数包括动力锅炉的蒸发量、压力和温度,汽轮机的进汽量、高压抽汽量、高压抽汽压力、高压抽汽温度、低压抽汽量、低压抽汽压力、低压抽汽温度、排汽量、排汽真空度和额定功率,减温减压器的出口流量、出口压力、出口温度以及减温水的压力和温度,除氧器的工作压力,蒸汽加热器的列管数、列管直径、列管长度以及出口控制温度,凝汽器的列管数、列管直径、列管长度以及循环冷却水的流量和进口温度,给水泵的扬程曲线、效率曲线、工作频率,余热锅炉的产汽量、产汽压力和产汽温度,、蒸汽管网的流程拓扑结构,以及管线的管径、壁厚、管长、保温、弯头和阀门;所述工艺参数包括年操作时间、系统电力需求、燃料数据、工况条件和系统尾气排放;
    根据基尔霍夫定律、蒸汽动力系统的能量守恒方程、质量守恒方程以及所述设备的性能特征参数、工艺参数和拓扑结构构建蒸汽动力系统数学模型;
    对所述蒸汽动力系统数学模型进行求解,得到运行操作参数;
    以能源消耗和成本最低为目标,以所述运行操作参数为决策变量,以所述设备的性能特征参数、工艺参数和拓扑结构为约束条件,建立目标函数;
    根据所述目标函数确定最优运行操作参数;
    根据所述最优运行操作参数对所述蒸汽动力系统的运行进行操作。
  2. 根据权利要求1所述的一种蒸汽动力系统的运行操作优化方法,其特征在于,所述根据基尔霍夫定律、蒸汽动力系统的能量守恒方程、质量守恒方程以及所述设备的性能特征参数、工艺参数和拓扑结构构建蒸汽动力系统数学模型,具体包括:
    根据基尔霍夫定律、蒸汽动力系统的能量守恒方程、质量守恒方程以及所述设备的性能特征参数、工艺参数和拓扑结构确定所述蒸汽动力系统的水力模型;
    根据基尔霍夫定律、蒸汽动力系统的能量守恒方程以及所述设备的性能特征参数、工艺参数和拓扑结构确定所述蒸汽动力系统的传热模型;
    根据所述水力模型和所述传热模型构建所述蒸汽动力系统数学模型。
  3. 根据权利要求1所述的一种蒸汽动力系统的运行操作优化方法,其特征在于,所述对所述蒸汽动力系统数学模型进行求解,得到运行操作参数,具体包括:
    利用牛顿—拉夫森算法对所述蒸汽动力系统数学模型进行求解,得到运行操作参数。
  4. 根据权利要求1所述的一种蒸汽动力系统的运行操作优化方法,其特征在于,所述对所述蒸汽动力系统数学模型进行求解,得到运行操作参数,之前还包括:
    对所述蒸汽动力系统数学模型进行验证,得到验证结果;
    根据所述验证结果对所述蒸汽动力系统数学模型进行优化。
  5. 一种蒸汽动力系统的运行操作优化系统,其特征在于,包括:
    数据获取模块,用于获取蒸汽动力系统中设备的性能特征参数、工艺 参数和拓扑结构;所述设备包括动力锅炉、汽轮机、减温减压器、除氧器、蒸汽加热器、凝汽器、给水泵、余热锅炉和蒸汽管网;所述性能特征参数包括动力锅炉的蒸发量、压力和温度、汽轮机的进汽量、高压抽汽量、高压抽汽压力、高压抽汽温度、低压抽汽量、低压抽汽压力、低压抽汽温度、排汽量、排汽真空度和额定功率,减温减压器的出口流量、出口压力、出口温度以及减温水的压力和温度,除氧器的工作压力,蒸汽加热器的列管数、列管直径、列管长度以及出口控制温度,凝汽器的列管数、列管直径、列管长度以及循环冷却水的流量和进口温度,给水泵的扬程曲线、效率曲线、工作频率,余热锅炉的产汽量、产汽压力和产汽温度,蒸汽管网的流程拓扑结构,以及管线的管径、壁厚、管长、保温、弯头和阀门;所述工艺参数包括年操作时间、系统电力需求、燃料数据、工况条件和系统尾气排放;
    运行操作参数模型构建模块,用于根据基尔霍夫定律、蒸汽动力系统的能量守恒方程、质量守恒方程以及所述设备的性能特征参数、工艺参数和拓扑结构构建蒸汽动力系统数学模型;
    运行操作参数确定模块,用于对所述蒸汽动力系统数学模型进行求解,得到运行操作参数;
    目标函数建立模块,用于以能源消耗和成本最低为目标,以所述运行操作参数为决策变量,以所述设备的性能特征参数、工艺参数和拓扑结构为约束条件,建立目标函数;
    最优运行操作参数确定模块,用于根据所述目标函数确定最优运行操作参数;
    运行操作模块,用于根据所述最优运行操作参数对所述蒸汽动力系统的运行进行操作。
  6. 根据权利要求5所述的一种蒸汽动力系统的运行操作优化系统,其特征在于,所述运行操作参数模型构建模块具体包括:
    水力模型确定单元,用于根据基尔霍夫定律、蒸汽动力系统的能量守恒方程、质量守恒方程以及所述设备的性能特征参数、工艺参数和拓扑结构确定所述蒸汽动力系统的水力模型;
    传热模型确定单元,用于根据基尔霍夫定律、蒸汽动力系统的能量守恒方程以及所述设备的性能特征参数、工艺参数和拓扑结构确定所述蒸汽动力系统的传热模型;
    蒸汽动力系统数学模型确定单元,用于根据所述水力模型和所述传热模型构建所述蒸汽动力系统数学模型。
  7. 根据权利要求5所述的一种蒸汽动力系统的运行操作优化系统,其特征在于,所述运行操作参数确定模块具体包括:
    运行操作参数确定单元,用于利用牛顿—拉夫森算法对所述蒸汽动力系统数学模型进行求解,得到运行操作参数。
  8. 根据权利要求5所述的一种蒸汽动力系统的运行操作优化系统,其特征在于,还包括:
    验证结果确定模块,用于对所述蒸汽动力系统数学模型进行验证,得到验证结果;
    优化模块,用于根据所述验证结果对所述蒸汽动力系统数学模型进行优化。
PCT/CN2020/103686 2020-03-04 2020-07-23 一种蒸汽动力系统的运行操作优化方法及系统 WO2021174749A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010143057.2 2020-03-04
CN202010143057.2A CN111475913A (zh) 2020-03-04 2020-03-04 一种蒸汽动力系统的运行操作优化方法及系统

