WO2021174531A1 - 数据传输方法、车端设备和网络侧设备 - Google Patents

数据传输方法、车端设备和网络侧设备 Download PDF

Info

Publication number
WO2021174531A1
WO2021174531A1 PCT/CN2020/078231 CN2020078231W WO2021174531A1 WO 2021174531 A1 WO2021174531 A1 WO 2021174531A1 CN 2020078231 W CN2020078231 W CN 2020078231W WO 2021174531 A1 WO2021174531 A1 WO 2021174531A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
vehicle
content
side device
related information
Prior art date
Application number
PCT/CN2020/078231
Other languages
English (en)
French (fr)
Inventor
刘建琴
李月华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080004160.7A priority Critical patent/CN112514425B/zh
Priority to KR1020227034061A priority patent/KR20220148263A/ko
Priority to EP20923365.9A priority patent/EP4102799A4/en
Priority to JP2022553170A priority patent/JP2023516205A/ja
Priority to PCT/CN2020/078231 priority patent/WO2021174531A1/zh
Publication of WO2021174531A1 publication Critical patent/WO2021174531A1/zh
Priority to US17/903,118 priority patent/US20220416974A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096708Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • H04W4/027Services making use of location information using location based information parameters using movement velocity, acceleration information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/18Information format or content conversion, e.g. adaptation by the network of the transmitted or received information for the purpose of wireless delivery to users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/48Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for in-vehicle communication

Definitions

  • the present disclosure relates to the field of Internet of Vehicles, and in particular to a data transmission method, network side equipment, and vehicle terminal equipment.
  • the network-side device periodically or in real time transmits the collected dynamic information of the road condition to the vehicle-end device installed on the vehicle. That is, in the prior art, the network-side device sends all collected dynamic information to the vehicle-end device, and the vehicle-end device passively determines and executes a corresponding driving strategy based on all the received dynamic information.
  • the inventor found that the above-mentioned prior art method has at least the following problems: because the vehicle-end device passively receives all the dynamic information sent by the network-side device, the vehicle-end device and the network-side The problem of low data transmission efficiency between devices.
  • embodiments of the present disclosure provide a data transmission method, a network side device, and a vehicle side device.
  • the embodiments of the present disclosure provide a data transmission method, the method may be applied to a vehicle-end device, and the method includes:
  • the vehicle-end device sends a first message for obtaining vehicle driving related information to the network-side device;
  • the vehicle-end device receives a second message including vehicle driving-related information from the network-side device, and the content and or format of the second message is determined by the network-side device according to the first message.
  • the vehicle-end device sends the first message for obtaining vehicle driving-related information to the network-side device, so that the vehicle-end device can actively and selectively obtain vehicle-related information from the network-side device, thereby improving the vehicle
  • the interaction between the end device and the network side device is intelligent.
  • the vehicle-end equipment can selectively obtain vehicle driving-related information from the network-side equipment, the problem of data redundancy obtained by the vehicle-end equipment in the prior art can be avoided, and it can also avoid the problem of data obtained by the vehicle-end equipment in the prior art.
  • the problem of long time delay for all data so as to achieve the technical effect of improving the efficiency of information transmission.
  • the first message includes vehicle driving information reported or requested by the vehicle-side device to the network-side device.
  • the vehicle-end device can interact with the network-side device in two ways: “report” or “request”, which can realize the flexibility and diversity of interaction, and thus can realize the flexibility of obtaining vehicle driving-related information. Sex and diversity.
  • the reported vehicle driving related information includes at least one of the auto-driving level, the lane where the vehicle belongs, or the current vehicle speed of the vehicle to which the vehicle-end device belongs.
  • the requested vehicle driving related information includes a content type or a detailed level of the vehicle driving related information.
  • the first message carries the content type or the level of detail based on a predefined bit coding manner.
  • the content or format of the second message determined by the network-side device according to the first message includes:
  • the content of the second message is determined by the network side device as a road condition description or a driving operation instruction according to the first message;
  • the format of the second message is determined by the network side device as a human recognizable language or a machine recognizable language according to the first message.
  • the technical effect of effective and accurate identification of the second message by the vehicle terminal device can be ensured.
  • the content or format of the second message determined by the network-side device according to the first message includes:
  • the second message includes vehicle driving related information of multiple content types
  • the first message is also used by the network-side device to determine the vehicle driving of each content type in the multiple content types.
  • the transmission priority of related information is also used by the network-side device to determine the vehicle driving of each content type in the multiple content types.
  • the vehicle driving-related information of a content type with a higher transmission priority is preferentially transmitted in terms of transmission timing, or has a higher level of detail in terms of the content or format.
  • the level of detail of different information may be different, so that the level of detail can be different based on the level of detail.
  • the first message includes a time period or road segment in which the vehicle to which the vehicle-end device belongs is in driving, and the network-side device determines vehicle driving-related information of each content type among the multiple content types
  • the transmission priority includes: the network-side device determines the transmission priority of the vehicle driving-related information of each content type according to the time period or the road section.
  • the embodiments of the present disclosure also provide a data transmission method, which can be applied to a network-side device, and the method includes:
  • the network-side device receives the first message sent by the vehicle-end device for obtaining vehicle driving related information
  • Determining, by the network-side device, a second message including vehicle driving related information, and the content or format of the second message is determined by the network-side device according to the first message;
  • the network-side device sends the second message to the vehicle-end device.
  • the network side equipment includes but is not limited to cloud servers and roadside units.
  • the first message includes vehicle driving information reported or requested by the vehicle-side device to the network-side device.
  • the reported vehicle driving-related information includes at least one of the auto-driving level, lane, or current speed of the vehicle to which the vehicle-end device belongs, and the network-side device determines that the information includes vehicle driving-related information
  • the second message includes:
  • the network-side device determines the content or format of the second message according to at least one of the autonomous driving level, the lane where the vehicle belongs, or the current vehicle speed of the vehicle to which the vehicle-end device belongs.
  • the formats of the messages that can be recognized by vehicles of different autonomous driving levels are not the same, for example, vehicles of L3 level (for detailed explanation, please refer to the description in the specific embodiments) and above can recognize machine language, so
  • the auto-driving level of the vehicle to which the vehicle-end device belongs is above L3, it can be determined that the format of the second message is the format corresponding to the machine language. Therefore, by determining the content or format of the second message in the embodiment of the present disclosure, the technical effect of the validity and reliability of message recognition by the vehicle-end device can be realized.
  • the requested vehicle driving-related information includes the content type or the level of detail of the vehicle driving-related information
  • the second message determined by the network-side device to include the vehicle driving-related information includes:
  • the network side device determines the content or format of the second message according to the content type or the level of detail.
  • the first message carries the content type or the level of detail based on a pre-defined bit encoding method
  • the network-side device determines that the second message that includes vehicle driving related information includes:
  • the network side device determines the content or format of the second message according to the content type or the level of detail.
  • the content or format of the second message determined by the network-side device according to the first message includes:
  • the content of the second message is determined by the network side device as a road condition description or a driving operation instruction according to the first message;
  • the format of the second message is determined by the network side device to be a human recognizable language or a machine recognizable language according to the first message.
  • the content or format of the second message determined by the network-side device according to the first message includes:
  • the second message includes vehicle driving-related information of multiple content types
  • the second message determined by the network-side device to include vehicle driving-related information includes:
  • the network side device determines the transmission priority of the vehicle driving related information of each content type among the multiple content types according to the first message.
  • the vehicle driving-related information of a content type with a higher transmission priority is transmitted preferentially in terms of transmission timing, or has a higher level of detail in terms of the content or format.
  • the first message includes the time period or road segment in which the vehicle is traveling, and the network-side device determines each of the multiple content types according to the first message.
  • the transmission priority of the vehicle driving related information of the content type includes: the network side device determines the transmission priority of the vehicle driving related information of each content type according to the time period or the road section.
  • the embodiments of the present disclosure also provide a vehicle-end device, the vehicle-end device including:
  • the first sending unit is configured to send a first message for acquiring vehicle driving related information to the network side device;
  • the first receiving unit is configured to receive a second message including vehicle driving related information from the network side device, and the content or format of the second message is determined by the network side device according to the first message.
  • the first message includes vehicle driving information reported or requested by the vehicle-side device to the network-side device.
  • the reported vehicle driving related information includes at least one of the autopilot level, the lane where the vehicle belongs, or the current vehicle speed of the vehicle to which the vehicle-end device belongs.
  • the requested vehicle driving related information includes a content type or a detailed level of the vehicle driving related information.
  • the first message carries the content type or the level of detail based on a predefined bit coding manner.
  • the content or format of the second message determined by the network-side device according to the first message includes:
  • the content of the second message is determined by the network side device as a road condition description or a driving operation instruction according to the first message;
  • the format of the second message is determined by the network side device as a human recognizable language or a machine recognizable language according to the first message.
  • the content or format of the second message determined by the network-side device according to the first message includes:
  • the second message includes vehicle driving related information of multiple content types
  • the first message is also used by the network-side device to determine the vehicle driving of each content type in the multiple content types.
  • the transmission priority of related information is also used by the network-side device to determine the vehicle driving of each content type in the multiple content types.
  • the vehicle driving-related information of a content type with a higher transmission priority is preferentially transmitted in terms of transmission timing, or has a higher level of detail in terms of the content or format.
  • the first message includes the time period or road segment in which the vehicle is traveling by the vehicle-side device, and the network-side device determines that each content type of the multiple content types is related to vehicle driving.
  • the information transmission priority includes: the network-side device determines the transmission priority of the vehicle driving-related information of each content type according to the time period or the road section.
  • the embodiments of the present disclosure also provide a network-side device, the device including:
  • the second receiving unit is configured to receive the first message sent by the vehicle-end device for obtaining vehicle driving related information
  • a determining unit configured to determine a second message including vehicle driving related information, and the content or format of the second message is determined by the determining unit according to the first message;
  • the second sending unit is configured to send the second message to the vehicle terminal device.
  • the first message includes vehicle driving information reported or requested by the vehicle-side device to the network-side device.
  • the reported vehicle driving related information includes at least one of the autopilot level, lane, or current vehicle speed of the vehicle to which the vehicle-end device belongs, and the determining unit is configured to:
  • the content or format of the second message is determined according to at least one of the autonomous driving level, the lane where the vehicle belongs, or the current vehicle speed of the vehicle to which the vehicle-end device belongs.
  • the requested vehicle driving related information includes a content type or a detailed level of the vehicle driving related information
  • the determining unit is configured to:
  • the content or format of the second message is determined according to the content type or the level of detail.
  • the first message carries the content type or the level of detail based on a predefined bit encoding method
  • the determining unit is configured to:
  • the content or format of the second message is determined according to the content type or the level of detail.
  • the content or format of the second message determined by the determining unit according to the first message includes:
  • the content of the second message is determined by the determining unit as a road condition description or a driving operation instruction according to the first message;
  • the format of the second message is determined by the determining unit to be a human-recognizable language or a machine-recognizable language according to the first message.
  • the content or format of the second message determined by the determining unit according to the first message includes:
  • the second message includes vehicle driving related information of multiple content types
  • the determining unit is configured to:
  • the transmission priority of the vehicle driving-related information of each content type among the multiple content types is determined according to the first message.
  • the vehicle driving-related information of a content type with a higher transmission priority is preferentially transmitted in terms of transmission timing, or has a higher level of detail in terms of the content or format.
  • the first message includes the time period or road segment in which the vehicle is traveling, and the determining unit is configured to: determine the content of each type according to the time period or the road segment The priority of the transmission of information related to the type of vehicle driving.
  • the embodiments of the present disclosure also provide a vehicle-end device, the vehicle-end includes a memory and a processor, the memory stores computer program instructions, and the processor runs the computer program Instructions to perform the method described in any of the above embodiments.
  • the embodiments of the present disclosure also provide a network side device, the vehicle side includes a memory and a processor, the memory stores computer program instructions, and the processor runs the computer program Instructions to perform the method described in any of the above embodiments.
  • the embodiments of the present disclosure also provide a vehicle, the vehicle including the vehicle-end device described in any of the foregoing embodiments.
  • the embodiments of the present disclosure also provide an Internet of Vehicles system, the system including:
  • the network side device includes a cloud server and a road side unit.
  • the embodiments of the present disclosure also provide a computer storage medium having computer instructions stored on the computer storage medium.
  • the vehicle-end device Perform the method described in the above embodiment.
  • the embodiments of the present disclosure also provide a computer storage medium having computer instructions stored thereon, and when the computer instructions are executed by a processor, the network side device Perform the method described in the above embodiment.
  • the embodiments of the present disclosure also provide a computer program product, which when the computer program product runs on a processor, causes the vehicle-end device to execute the method described in any of the above embodiments. .
  • the embodiments of the present disclosure also provide a computer program product, which when the computer program product runs on a processor, causes the network-side device to execute the method described in any of the above embodiments .
  • FIG. 1 is a schematic diagram of a typical application scenario of an embodiment of the disclosure
  • FIG. 2 is a schematic diagram of another typical application scenario of an embodiment of the disclosure.
  • FIG. 3 is a flowchart of a data transmission method provided in Embodiment 1 of the present disclosure.
  • FIG. 4 is a flowchart of a method for data transmission between a car-end device and the cloud provided in the second embodiment of the disclosure
  • FIG. 5 is a flowchart of a data transmission method between a vehicle-end device and a roadside unit according to Embodiment 3 of the disclosure
  • FIG. 6 is a flowchart of a data transmission method between a car-end device and a cloud server provided by the fourth embodiment of the disclosure.
  • FIG. 7 is a flowchart of a data transmission method between a vehicle-end device and a cloud server provided by Embodiment 5 of the disclosure.
  • FIG. 8 is a flowchart of a data transmission method provided by Embodiment 6 of the present disclosure.
  • FIG. 9 is a structural block diagram of the vehicle-end equipment provided in the seventh embodiment of the disclosure.
  • FIG. 10 is a structural block diagram of a network side device provided by Embodiment 8 of the present disclosure.
  • FIG. 11 is a structural block diagram of a vehicle-side device or a network-side device provided by the ninth embodiment of the disclosure.
  • FIG. 12 is a schematic diagram of the internal components of the vehicle provided in the tenth embodiment of the disclosure.
  • the data transmission method of the embodiment of the present disclosure may be applicable to the application scenarios shown in FIG. 1 and FIG. 2.
  • the vehicle 100 includes a vehicle-end device (not shown in FIG. 1).
  • the vehicle-end device may be a Telematics BOX (T-Box) provided in the vehicle 100, and a domain controller (Domian Controller, DC), Multi-Domian Controller (MDC), On-board Unit (OBU), IoV chips, etc.
  • T-Box Telematics BOX
  • DC Domain Controller
  • MDC Multi-Domian Controller
  • OBU On-board Unit
  • IoV chips etc.
  • the vehicle-end device establishes a communication link with the cloud server 200 (a kind of network-side device).
  • the car-end device can be connected to the cloud server through the corresponding account and password, and the car-end device can also be connected to the cloud server through its unique identification code (such as the device identification code of the vehicle-end device and the license plate number of the vehicle, etc.), thereby achieving Data interaction between the vehicle-end device and the cloud server (such as the data transmission between the vehicle-end device and the network-side device in the embodiment of the present disclosure).
  • the unique identification code such as the device identification code of the vehicle-end device and the license plate number of the vehicle, etc.
  • the vehicle 100 includes a vehicle-end device (not shown in FIG. 2).
  • the vehicle-end device may be a Telematics BOX (T-Box) provided in the vehicle 100, and a domain controller (Domian Controller, DC), Multi-Domian Controller (MDC), On-board Unit (OBU), IoV chips, etc.
  • T-Box Telematics BOX
  • DC Domain Controller
  • MDC Multi-Domian Controller
  • OBU On-board Unit
  • IoV chips etc.
  • the vehicle-end device establishes a communication link with a Road Side Unit (RSU) 300 (a type of network-side device).
  • RSU Road Side Unit
  • vehicle-end equipment can be connected to the roadside unit through the corresponding account and password, and the vehicle-end equipment can also be connected to the roadside unit through its unique identification code (such as the equipment identification code of the vehicle-end equipment and the license plate number of the vehicle, etc.) , So as to realize the data interaction between the vehicle-end device and the roadside unit (such as the data transmission between the vehicle-end device and the network-side device in the embodiment of the present disclosure).
  • unique identification code such as the equipment identification code of the vehicle-end equipment and the license plate number of the vehicle, etc.
  • an embodiment of the present disclosure provides a data transmission method.
  • FIG. 3 is a schematic flowchart of a data transmission method according to an embodiment of the present disclosure.
  • the method includes:
  • the vehicle-side device sends a first message for acquiring vehicle driving related information to the network-side device.
  • the first message is used to characterize the information requirements of the vehicle-end equipment. That is, the vehicle-end device can obtain vehicle driving-related information from the network-side device based on the information demand.
  • Vehicle driving-related information refers to related information when the vehicle is driving, including vehicle speed, location, lane, and the position between the vehicle and other vehicles.
  • the first message includes the vehicle driving information reported or requested by the vehicle-side device to the network-side device.
  • the vehicle-end device when the vehicle-end device has a certain information demand, the vehicle-end device can obtain the second message corresponding to the information demand from the network-side device by reporting information related to vehicle driving. It is determined by the network side based on information requirements from the collected road condition information.
  • the vehicle-end device when the vehicle-end device has a certain information demand, the vehicle-end device can also obtain the second message corresponding to the information demand from the network-side device by requesting information related to vehicle driving, and in this case Next, the information demand of the vehicle-end equipment is the requested vehicle driving-related information. Similarly, the second message is determined by the network side from the collected road condition information based on the information demand.
  • the vehicle-side device receives a second message including vehicle driving related information from the network-side device, and the content or format of the second message is determined by the network-side device according to the first message.
  • the second message can be understood from two aspects, one aspect is the content of the second message, and the other aspect is the format of the second message.
  • the content and/or format of the second message may be different.
  • the network side device determines the second message from the road condition information according to the first message.
  • the second message includes vehicle driving-related information, and the second message can be based on both content and format. It is embodied in the aspect, that is, the second message may include the content and format of the information related to the driving of the vehicle.
  • the network-side device can determine the information demand of the vehicle-end device based on the first message, and select the vehicle driving-related information corresponding to the information demand from the road condition information, and The second message including the vehicle driving-related information corresponding to the information demand is sent to the vehicle terminal device.
  • the road condition information is used to characterize the information related to the driving of the vehicle.
  • the road condition information can be described from three aspects.
  • the first aspect is the vehicle aspect
  • the second aspect is the road aspect
  • the third aspect is the environment aspect.
  • the road condition information of the vehicle includes: the driving information of the vehicle (including speed and lane, etc.), congestion information, walkable information, safety information, etc.; Occupation information, pedestrian/bicycle crossing road information, etc.; environmental road condition information includes: weather information, rain, snow, heavy fog, etc.
  • the road condition information may include the road condition information collected by the network side device through the sensor, and may also include the road condition information sent by other vehicles or terminals received in a wired or wireless manner.
  • the vehicle-end device sends the first message for obtaining vehicle driving-related information to the network-side device, so that the vehicle-end device can actively and selectively obtain vehicle-related information from the network-side device, thereby improving the vehicle
  • the interaction between the end device and the network side device is intelligent.
  • the vehicle-end equipment can selectively obtain vehicle driving-related information from the network-side equipment, the problem of data redundancy obtained by the vehicle-end equipment in the prior art can be avoided, and the problem of data redundancy obtained by the vehicle-end equipment in the prior art can also be avoided.
  • the problem of long time delay for all data so as to achieve the technical effect of improving the efficiency of information transmission.
  • the vehicle-end device may send the first message for obtaining vehicle driving related information to the cloud server through the communication link.
  • the cloud server selects the congestion information from the road condition information, and sends the selected congestion information to the car-end device; if the information related to vehicle driving is that the road lane is occupied by pedestrians and motor vehicles The cloud server selects the information that the lanes of the road are occupied by pedestrians and vehicles from the road condition information, and sends the information that the lanes of the selected road are occupied by pedestrians and vehicles to the car-end equipment, etc., here I will not repeat them one by one.
  • the content of the second message is determined by the network side device as a road condition description or a driving operation instruction according to the first message;
  • the format of the second message is determined by the network side device as a human recognizable language or a machine recognizable language according to the first message.
  • the format of human recognizable language is the format of raw data that has not undergone format processing.
  • lane-level congestion information in a certain lane, there are many vehicles, disorderly or narrow lanes that cause vehicle congestion, including information such as the degree of congestion; passable information: information about whether the road vehicles can pass, a certain time, a certain time The communicable situation of a road; traffic conditions: description of the speed and flow of road vehicles; information of pedestrians and bicycles crossing the highway: description of pedestrian flow of crosswalks and bicycle flow of bicycle lanes, etc.
  • the format of the machine-recognizable language is the format of the machine-recognizable instruction type generated by processing the format of the original data.
  • the vehicle is used to instruct the vehicle to change lanes, shift speeds, brakes, etc.
  • the first message may include vehicle driving information reported by the vehicle-side device to the network-side device.
  • the reported vehicle driving related information includes at least one of the auto-driving level of the vehicle, the lane in which it is located, or the current speed of the vehicle.
  • Fig. 4 is a schematic diagram of the interaction between the car-end device and the cloud server based on Fig. 1.
  • the vehicle-end device sends a first message for acquiring vehicle driving related information to the cloud server, and the first message includes the automatic driving level.
  • the autonomous driving level can include six levels, namely L0 to L5.
  • L0 is manual driving, which is driven by the driver with full authority
  • L1 is assisted driving, where the vehicle provides driving for one of the steering wheel and acceleration and deceleration operations, and the driver is responsible for the rest of the driving operations
  • L2 is partially automatic driving, which is controlled by The vehicle provides driving for multiple operations of the steering wheel and acceleration and deceleration, and the driver is responsible for the rest of the driving operations
  • L3 is conditional automatic driving, and most of the driving operations are completed by the vehicle, and the driver maintains concentration for emergency needs
  • L4 is a highly automatic driving, all driving operations are completed by the vehicle, and the driver does not need to maintain attention, except for limited roads and environmental conditions
  • L5 is fully automatic driving, the vehicle completes all driving operations, and the driver does not need to maintain attention.
  • S2 The cloud server extracts the autonomous driving level in the first message.
  • the cloud server determines the format of the second message that can be recognized by the vehicle-end device according to the automatic driving level.
  • the format of the second message may include human-recognizable language or machine-recognizable language, and the format of the second message that can be recognized by the vehicle-end device may be determined based on the corresponding automatic driving level. Therefore, the network-side device can determine the format of the second message according to the autonomous driving level corresponding to the vehicle-end device.
  • the cloud server sends the second message to the vehicle-end device in a format that can be recognized by the vehicle-end device.
  • the format of the second message sent by the network-side device to the vehicle-end device is a human-recognizable language.
  • the network-side device can determine the format that can be recognized by the car-end device according to the level of automatic driving, and generate and send a second message to the car-end device in a format that can be recognized by the car-end device, thereby realizing the pairing of the car-end device.
  • the recognizability of the second message improves the effectiveness of data transmission, thereby reducing the cost of data transmission.
  • the reported vehicle driving information may include the lane of the vehicle to which the vehicle-end device belongs, and may also include the current speed of the vehicle to which the vehicle-end device belongs.
  • the vehicle-end device can send to the cloud server the lane where the vehicle-end device belongs and the current speed of the vehicle-end device.
  • the relevant information of the current driving of the vehicle includes the adjustment information of the lane and/or the adjustment information of the vehicle speed.
  • the cloud server sends the relevant information of adjusting the current driving of the vehicle (that is, the information related to the driving of the vehicle) to the car-end device, so that the car-end device can be based on Adjust the relevant information of the current driving of the vehicle to control the driving of the vehicle to which the vehicle-end equipment belongs, so as to realize the safe and reliable driving of the vehicle.
  • FIG. 5 is a schematic diagram of the interaction between the vehicle-end equipment and the roadside unit based on FIG. 2.
  • the vehicle-end device sends a first message for obtaining vehicle driving related information to the roadside unit, where the first message includes the lane and the current vehicle speed.
  • the lane is used to characterize the lane in which the vehicle to which the car-end device belongs, such as the left lane, the middle lane, and the right lane;
  • the current vehicle speed is used to characterize the current speed of the vehicle to which the car-end device belongs, such as XX km/h.
  • the roadside unit may determine the speed of the vehicle to which the vehicle-end equipment belongs under the premise of safe driving according to the road condition information, and determine the speed adjustment information used to adjust the current vehicle speed.
  • the roadside unit sends the vehicle speed adjustment information (that is, one of the vehicle driving related information) to the vehicle-end device.
  • the roadside unit can know based on the road condition information that the vehicle in front of the vehicle to which the vehicle-end equipment belongs is decelerating. In order to ensure a safe distance between the vehicle to which the vehicle-end equipment belongs and the vehicle in front, the vehicle to which the vehicle-end equipment belongs should also slow down accordingly To avoid a collision with the vehicle in front.
  • the roadside unit can know the decelerated speed of the preceding vehicle based on the road condition information, and then generates an instruction to instruct the vehicle to which the automatic vehicle end belongs to reduce at least the same speed as the decelerated vehicle speed. This speed is the vehicle speed adjustment information, and the vehicle speed The adjustment information is sent to the vehicle-end equipment. So that the vehicle-end equipment can adjust the current vehicle speed adaptively based on the vehicle speed adjustment information, so as to realize the safe driving of the vehicle to which the vehicle-end equipment belongs.
  • the format of the vehicle speed adjustment information may be determined based on the adjustment direction and the difference quantization.
  • the adjustment direction is used to characterize the dynamics of speed adjustment, that is, the direction of speed adjustment, such as acceleration, deceleration, and uniform speed; differential quantization is used to characterize the amount of speed adjustment, such as XX km/h.
  • the roadside unit determines, based on the collected road condition information, the lane of the vehicle to which the vehicle-end device belongs under the premise of safe driving, so as to determine the lane adjustment information used to adjust the lane of the vehicle to which the vehicle-end device belongs.
  • the roadside unit sends the lane adjustment information to the vehicle-end equipment.
  • the roadside unit can know based on the road condition information whether the lane on which the vehicle to which the car-end device belongs is in a congested state; or, whether a traffic accident has occurred; or, based on the driving route of the vehicle to the roadside unit that the car-end device belongs to, the roadside unit It can be determined based on the road condition information whether the vehicle belonging to the car-end equipment needs to change lanes, etc. Therefore, in order to drive the vehicle belonging to the car-end equipment safely and avoid time loss due to congestion, etc., the roadside unit can determine the lane adjustment based on the road condition information information.
  • the roadside unit knows that a traffic accident occurs in front of the lane where the vehicle to which the vehicle belongs, and the roadside unit generates information for instructing the vehicle to which the vehicle belongs to change from the current lane to the left lane ( That is, lane adjustment information), and send the lane adjustment information to the vehicle-end device so that the vehicle-end device can adjust the lane adaptively based on the lane adjustment information.
  • the format of the lane adjustment information is determined based on a preset code.
  • code 00 represents unchanged lane
  • code 01 represents lane change to lane 1
  • code 10 represents lane change to lane 2
  • code 11 represents lane change to lane 3, and so on.
  • the roadside unit can integrate the vehicle speed adjustment information and the lane adjustment information to obtain a piece of adjustment information including the vehicle speed adjustment information and the lane adjustment information, and can send the adjustment information to the vehicle end device based on the above format. For example, 00+ accelerates 20 km/h.
  • S6-S7 can be executed first
  • S8-S9 can be executed first
  • S6-S7 and S8-S9 can also be executed at the same time.
  • the requested vehicle driving related information includes the content type or the level of detail of the vehicle driving related information.
  • the content type of the vehicle driving related information is used to characterize the content of different dimensions of the vehicle driving related information.
  • the content types can be divided into two categories, one is the information content type, and the other is the instruction content type.
  • the information content type may include: lane congestion information, lane accident information, road surface condition information, lane communication information, weather information, pedestrian and/or bicycle crossing road information, lane pedestrians and/or motor vehicles Occupancy information, etc.
  • the instruction content type may include: a speed change request, a lane change request, a brake request, a detour request, and so on.
  • FIG. 6 is a schematic diagram of the interaction between the car-end device and the cloud server based on FIG. 1.
  • the vehicle terminal sends the first message to the cloud server, the content type of the vehicle driving related information, and the content type is specifically the information content type.
  • the car-end device can send a first message to the cloud server based on the vehicle driving-related information of the content of one or more dimensions that it pays more attention to, so as to obtain from the cloud the content of one or more dimensions that the car-end device pays attention to.
  • Information about vehicle driving Therefore, on the one hand, it can be realized that the vehicle-end equipment actively selects the corresponding vehicle driving information of one or more dimensions based on the demand, and improves intelligence; on the other hand, it can target vehicles with one or more dimensions of content.
  • the transmission of driving-related information saves transmission costs and improves the transmission effect compared to vehicle driving-related information that transmits contents of all dimensions.
  • the cloud server obtains vehicle driving-related information of one or more dimensions from the road condition information.
  • the cloud obtains vehicle driving information corresponding to the lane congestion information from the road condition information.
  • the cloud server transmits the acquired vehicle driving-related information of one or more dimensions to the vehicle-end device.