Publications (1)

Publication Number Publication Date
WO2021174749A1 true WO2021174749A1 (zh) 2021-09-10

Family

ID=71747184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103686 WO2021174749A1 (zh) 2020-03-04 2020-07-23 一种蒸汽动力系统的运行操作优化方法及系统

Country Status (2)

Country Link
CN (1) CN111475913A (zh)
WO (1) WO2021174749A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114046183A (zh) * 2021-09-23 2022-02-15 华能国际电力股份有限公司大连电厂 一种高背压运行边际条件的确定方法
CN114896859A (zh) * 2022-03-29 2022-08-12 湖北中创智优科技有限公司 一种基于差分进化的蒸汽动力及管网运行优化方法
CN115263742A (zh) * 2022-08-01 2022-11-01 西安陕鼓动力股份有限公司 通过实测确定压缩机带压起动阻力矩的方法、程序产品
CN116108640A (zh) * 2022-12-28 2023-05-12 南京苏夏设计集团股份有限公司 一种蒸汽管网温降计算方法、存储介质及设备
CN114896859B (zh) * 2022-03-29 2024-05-03 湖北中创智优科技有限公司 一种基于差分进化的蒸汽动力及管网运行优化方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112307635B (zh) * 2020-11-04 2023-12-19 万华化学集团股份有限公司 一种蒸汽系统扩能改造优化方法、电子设备及存储介质
CN112696658B (zh) * 2020-12-28 2022-06-17 南京罕华流体技术有限公司 一种氧化铝蒸汽产消联锁方法
CN113221300A (zh) * 2021-05-10 2021-08-06 西安交通大学 一种大型集中供热管网的改造方法及装置
CN113251321A (zh) * 2021-05-28 2021-08-13 华能(广东)能源开发有限公司海门电厂 一种识别蒸汽热网爆管位置的方法和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103544551A (zh) * 2013-11-12 2014-01-29 北京宜能高科科技有限公司 一种蒸汽动力系统的操作优化方法和装置
CN104657789A (zh) * 2015-02-12 2015-05-27 浙江大学 一种蒸汽动力系统的运行操作方法
CN104978442A (zh) * 2014-04-04 2015-10-14 北京宜能高科科技有限公司 集成动力站及装置产用汽的蒸汽动力系统优化方法及系统
CN105095539A (zh) * 2014-05-09 2015-11-25 北京宜能高科科技有限公司 含括蒸汽直管的蒸汽动力系统优化方法及系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030476A (ja) * 2007-07-25 2009-02-12 Toshiba Corp 発電プラントの運転最適化方法および運転最適化システム
US9378313B2 (en) * 2009-10-30 2016-06-28 Saudi Arabian Oil Company Methods for enhanced energy efficiency via systematic hybrid inter-processes integration
CN102242868B (zh) * 2011-04-22 2012-10-31 华东理工大学 一种工业装置蒸汽管网优化运行方法
CN102444784B (zh) * 2011-11-14 2013-11-20 上海金自天正信息技术有限公司 基于动态矩阵控制的钢铁企业蒸汽管网压力控制系统
CN102867090A (zh) * 2012-09-13 2013-01-09 冶金自动化研究设计院 基于tbb的并行遗传算法蒸汽管网模型自动校准系统
CN104463341B (zh) * 2013-09-25 2017-10-27 北京宜能高科科技有限公司 图表化的蒸汽动力系统分析优化方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103544551A (zh) * 2013-11-12 2014-01-29 北京宜能高科科技有限公司 一种蒸汽动力系统的操作优化方法和装置
CN104978442A (zh) * 2014-04-04 2015-10-14 北京宜能高科科技有限公司 集成动力站及装置产用汽的蒸汽动力系统优化方法及系统
CN105095539A (zh) * 2014-05-09 2015-11-25 北京宜能高科科技有限公司 含括蒸汽直管的蒸汽动力系统优化方法及系统
CN104657789A (zh) * 2015-02-12 2015-05-27 浙江大学 一种蒸汽动力系统的运行操作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CAO, YANQING, CHEN ZHIKUI: "Rigorous Online Simulation and Intelligent Monitoring Technology in Steam Network", COMPUTERS AND APPLIED CHEMISTRY, BEIJING HUAGONG XUEYUAN, BEIJING, CN, vol. 23, no. 10, 30 October 2006 (2006-10-30), Beijing, CN, pages 923 - 930, XP055842667, ISSN: 1001-4160 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114046183A (zh) * 2021-09-23 2022-02-15 华能国际电力股份有限公司大连电厂 一种高背压运行边际条件的确定方法
CN114896859A (zh) * 2022-03-29 2022-08-12 湖北中创智优科技有限公司 一种基于差分进化的蒸汽动力及管网运行优化方法
CN114896859B (zh) * 2022-03-29 2024-05-03 湖北中创智优科技有限公司 一种基于差分进化的蒸汽动力及管网运行优化方法
CN115263742A (zh) * 2022-08-01 2022-11-01 西安陕鼓动力股份有限公司 通过实测确定压缩机带压起动阻力矩的方法、程序产品
CN115263742B (zh) * 2022-08-01 2023-11-21 西安陕鼓动力股份有限公司 通过实测确定压缩机带压起动阻力矩的方法、程序产品
CN116108640A (zh) * 2022-12-28 2023-05-12 南京苏夏设计集团股份有限公司 一种蒸汽管网温降计算方法、存储介质及设备
CN116108640B (zh) * 2022-12-28 2023-09-19 南京苏夏设计集团股份有限公司 一种蒸汽管网温降计算方法、存储介质及设备