  • the vehicle-end equipment may adjust the driving state of the vehicle-end equipment vehicle based on the obtained vehicle driving-related information of one or more dimensions of content.
  • the vehicle-end device can know that the lane is in a congested state based on the vehicle driving information of the content of one or more dimensions, and the vehicle-end device can adjust the lane of the vehicle to which the vehicle-end device belongs, or re-plan the route to avoid congestion. Road conditions save time and improve efficiency.
  • the first message carries the content type or the level of detail based on a predefined bit coding manner.
  • the lane congestion information can be mapped to the first bit of the eight bits, and the first message sent by the vehicle-end device to the cloud server (or roadside unit) is " 10000000".
  • the lane accident information can be mapped to the second bit of the eight bits, and the first message sent by the vehicle-end device to the cloud (or roadside unit) is "01000000”.
  • the content type includes lane congestion information and lane accident information
  • the first message sent by the vehicle-end device to the cloud server (or roadside unit) is "11000000”.
  • the instruction content types may include: speed change request, lane change request, brake request, detour request, and so on.
  • FIG. 7 is a schematic diagram of the interaction between the car-end device and the cloud server based on FIG. 1.
  • the vehicle-end device sends a first message to the cloud server.
  • the first message includes the requested vehicle driving related information, and the requested vehicle driving related information includes the instruction content type.
  • the vehicle-end device wants to obtain the gear shift information corresponding to the gear shift request from the cloud.
  • the vehicle-end device may define the instruction content type based on bit encoding, and interact with the cloud server. For example, the gear shift request is 00, the brake request is 01, and so on.
  • the cloud server obtains the adjustment result (that is, the adjustment information) from the preset mapping relationship based on the road condition information and the instruction content type.
  • the cloud server determines that there is road condition information such as pedestrians and bicycles crossing the road based on the road condition information; or, determines the road congestion based on the road condition information; or, determines the road construction based on the road condition information, etc. And so on, the deceleration information is generated, and the deceleration information is determined as the adjustment result, that is, the adjustment information is determined as the deceleration. If it is determined that the road is unblocked based on the dynamic information, acceleration information can be generated, and the acceleration information can be determined as the adjustment result, that is, the adjustment information can be determined as acceleration. So that the vehicle-end equipment adjusts the current operating state based on the adjustment information used to indicate deceleration or acceleration, so as to ensure the safety of pedestrians and ensure safe driving.
  • the cloud server determines that there is road condition information such as pedestrians and bicycles crossing the road based on the road condition information; or, it determines that the road is congested based on the road condition information; or, Determine the road construction based on the road condition information; or, the lane has an accident; or, the lane is occupied by pedestrians and/or motor vehicles, etc., then generate lane change information, and determine the lane change information as the adjustment result, that is, determine the adjustment information as Lane change. So that the vehicle adjusts the current operating state based on the adjustment information used to indicate the lane change, thereby ensuring the safety of pedestrians and ensuring safe driving.
  • road condition information such as pedestrians and bicycles crossing the road based on the road condition information
  • the cloud server determines that there is road condition information such as pedestrians and bicycles crossing the road based on the road condition information; or, it determines that the road is congested based on the road condition information; or, Determine the road construction based on the road condition information; or, the lane has
  • the cloud server sends the adjustment information to the car-end device. So that the vehicle-end equipment can adjust the current operating state of the vehicle to which the vehicle-end equipment belongs based on the adjustment information.
  • the cloud server may obtain road condition information based on the identifier carried by the vehicle-end device after receiving the request of the vehicle-end device, that is, track and locate the vehicle to which the vehicle-end device belongs based on the identifier, so as to Acquire vehicle driving related information corresponding to the vehicle to which the vehicle-end device belongs, and generate and request a second message based on the acquired vehicle driving related information.
  • the requested vehicle driving related information may also include a level of detail.
  • the level of detail is used to characterize the rich level of information related to vehicle driving, such as brief, general, and rich.
  • the vehicle driving related information corresponding to the first level can be "an accident occurred on XX road and the Xth lane of a typical feature point"
  • the vehicle driving related information corresponding to the second level may be "Accident occurred at the intersection of Road XX and a typical feature point”
  • the vehicle driving related information corresponding to the third level may be "Accident occurred on Road XX”.
  • the second message includes vehicle driving related information of multiple content types
  • the first message is also used by the network side device to determine the transmission priority of vehicle driving related information of each content type among multiple content types.
  • the content and format of the second message are determined by the network side device according to the first message, including:
  • the content or format of the vehicle driving-related information of each content type in the second message is determined by the network side device according to the transmission priority.
  • the vehicle driving-related information of the content type with a higher transmission priority is transmitted preferentially in terms of transmission timing, or has a higher level of detail in terms of content or format.
  • the transmission priority is used to characterize the transmission level of the vehicle driving-related information of each content type, such as the first priority, the second priority, and the third priority.
  • different priorities correspond to different transmission orders. For example, the vehicle driving-related information of the content type corresponding to the first priority is transmitted first, and so on, and will not be repeated here.
  • the vehicle-end device can preset the transmission priority based on requirements, and transmit the transmission priority to the cloud server (or roadside unit), so that the cloud server (or roadside unit) is based on the transmission priority.
  • the data is stored, and the transmission order of the vehicle driving-related information is determined based on the transmission priority information, and the driving-related information is transmitted based on the transmission order.
  • the vehicle-end device can set the current transmission priority based on demand.
  • the transmission priority can be set in advance or in real time. If it is set in advance, the vehicle-end device can adaptively adjust the transmission priority based on the preset time interval or demand.
  • the transmission priority includes: priority of lane accident> priority of lane congestion
  • the cloud server (or roadside unit) determines the lane accident and lane congestion from the road condition information, and then transmits the lane accident to the vehicle-end device first. , And then transmit the lane congestion to the vehicle-end equipment.
  • the first message includes the time period or road segment in which the vehicle is traveling, and the network-side equipment determines the transmission priority of vehicle driving-related information for each content type among multiple content types, including: network The side device determines the transmission priority of the vehicle driving-related information of each content type among the multiple content types according to the time period or the road section.
  • the vehicle-end device may be based on the historical driving record of each road section and the transmission priority of the historical road condition information in different time periods or different road sections.
  • road section A is a road section with a high incidence of accidents.
  • the vehicle belonging to the vehicle is driving on road section A
  • the lane accident can be set to the highest priority, that is, the vehicle end device can take priority Obtain the lane accidents of section A.
  • road section B is a road section with a high incidence of accidents in period C.
  • the lane accidents can be set as the highest priority. Level, that is, the vehicle-end equipment prioritizes the acquisition of lane accidents on section A.
  • the cloud server (or the roadside unit) transmits the vehicle driving-related information to the vehicle-end device based on the priority of the transmission, which can realize the flexibility of data transmission.
  • the embodiments of the present disclosure also provide a data transmission method.
  • FIG. 8 is a flowchart of a data transmission method provided by Embodiment 6 of the present disclosure.
  • the method includes:
  • the network-side device receives the first message sent by the vehicle-end device and used to obtain vehicle driving related information.
  • the network-side device determines a second message including vehicle driving related information, and the content or format of the second message is determined by the network-side device according to the first message.
  • the vehicle can establish a communication connection with the network side device based on a preset account number or a unique identification code (such as a license plate number, etc.). Therefore, after receiving the first message sent by the vehicle, the network side device can track and locate the vehicle based on the account number or the unique identification code, so as to obtain the second information related to the driving of the vehicle from the full amount of dynamic information, and the second message The content or format of is determined by the network side device according to the first message.
  • a preset account number or a unique identification code such as a license plate number, etc.
  • the network-side device can obtain the second message related to the driving of the vehicle from the full amount of dynamic information based on the location information, and the information of the second message The content or format is determined by the network side device according to the first message.
  • S203 The network side device sends a second message to the vehicle side device.
  • the autonomous driving vehicle may send a request to the network side device to obtain corresponding dynamic information based on demand, and the network side device may determine at least part of the dynamic information as feedback information based on the request, and send the feedback information to the autonomous driving Vehicles, so as to reduce the data transmission load, and realize the flexibility and selectivity of data transmission.
  • the first message includes the vehicle driving information reported or requested by the vehicle-side device to the network-side device.
  • the reported vehicle driving-related information includes at least one of the autonomous driving level, lane, or current vehicle speed of the vehicle to which the vehicle-end device belongs, and the second message that the network-side device determines to include the vehicle driving-related information includes:
  • the network-side device determines the content or format of the second message according to at least one of the auto-driving level, lane, or current vehicle speed of the vehicle to which the vehicle-end device belongs.
  • the requested vehicle travel-related information includes the content type or the level of detail of the vehicle travel-related information
  • the second message that the network-side device determines to include the vehicle travel-related information includes:
  • the network side device determines the content or format of the second message according to the content type or the level of detail.
  • the first message carries the content type or the level of detail based on a predefined bit encoding method
  • the network-side device determines that the second message including vehicle driving related information includes:
  • the network-side device determines the content type or the level of detail according to the first message and the predefined bit encoding method
  • the network side device determines the content or format of the second message according to the content type or the level of detail.
  • the content or format of the second message determined by the network-side device according to the first message includes:
  • the content of the second message is determined by the network side device as a road condition description or driving operation instruction according to the first message;
  • the format of the second message is determined by the network-side device as a human-recognizable language or a machine-recognizable language according to the first message.
  • the content or format of the second message determined by the network-side device according to the first message includes:
  • the second message includes vehicle driving-related information of multiple content types
  • the second message determined by the network-side device to include vehicle driving-related information includes:
  • the network side device determines the transmission priority of the vehicle driving related information of each content type among the multiple content types according to the first message.
  • the vehicle driving-related information of the content type with a higher transmission priority is transmitted preferentially in terms of transmission timing, or has a higher level of detail in terms of content or format.
  • the first message includes the time period or road segment in which the vehicle is traveling, and the network-side device determines the transmission priority of the vehicle driving-related information of each content type among the multiple content types according to the first message. : The network side device determines the transmission priority of the vehicle driving-related information of each content type according to the time period or road section.
  • the embodiment of the present disclosure also provides a vehicle-end device.
  • FIG. 9 is a structural block diagram of a vehicle-end device according to an embodiment of the disclosure.
  • the vehicle-end device in this embodiment can execute the data transmission method of the embodiment shown in FIG. 3.
  • the car-end equipment includes:
  • the first sending unit 11 is configured to send a first message for acquiring vehicle driving related information to the network side device;
  • the first receiving unit 12 is configured to receive a second message including vehicle driving related information from the network side device, and the content or format of the second message is determined by the network side device according to the first message.
  • the first message includes vehicle driving information reported or requested by the vehicle-side device to the network-side device.
  • the reported vehicle driving related information includes at least one of the autopilot level, the lane where the vehicle belongs, or the current vehicle speed of the vehicle to which the vehicle-end device belongs.
  • the requested vehicle driving related information includes a content type or a detailed level of the vehicle driving related information.
  • the first message carries the content type or the level of detail based on a predefined bit coding manner.
  • the content or format of the second message determined by the network-side device according to the first message includes:
  • the content of the second message is determined by the network side device as a road condition description or a driving operation instruction according to the first message;
  • the format of the second message is determined by the network side device as a human recognizable language or a machine recognizable language according to the first message.
  • the content or format of the second message determined by the network-side device according to the first message includes:
  • the second message includes vehicle driving related information of multiple content types
  • the first message is also used by the network-side device to determine the vehicle driving of each content type in the multiple content types.
  • the transmission priority of related information is also used by the network-side device to determine the vehicle driving of each content type in the multiple content types.
  • the vehicle driving-related information of a content type with a higher transmission priority is preferentially transmitted in terms of transmission timing, or has a higher level of detail in terms of the content or format.
  • the first message includes the time period or road segment in which the vehicle is traveling by the vehicle-side device, and the network-side device determines that each content type of the multiple content types is related to vehicle driving.
  • the information transmission priority includes: the network-side device determines the transmission priority of the vehicle driving-related information of each content type according to the time period or the road section.
  • the embodiments of the present disclosure also provide a network side device.
  • FIG. 10 is a structural block diagram of a network-side device according to an embodiment of the present disclosure.
  • the network-side device in this embodiment can execute the data transmission method of the embodiment shown in FIG. 8.
  • the network side equipment includes:
  • the second receiving unit 21 is configured to receive a first message sent by a vehicle-end device for acquiring vehicle driving related information
  • the determining unit 22 is configured to determine a second message including vehicle driving related information, and the content or format of the second message is determined by the determining unit according to the first message;
  • the second sending unit 23 is configured to send the second message to the vehicle terminal device.
  • the first message includes vehicle driving information reported or requested by the vehicle-side device to the network-side device.
  • the reported vehicle driving related information includes at least one of the auto-driving level, lane, or current vehicle speed of the vehicle to which the vehicle-end device belongs, and the determining unit 22 is configured to:
  • the content or format of the second message is determined according to at least one of the autonomous driving level, the lane where the vehicle belongs, or the current vehicle speed of the vehicle to which the vehicle-end device belongs.
  • the requested vehicle driving related information includes the content type or detailed level of the vehicle driving related information
  • the determining unit 22 is configured to:
  • the content or format of the second message is determined according to the content type or the level of detail.
  • the first message carries the content type or the level of detail based on a predefined bit encoding method
  • the determining unit 22 is configured to:
  • the content or format of the second message is determined according to the content type or the level of detail.
  • determining the content or format of the second message by the determining unit 22 according to the first message includes:
  • the content of the second message is determined by the determining unit 22 as a road condition description or a driving operation instruction according to the first message;
  • the format of the second message is determined by the determining unit 22 to be a human-recognizable language or a machine-recognizable language according to the first message.
  • determining the content or format of the second message by the determining unit 22 according to the first message includes:
  • the second message includes vehicle driving related information of multiple content types
  • the determining unit 22 is configured to:
  • the transmission priority of the vehicle driving-related information of each content type among the multiple content types is determined according to the first message.
  • the vehicle driving-related information of a content type with a higher transmission priority is preferentially transmitted in terms of transmission timing, or has a higher level of detail in terms of the content or format.
  • the first message includes the time period or road segment in which the vehicle is traveling, and the determining unit 22 is configured to: determine the each type according to the time period or the road segment. The transmission priority of the vehicle driving related information of the content type.
  • the software or firmware includes but is not limited to computer program instructions or codes, and can be executed by a hardware processor.
  • the hardware includes, but is not limited to, various integrated circuits, such as a central processing unit (CPU), a digital signal processor (DSP), a field programmable gate array (FPGA), or an application specific integrated circuit (ASIC).
  • CPU central processing unit
  • DSP digital signal processor
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • the embodiments of the present disclosure also provide a vehicle-end device, the vehicle-end includes a memory and a processor, the memory stores computer program instructions, and the processor runs the computer program Instructions to perform the method described in any of the above embodiments.
  • FIG. 11 is a schematic structural diagram of a vehicle-end device according to an embodiment of the disclosure.
  • the vehicle-end device in this embodiment can implement the data transmission method of the embodiment shown in FIG. 3.
  • the vehicle-end equipment can be used to characterize various forms of digital computers, such as laptop computers, desktop computers, workstations, servers, blade servers, mainframe computers, and other suitable computers.
  • digital computers such as laptop computers, desktop computers, workstations, servers, blade servers, mainframe computers, and other suitable computers.
  • the components shown herein, their connections and relationships, and their functions are merely examples, and are not intended to limit the implementation of the present disclosure described and/or required herein.
  • the vehicle-end equipment can be a telematics box (Telematics BOX, T-Box), a domain controller (DC), a multi-domain controller (Multi-Domian Controller, MDC), and a vehicle-mounted unit ( Onboard Unit, OBU), car networking chips, etc.
  • Telematics BOX Telematics box
  • DC domain controller
  • MDC multi-domain controller
  • OBU Onboard Unit
  • the vehicle-end device may include at least one processor 101, a communication bus 102, and at least one communication interface 103.
  • the processor 101 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the embodiments of the present disclosure Integrated circuit for program execution.
  • the processor 101 may be connected to the memory 104 through at least one communication interface 103, and the memory 104 may be arranged inside the vehicle-end device or outside the vehicle-end device.
  • the memory 104 may be a register, a cache, etc. inside the vehicle-end device, and the memory 104 may also be a storage device located outside the vehicle-end device.
  • the vehicle-end device is a vehicle-mounted box
  • the vehicle-mounted box includes at least one processor, a communication bus, and at least one communication interface.
  • the processor in the vehicle-mounted box can be connected to the storage device provided outside the vehicle-mounted box through the communication interface, so that the communication interface can obtain instructions from the storage device provided outside the vehicle-mounted box. Data transfer method shown.
  • a memory may be provided inside the vehicle box for storing instructions, and the processor obtains instructions from the memory through the communication bus.
  • the processor executes the instructions, the data transmission method shown in FIG. 3 is implemented. .
  • the car-end device can also be any one of a domain controller, a multi-domain controller, a car unit, and a car networking chip, and the principle is the same as that of the car.
  • the principle of the box example is the same.
  • the processor 101 may be connected to an external storage device through the communication interface 103 to collect instructions from the external storage device through the communication interface 103.
  • the processor 101 executes instructions, it can implement the data transmission method of the embodiment shown in FIG. 3.
  • the memory 104 may be a read-only memory (read-only memory, ROM) or other types of static storage devices that can store static information and instructions. Random access Random access memory (RAM) or other types of dynamic storage devices that can store information and instructions.
  • ROM read-only memory
  • RAM Random access Random access memory
  • the memory 104 may exist independently, and is connected to the processor 101 through the communication bus 102.
  • the memory 104 may also be integrated with the processor 101.
  • the memory 104 may be a computer storage medium provided in the present disclosure, and the memory 104 stores instructions that can be executed by at least one processor 101, so that the at least one processor 101 executes the data transmission method shown in FIG. 3 .
  • the memory 104 can be used to store non-transitory software programs, non-transitory computer executable programs, and modules.
  • the processor 101 executes various functional applications and data processing of the vehicle-end equipment by running non-transient software programs, instructions, and modules stored in the memory 104, that is, realizes the data transmission method shown in FIG. 3.
  • the memory 104 may include a storage program area and a storage data area.
  • the storage program area may store an operating system and an application program required by at least one function; the storage data area may store data created according to the use of the vehicle-end equipment.
  • the memory 104 may include a high-speed random access memory, and may also include a non-transitory memory, such as at least one magnetic disk storage device, a flash memory device, or other non-transitory solid-state storage devices.
  • the memory 104 may optionally include memories remotely provided with respect to the processor 101, and these remote memories may be connected to the vehicle-end device via a network. Examples of the aforementioned networks include, but are not limited to, the Internet, the Internet of Vehicles, corporate intranets, local area networks, blockchain networks, mobile communication networks, and combinations thereof.
  • the communication bus 102 may include a path for transferring information between the above-mentioned components.
  • the communication interface 103 can be any transceiver or IP port or bus interface, etc., used to communicate with internal or external equipment or vehicle-end equipment or communication network, such as Ethernet, radio access network (RAN), wireless Local area network (wireless local area networks, WLAN), etc.
  • the communication interface 103 includes one or more of the following interfaces, such as a transceiver for communicating with the vehicle's external network, and a bus interface for communicating with other internal units of the vehicle (such as a controller). Local area network (Controller Area Network, CAN) bus interface), etc.
  • the processor 101 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 11.
  • the vehicle-end device may include multiple processors, such as the processor 101 and the processor 107 in FIG. 11.
  • processors can be a single-CPU (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the vehicle-end equipment may further include an output device 105 and an input device 106.
  • the output device 105 communicates with the processor 101 and can display information in a variety of ways.
  • the output device 105 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) Wait.
  • the input device 106 communicates with the processor 101 and can accept user input in a variety of ways.
  • the input device 106 may be a mouse, a keyboard, a touch screen device, a sensor device, or the like.
  • the function/implementation process of the communication interface 103 can also be realized by pins or circuits.
  • FIG. 11 may also be a schematic structural diagram of a network-side device in an embodiment of the disclosure.
  • the network-side device in this embodiment may implement the data transmission method of the embodiment shown in FIG. 8.
  • the network side device can be used to characterize various forms of digital computers, such as laptop computers, desktop computers, workstations, servers, blade servers, mainframe computers, and other suitable computers.
  • digital computers such as laptop computers, desktop computers, workstations, servers, blade servers, mainframe computers, and other suitable computers.
  • the components shown herein, their connections and relationships, and their functions are merely examples, and are not intended to limit the implementation of the present disclosure described and/or required herein.
  • the network side device may include at least one processor 101, a communication bus 102, and at least one communication interface 103.
  • the processor 101 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the embodiments of the present disclosure Integrated circuit for program execution.
  • the processor 101 may be connected to the memory 104 through at least one communication interface 103, and the memory 104 may be arranged inside the network side device or outside the network side device.
  • the memory 104 may be a register, a cache, etc. inside the network-side device, and the memory 104 may also be a storage device located outside the network-side device.
  • the server includes at least one processor, a communication bus, and at least one communication interface.
  • the processor in the server can be connected to a storage device set outside the server through a communication interface, so that the communication interface can obtain instructions from the storage device set outside the server. Data transmission method.
  • a memory may be provided inside the server for storing instructions.
  • the processor obtains the instructions from the memory through the communication bus, and the processor implements the data transmission method shown in FIG. 8 when executing the instructions.
  • the server is only used as an example for exemplification.
  • the server can also be any one of a desktop computer, a workbench, and a large computer, and the principle is the same as that of the server example.
  • the processor 101 may be connected to an external storage device through the communication interface 103 to collect instructions from the external storage device through the communication interface 103.
  • the processor 101 executes instructions, it can implement the data transmission method of the embodiment shown in FIG. 8.
  • the memory 104 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions.
  • ROM read-only memory
  • RAM Random access Random access memory
  • dynamic storage devices that can store information and instructions.
  • the memory 104 may exist independently, and is connected to the processor 101 through the communication bus 102.
  • the memory 104 may also be integrated with the processor 101.
  • the memory 104 may be a computer storage medium provided in the present disclosure, and the memory 104 stores instructions that can be executed by at least one processor 101, so that the at least one processor 101 executes the data transmission method shown in FIG. 8 .
  • the memory 104 can be used to store non-transitory software programs, non-transitory computer executable programs, and modules.
  • the processor 101 executes various functional applications and data processing of the server by running non-transient software programs, instructions, and modules stored in the memory 104, that is, realizes the data transmission method shown in FIG. 8.
  • the memory 104 may include a storage program area and a storage data area.
  • the storage program area may store an operating system and an application program required by at least one function; the storage data area may store data created according to the use of the network side device.
  • the memory 104 may include a high-speed random access memory, and may also include a non-transitory memory, such as at least one magnetic disk storage device, a flash memory device, or other non-transitory solid-state storage devices.
  • the memory 104 may optionally include a memory remotely provided with respect to the processor 101, and these remote memories may be connected to a network-side device through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, the Internet of Vehicles, corporate intranets, local area networks, blockchain networks, mobile communication networks, and combinations thereof.
  • the communication bus 102 may include a path for transferring information between the above-mentioned components.
  • the communication interface 103 can be any transceiver or IP port or bus interface, etc., used to communicate with internal or external equipment or network side equipment or communication network, such as Ethernet, radio access network (RAN), wireless Local area network (wireless local area networks, WLAN), etc.
  • the communication interface 103 includes one or more of the following interfaces, such as a transceiver for communicating with the external network of the server, and a bus interface for communicating with other internal units of the server (such as a controller). Local area network (Controller Area Network, CAN) bus interface), etc.
  • the processor 101 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 11.
  • the network-side device may include multiple processors, such as the processor 101 and the processor 107 in FIG. 11.
  • processors can be a single-CPU (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the network side device may further include an output device 105 and an input device 106.
  • the output device 105 communicates with the processor 101 and can display information in a variety of ways.
  • the output device 105 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) Wait.
  • the input device 106 communicates with the processor 101 and can accept user input in a variety of ways.
  • the input device 106 may be a mouse, a keyboard, a touch screen device, a sensor device, or the like.
  • the embodiments of the present disclosure also provide a vehicle, the vehicle including the vehicle-end device described in the foregoing embodiment.
  • the vehicle includes: a processor 201, an external memory interface 202, an internal memory 203, a universal serial bus (USB) interface 204, a power management module 205, antenna 1, antenna 2, mobile communications Module 206, wireless communication module 207, sensor 208, camera 209, car box 210. It can be understood that the structure illustrated in this embodiment does not constitute a specific limitation on the vehicle.
  • the vehicle can interact with the network side device through the wireless communication module 207.
  • the sensor 208 includes the radar as described in FIG. 12 and other sensors.
  • the vehicle may include more or fewer components than shown, or combine certain components, or split certain components, or arrange different components.
  • the illustrated components can be implemented by hardware, software, or a combination of software and hardware.
  • the processor 201 may include one or more processing units.
  • the processor 201 may include an application processor (AP), a modem processor, a graphics processing unit (GPU), and an image signal processor. (image signal processor, ISP), controller, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural-network processing unit (NPU), etc.
  • the different processing units may be independent devices or integrated in one or more processors.
  • the vehicle may also include one or more processors 201.
  • the controller can be the nerve center and command center of the vehicle. The controller can generate operation control signals according to the instruction operation code and timing signals to complete the control of fetching instructions and executing instructions.
  • a memory may also be provided in the processor 201 to store instructions and data.
  • the memory in the processor 201 is a cache memory.
  • the processor 201 may include one or more interfaces.
  • the interface may include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, and a universal asynchronous transmitter/receiver (universal asynchronous) interface.
  • receiver/transmitter, UART) interface mobile industry processor interface (MIPI), general-purpose input/output (GPIO) interface, and/or universal serial bus (USB) ) Interface, etc.
  • the USB interface 211 is an interface that complies with the USB standard and can be used to connect a charger to charge the vehicle.
  • the interface connection relationship between the modules illustrated in the embodiments of the present disclosure is merely a schematic description, and does not constitute a structural limitation of the vehicle.
  • the vehicle may also adopt different interface connection modes in the above-mentioned embodiments, or a combination of multiple interface connection modes.
  • vehicle-end device may be the processor 201 as shown in FIG. 12, or the vehicle-mounted box 210 as shown in FIG.
  • the embodiments of the present disclosure also provide a network side device, the vehicle side includes a memory and a processor, the memory stores computer program instructions, and the processor runs the computer program Instructions to perform the method described in any of the above embodiments.
  • the embodiments of the present disclosure also provide an Internet of Vehicles system, the system including:
  • the car networking system of the embodiments of the present disclosure may include a vehicle as shown in FIG. 1 and a cloud server, and the vehicle is provided with the vehicle-end equipment described in the foregoing embodiment.
  • the Internet of Vehicles system of the embodiments of the present disclosure may include a vehicle and a roadside unit as shown in FIG. 2, and the vehicle-end equipment as described in the above-mentioned embodiments is provided on the vehicle.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the disclosed device and method can be implemented in other ways within the scope of this application.
  • the embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined. Or it can be integrated into another system, or some features can be ignored or not implemented.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. .
  • Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments. Those of ordinary skill in the art can understand and implement without creative work.
  • the described devices and methods and schematic diagrams of different embodiments can be combined or integrated with other systems, modules, technologies, or methods without departing from the scope of the present application.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electronic, mechanical or other forms.

Abstract

本公开实施例提供了一种数据传输方法、网络侧设备和车端设备,包括:车端设备向网络侧设备发送用于获取车辆行驶相关信息的第一消息,车端设备从网络侧设备接收包括车辆行驶相关信息的第二消息,第二消息的内容或格式由网络侧设备根据所述第一消息确定,提高了车端设备与网络侧设备之间交互的智能化,避免了车端设备获取到的数据冗余的问题,还可以避免车端设备获取全部数据时时延较长的问题,从而实现提高信息传输效率的技术效果。

Description

数据传输方法、车端设备和网络侧设备 技术领域
本公开涉及车联网领域,尤其涉及一种数据传输方法、网络侧设备、和车端设备。
背景技术
当前,自动驾驶技术已经成为汽车新技术发展的热点,而如何确保车辆安全且可靠的驾驶,并确保乘客、其他车辆和行人等的安全了热点中的焦点。
在现有技术中,由网络侧设备周期性地,或者实时性地将其采集到的路况的动态信息传输至车辆上设置的车端设备。即,在现有技术中,网络侧设备将采集到的所有的动态信息均发送至车端设备,车端设备被动的基于接收到的所有动态信息确定并执行相应的驾驶策略。
然而,发明人在实现本公开的过程中,发现通过上述现有技术中的方式至少存在以下问题:由于车端设备被动的接收网络侧设备发送的所有的动态信息,造成车端设备与网络侧设备之间的数据传输效率偏低的问题。
发明内容
为解决上述技术问题,本公开实施例提供了一种数据传输方法、网络侧设备和车端设备。
根据本公开实施例的一个方面,本公开实施例提供了一种数据传输方法,所述方法可以应用车端设备,所述方法包括:
车端设备向网络侧设备发送用于获取车辆行驶相关信息的第一消息;
车端设备从所述网络侧设备接收包括车辆行驶相关信息的第二消息,所述第二消息的内容和或格式由所述网络侧设备根据所述第一消息确定。
在公开实施例中,通过由车端设备向网络侧设备发送用于获取车辆行驶相关信息的第一消息,实现车端设备主动且可选择性地从网络侧设备获取车辆行驶相关信息,提高车端设备与网络侧设备之间交互的智能化。并且,由于车端设备可选择性地从网络侧设备获取车辆行驶相关信息,可以避免现有技术中车端设备获取到的数据冗余的问题,还可以避免现有技术中因车端设备获取全部数据时时延较长的问题,从而实现提高信息传输效率的技术效果。
在一些实施例中,所述第一消息包括所述车端设备向所述网络侧设备上报的或者请求的车辆行驶相关信息。
在本公开实施例中,车端设备可分别通过“上报”或“请求”两种方式与网络侧设备进行交互,可以实现交互的灵活性和多样性,进而可以实现获取车辆行驶相关信息的灵活性和多样性。
在一些实施例中,所述上报的车辆行驶相关信息包括所述车端设备所属车辆的自动驾 驶等级、所在车道或者当前车速中的至少一种。
在一些实施例中,所述请求的车辆行驶相关信息包括所述车辆行驶相关信息的内容类型或者详细程度等级。
在一些实施例中,所述第一消息基于预先定义的比特编码方式承载所述内容类型或者所述详细程度等级。
在一些实施例中,所述第二消息的内容或格式由所述网络侧设备根据所述第一消息确定包括:
所述第二消息的内容由所述网络侧设备根据所述第一消息确定为路况描述或者驾驶操作指令;
或者所述第二消息的格式由所述网络侧设备根据所述第一消息确定为人类可识别语言或者机器可识别语言。
在本公开实施例中,通过根据第一消息确定第二消息的内容或格式,可以确保车端设备对第二消息的有效且准确识别的技术效果。
在一些实施例中,所述第二消息的内容或格式由所述网络侧设备根据所述第一消息确定包括:
所述第二消息的内容或格式与所述第一消息之间存在绑定关系,所述第二消息的内容或格式由所述网络侧设备根据所述第一消息以及所述绑定关系确定。
在一些实施例中,所述第二消息包括多种内容类型的车辆行驶相关信息,所述第一消息还用于所述网络侧设备确定所述多种内容类型中每种内容类型的车辆行驶相关信息的传输优先级。
在本公开实施例中,通过传输优先级的方式可以使相对较为重要的车辆行驶相关信息优先被车端设备接收,以便及时对车端设备所属车辆的行驶状态进行适应性调整,从而确保安全驾驶的技术效果。
在一些实施例中,具有较高传输优先级的内容类型的车辆行驶相关信息在传输时序方面优先被传输,或者在所述内容或格式方面具有较高的详细程度等级。
在本公开实施例中,由于较高传输优先级的内容类型的车辆行驶相关信息在内容或格式方面具有较高的详细程度等级,可以使得不同信息的详细程度等级不同,从而当基于详细程度等级对车辆行使相关信息进行传输时,可以避免现有技术中网络侧设备对所有的车辆行驶相关信息均进行传输时造成的消耗传输资源较大的弊端,进而实现节约传输资源的技术效果。
在一些实施例中,所述第一消息包括所述车端设备所属车辆在行驶中处于的时段或者路段,所述网络侧设备确定所述多种内容类型中每种内容类型的车辆行驶相关信息的传输优先级包括:所述网络侧设备根据所述时段或者所述路段确定所述每种内容类型的车辆行驶相关信息的传输优先级。
根据本公开实施例的另一个方面,本公开实施例还提供了一种数据传输方法,所述方法可以应用于网络侧设备,所述方法包括:
网络侧设备接收车端设备发送的用于获取车辆行驶相关信息的第一消息;
所述网络侧设备确定包括车辆行驶相关信息的第二消息,所述第二消息的内容或格式由所述网络侧设备根据所述第一消息确定;
所述网络侧设备向所述车端设备发送所述第二消息。
其中,网络侧设备包括但不限于云端服务器和路侧单元。
在一些实施例中,所述第一消息包括所述车端设备向所述网络侧设备上报的或者请求的车辆行驶相关信息。
在一些实施例中,所述上报的车辆行驶相关信息包括所述车端设备所属车辆的自动驾驶等级、所在车道或者当前车速中的至少一种,所述网络侧设备确定包括车辆行驶相关信息的第二消息包括:
所述网络侧设备根据所述车端设备所属车辆的自动驾驶等级、所在车道或者当前车速中的至少一种确定所述第二消息的内容或格式。
在本公开实施例中,由于不同自动驾驶等级的车辆可识别的消息的格式并不相同,如L3级(具体解释可参见具体实施例中的描述)以上的车辆能够对机器语言进行识别,因此,当车端设备所属车辆的自动驾驶等级为L3级以上时,则可确定第二消息的格式为机器语言对应的格式。所以,通过本公开实施例中对第二消息的内容或格式进行确定的方式,可以实现车端设备对消息识别的有效性和可靠性的技术效果。
在一些实施例中,所述请求的车辆行驶相关信息包括所述车辆行驶相关信息的内容类型或者详细程度等级,所述网络侧设备确定包括车辆行驶相关信息的第二消息包括:
所述网络侧设备根据所述内容类型或者所述详细程度等级确定所述第二消息的内容或格式。
在一些实施例中,所述第一消息基于预先定义的比特编码方式承载所述内容类型或者所述详细程度等级,所述网络侧设备确定包括车辆行驶相关信息的第二消息包括:
所述网络侧设备根据所述第一消息和所述预先定义的比特编码方式确定所述内容类型或者所述详细程度等级;
所述网络侧设备根据所述内容类型或者所述详细程度等级确定所述第二消息的内容或格式。
在一些实施例中,所述第二消息的内容或格式由所述网络侧设备根据所述第一消息确定包括:
所述第二消息的内容由所述网络侧设备根据所述第一消息确定为路况描述或者驾驶操作指令;
或者,所述第二消息的格式由所述网络侧设备根据所述第一消息确定为人类可识别语言或者机器可识别语言。
在一些实施例中,所述第二消息的内容或格式由所述网络侧设备根据所述第一消息确定包括:
所述第二消息的内容或格式与所述第一消息之间存在绑定关系,所述第二消息的内容或格式由所述网络侧设备根据所述第一消息以及所述绑定关系确定。
在一些实施例中,所述第二消息包括多种内容类型的车辆行驶相关信息,所述网络侧设备确定包括车辆行驶相关信息的第二消息包括:
所述网络侧设备根据所述第一消息确定所述多种内容类型中每种内容类型的车辆行驶相关信息的传输优先级。
在一些实施例中,具有较高传输优先级的内容类型的车辆行驶相关信息在传输时序方 面优先被传输,或者在所述内容或格式方面具有较高的详细程度等级。
在一些实施例中,所述第一消息包括所述车端设备所述车辆在行驶中处于的时段或者路段,所述网络侧设备根据所述第一消息确定所述多种内容类型中每种内容类型的车辆行驶相关信息的传输优先级包括:所述网络侧设备根据所述时段或者所述路段确定所述每种内容类型的车辆行驶相关信息的传输优先级。
根据本公开实施例的另一个方面,本公开实施例还提供了一种车端设备,所述车端设备包括:
第一发送单元,用于向网络侧设备发送用于获取车辆行驶相关信息的第一消息;
第一接收单元,用于从所述网络侧设备接收包括车辆行驶相关信息的第二消息,所述第二消息的内容或格式由所述网络侧设备根据所述第一消息确定。
在一些实施例中,所述第一消息包括所述车端设备向所述网络侧设备上报的或者请求的车辆行驶相关信息。
在一些实施例中,所述上报的车辆行驶相关信息包括所述车端设备所属车辆的自动驾驶等级、所在车道或者当前车速中的至少一种。
在一些实施例中,所述请求的车辆行驶相关信息包括所述车辆行驶相关信息的内容类型或者详细程度等级。
在一些实施例中,所述第一消息基于预先定义的比特编码方式承载所述内容类型或者所述详细程度等级。
在一些实施例中,所述第二消息的内容或格式由所述网络侧设备根据所述第一消息确定包括:
所述第二消息的内容由所述网络侧设备根据所述第一消息确定为路况描述或者驾驶操作指令;
或者所述第二消息的格式由所述网络侧设备根据所述第一消息确定为人类可识别语言或者机器可识别语言。
在一些实施例中,所述第二消息的内容或格式由所述网络侧设备根据所述第一消息确定包括:
所述第二消息的内容或格式与所述第一消息之间存在绑定关系,所述第二消息的内容或格式由所述网络侧设备根据所述第一消息以及所述绑定关系确定。
在一些实施例中,所述第二消息包括多种内容类型的车辆行驶相关信息,所述第一消息还用于所述网络侧设备确定所述多种内容类型中每种内容类型的车辆行驶相关信息的传输优先级。
在一些实施例中,具有较高传输优先级的内容类型的车辆行驶相关信息在传输时序方面优先被传输,或者在所述内容或格式方面具有较高的详细程度等级。
在一些实施例中,所述第一消息包括所述车端设备所述车辆在行驶中处于的时段或者路段,所述网络侧设备确定所述多种内容类型中每种内容类型的车辆行驶相关信息的传输优先级包括:所述网络侧设备根据所述时段或者所述路段确定所述每种内容类型的车辆行驶相关信息的传输优先级。
根据本公开实施例的另一个方面,本公开实施例还提供了一种网络侧设备,所述设备包括:
第二接收单元,用于接收车端设备发送的用于获取车辆行驶相关信息的第一消息;
确定单元,用于确定包括车辆行驶相关信息的第二消息,所述第二消息的内容或格式由所述确定单元根据所述第一消息确定;
第二发送单元,用于向所述车端设备发送所述第二消息。
在一些实施例中,所述第一消息包括所述车端设备向所述网络侧设备上报的或者请求的车辆行驶相关信息。
在一些实施例中,所述上报的车辆行驶相关信息包括所述车端设备所属车辆的自动驾驶等级、所在车道或者当前车速中的至少一种,所述确定单元用于:
根据所述车端设备所属车辆的自动驾驶等级、所在车道或者当前车速中的至少一种确定所述第二消息的内容或格式。
在一些实施例中,所述请求的车辆行驶相关信息包括所述车辆行驶相关信息的内容类型或者详细程度等级,所述确定单元用于:
根据所述内容类型或者所述详细程度等级确定所述第二消息的内容或格式。
在一些实施例中,所述第一消息基于预先定义的比特编码方式承载所述内容类型或者所述详细程度等级,所述确定单元用于:
根据所述第一消息和所述预先定义的比特编码方式确定所述内容类型或者所述详细程度等级;
根据所述内容类型或者所述详细程度等级确定所述第二消息的内容或格式。
在一些实施例中,所述第二消息的内容或格式由所述确定单元根据所述第一消息确定包括:
所述第二消息的内容由所述确定单元根据所述第一消息确定为路况描述或者驾驶操作指令;
或者,所述第二消息的格式由所述确定单元根据所述第一消息确定为人类可识别语言或者机器可识别语言。
在一些实施例中,所述第二消息的内容或格式由所述确定单元根据所述第一消息确定包括:
所述第二消息的内容或格式与所述第一消息之间存在绑定关系,所述第二消息的内容或格式由所述确定单元根据所述第一消息以及所述绑定关系确定。
在一些实施例中,所述第二消息包括多种内容类型的车辆行驶相关信息,所述确定单元用于:
根据所述第一消息确定所述多种内容类型中每种内容类型的车辆行驶相关信息的传输优先级。
在一些实施例中,具有较高传输优先级的内容类型的车辆行驶相关信息在传输时序方面优先被传输,或者在所述内容或格式方面具有较高的详细程度等级。
在一些实施例中,所述第一消息包括所述车端设备所述车辆在行驶中处于的时段或者路段,所述确定单元用于:根据所述时段或者所述路段确定所述每种内容类型的车辆行驶相关信息的传输优先级。
根据本公开实施例的另一个方面,本公开实施例还提供了一种车端设备,所述车端包括存储器和处理器,所述存储器存储计算机程序指令,所述处理器运行所述计算机程序指 令以执行如上任一实施例所述的方法。
根据本公开实施例的另一个方面,本公开实施例还提供了一种网络侧设备,所述车端包括存储器和处理器,所述存储器存储计算机程序指令,所述处理器运行所述计算机程序指令以执行如上任一实施例所述的方法。
根据本公开实施例的另一个方面,本公开实施例还提供了一种车辆,所述车辆包括上述任一实施例所述的车端设备。
根据本公开实施例的另一个方面,本公开实施例还提供了一种车联网系统,所述系统包括:
如上实施例所述的车端设备;
如上实施例所述的网络侧设备。
在一些实施例中,网络侧设备包括云端服务器和路侧单元。
根据本公开实施例的另一个方面,本公开实施例还提供了一种计算机存储介质,所述计算机存储介质上存储有计算机指令,当所述计算机指令在被处理器运行时,使得车端设备执行如上实施例所述的方法。
根据本公开实施例的另一个方面,本公开实施例还提供了一种计算机存储介质,所述计算机存储介质上存储有计算机指令,当所述计算机指令在被处理器运行时,使得网络侧设备执行如上实施例所述的方法。
根据本公开实施例的另一个方面,本公开实施例还提供了一种计算机程序产品,当所述计算机程序产品在处理器上运行时,使得车端设备执行如上任一实施例所述的方法。
根据本公开实施例的另一个方面,本公开实施例还提供了一种计算机程序产品,当所述计算机程序产品在处理器上运行时,使得网络侧设备执行如上任一实施例所述的方法。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例的一个典型应用场景示意图;
图2为本公开实施例的另一个典型应用场景示意图;
图3为本公开实施例一所提供的数据传输方法的流程图;
图4为本公开实施例二所提供的车端设备与云端之间数据传输方法的流程图;
图5为本公开实施例三所提供的车端设备与路侧单元之间数据传输方法的流程图;
图6为本公开实施例四所提供的车端设备与云端服务器之间数据传输方法的流程图;
图7为本公开实施例五所提供的车端设备与云端服务器之间数据传输方法的流程图;
图8为本公开实施例六所提供的数据传输方法的流程图;
图9为本公开实施例七提供的车端设备的结构框图;
图10为本公开实施例八提供的网络侧设备的结构框图;
图11为本公开实施例九提供的车端设备或网络侧设备的结构框图;
图12为本公开实施例十提供的车辆的内部组件的示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
下面以具体地实施例对本公开的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。下面将结合附图,对本公开的实施例进行描述。
本公开实施例的数据传输方法可适用于如图1和图2所示的应用场景。
在如图1所示的应用场景中,车辆100包括车端设备(图1中未示出),车端设备可以为车辆100中设置的车载盒子(Telematics BOX,T-Box),域控制器(Domian Controller,DC),多域控制器(Multi-Domian Controller,MDC),车载单元(On board Unit,OBU),车联网芯片,等等。
车端设备与云端服务器200(网络侧设备中的一种)建立通信链路。
其中,车端设备可通过相应的账号和密码连接至云端服务器,车端设备也可通过其唯一标识码(如车端设备的设备标识码和车辆的车牌号等)连接至云端服务器,从而实现车端设备与云端服务器之间的数据交互(如本公开实施例中的车端设备与网络侧设备之间的数据传输)。
在如图2所示的应用场景中,车辆100包括车端设备(图2中未示出),车端设备可以为车辆100中设置的车载盒子(Telematics BOX,T-Box),域控制器(Domian Controller,DC),多域控制器(Multi-Domian Controller,MDC),车载单元(On board Unit,OBU),车联网芯片,等等。
车端设备与路侧单元(Road Side Unit,RSU)300(网络侧设备中的一种)建立通信链路。
同理,车端设备可通过相应的账号和密码连接至路侧单元,车端设备也可通过其唯一标识码(如车端设备的设备标识码和车辆的车牌号等)连接至路侧单元,从而实现车端设备与路侧单元之间的数据交互(如本公开实施例中的车端设备与网络侧设备之间的数据传输)。
下面以具体地实施例对本公开的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。下面将结合附图,对本公开的实施例进行描述。
一个方面,本公开实施例提供了一种数据传输方法。
请参阅图3,图3为本公开实施例的数据传输方法的流程示意图。
如图3所示,该方法包括:
S101:车端设备向网络侧设备发送用于获取车辆行驶相关信息的第一消息。
其中,第一消息用于表征车端设备的信息需求。即,车端设备可以基于信息需求从网络侧设备获取车辆行驶相关信息。
车辆行驶相关信息,是指车辆在行驶时的相关的信息,包括车速、位置、车道,以及本车与其他车辆之间的位置等。
其中,第一消息包括车端设备向网络侧设备上报的或者请求的车辆行驶相关信息。
也就是说,在一些实施例中,当车端设备有某种信息需求时,车端设备可通过上报车辆行驶相关信息的方式从网络侧设备获取与信息需求对应的第二消息,第二消息为网络侧基于信息需求从采集到的路况信息中确定的。
在另一些实施例中,当车端设备有某种信息需求时,车端设备还可通过请求车辆行驶相关信息的方式从网络侧设备获取与信息需求对应的第二消息,且在该种情况下,车端设备的信息需求即为请求的车辆行驶相关信息,同理,第二消息为网络侧基于信息需求从采集到的路况信息中确定的。
S102:车端设备从网络侧设备接收包括车辆行驶相关信息的第二消息,第二消息的内容或格式由网络侧设备根据第一消息确定。
也就是说,可以从两个方面对第二消息进行理解,一个方面为第二消息的内容,另一个方面为第二消息的格式。而针对不同的第一消息,第二消息的内容和/或格式可能不同。
其中,网络侧设备在接收到车端设备发送的第一消息后,根据第一消息从路况信息中确定第二消息,第二消息包括车辆行驶相关信息,且第二消息可以从内容和格式两方面进行体现,即第二消息可以包括车辆行驶相关信息的内容和格式。
也就是说,网络侧设备在接收到车端设备发送的第一消息后,可以基于第一消息确定车端设备的信息需求,并从路况信息中选取与信息需求对应的车辆行驶相关信息,并将包括与信息需求对应的车辆行驶相关信息的第二消息发送至车端设备。
其中,路况信息用于表征与车辆行驶的相关的信息,可以从三个方面对路况信息进行描述,第一个方面为车辆方面,第二个方面为道路方面,第三个方面为环境方面。
具体地,车辆方面的路况信息包括:车辆的行驶信息(包括速度和车道等),拥堵信息,可同行信息,安全信息,等等;道路方面的路况信息包括:路面的车道被行人和机动车占用的信息,行人/自行车穿越马路的信息,等等;环境方面的路况信息包括:天气信息,如下雨,下雪,大雾,等等。