Also Published As

Publication number Publication date
CN111475913A (zh) 2020-07-31

Similar Documents

Publication Publication Date Title
WO2021174749A1 (zh) 一种蒸汽动力系统的运行操作优化方法及系统
CN105910169B (zh) 基于机理模型预测控制的城市供热系统热网调节方法及系统
Liu et al. Numerical simulation and simplified calculation method for heat exchange performance of dry air cooler in natural gas pipeline compressor station
CN103726887B (zh) 一种燃煤机组汽轮机性能在线监测方法
CN109325255B (zh) 基于定功率的湿冷汽轮机最佳真空在线指导系统
CN103063354B (zh) 火电机组能耗评估和煤耗查定试验中汽轮机基准背压的确定
CN110414114B (zh) 一种u型地埋管换热器的多目标多参数的优化设计方法
CN105184395B (zh) 含余热利用系统的火电机组的初参数确定方法
CN109388844B (zh) 低压省煤器节能效果的修正计算方法
CN112016033B (zh) 一种基于前推回代法的电-热-气综合能源系统潮流计算方法
CN102338568A (zh) 基于清洁系数指标的电厂凝汽器性能在线监测系统及方法
CN109029000A (zh) 一种凝汽器清洁度在线监测系统及监测方法
CN112016754A (zh) 基于神经网络的电站锅炉排烟温度超前预测系统及方法
CN110207094A (zh) 基于主成分分析的iqga-svr锅炉受热面沾污特性辨识方法
WO2022160681A1 (zh) 一种蒸汽供热网络动态运行水力状态估计方法及系统
CN110032155A (zh) 一种火电厂海水直流冷却水系统运行优化指导系统
CN110348176B (zh) 一种页岩气地面集输管网滚动开发方案优化求解器及方法
CN111723331A (zh) 一种联合循环二拖一机组汽轮机负荷的权益分配计算方法
CN116611706A (zh) 基于多能源主体的动态碳排放因子测算方法
CN112818610B (zh) 超临界水流动换热实验系统压力与流量的调控方法及系统
CN112989719B (zh) 一种燃气锅炉机组动态特性建模方法
CN113569497B (zh) 一种凝汽器冷却水流量的软测量方法
CN111723090B (zh) 一种竖直上升光管内超临界水壁温查询表的建立方法
CN113536591A (zh) 一种综合能源系统变步长动态仿真方法
CN114216713A (zh) 一种架空蒸汽热网散热损失特征综合检测评价系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20922852

Country of ref document: EP

Kind code of ref document: A1