其中,路况信息可以包括网络侧设备通过传感器采集到的路况信息,还可以包括通过有线或无线的方式接收到的其他车辆或终端发送的路况信息。
在公开实施例中,通过由车端设备向网络侧设备发送用于获取车辆行驶相关信息的第一消息,实现车端设备主动且可选择性地从网络侧设备获取车辆行驶相关信息,提高车端设备与网络侧设备之间交互的智能化。且,由于车端设备可选择性地从网络侧设备获取车辆行驶相关信息,可以避免现有技术中车端设备获取到的数据冗余的问题,还可以避免现有技术中因车端设备获取全部数据时时延较长的问题,从而实现提高信息传输效率的技术效果。
现结合图1所示的应用场景对本公开实施例的数据传输方法进行如下阐述:
车端设备可通过通信链路向云端服务器发送用于获取车辆行驶相关信息的第一消息。
例如,若车辆行驶相关信息为拥堵信息,则云端服务器从路况信息中选取拥堵信息,并将选取出的拥堵信息发送至车端设备;若车辆行驶相关信息为路面的车道被行人和机动车占用的信息,则云端服务器从路况信息中选取路面的车道被行人和机动车占用的信息,并将选取出的路面的车道被行人和机动车占用的信息发送至车端设备,等等,此处不再一一赘述。
在一些实施例中,第二消息的内容由网络侧设备根据第一消息确定为路况描述或者驾驶操作指令;
或者第二消息的格式由网络侧设备根据第一消息确定为人类可识别语言或者机器可识别语言。
其中,人类可识别语言的格式为未经过格式处理的原始数据的格式。
例如,车道级拥堵信息:在某一车道上车辆多、秩序乱或车道狭窄等造成车辆拥挤,包含拥堵的程度等信息;可通行信息:道路的车辆能否通行的信息,某一时间,某一条道路的可通信情况;交通状况:道路车辆速度与流量的说明;行人、自行车等穿越公路信息:人行横道的行人流量和自行车道自行车流量说明,等等。
其中,机器可识别语言的格式为对原始数据的格式进行处理,生成的机器可识别的指令类型的格式。
例如,用于指示车辆进行变道、变速、刹车等的指令。
基于上述示例可知,第一消息可包括车端设备向网络侧设备上报的车辆行驶相关信息。
在一些实施例中,上报的车辆行驶相关信息包括车辆的自动驾驶等级、所在车道或者当前车速中的至少一种。
现结合图1和图4对上报的车辆相关信息包括自动驾驶等级为例对本公开实施例的数据传输方法进行详细阐述。其中,图4为基于图1的车端设备与云端服务器之间的交互示意图。
S1:车端设备向云端服务器发送获取车辆行驶相关信息的第一消息,且第一消息中包括自动驾驶等级。
其中,自动驾驶等级可包括六个等级,分别为L0至L5。
具体地,L0为人工驾驶,由驾驶员全权驾驶;L1为辅助驾驶,由车辆对方向盘和加减速中的一项操作提供驾驶,由驾驶员负责其余的驾驶操作;L2为部分自动驾驶,由车辆对方向盘和加减速中的多项操作提供驾驶,由驾驶员负责其余的驾驶操作;L3为条件自动驾驶,由车辆完成绝大部分驾驶操作,由驾驶员保持注意力集中以备不时之需;L4为高度自动驾驶,由车辆完成所有驾驶操作,驾驶员无需保持注意力,但是限定道路和环境条件除外;L5为完全自动驾驶,由车辆完成所有驾驶操作,驾驶员无需保持注意力。
S2:云端服务器提取第一消息中的自动驾驶等级。
S3:云端服务器根据自动驾驶等级确定车端设备可以识别的第二消息的格式。
基于上述示例可知,第二消息的格式可以包括人类可识别语言,也可以包括机器可识别语言,而车端设备可以识别的第二消息的格式可以基于相应的自动驾驶等级确定。因此,网络侧设备可根据车端设备对应的自动驾驶等级确定第二消息的格式。
S4:云端服务器以车端设备能够识别的格式将第二消息发送至车端设备。
如,L3及L3以下的自动驾驶等级对应的车端设备无法识别机器可识别语言,可以识别人类可识别语言,则网络侧设备发送至车端设备的第二消息的格式为人类可识别语言。
在本公开实施例中,网络侧设备可根据自动驾驶等级确定车端设备可以识别的格式,并以车端设备可以识别的格式生成并向车端设备发送第二消息,从而实现车端设备对第二消息的可识别性,提高数据传输的有效性,从而降低数据传输成本。
值得说明的是,上述交互方法也可以由车端设备与路侧单元实现,其实现原理与上述 交互方法的实现原理相同,此处不再赘述。
基于上述示例可知,上报的车辆行驶信息可以包括车端设备所属车辆所在的车道,还可以包括车端设备所属车辆的当前车速。
也就是说,车端设备可向云端服务器发送包括车端设备所属车辆所在的车道和车端设备所属车辆的当前车速,云端服务器从路况信息中确定与调整车辆当前行驶的相关信息,其中,调整车辆当前行驶的相关信息包括对车道的调整信息和/或对车速的调整信息,云端服务器并将调整车辆当前行驶的相关信息(即车辆行驶相关信息)发送至车端设备,以便车端设备基于调整车辆当前行驶的相关信息控制车端设备所属车辆的行驶,从而实现车辆安全且可靠的行驶。
现结合图2和图5对第一消息中包括车道和当前车速为例对本公开实施例的数据传输方法进行详细阐述。其中,图5为基于图2的车端设备与路侧单元之间的交互示意图。
结合图2和图5可知:
S5:车端设备向路侧单元发送用于获取车辆行驶相关信息的第一消息,第一消息中包括车道和当前车速。
其中,车道用于表征车端设备所属车辆行驶的车道,如左车道、中间车道和右车道等;当前车速用于表征车端设备所属车辆当前的行驶的速度,如XX公里/小时。
S6:路侧单元可根据路况信息确定车端设备所属车辆在安全行驶前提下的速度,并确定用于对当前车速进行调整的车速调整信息。
S7:路侧单元将车速调整信息(即车辆行驶相关信息中的一种)发送至车端设备。
例如,路侧单元基于路况信息可知,车端设备所属车辆前面的车辆减速,为了确保车端设备所属车辆与前面的车辆之间保持安全的距离,因此车端设备所属车辆也应相应的减缓车速,以避免与前面的车辆发生碰撞。且路侧单元基于路况信息可知前面的车辆的减速后的车速,则生成用于指示自动车端所属车辆至少减少与减速后的车速相同的速度,该速度即为车速调整信息,并将该车速调整信息发送至车端设备。以便车端设备基于车速调整信息适应性的调整当前车速,从而实现车端设备所属车辆的安全行驶。
在一些实施例中,第二消息的内容或格式与第一消息之间存在绑定关系,第二消息的内容或格式由网络侧设备根据第一消息以及绑定关系确定。
在一些实施例中,车速调整信息的格式可基于调整方向和差分量化确定。
其中,调整方向用于表征速度的调整的动态,即速度的调整方向,如加速、减速和匀速;差分量化用于表征速度的调整的量,如XX公里/小时。
例如,加速20公里/小时;减速30公里/小时;匀速30公里/小时,等等。
S8:路侧单元根据采集到的路况信息确定车端设备所属车辆在安全行驶前提下的车道,以便确定用于对车端设备所属车辆的车道进行调整的车道调整信息。
S9:路侧单元将车道调整信息发送至车端设备。
例如,路侧单元基于路况信息可知,车端设备所属车辆行驶的车道是否处于拥堵状态;或者,是否发生交通事故;或者,基于车端设备所属车辆同步至路侧单元的行驶路线,路侧单元可基于路况信息确定车端设备所属车辆是否需要变道,等等,因此,为了车端设备所属车辆安全的行驶,且避免因拥堵等造成时间损失等,路侧单元可根据路况信息确定车道调整信息。
示范性地,路侧单元基于路况信息可知,车端设备所属车辆行驶的车道前方发生交通事故,则路侧单元生成用于指示车端设备所属车辆由当前车道变道至左侧车道的信息(即车道调整信息),并将该车道调整信息发送至车端设备,以便车端设备基于该车道调整信息对车道进行适应性调整。
在一些实施例中,车道调整信息的格式基于预设编码确定。
例如,编码00代表不变道,编码01代表变道至车道1,编码10代表变道至车道2,编码11代表变道至车道3,等等。
结合上述示例,路侧单元可将车速调整信息和车道调整信息进行整合,得到包括车速调整信息和车道调整信息的一条调整信息,且可基于上述格式将调整信息发送至车端设备。例如,00+加速20公里/小时。
值得说明的是,S6-S7与S8-S9之间并无先后顺序的必然限制,即可优先执行S6-S7,也可优先执行S8-S9,还可同时执行S6-S7和S8-S9。
在一些实施例中,请求的车辆行驶相关信息包括车辆行驶相关信息的内容类型或者详细程度等级。
其中,车辆行驶相关信息的内容类型用于表征车辆行驶相关信息的不同维度的内容。可将内容类型分为两类,一类是信息内容类型,一类是指令内容类型。
在一些实施例中,信息内容类型可包括:车道拥堵信息、车道事故信息、车道路面状况信息、车道可通信信息、天气信息、行人和/或自行车穿越马路信息、车道被行人和/或机动车占用情况信息,等等。
在一些实施例中,指令内容类型可包括:变速请求,变道请求,刹车请求和绕行请求等。
现结合图1和图6对内容类型包括信息内容类型为例对本公开实施例的数据传输方法进行详细阐述。其中,图6为基于图1的车端设备与云端服务器之间的交互示意图。
结合图1和图6可知:
S10:车端向云端服务器发送第一消息,车辆行驶相关信息的内容类型,且内容类型具体为信息内容类型。
也就是说,车端设备可基于其比较关注的一个或多个维度的内容的车辆行驶相关信息向云端服务器发送第一消息,以便从云端获取车端设备关注的一个或多个维度的内容的车辆行驶相关信息。因此,一方面,可以实现车端设备基于需求主动选择相应的一个或多个维度的内容的车辆行驶相关信息,提高智能化;另一方面,针对性的对一个或多个维度的内容的车辆行驶相关信息进行传输,相较于传输所有维度的内容的车辆行驶相关信息,节约了传输成本,提高了传输效果。
S11:云端服务器从路况信息中获取一个或多个维度的内容的车辆行驶相关信息。
例如,若信息内容类型为车道拥堵信息,即车端设备比较关注车道是否拥堵,则云端从路况信息中获取车道拥堵信息对应的车辆行驶相关信息。
S12:云端服务器将获取的一个或多个维度的内容的车辆行驶相关信息传输至车端设备。
其中,车端设备可基于获取到的一个或多个维度的内容的车辆行驶相关信息对车端设备车辆的行驶状态进行调整。
例如,车端设备基于一个或多个维度的内容的车辆行驶相关信息可知,车道处于拥堵状态,则车端设备可调整车端设备所属车辆的车道,或者,重新规划路线等,以避开拥堵路况,节约时间,提高效率。
在一些实施例中,第一消息基于预先定义的比特编码方式承载内容类型或者详细程度等级。
例如,信息内容类型共包括八种,则可将车道拥堵信息映射为八个比特位中的第一个比特位,则车端设备发送至云端服务器(或路侧单元)的第一消息为“10000000”。同理,可将车道事故信息映射为八个比特位中的第二个比特位,则车端设备发送至云端(或路侧单元)的第一消息为“01000000”。当然,若内容类型包括车道拥堵信息和车道事故信息,则车端设备发送至云端服务器(或路侧单元)的第一消息为“11000000”。以此类推,此处不再一一赘述。
基于上述示例可知,指令内容类型可包括:变速请求,变道请求,刹车请求和绕行请求等。
现结合图1和图7对内容类型包括指令内容类型为例对本公开实施例的数据传输方法进行详细阐述。其中,图7为基于图1的车端设备与云端服务器之间的交互示意图。
结合图1和图7可知:
S13:车端设备向云端服务器发送第一消息,第一消息中包括请求的车辆行驶相关信息,且请求的车辆行驶相关信息包括指令内容类型。
例如,若车端设备发送的第一消息中的指令内容类型包括变速请求,则相当于车端设备想要从云端获取与变速请求对应的变速信息。
在一些实施例中,车端设备可基于比特编码的方式定义指令内容类型,并与云端服务器进行交互。如变速请求为00,刹车请求01,等等。
S14:云端服务器基于路况信息和指令内容类型从预设映射关系中获取调整结果(即为调整信息)。
例如,若指令内容类型为变速请求,且云端服务器基于路况信息确定出存在行人和自行车等穿越马路的路况信息;或者,基于路况信息确定出道路拥堵;或者,基于路况信息确定出道路施工,等等,则生成减速信息,并将减速信息确定为调整结果,即将调整信息确定为减速。若基于动态信息确定出道路畅通,则可生成加速信息,并将加速信息确定为调整结果,即将调整信息确定为加速。以便车端设备基于用于指示减速或加速的调整信息调整当前的运行状态,从而确保行人安全,且确保安全驾驶。
又如,在另一些实施例中,若指令内容类型为变道请求,且云端服务器基于路况信息确定出存在行人和自行车等穿越马路的路况信息;或者,基于路况信息确定出道路拥堵;或者,基于路况信息确定出道路施工;或者,车道发生事故;或者,车道被行人和/或机动车占用,等等,则生成变道信息,并将变道信息确定为调整结果,即将调整信息确定为变道。以便车辆基于用于指示变道的调整信息调整当前的运行状态,从而确保行人安全,且确保安全驾驶。
S15:云端服务器将调整信息发送至车端设备。以便车端设备基于调整信息对车端设备所属车辆的当前运行状态进行调整。
值得说明的是,在一些实施例中,云端服务器可在接收到车端设备的请求后,基于车 端设备携带的标识获取路况信息,即基于标识对车端设备所属车辆进行追踪和定位,以便获取与车端设备所属车辆对应的车辆行驶相关信息,并基于获取到的车辆行驶相关信息生成与请求第二消息。
基于上述示例可知,请求的车辆行驶相关信息还可包括详细程度等级。
其中,详细程度等级用于表征车辆行驶相关信息的内容丰富等级,如,简略、一般和丰富等。
例如,若丰富为第一等级,一般为第二等级,简略为第三等级,则与第一等级对应的车辆行驶相关信息可以为“XX路与某典型地物点第X个车道出现事故”,与第二等级对应的车辆行驶相关信息可以为“XX路与某典型地物点交汇处出现事故”,第三等级对应的车辆行驶相关信息可以为“XX路出现事故”。
在一些实施例中,第二消息包括多种内容类型的车辆行驶相关信息,第一消息还用于网络侧设备确定多种内容类型中每种内容类型的车辆行驶相关信息的传输优先级,第二消息的内容和格式由网络侧设备根据第一消息确定包括:
第二消息中每种内容类型的车辆行驶相关信息的内容或格式由网络侧设备根据传输优先级确定。
在一些实施例中,具有较高传输优先级的内容类型的车辆行驶相关信息在传输时序方面优先被传输,或者在内容或格式方面具有较高的详细程度等级。
其中,传输优先级用于表征各内容类型的车辆行驶相关信息的传输等级,如第优先级、第二优先级和第三优先等。其中,不同的优先级对应不同的传输顺序,如,第一等优先级对应的内容类型的车辆行驶相关信息最先传输,以此类推,此处不再一一赘述。
在一些实施例中,车端设备可基于需求预先设置传输优先级,并将传输优先级的传输至云端服务器(或路侧单元),以便云端服务器(或路侧单元)基于对该传输优先级的进行存储,并基于该传输优先级的信息确定车辆行驶相关信息的传输顺序,并基于传输顺序对行驶相关信息进行传输。
当然,在另一些实施例中,车端设备可基于需求设置当前的传输优先级。
也就是说,传输优先级的可预先设置,也可实时设置。若为预先设置,则车端设备可基于预设时间间隔或者需求对传输优先级进行适应性调整。
例如,传输优先级包括:车道事故的优先级>车道拥堵的优先级,则云端服务器(或路侧单元)从路况信息中确定出车道事故和车道拥堵后,优先将车道事故传输至车端设备,而后将车道拥堵传输至车端设备。
在一些实施例中,第一消息包括车端设备所述车辆在行驶中处于的时段或者路段,网络侧设备确定多种内容类型中每种内容类型的车辆行驶相关信息的传输优先级包括:网络侧设备根据时段或者路段确定多种内容类型中每种内容类型的车辆行驶相关信息的传输优先级。
也就是说,在一些实施例中,车端设备可基于各路段的历史行驶记录和历史路况信息不同时段或者不同路段的传输优先级。
例如,基于路段A的历史行驶记录和历史路况信息可知,路段A为事故高发路段,则可当车端所属车辆行驶于路段A时,将车道事故设置为最高优先级,即车端设备可优先对路段A的车道事故进行获取。
又如,基于路段B的历史行驶记录和历史路况信息可知,路段B在C时段为事故高发路段,则可当车端设备所属车辆在C时段行驶于路段B时,将车道事故设置为最高优先级,即车端设备优先对路段A的车道事故进行获取。
因此,在本公开实施例中,云端服务器(或路侧单元)通过基于传输的优先级将车辆行驶相关信息传输至车端设备,可以实现数据传输的灵活性。
根据本公开实施例的另一个方面,本公开实施例还提供了一种数据传输方法。
请参阅图8,图8为本公开实施例六所提供的数据传输方法的流程图。
如图8所示,该方法包括:
S201:网络侧设备接收车端设备发送的用于获取车辆行驶相关信息的第一消息。
S202:网络侧设备确定包括车辆行驶相关信息的第二消息,第二消息的内容或格式由所述网络侧设备根据第一消息确定。
基于上述示例可知,在一些实施例中,车辆可基于预设的账号或者唯一标识码(如车牌号等)建立与网络侧设备的通信连接。因此,网络侧设备在接收到车辆发送的第一消息后,可以基于账号或者唯一标识码对车辆进行追踪和定位,以便从全量动态信息中获取与车辆行驶相关的第二信息,且第二消息的内容或格式由网络侧设备根据第一消息进行确定。
或者,在另一些实施例中,如果车辆发送的请求中携带车辆的位置信息,则网络侧设备可基于该位置信息从全量动态信息中获取与车辆行驶相关的第二消息,且第二消息的内容或格式由网络侧设备根据第一消息进行确定。
S203:网络侧设备向车端设备发送第二消息。
在本公开实施例中,自动驾驶车辆可基于需求向网络侧设备发送获取相应动态信息的请求,网络侧设备可基于该请求将至少部分动态信息确定为反馈信息,将该反馈信息发送至自动驾驶车辆,从而实现降低数据传输负载,且实现数据传输的灵活性和可选择性的技术效果。
在一些实施例中,第一消息包括车端设备向网络侧设备上报的或者请求的车辆行驶相关信息。
在一些实施例中,上报的车辆行驶相关信息包括车端设备所属车辆的自动驾驶等级、所在车道或者当前车速中的至少一种,网络侧设备确定包括车辆行驶相关信息的第二消息包括:
网络侧设备根据车端设备所属车辆的自动驾驶等级、所在车道或者当前车速中的至少一种,确定第二消息的内容或格式。
在一些实施例中,请求的车辆行驶相关信息包括车辆行驶相关信息的内容类型或者详细程度等级,网络侧设备确定包括车辆行驶相关信息的第二消息包括:
网络侧设备根据内容类型或者详细程度等级,确定第二消息的内容或格式。
在一些实施例中,第一消息基于预先定义的比特编码方式承载内容类型或者详细程度等级,网络侧设备确定包括车辆行驶相关信息的第二消息包括:
网络侧设备根据第一消息和预先定义的比特编码方式确定内容类型或者详细程度等级;
网络侧设备根据内容类型或者详细程度等级,确定第二消息息的内容或格式。
在一些实施例中,第二消息的内容或格式由网络侧设备根据第一消息确定包括:
第二消息的内容由网络侧设备根据第一消息确定为路况描述或者驾驶操作指令;
或者,第二消息的格式由网络侧设备根据第一消息确定为人类可识别语言或者机器可识别语言。
在一些实施例中,第二消息的内容或格式由网络侧设备根据第一消息确定包括:
第二消息的内容或格式与第一消息之间存在绑定关系,第二消息的内容或格式由网络侧设备根据第一消息以及绑定关系确定。
在一些实施例中,第二消息包括多种内容类型的车辆行驶相关信息,网络侧设备确定包括车辆行驶相关信息的第二消息包括:
网络侧设备根据第一消息确定多种内容类型中每种内容类型的车辆行驶相关信息的传输优先级。
在一些实施例中,具有较高传输优先级的内容类型的车辆行驶相关信息在传输时序方面优先被传输,或者在内容或格式方面具有较高的详细程度等级。
在一些实施例中,第一消息包括车端设备车辆在行驶中处于的时段或者路段,网络侧设备根据第一消息确定多种内容类型中每种内容类型的车辆行驶相关信息的传输优先级包括:网络侧设备根据时段或者路段确定每种内容类型的车辆行驶相关信息的传输优先级。
根据本公开实施例的另一个方面,本公开实施例还提供了一种车端设备。
请参阅图9,图9为本公开实施例的车端设备的结构框图,本实施例中的车端设备可以执行图3所示实施例的数据传输方法。
如图9所示,车端设备包括:
第一发送单元11,用于向网络侧设备发送用于获取车辆行驶相关信息的第一消息;
第一接收单元12,用于从所述网络侧设备接收包括车辆行驶相关信息的第二消息,所述第二消息的内容或格式由所述网络侧设备根据所述第一消息确定。
在一些实施例中,所述第一消息包括所述车端设备向所述网络侧设备上报的或者请求的车辆行驶相关信息。
在一些实施例中,所述上报的车辆行驶相关信息包括所述车端设备所属车辆的自动驾驶等级、所在车道或者当前车速中的至少一种。
在一些实施例中,所述请求的车辆行驶相关信息包括所述车辆行驶相关信息的内容类型或者详细程度等级。
在一些实施例中,所述第一消息基于预先定义的比特编码方式承载所述内容类型或者所述详细程度等级。
在一些实施例中,所述第二消息的内容或格式由所述网络侧设备根据所述第一消息确定包括:
所述第二消息的内容由所述网络侧设备根据所述第一消息确定为路况描述或者驾驶操作指令;
或者所述第二消息的格式由所述网络侧设备根据所述第一消息确定为人类可识别语言或者机器可识别语言。
在一些实施例中,所述第二消息的内容或格式由所述网络侧设备根据所述第一消息确定包括:
所述第二消息的内容或格式与所述第一消息之间存在绑定关系,所述第二消息的内容 或格式由所述网络侧设备根据所述第一消息以及所述绑定关系确定。
在一些实施例中,所述第二消息包括多种内容类型的车辆行驶相关信息,所述第一消息还用于所述网络侧设备确定所述多种内容类型中每种内容类型的车辆行驶相关信息的传输优先级。
在一些实施例中,具有较高传输优先级的内容类型的车辆行驶相关信息在传输时序方面优先被传输,或者在所述内容或格式方面具有较高的详细程度等级。
在一些实施例中,所述第一消息包括所述车端设备所述车辆在行驶中处于的时段或者路段,所述网络侧设备确定所述多种内容类型中每种内容类型的车辆行驶相关信息的传输优先级包括:所述网络侧设备根据所述时段或者所述路段确定所述每种内容类型的车辆行驶相关信息的传输优先级。
根据本公开实施例的另一个方面,本公开实施例还提供了一种网络侧设备。
请参阅图10,图10为本公开实施例的网络侧设备的结构框图,本实施例中的网络侧设备可以执行图8所示实施例的数据传输方法。
如图10所示,该网络侧设备包括:
第二接收单元21,用于接收车端设备发送的用于获取车辆行驶相关信息的第一消息;
确定单元22,用于确定包括车辆行驶相关信息的第二消息,所述第二消息的内容或格式由所述确定单元根据所述第一消息确定;
第二发送单元23,用于向所述车端设备发送所述第二消息。
在一些实施例中,所述第一消息包括所述车端设备向所述网络侧设备上报的或者请求的车辆行驶相关信息。
在一些实施例中,所述上报的车辆行驶相关信息包括所述车端设备所属车辆的自动驾驶等级、所在车道或者当前车速中的至少一种,所述确定单元22用于:
根据所述车端设备所属车辆的自动驾驶等级、所在车道或者当前车速中的至少一种确定所述第二消息的内容或格式。
在一些实施例中,所述请求的车辆行驶相关信息包括所述车辆行驶相关信息的内容类型或者详细程度等级,所述确定单元22用于:
根据所述内容类型或者所述详细程度等级确定所述第二消息的内容或格式。
在一些实施例中,所述第一消息基于预先定义的比特编码方式承载所述内容类型或者所述详细程度等级,所述确定单元22用于:
根据所述第一消息和所述预先定义的比特编码方式确定所述内容类型或者所述详细程度等级;
根据所述内容类型或者所述详细程度等级确定所述第二消息的内容或格式。
在一些实施例中,所述第二消息的内容或格式由所述确定单元22根据所述第一消息确定包括:
所述第二消息的内容由所述确定单元22根据所述第一消息确定为路况描述或者驾驶操作指令;
或者,所述第二消息的格式由所述确定单元22根据所述第一消息确定为人类可识别语言或者机器可识别语言。
在一些实施例中,所述第二消息的内容或格式由所述确定单元22根据所述第一消息 确定包括:
所述第二消息的内容或格式与所述第一消息之间存在绑定关系,所述第二消息的内容或格式由所述确定单元22根据所述第一消息以及所述绑定关系确定。
在一些实施例中,所述第二消息包括多种内容类型的车辆行驶相关信息,所述确定单元22用于:
根据所述第一消息确定所述多种内容类型中每种内容类型的车辆行驶相关信息的传输优先级。
在一些实施例中,具有较高传输优先级的内容类型的车辆行驶相关信息在传输时序方面优先被传输,或者在所述内容或格式方面具有较高的详细程度等级。
在一些实施例中,所述第一消息包括所述车端设备所述车辆在行驶中处于的时段或者路段,所述确定单元22用于:根据所述时段或者所述路段确定所述每种内容类型的车辆行驶相关信息的传输优先级。
图9和图10中的各个单元的只一个或多个可以软件、硬件、固件或其结合实现。所述软件或固件包括但不限于计算机程序指令或代码,并可以被硬件处理器所执行。所述硬件包括但不限于各类集成电路,如中央处理单元(CPU)、数字信号处理器(DSP)、现场可编程门阵列(FPGA)或专用集成电路(ASIC)。
根据本公开实施例的另一个方面,本公开实施例还提供了一种车端设备,所述车端包括存储器和处理器,所述存储器存储计算机程序指令,所述处理器运行所述计算机程序指令以执行如上任一实施例所述的方法。
请参阅图11,图11为本公开实施例的车端设备的结构示意图,本实施例中的车端设备可以实现图3所示实施例的数据传输方法。
其中,车端设备可用于表征各种形式的数字计算机,诸如,膝上型计算机、台式计算机、工作台、服务器、刀片式服务器、大型计算机、和其它适合的计算机。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本公开的实现。
例如,车端设备可以为自动驾驶车辆上设置的车载盒子(Telematics BOX,T-Box),域控制器(Domian Controller,DC),多域控制器(Multi-Domian Controller,MDC),车载单元(On board Unit,OBU),车联网芯片等。
具体地,车端设备可包括至少一个处理器101,通信总线102,以及至少一个通信接口103。
其中,处理器101可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本公开实施例程序执行的集成电路。且,处理器101可通过至少一个通信接口103与存储器104连接,存储器104可以设置于车端设备内部,也可以设置于车端设备的外部。如存储器104可以为车端设备内部的寄存器、缓存等,存储器104还可以是位于车端设备外部的存储设备。
例如,车端设备为车载盒子,则车载盒子至少包括一个处理器,通信总线,以及至少一个通信接口。且车载盒子中的处理器可通过通信接口与设置于车载盒子外部的存储设备连接,以便由通信接口从设置于车载盒子外部的存储设备中获取指令,处理器执行所述指 令时实现如图3所示的数据传输方法。
当然,在另一些实施例中,车载盒子内部可设置有存储器,用于存储指令,处理器通过通信总线从存储器中获取指令,处理器执行所述指令时实现如图3所示的数据传输方法。
值得说明地是,此处只是以车载盒子为例进行示范性地说明,车端设备还可以为域控制器、多域控制器、车载单元和车联网芯片中的任意一种,且原理与车载盒子示例的原理相同。
在一些实施例中,若存储器104为设置于车端设备外部的存储设备,则处理器101可通过通信接口103与外部的存储设备连接,以通过通信接口103从外部的存储设备中采集指令,处理器101执行指令时,可实现如图3所示实施例的数据传输方法。
在一些实施例中,若存储器104设置于车端设备内,则存储器104可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器104可以是独立存在,通过通信总线102与处理器101相连接。存储器104也可以和处理器101集成在一起。
其中,存储器104可为本公开所提供的计算机存储介质,所述存储器104存储有可由至少一个处理器101执行的指令,以使所述至少一个处理器101执行如图3所示的数据传输方法。
存储器104作为一种计算机存储介质,可用于存储非瞬时软件程序、非瞬时计算机可执行程序以及模块。处理器101通过运行存储在存储器104中的非瞬时软件程序、指令以及模块,从而执行车端设备的各种功能应用以及数据处理,即实现如图3所示的数据传输方法。
存储器104可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据车端设备的使用所创建的数据等。此外,存储器104可以包括高速随机存取存储器,还可以包括非瞬时存储器,例如至少一个磁盘存储器件、闪存器件、或其他非瞬时固态存储器件。在一些实施例中,存储器104可选包括相对于处理器101远程设置的存储器,这些远程存储器可以通过网络连接至车端设备。上述网络的实例包括但不限于互联网、车联网、企业内部网、局域网、区块链网、移动通信网及其组合。
通信总线102可包括一通路,在上述组件之间传送信息。
通信接口103,可以是任何收发器或IP端口或总线接口等,用于与内部或外部设备或车端设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。如车端设备为集成在车辆内部的功能单元时,通信接口103包括如下接口中的一种或多种,如车辆外部网络进行通信的收发器,车辆其它内部单元通信的总线接口(如控制器局域网络(Controller Area Network,CAN)总线接口)等。
在具体实现中,作为一种实施例,处理器101可以包括一个或多个CPU,例如图11中的CPU0和CPU1。
在具体实现中,作为一种实施例,车端设备可以包括多个处理器,例如图11中的处理器101和处理器107。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,车端设备还可以包括输出装置105和输入装置106。输出装置105和处理器101通信,可以以多种方式来显示信息。例如,输出装置105可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示装置,阴极射线管(cathode ray tube,CRT)显示装置,或投影仪(projector)等。输入装置106和处理器101通信,可以以多种方式接受用户的输入。例如,输入装置106可以是鼠标、键盘、触摸屏装置或传感装置等。
当图11所示的车端设备为车联网芯片时,通信接口103的功能/实现过程还可以通过管脚或电路等来实现。
在另一些实施例中,图11也可以为本公开实施例的网络侧设备的结构示意图,本实施例中的网络侧设备可以实现图8所示实施例的数据传输方法。
其中,网络侧设备可用于表征各种形式的数字计算机,诸如,膝上型计算机、台式计算机、工作台、服务器、刀片式服务器、大型计算机、和其它适合的计算机。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本公开的实现。
具体地,网络侧设备可包括至少一个处理器101,通信总线102,以及至少一个通信接口103。
其中,处理器101可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本公开实施例程序执行的集成电路。且,处理器101可通过至少一个通信接口103与存储器104连接,存储器104可以设置于网络侧设备内部,也可以设置于网络侧设备的外部。如存储器104可以为网络侧设备内部的寄存器、缓存等,存储器104还可以是位于网络侧设备外部的存储设备。
例如,网络侧设备为服务器,则服务器至少包括一个处理器,通信总线,以及至少一个通信接口。且服务器中的处理器可通过通信接口与设置于服务器外部的存储设备连接,以便由通信接口从设置于服务器外部的存储设备中获取指令,处理器执行所述指令时实现如图8所示的数据传输方法。
当然,在另一些实施例中,服务器内部可设置有存储器,用于存储指令,处理器通过通信总线从存储器中获取指令,处理器执行所述指令时实现如图8所示的数据传输方法。
值得说明地是,此处只是以服务器为例进行示范性地说明,服务器还可以为台式计算机、工作台、和大型计算机中的任意一种,且原理与服务器示例的原理相同。
在一些实施例中,若存储器104为设置于网络侧设备外部的存储设备,则处理器101可通过通信接口103与外部的存储设备连接,以通过通信接口103从外部的存储设备中采集指令,处理器101执行指令时,可实现如图8所示实施例的数据传输方法。
在一些实施例中,若存储器104设置于网络侧设备内,则存储器104可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器104可以是独立存在,通过通信总线102与处理器101相连接。存储器104也可以和处理器101集成在一起。
其中,存储器104可为本公开所提供的计算机存储介质,所述存储器104存储有可由至少一个处理器101执行的指令,以使所述至少一个处理器101执行如图8所示的数据传输方法。
存储器104作为一种计算机存储介质,可用于存储非瞬时软件程序、非瞬时计算机可执行程序以及模块。处理器101通过运行存储在存储器104中的非瞬时软件程序、指令以及模块,从而执行服务器的各种功能应用以及数据处理,即实现如图8所示的数据传输方法。
存储器104可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据网络侧设备的使用所创建的数据等。此外,存储器104可以包括高速随机存取存储器,还可以包括非瞬时存储器,例如至少一个磁盘存储器件、闪存器件、或其他非瞬时固态存储器件。在一些实施例中,存储器104可选包括相对于处理器101远程设置的存储器,这些远程存储器可以通过网络连接至网络侧设备。上述网络的实例包括但不限于互联网、车联网、企业内部网、局域网、区块链网、移动通信网及其组合。
通信总线102可包括一通路,在上述组件之间传送信息。
通信接口103,可以是任何收发器或IP端口或总线接口等,用于与内部或外部设备或网络侧设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。如网络侧设备为集成在服务器内部的功能单元时,通信接口103包括如下接口中的一种或多种,如服务器外部网络进行通信的收发器,服务器其它内部单元通信的总线接口(如控制器局域网络(Controller Area Network,CAN)总线接口)等。
在具体实现中,作为一种实施例,处理器101可以包括一个或多个CPU,例如图11中的CPU0和CPU1。
在具体实现中,作为一种实施例,网络侧设备可以包括多个处理器,例如图11中的处理器101和处理器107。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,网络侧设备还可以包括输出装置105和输入装置106。输出装置105和处理器101通信,可以以多种方式来显示信息。例如,输出装置105可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED) 显示装置,阴极射线管(cathode ray tube,CRT)显示装置,或投影仪(projector)等。输入装置106和处理器101通信,可以以多种方式接受用户的输入。例如,输入装置106可以是鼠标、键盘、触摸屏装置或传感装置等。
根据本公开实施例的另一个方面,本公开实施例还提供了一种车辆,所述车辆包括上述实施例所述的车端设备。
现结合图12对车辆的内部组件进行示范性描述。
如图12所示,该车辆包括:处理器201,外部存储器接口202,内部存储器203,通用串行总线(universal serial bus,USB)接口204,电源管理模块205,天线1,天线2,移动通信模块206,无线通信模块207,传感器208,摄像头209,车载盒子210。可以理解的是,本实施例示意的结构并不构成对车辆的具体限定。
其中,车辆可通过无线通信模块207与网络侧设备进行交互。
其中,传感器208包括如图12中所述的雷达以及其他传感器。
在本公开的另一些实施例中,车辆可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。且,图示的部件可以以硬件,软件,或软件和硬件的组合实现。
处理器201可以包括一个或多个处理单元,例如:处理器201可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。在一些实施例中,车辆也可以包括一个或多个处理器201。其中,控制器可以是车辆的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。处理器201中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器201中的存储器为高速缓冲存储器。
在一些实施例中,处理器201可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,和/或通用串行总线(universal serial bus,USB)接口等。其中,USB接口211是符合USB标准规范的接口,可以用于连接充电器为车辆充电。
可以理解的是,本公开实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对车辆的结构限定。在本公开的另一些实施例中,车辆也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
值得说明地是,车端设备可以为如图12中所述的处理器201,也可以为如图12中所述的车载盒子210。
根据本公开实施例的另一个方面,本公开实施例还提供了一种网络侧设备,所述车端包括存储器和处理器,所述存储器存储计算机程序指令,所述处理器运行所述计算机程序指令以执行如上任一实施例所述的方法。
根据本公开实施例的另一个方面,本公开实施例还提供了一种车联网系统,所述系统包括:
如上实施例所述的车端设备;
如上实施例所述的网络侧设备。
在一些实施例中,本公开实施例的车联网系统可以包括如图1中所示的车辆和云端服务器,且所述车辆上设置有如本上述实施例所述的车端设备。
在另一些实施例中,本公开实施例的车联网系统可以包括如图2中所示的车辆和路侧单元,且所述车辆上设置有如上述实施例所述的车端设备。
本领域的技术人员可以清楚地了解到,本申请提供的各实施例的描述可以相互参照,为描述的方便和简洁,例如关于本申请实施例提供的各装置、设备的功能以及执行的步骤可以参照本申请方法实施例的相关描述,各方法实施例之间、各装置实施例之间也可以互相参照。
本领域技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的全部或部分步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,在没有超过本申请的范围内,可以通过其他的方式实现。例如,以上所描述的实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
另外,所描述装置和方法以及不同实施例的示意图,在不超出本申请的范围内,可以与其它系统,模块,技术或方法结合或集成。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电 子、机械或其它的形式。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (40)

  1. 一种数据传输方法,其特征在于,所述方法包括:
    车端设备向网络侧设备发送用于获取车辆行驶相关信息的第一消息,所述第一消息包括所述车端设备向所述网络侧设备上报的或者请求的车辆行驶相关信息;
    车端设备从所述网络侧设备接收包括车辆行驶相关信息的第二消息,所述第二消息的内容或格式由所述网络侧设备根据所述第一消息确定。
  2. 根据权利要求1所述的方法,其特征在于,所述上报的车辆行驶相关信息包括所述车端设备所属车辆的自动驾驶等级、所在车道或者当前车速中的至少一种。
  3. 根据权利要求1所述的方法,其特征在于,所述请求的车辆行驶相关信息包括所述车辆行驶相关信息的内容类型或者详细程度等级。
  4. 根据权利要求3所述的方法,其特征在于,所述第一消息基于预先定义的比特编码方式承载所述内容类型或者所述详细程度等级。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第二消息的内容或格式由所述网络侧设备根据所述第一消息确定包括:
    所述第二消息的内容由所述网络侧设备根据所述第一消息确定为路况描述或者驾驶操作指令;
    或者所述第二消息的格式由所述网络侧设备根据所述第一消息确定为人类可识别语言或者机器可识别语言。
  6. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第二消息的内容或格式由所述网络侧设备根据所述第一消息确定包括:
    所述第二消息的内容或格式与所述第一消息之间存在绑定关系,所述第二消息的内容或格式由所述网络侧设备根据所述第一消息以及所述绑定关系确定。
  7. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第二消息包括多种内容类型的车辆行驶相关信息,所述第一消息还用于所述网络侧设备确定所述多种内容类型中每种内容类型的车辆行驶相关信息的传输优先级。
  8. 根据权利要求7所述的方法,其特征在于,具有较高传输优先级的内容类型的车辆行驶相关信息在传输时序方面优先被传输,或者在所述内容或格式方面具有较高的详细程度等级。
  9. 根据权利要求7所述的方法,其特征在于,所述第一消息包括所述车端设备所属车辆在行驶中处于的时段或者路段,所述网络侧设备确定所述多种内容类型中每种内容类型的车辆行驶相关信息的传输优先级包括:所述网络侧设备根据所述时段或者所述路段确定所述每种内容类型的车辆行驶相关信息的传输优先级。
  10. 一种数据传输方法,其特征在于,所述方法包括:
    网络侧设备接收车端设备发送的用于获取车辆行驶相关信息的第一消息,所述第一消息包括所述车端设备向所述网络侧设备上报的或者请求的车辆行驶相关信息;
    所述网络侧设备确定包括车辆行驶相关信息的第二消息,所述第二消息的内容或格式由所述网络侧设备根据所述第一消息确定;
    所述网络侧设备向所述车端设备发送所述第二消息。
  11. 根据权利要求10所述的方法,其特征在于,所述上报的车辆行驶相关信息包括所述车端设备所属车辆的自动驾驶等级、所在车道或者当前车速中的至少一种,所述网络侧设备确定包括车辆行驶相关信息的第二消息包括:
    所述网络侧设备根据所述车端设备所属车辆的自动驾驶等级、所在车道或者当前车速中的至少一种,确定所述第二消息的内容或格式。
  12. 根据权利要求10所述的方法,其特征在于,所述请求的车辆行驶相关信息包括所述车辆行驶相关信息的内容类型或者详细程度等级,所述网络侧设备确定包括车辆行驶相关信息的第二消息包括:
    所述网络侧设备根据所述内容类型或者所述详细程度等级,确定所述第二消息的内容或格式。
  13. 根据权利要求12所述的方法,其特征在于,所述第一消息基于预先定义的比特编码方式承载所述内容类型或者所述详细程度等级,所述网络侧设备确定包括车辆行驶相关信息的第二消息包括:
    所述网络侧设备根据所述第一消息和所述预先定义的比特编码方式确定所述内容类型或者所述详细程度等级;
    所述网络侧设备根据所述内容类型或者所述详细程度等级,确定所述第二消息息的内容或格式。
  14. 根据权利要求10至13中任一项所述的方法,其特征在于,所述第二消息的内容或格式由所述网络侧设备根据所述第一消息确定包括:
    所述第二消息的内容由所述网络侧设备根据所述第一消息确定为路况描述或者驾驶操作指令;
    或者,所述第二消息的格式由所述网络侧设备根据所述第一消息确定为人类可识别语言或者机器可识别语言。
  15. 根据权利要求10至13中任一项所述的方法,其特征在于,所述第二消息的内容或格式由所述网络侧设备根据所述第一消息确定包括:
    所述第二消息的内容或格式与所述第一消息之间存在绑定关系,所述第二消息的内容或格式由所述网络侧设备根据所述第一消息以及所述绑定关系确定。
  16. 根据权利要求10至13中任一项所述的方法,其特征在于,所述第二消息包括多种内容类型的车辆行驶相关信息,所述网络侧设备确定包括车辆行驶相关信息的第二消息包括:
    所述网络侧设备根据所述第一消息确定所述多种内容类型中每种内容类型的车辆行驶相关信息的传输优先级。
  17. 根据权利要求16所述的方法,其特征在于,具有较高传输优先级的内容类型的车辆行驶相关信息在传输时序方面优先被传输,或者在所述内容或格式方面具有较高的详细程度等级。
  18. 根据权利要求16所述的方法,其特征在于,所述第一消息包括所述车端设备所述车辆在行驶中处于的时段或者路段,所述网络侧设备根据所述第一消息确定所述多种内容类型中每种内容类型的车辆行驶相关信息的传输优先级包括:所述网络侧设备根据所述时段或者所述路段确定所述每种内容类型的车辆行驶相关信息的传输优先级。
  19. 一种车端设备,其特征在于,所述车端设备包括:
    第一发送单元,用于向网络侧设备发送用于获取车辆行驶相关信息的第一消息,所述第一消息包括所述车端设备向所述网络侧设备上报的或者请求的车辆行驶相关信息;
    第一接收单元,用于从所述网络侧设备接收包括车辆行驶相关信息的第二消息,所述第二消息的内容或格式由所述网络侧设备根据所述第一消息确定。
  20. 根据权利要求19所述的设备,其特征在于,所述上报的车辆行驶相关信息包括所述车端设备所属车辆的自动驾驶等级、所在车道或者当前车速中的至少一种。
  21. 根据权利要求19所述的设备,其特征在于,所述请求的车辆行驶相关信息包括所述车辆行驶相关信息的内容类型或者详细程度等级。
  22. 根据权利要求21所述的设备,其特征在于,所述第一消息基于预先定义的比特编码方式承载所述内容类型或者所述详细程度等级。
  23. 根据权利要求19至22中任一项所述的设备,其特征在于,所述第二消息的内容或格式由所述网络侧设备根据所述第一消息确定包括:
    所述第二消息的内容由所述网络侧设备根据所述第一消息确定为路况描述或者驾驶操作指令;
    或者所述第二消息的格式由所述网络侧设备根据所述第一消息确定为人类可识别语言或者机器可识别语言。
  24. 根据权利要求19至22中任一项所述的设备,其特征在于,所述第二消息的内容或格式由所述网络侧设备根据所述第一消息确定包括:
    所述第二消息的内容或格式与所述第一消息之间存在绑定关系,所述第二消息的内容或格式由所述网络侧设备根据所述第一消息以及所述绑定关系确定。
  25. 根据权利要求19至22中任一项所述的设备,其特征在于,所述第二消息包括多种内容类型的车辆行驶相关信息,所述第一消息还用于所述网络侧设备确定所述多种内容类型中每种内容类型的车辆行驶相关信息的传输优先级。
  26. 根据权利要求25所述的设备,其特征在于,具有较高传输优先级的内容类型的车辆行驶相关信息在传输时序方面优先被传输,或者在所述内容或格式方面具有较高的详细程度等级。
  27. 根据权利要求25所述的设备,其特征在于,所述第一消息包括所述车端设备所述车辆在行驶中处于的时段或者路段,所述网络侧设备确定所述多种内容类型中每种内容类型的车辆行驶相关信息的传输优先级包括:所述网络侧设备根据所述时段或者所述路段确定所述每种内容类型的车辆行驶相关信息的传输优先级。
  28. 一种网络侧设备,其特征在于,所述设备包括:
    第二接收单元,用于接收车端设备发送的用于获取车辆行驶相关信息的第一消息,所述第一消息包括所述车端设备向所述网络侧设备上报的或者请求的车辆行驶相关信息;
    确定单元,用于确定包括车辆行驶相关信息的第二消息,所述第二消息的内容或格式由所述确定单元根据所述第一消息确定;
    第二发送单元,用于向所述车端设备发送所述第二消息。
  29. 根据权利要求28所述的设备,其特征在于,所述上报的车辆行驶相关信息包括所述车端设备所属车辆的自动驾驶等级、所在车道或者当前车速中的至少一种,所述确定 单元用于:
    根据所述车端设备所属车辆的自动驾驶等级、所在车道或者当前车速中的至少一种确定所述第二消息的内容或格式。
  30. 根据权利要求28所述的设备,其特征在于,所述请求的车辆行驶相关信息包括所述车辆行驶相关信息的内容类型或者详细程度等级,所述确定单元用于:
    根据所述内容类型或者所述详细程度等级确定所述第二消息的内容或格式。
  31. 根据权利要求30所述的设备,其特征在于,所述第一消息基于预先定义的比特编码方式承载所述内容类型或者所述详细程度等级,所述确定单元用于:
    根据所述第一消息和所述预先定义的比特编码方式确定所述内容类型或者所述详细程度等级;
    根据所述内容类型或者所述详细程度等级确定所述第二消息的内容或格式。
  32. 根据权利要求28至31中任一项所述的设备,其特征在于,所述第二消息的内容或格式由所述确定单元根据所述第一消息确定包括:
    所述第二消息的内容由所述确定单元根据所述第一消息确定为路况描述或者驾驶操作指令;
    或者,所述第二消息的格式由所述确定单元根据所述第一消息确定为人类可识别语言或者机器可识别语言。
  33. 根据权利要求28至31中任一项所述的设备,其特征在于,所述第二消息的内容或格式由所述确定单元根据所述第一消息确定包括:
    所述第二消息的内容或格式与所述第一消息之间存在绑定关系,所述第二消息的内容或格式由所述确定单元根据所述第一消息以及所述绑定关系确定。
  34. 根据权利要求28至31中任一项所述的设备,其特征在于,所述第二消息包括多种内容类型的车辆行驶相关信息,所述确定单元用于:
    根据所述第一消息确定所述多种内容类型中每种内容类型的车辆行驶相关信息的传输优先级。
  35. 根据权利要求34所述的设备,其特征在于,具有较高传输优先级的内容类型的车辆行驶相关信息在传输时序方面优先被传输,或者在所述内容或格式方面具有较高的详细程度等级。
  36. 根据权利要求34所述的设备,其特征在于,所述第一消息包括所述车端设备所述车辆在行驶中处于的时段或者路段,所述确定单元用于:根据所述时段或者所述路段确定所述每种内容类型的车辆行驶相关信息的传输优先级。
  37. 一种车端设备,其特征在于,所述车端设备包括存储器和处理器,所述存储器存储计算机程序指令,所述处理器运行所述计算机程序指令以执行权利要求1至9中任一项所述的操作。
  38. 一种网络侧设备,其特征在于,所述网络侧设备包括存储器和处理器,所述存储器存储计算机程序指令,所述处理器运行所述计算机程序指令以执行权利要求10-18任一项所述的操作。
  39. 一种计算机存储介质,其特征在于,所述计算机存储介质上存储有计算机指令,当所述计算机指令在被处理器运行时,使得所述车端设备执行如权利要求1至18中任一 项所述的方法。
  40. 一种计算机程序产品,当所述计算机程序产品在处理器上运行时,使得所述车端设备执行如权利要求1至18中任一项所述的方法。
PCT/CN2020/078231 2020-03-06 2020-03-06 数据传输方法、车端设备和网络侧设备 WO2021174531A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202080004160.7A CN112514425B (zh) 2020-03-06 2020-03-06 数据传输方法、车端设备和网络侧设备
KR1020227034061A KR20220148263A (ko) 2020-03-06 2020-03-06 데이터 전송 방법, 차량 측 디바이스 및 네트워크 측 디바이스
EP20923365.9A EP4102799A4 (en) 2020-03-06 2020-03-06 DATA TRANSMISSION METHOD, VEHICLE END DEVICE AND NETWORK SIDE DEVICE
JP2022553170A JP2023516205A (ja) 2020-03-06 2020-03-06 データ伝送方法、車両側デバイス、及びネットワーク側デバイス
PCT/CN2020/078231 WO2021174531A1 (zh) 2020-03-06 2020-03-06 数据传输方法、车端设备和网络侧设备
US17/903,118 US20220416974A1 (en) 2020-03-06 2022-09-06 Data Transmission Method, Vehicle-Side Device, and Network Side Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/078231 WO2021174531A1 (zh) 2020-03-06 2020-03-06 数据传输方法、车端设备和网络侧设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/903,118 Continuation US20220416974A1 (en) 2020-03-06 2022-09-06 Data Transmission Method, Vehicle-Side Device, and Network Side Device

Publications (1)

Publication Number Publication Date
WO2021174531A1 true WO2021174531A1 (zh) 2021-09-10

Family

ID=74953024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078231 WO2021174531A1 (zh) 2020-03-06 2020-03-06 数据传输方法、车端设备和网络侧设备

Country Status (6)

Country Link
US (1) US20220416974A1 (zh)
EP (1) EP4102799A4 (zh)
JP (1) JP2023516205A (zh)
KR (1) KR20220148263A (zh)
CN (1) CN112514425B (zh)
WO (1) WO2021174531A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113965398A (zh) * 2021-10-29 2022-01-21 电子科技大学 一种车联网场景下基于孪生区块链的车辆身份认证方法
CN114363841A (zh) * 2022-01-24 2022-04-15 青岛慧拓智能机器有限公司 一种车路系统混合通信系统及方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113593221B (zh) * 2021-07-05 2022-09-20 哈尔滨工业大学(深圳) 信息价值评估式驾驶系统、网联车辆系统和数据传输方法
CN115410289A (zh) * 2021-09-27 2022-11-29 北京罗克维尔斯科技有限公司 一种车辆数据处理方法、装置以及计算设备
CN115019535A (zh) * 2022-05-11 2022-09-06 广州杰赛科技股份有限公司 一种基于车联网的交通预警系统
CN115376343B (zh) * 2022-07-15 2023-12-19 东风汽车集团股份有限公司 车路协同驾驶预警方法及相关设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103884344A (zh) * 2014-03-31 2014-06-25 深圳市赛格导航科技股份有限公司 一种基于海量车辆数据的智能化导航方法及导航系统
CN106817409A (zh) * 2016-12-28 2017-06-09 珠海市魅族科技有限公司 通信连接的控制方法、系统、服务器及车载终端
CN107784850A (zh) * 2016-08-26 2018-03-09 中兴通讯股份有限公司 一种无人驾驶车辆控制方法、终端、服务器及系统
CN107894768A (zh) * 2017-11-13 2018-04-10 苏州睿安芯微电子有限公司 一种汽车自动驾驶系统及方法
US20190384320A1 (en) * 2019-07-24 2019-12-19 Lg Electronics Inc. Autonomous driving control method in restricted area and autonomous driving system using the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101670830B (zh) * 2008-09-08 2012-08-29 中国移动通信集团公司 一种车载终端、远程控制车辆制动的方法及其系统
US9418554B2 (en) * 2014-08-07 2016-08-16 Verizon Patent And Licensing Inc. Method and system for determining road conditions based on driver data
US8935036B1 (en) * 2013-09-06 2015-01-13 State Farm Mutual Automobile Insurance Company Systems and methods for updating a driving tip model using telematics data
CN105513378A (zh) * 2015-12-21 2016-04-20 宇龙计算机通信科技(深圳)有限公司 一种车联网的方法、装置及系统
CN109116720A (zh) * 2018-08-31 2019-01-01 百度在线网络技术(北京)有限公司 自动驾驶车辆的远程控制方法、装置和服务器
CN109739236B (zh) * 2019-01-04 2022-05-03 腾讯科技(深圳)有限公司 车辆信息的处理方法、装置、计算机可读介质及电子设备
CN109872567A (zh) * 2019-03-01 2019-06-11 浙江吉利汽车研究院有限公司 车辆前向碰撞预警方法、装置及设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103884344A (zh) * 2014-03-31 2014-06-25 深圳市赛格导航科技股份有限公司 一种基于海量车辆数据的智能化导航方法及导航系统
CN107784850A (zh) * 2016-08-26 2018-03-09 中兴通讯股份有限公司 一种无人驾驶车辆控制方法、终端、服务器及系统
CN106817409A (zh) * 2016-12-28 2017-06-09 珠海市魅族科技有限公司 通信连接的控制方法、系统、服务器及车载终端
CN107894768A (zh) * 2017-11-13 2018-04-10 苏州睿安芯微电子有限公司 一种汽车自动驾驶系统及方法
US20190384320A1 (en) * 2019-07-24 2019-12-19 Lg Electronics Inc. Autonomous driving control method in restricted area and autonomous driving system using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4102799A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113965398A (zh) * 2021-10-29 2022-01-21 电子科技大学 一种车联网场景下基于孪生区块链的车辆身份认证方法
CN113965398B (zh) * 2021-10-29 2022-12-27 电子科技大学 一种车联网场景下基于孪生区块链的车辆身份认证方法
CN114363841A (zh) * 2022-01-24 2022-04-15 青岛慧拓智能机器有限公司 一种车路系统混合通信系统及方法
CN114363841B (zh) * 2022-01-24 2023-07-04 青岛慧拓智能机器有限公司 一种车路系统混合通信系统及方法

Also Published As

Publication number Publication date
CN112514425B (zh) 2022-02-01
KR20220148263A (ko) 2022-11-04
CN112514425A (zh) 2021-03-16
US20220416974A1 (en) 2022-12-29
JP2023516205A (ja) 2023-04-18
EP4102799A4 (en) 2023-01-11
EP4102799A1 (en) 2022-12-14

Similar Documents

Publication Publication Date Title
WO2021174531A1 (zh) 数据传输方法、车端设备和网络侧设备
US11364902B2 (en) Testing predictions for autonomous vehicles
US20200286386A1 (en) Vehicle Merging Method and Apparatus
CN107305738B (zh) 使用专用短程通信的十字路口辅助的系统和方法
WO2022007655A1 (zh) 一种自动换道方法、装置、设备及存储介质
US10068477B2 (en) System and method for detecting and communicating slipping of non-connected vehicles
CN110491147B (zh) 一种交通信息处理方法、交通信息处理装置及终端设备
WO2021102957A1 (zh) 一种车道保持方法、车载设备和存储介质
US10586449B2 (en) Method and apparatus for selectively using different types of networks to obtain information regarding one or more traffic signals and intersections
CN107809796B (zh) 用于车辆通信的自适应发射功率控制
US10339807B2 (en) Apparatus using sync and balanced V2V communication
WO2021103514A1 (zh) 一种基于车联网的动态信息发送方法及设备
US10667295B2 (en) Method for Internet of Vehicles (IoV) electric traffic sign information broadcast with Quality of Service (QoS) guaranteed mechanism based on conflict detection
CN115273453B (zh) 车路协同中管理路侧设备的方法、装置、云控平台和系统
CN112509314B (zh) 交叉路口车速引导方法及装置
US10755579B2 (en) Autonomous vehicle control
WO2020107309A1 (en) Dynamic management of insertions of vehicles
JP2022161419A (ja) 運転管理装置、運転管理方法及び運転管理システム
JP2020034964A (ja) 信号制御装置及び信号制御システム
CN112133096B (zh) 一种基于智能网联技术的车辆控制系统
US20240134381A1 (en) System, control device, and control method
KR20230123054A (ko) 운전자 보조 시스템 및 운전자 보조 방법
WO2022209200A1 (ja) 路側中継装置、交通管理システム、及びログ収集方法
US9742899B2 (en) Electronic control apparatus
US20190286457A1 (en) Conflict determination and mitigation for vehicular applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923365

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022553170

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020923365

Country of ref document: EP

Effective date: 20220907

ENP Entry into the national phase

Ref document number: 20227034061

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE