WO2021174527A1 - 一种黑磷薄膜、其制备方法和应用 - Google Patents

一种黑磷薄膜、其制备方法和应用 Download PDF

Info

Publication number
WO2021174527A1
WO2021174527A1 PCT/CN2020/078188 CN2020078188W WO2021174527A1 WO 2021174527 A1 WO2021174527 A1 WO 2021174527A1 CN 2020078188 W CN2020078188 W CN 2020078188W WO 2021174527 A1 WO2021174527 A1 WO 2021174527A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphorus
black
film
reaction chamber
growth substrate
Prior art date
Application number
PCT/CN2020/078188
Other languages
English (en)
French (fr)
Inventor
张凯
徐轶君
史鑫尧
Original Assignee
中国科学院苏州纳米技术与纳米仿生研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院苏州纳米技术与纳米仿生研究所 filed Critical 中国科学院苏州纳米技术与纳米仿生研究所
Publication of WO2021174527A1 publication Critical patent/WO2021174527A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/28Deposition of only one other non-metal element
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements

Definitions

  • the invention relates to the technical field of two-dimensional materials, in particular to a black phosphorous film, a preparation method and application thereof.
  • the two-dimensional TMDCs material has a band gap width of 1 to 2 eV, which makes up for the lack of graphene's zero band gap.
  • the carrier mobility of TMDCs is low ( ⁇ 500cm 2 /Vs), which is much lower than that of graphene, and cannot be compared to existing silicon materials [SZButler, et.al, ACSNANO, 2013, 7, 2898.]. Therefore, there is an urgent need to develop a two-dimensional semiconductor material with both band gap and high carrier mobility.
  • Black phosphorus is a new member of the two-dimensional material family born in recent years.
  • Black phosphorus has a room temperature carrier mobility of 1000 cm2/Vs [L.Li,et.al,Nat.Nanotechnol.2014,9,372.], which is much higher than TMDCs , Comparable to traditional silicon semiconductor materials, and also has excellent performance such as high current switching ratio of 105, and has broad application prospects in the field of semiconductor devices.
  • black phosphorus has a direct band gap (band gap range: 0.3 to 2 eV) that can be tuned with thickness, which fills the gap between graphene and TMDCs, and enables photodetectors based on black phosphorus -Visible light-Near infrared wideband detection [M.Buscema,et.al,Nano Lett.2014,14,3347.][J.Wu,et.al,ACS NANO,2015,9,8070.], overcome Traditional semiconductors such as GaN, silicon, InGaAs, HgCdTe, and new two-dimensional materials such as TMDCs have limitations in the detection band.
  • Atomic layer thickness crystals are another material that excites semiconductor technology and the industry after graphene, and has brought dawn to the development of new semiconductor materials.
  • black phosphorus can be applied in the fields of electronics and optoelectronics depends largely on the development of a reliable method for large-scale preparation of two-dimensional black phosphorus.
  • the preparation methods for obtaining black phosphorous films mainly include mechanical lift-off method, liquid phase dispersion method, plasma etching and chemical deposition method.
  • the mechanical peeling method separates the black phosphorus nanosheets from the black phosphorus crystals by applying mechanical force (friction, tension, etc.) to the black phosphorus block. This method is simple and easy to implement, but the thickness and size of the black phosphorus film cannot be controlled.
  • the preparation efficiency is low [L.Li,et.al,Nat.Nanotechnol.2014,9,372.].
  • the liquid phase dispersion method is to use ultrasound, centrifugation and other means to disperse black phosphorus crystals to prepare black phosphorus nanosheets[P.Yasaei,et.al,Adv.Mater.,2015,27:1887-1892.][D.Hanlon, et al. Nat. Commun., 2015, 6:8563], this method also has problems such as difficulty in controlling the size and thickness of black phosphorus.
  • Plasma etching is to achieve the thinning of black phosphorus through the reaction of plasma groups with phosphorus atoms to generate volatile products[Jiajie Pei,et al.Nat.Commun.,2016,7:10450.], but the physics of plasma groups Bombardment will damage the black phosphorus, and the remaining chemical impurities will introduce pollution and affect the performance of the black phosphorus.
  • the above methods are difficult to realize the large-scale preparation and industrialization of black phosphorous materials and devices. Therefore, there is an urgent need for a method for preparing a high-quality, industrialized black phosphorous film to solve the above technical problems.
  • the present invention utilizes van der Waals epitaxial growth technology and adopts a simple and low-cost one-step preparation method to controllably synthesize a black phosphorous film.
  • the present invention provides a black phosphorous film, its preparation method and application.
  • the specific technical solutions are as follows:
  • the present invention provides a method for preparing a black phosphorous film, including:
  • the reaction chamber is heated and kept warm, so that the mineralizer reacts with the phosphorus-containing gas partly derived from the phosphorus-containing precursor to form an inducing nucleation point or an inducing formation on the growth substrate for inducing black phosphorus crystallization Nuclear layer
  • the temperature of the reaction chamber is lowered, the phosphorus-containing gas is deposited on the growth substrate, and the black phosphorus film is epitaxially grown under the induction of the induced nucleation point or the induced nucleation layer.
  • the present invention provides a black phosphorous film prepared by the above method, and the black phosphorous film includes a two-dimensional black phosphorous single crystal unit.
  • the present invention provides an optoelectronic material or electronic material, and the optoelectronic material or electronic material includes the black phosphorous film described above.
  • the present invention provides an optoelectronic device, the optoelectronic device includes an optoelectronic material, and the optoelectronic material includes the above-mentioned black phosphorous film.
  • the present invention provides a battery, including a solar battery, a lithium-sulfur battery, a lithium-ion battery, or a sodium-ion battery, characterized in that the battery includes a conductive material, and the conductive material includes the black Phosphorus film.
  • the present invention provides an electronic device, characterized in that the electronic device includes an electronic material, and the electronic material includes the above-mentioned black phosphorous film.
  • the present invention provides a catalytic system, including a catalyst, characterized in that the catalyst includes the above-mentioned black phosphorus film.
  • the present invention provides a nanomaterial including the black phosphorous film described above.
  • the present invention has the following beneficial effects:
  • the invention provides a method for preparing a black phosphorus film, which realizes the growth of a black phosphorus film with high quality and high crystallinity by adding a mineralizer and forming an induced nucleation point or an induced nucleation layer on a growth substrate.
  • the method has low raw material price, low production equipment cost, simple operation, high feasibility and strong repeatability.
  • the controllable growth of the size and thickness of the black phosphorous film can be achieved through simple condition control, which is suitable for different application requirements.
  • the method is suitable for large-area and mass production of black phosphorous films, and meets the industrial requirements in practical applications.
  • the black phosphor film provided by the present invention has higher switching ratio, light response rate and photoconductivity gain, and has surface roughness Low, good photoelectric performance, etc., can directly perform micro-nano processing, which is convenient for large-scale R&D and application of related devices.
  • Fig. 1 A microscope image of a black phosphorous film provided by an embodiment of the present invention
  • FIG. 2 Atomic force microscope (AFM) image of the black phosphorous film in Figure 1;
  • Figure 3 Raman image of a black phosphorous film provided by an embodiment of the present invention
  • Figure 4 X-ray photoelectron spectroscopy (XPS) of a black phosphorous film provided by an embodiment of the present invention
  • Figure 5a a transmission electron microscope (TEM) cross-sectional view of a black phosphorous film provided by an embodiment of the present invention
  • Figure 5b the element mapping (mapping) diagram in Figure 5a;
  • Figure 6-8 High-resolution transmission electron microscopy (HRTEM) and electron diffraction pattern (SAED) of the black phosphorous film provided by the embodiment of the present invention provided by the embodiment of the present invention;
  • HRTEM transmission electron microscopy
  • SAED electron diffraction pattern
  • Figure 9 Infrared absorption spectra of black phosphorous film and traditional black phosphorous materials provided by an embodiment of the present invention.
  • A represents black phosphorous film
  • B represents conventional DSL black phosphor;
  • FIG. 10 Photoluminescence spectra of black phosphorous films and traditional black phosphorous materials provided by an embodiment of the present invention; in the figure, A represents a black phosphorous film, and B represents a conventional DSL black phosphor;
  • Fig. 11 A microscope image of a photodetecting device provided by an embodiment of the present invention.
  • Fig. 12 Electrical test curve diagrams of black phosphorous films provided by embodiments of the present invention at different temperatures and different bias voltages;
  • Figure 13 Carrier mobility curves of black phosphorous films at different temperatures provided by embodiments of the present invention.
  • Fig. 14 A graph of the Hall mobility and Hall concentration of the black phosphorous film at different temperatures according to an embodiment of the present invention
  • Figure 15 Photoelectric performance test of black phosphorous film provided by an embodiment of the present invention.
  • Fig. 16 The light responsivity and photoconductivity gain curve of the black phosphor film provided by the embodiment of the present invention.
  • Figure 17 Photoelectric performance test of the black phosphorous film provided by the embodiment of the present invention.
  • Fig. 18 The light responsivity and photoconductivity gain curve of the black phosphor film provided by the embodiment of the present invention.
  • Fig. 19 A microscope image of a black phosphorous film provided by another embodiment of the present invention.
  • Figure 20 AFM image of the black phosphorous film in Figure 19;
  • Figure 21 AFM image of a black phosphorous film provided by another embodiment of the present invention.
  • the present invention provides a method for preparing a black phosphorous film, including:
  • S100 Place the growth substrate, the phosphorus-containing precursor and the mineralizer in a vacuum-sealed reaction chamber, wherein the growth substrate and the phosphorus-containing precursor are placed in different areas in the vacuum-sealed reaction chamber ;
  • S300 Decrease the temperature of the reaction chamber, deposit the phosphorus-containing gas on the growth substrate, and epitaxially grow to form the black phosphorus film under the induction of the nucleation induction point or the induction nucleation layer.
  • the induced nucleation point or the induced nucleation layer may be a compound having a similar lattice structure to that of the black phosphorus film, or the induced nucleation point or the induced nucleation layer may have the ability to interact with the black scale.
  • a certain crystal face of the crystal forms a lattice-matched crystal face.
  • the induced nucleation point or induced nucleation layer can be a wafer structure with crystal nuclei, tiny crystal grains, and atomic layer thickness distributed on the growth substrate, or it can be continuous Or dispersed growth film structure.
  • the induced nucleation point or induced nucleation layer can induce phosphorus to nucleate on the growth substrate and grow into a black phosphorus film.
  • the induced nucleation point or the induced nucleation layer may be a phosphorus-containing alloy, and the phosphorus-containing alloy has a crystal structure.
  • the induced nucleation point or induced nucleation layer can exist stably in the phosphorus-containing gas
  • the phosphorus-containing alloy may be a binary or multi-element phosphorus-containing alloy
  • the phosphorus-containing alloy may include gold, tin, silver, Any one or more of copper, magnesium, tin iodide, lead and indium.
  • the exposed crystal plane of the induced nucleation point or the induced nucleation layer forms a lattice match with one crystal plane of the black phosphorus single crystal.
  • the "placed in a vacuum-tight reaction chamber" can be directly placed in a heating chamber of a heating device, such as the inner cavity of a quartz tube for heating reaction in a tube furnace; or Put it in a small quartz tube or glass tube and then vacuum and seal, and then place the processed quartz tube or glass tube in the heating chamber of the heating device.
  • a heating device such as the inner cavity of a quartz tube for heating reaction in a tube furnace
  • the vacuum-sealed reaction chamber includes but is not limited to the implementation described above, and may be any growth device or growth container capable of realizing the growth of the black phosphorous film in the vacuum-sealed reaction chamber.
  • the pressure in the vacuum-sealed reaction chamber may be less than or equal to 0.1 Pa.
  • the above preparation method uses the principle of chemical vapor transport, adding a mineralizer to the reaction raw materials, and the mineralizer is heated to form an induced nucleation point or an induced nucleation layer on the growth substrate, and at the same time, the phosphorus-containing precursor generates phosphorus-containing gas. After the phosphorus-containing gas reaches the top of the growth substrate, a black phosphorus crystal nucleus is epitaxially formed on the induced nucleation point or the induced nucleation layer, and finally further grows to form a black phosphorus film.
  • the method has low raw material price, low production equipment cost, simple operation, high feasibility and strong repeatability.
  • Controlled growth of the size and thickness of the black phosphorous film can be achieved by controlling the growth conditions, which can be adapted to different application requirements.
  • this method is suitable for large-area and mass production of black phosphorous films, and meets the industrial requirements in practical applications.
  • the phosphorus-containing precursor includes, but is not limited to, one or more of white phosphorus, red phosphorus, and phosphorus-containing compounds that can be thermally decomposed to generate phosphorus-containing gas.
  • the phosphorus-containing compound may be, for example, phosphorus triiodide, phosphorus tribromide, and the like.
  • the different areas of the growth substrate and the phosphorus-containing precursor placed in the vacuum-sealed reaction chamber include: the growth substrate is placed in the vacuum-sealed reaction chamber. In a higher temperature zone, the phosphorus-containing precursor is placed in a lower temperature zone in the vacuum-sealed reaction chamber. In this way, through the inversion growth process, the concentration of the phosphorus source located near the growth substrate during the growth process can be controlled, which is beneficial to the formation of the black phosphorus film, and is beneficial to control the thickness of the product.
  • an independent heating control system and monitoring system can be set up to provide a heat source for the reaction chamber.
  • the temperature in the reaction chamber will show a gradient change.
  • the growth substrate can be placed Place the phosphorus-containing precursor at the location with the highest temperature, and place it at a location with a relatively low temperature.
  • the temperature of the temperature zone where the growth substrate and the phosphorus-containing precursor are located may differ by 40°C to 200°C.
  • the method further includes: restricting the growth space for the diffusion of the phosphorus-containing gas at the growth substrate, and realizing the thickness control of the black phosphorus film through the spatial confinement effect. In this way, a very narrow growth space is provided at the growth substrate to control the concentration of the phosphorus source, the amount of entry, the growth rate of the black phosphorus film, and the thickness of the black phosphorus film.
  • a plurality of the growth substrates may be arranged in the same temperature zone at intervals.
  • the total area of the growth substrate on the one hand, it increases the number of black phosphorus-induced nucleation points or induced nucleation layers, which is conducive to the dispersed growth of black phosphorus;
  • the effective control of the source concentration realizes the control of the thickness of the black phosphorous film.
  • restricting the growth space used for the diffusion of phosphorus-containing gas at the growth substrate is not limited to the implementation described above, and it can also be the establishment of obstacles at the growth substrate or the design of the growth substrate of the reaction chamber to be very narrow. Space, and other ways to realize the spatial confinement effect at the growth substrate.
  • growth substrates can be stacked and arranged in the reaction chamber, for example, they can be arranged longitudinally at the same position in the horizontal quartz tube.
  • the growth substrate may include, but is not limited to, silicon dioxide wafers, sapphire, or conductive glass growth substrates.
  • the mineralizer includes, but is not limited to, any one or more of tin, gold, gold-tin alloy, tin iodide, lead, indium, silver, copper, magnesium, and magnesium-tin-copper alloy .
  • the mineralizer includes tin iodide and/or tin, and the tin iodide and/or tin and the phosphorus-containing precursor may be placed in the same area in the vacuum-sealed reaction chamber . That can be placed in the same temperature zone.
  • any one or more of gold, gold-tin alloy, silver, copper, magnesium, and magnesium-tin-copper alloy in the mineralizer can form a thin film on the growth substrate, and the thin film The thickness can be 5-180nm.
  • the above-mentioned formation of the thin film on the growth substrate may adopt but not limited to deposition, sputtering, evaporation, or spin coating.
  • the mineralizer may include tin iodide and tin, and the mass ratio of tin iodide, tin and phosphorus-containing precursor is 1:(2-40):(10-300).
  • the mineralizer may include tin iodide and tin, and the mass ratio of tin iodide, tin and phosphorus-containing precursor is 1:(2-20):(10-200), preferably Specifically, the mass ratio is 1:(2-10):(10-80).
  • step S300 "heating the reaction chamber and then keeping warm” may include: heating the reaction chamber to 650-900°C for 1-5 hours.
  • the temperature of the reaction chamber can be heated to 700-800°C for 1-3h.
  • the heating rate during the above heating process may be (3-40)°C/min.
  • step S400 may include: lowering the temperature of the reaction chamber to 300-550°C, keeping it for 1-8 hours, and then cooling to room temperature.
  • the temperature drop rate in the process of reducing the temperature of the reaction chamber to 450-550°C may be (0.5-3)°C/min.
  • the thickness of the black phosphorous film prepared by the above method is greater than or equal to 1 nm, and it has a crystal structure.
  • the black phosphorous film has a single crystal structure or the black phosphorous film includes a two-dimensional black phosphorous single crystal unit.
  • the size of the two-dimensional black phosphorous single crystal unit (lateral size, such as length, width or diameter) can reach hundreds or microns in size, and the black phosphorous film has high crystallinity and high quality.
  • the black phosphorous film has a crystalline structure, and the black phosphorous film may be from one nanometer to several hundred microns, specifically, from one nanometer to several tens of nanometers, or from one hundred nanometers to several hundreds of nanometers.
  • the black phosphorous film can be a p-type or n-type semiconductor, with anisotropy, and preferably, with bipolarity.
  • the layer spacing may be 0.45-0.55 nm.
  • the carrier mobility can be greater than or equal to 200 cm 2 /Vs, preferably, can be greater than or equal to 500 cm 2 /Vs; the Hall mobility can be greater than or equal to 200 cm 2 /Vs, preferably, can be greater than or equal to 1000 cm 2 /Vs; It can be greater than or equal to 0.5X10 4 .
  • the following describes a black phosphorous film prepared based on the above method, and the black phosphorous film includes two-dimensional black phosphorous single crystal units.
  • the black phosphorous film has anisotropy, and its thickness is greater than or equal to 1 nm.
  • the thickness of the black phosphorous film may range from one nanometer to several hundreds of micrometers, specifically, it may be one nanometer to several tens of nanometers, or it may also be one hundred nanometers to several hundreds of micrometers.
  • the layer spacing of the black phosphorous film may be 0.45-0.55 nm.
  • the black phosphorous film may be a P-type or n-type semiconductor.
  • the black phosphorous film may have bipolarity.
  • the carrier mobility of the black phosphorous film can be greater than or equal to 200 cm 2 /Vs, preferably, can be greater than or equal to 500 cm 2 /Vs; the Hall mobility can be greater than or equal to 200 cm 2 /Vs, preferably, It can be greater than or equal to 1000cm 2 /Vs; the on-off ratio can be greater than or equal to 0.5X10 4 .
  • the black phosphorous film includes several two-dimensional black phosphorous single crystal units with similar morphology and crystal structure. Nanometers, or tens of nanometers, can even reach hundreds of nanometers or micrometers in size.
  • a plurality of the two-dimensional black phosphorous single crystal units are stacked to form the black phosphorous film, and the stack is presented in the form that the edges of two or two two-dimensional black phosphorous single crystal units are connected to form a black phosphorous film; that is, The edge junction of two or two two-dimensional black phosphorus single crystal units is a grain boundary, and the surfaces of several two-dimensional black phosphorus single crystal units form the surface of the black phosphorus film.
  • the black phosphorous film has the advantages of high switching ratio, high light response rate, high photoconductivity gain, low surface roughness and good photoelectric performance. It can be directly processed for micro-nano processing and is convenient for large-scale development and application of related devices.
  • This specification also provides a photoelectric material or electronic material, and the photoelectric material or electronic material includes the above-mentioned black phosphorous film or the black phosphorous film prepared by the above-mentioned method.
  • This specification also provides a photoelectric device, the photoelectric device includes a photoelectric material, and the photoelectric material includes the above-mentioned black phosphorous film or the black phosphorous film prepared by the above-mentioned method.
  • This specification also provides a battery, including a solar battery, a lithium-sulfur battery, a lithium-ion battery, or a sodium-ion battery, the battery includes a conductive material, and the conductive material includes the above-mentioned black phosphorous film or the black phosphorous film prepared by the above-mentioned method .
  • This specification also provides an electronic device, the electronic device includes an electronic material, and the electronic material includes the above-mentioned black phosphorous film or the black phosphorous film prepared by the above-mentioned method.
  • This specification also provides a catalytic system, including a catalyst, and the catalyst includes the above-mentioned black phosphorous film or the black phosphorous film prepared by the above-mentioned method.
  • This specification also provides a nano material, which includes the black phosphorous film described above.
  • This embodiment discloses a method for preparing a black phosphorous film, which specifically includes:
  • a) Provide a plurality of silicon dioxide growth substrates, red phosphorus and mineralizers, the mineralizers including tin iodide, tin and gold, wherein the gold is uniformly arranged on the silicon dioxide growth substrate A layer of gold film, the thickness of the gold film is 5-180nm;
  • the mass ratio of tin iodide, tin and red phosphorus is 1:(2-10):(10-100).
  • the temperature in the reaction chamber to fall to 450°C at 1.5°C/min, keep it for 1.5 hours, and then cool to room temperature.
  • the phosphorus-containing gas of the phosphorus source is deposited on the growth substrate, under the induction of the induced nucleation point or the induced nucleation layer. Epitaxial growth forms the black phosphorous film.
  • a typical black phosphorous film prepared by the above method is characterized. Please refer to the microscope image in Fig. 1.
  • the black phosphorous film has a relatively flat surface and the long diameter can reach several hundred microns. And its thickness is ultra-thin, can be as thin as 10nm and below, please refer to the AFM image in Figure 2.
  • AFM has characterized three characteristic peaks of black phosphorus, and the characteristic peak of phosphorus is detected in the XPS spectrum, which proves that the product is black phosphorus.
  • the silicon dioxide growth substrate has an induced nucleation point or an induced nucleation layer and a layer of black phosphorus in sequence. film.
  • the induced nucleation point or induced nucleation layer is Au 3 SnP 7 .
  • the HRTEM image and the SAED pattern prove that the black phosphorous film in this embodiment has a crystalline structure and is highly crystalline.
  • the black phosphorous film has a unique structure and is formed by stacking two-dimensional black phosphorous single crystal units.
  • the crystal structure of the two-dimensional black phosphorous single crystal unit belongs to the orthorhombic system.
  • the interlayer spacing is about 0.5nm
  • the interplanar spacing along the zigzag boundary is about 0.42nm
  • the interplanar spacing along the armchair boundary is about 0.32nm.
  • the black phosphorus film has a higher infrared absorption rate. Moreover, the photoluminescence spectrum has a narrower half-height width, which proves that it has fewer defective structures.
  • a metal electrode is deposited on the surface of the above-mentioned typical black phosphorous film to prepare a photodetector device, as shown in FIG. 11.
  • the electrical performance test shows that the device has excellent electrical performance.
  • the black phosphorous film is a P-type semiconductor with bipolarity, please refer to Figure 12.
  • the carrier mobility of the black phosphorous film can reach 1250cm 2 /Vs
  • the average carrier mobility is about 746cm 2 /Vs
  • the switching ratio can reach 10 4 -10 6
  • the Hall mobility can reach 2200 cm 2 /Vs.
  • the average Hall mobility is about 1162cm 2 /Vs, please refer to Figure 13-14.
  • the photoelectric performance of the photodetector has been tested. Please refer to Figure 15-18. It has high photocurrent and fast response time in the infrared and communication bands. Its photoresponse rate and photoconductive gain in the infrared band can reach 32A/W. And 110, the response rate and photoconductive gain in the communication band can exceed 60A/W and 580.
  • This embodiment discloses a method for preparing a black phosphorous film, which specifically includes:
  • a) Provide a plurality of silicon dioxide growth substrates, white phosphorus and mineralizers, the mineralizers including tin iodide, tin and gold, wherein the gold is a uniformly arranged silicon dioxide growth substrate A layer of gold film, the thickness of the gold film is 5-180nm;
  • the mass ratio of tin iodide, tin and white phosphorus is 1:(2-20):(10-200).
  • the temperature in the reaction chamber is controlled to drop to 500°C at 1.0°C/min. After holding for 2 hours, it is cooled to room temperature. Phosphorus-containing gas is deposited on the growth substrate. The epitaxial growth is induced by the induced nucleation point or the induced nucleation layer. The black phosphorous film.
  • a typical black phosphorous film prepared by the method in this embodiment is a black phosphorous crystal. Its morphology and crystal structure are similar to those in Example 1. The long diameter can reach several hundred microns, and the thickness can be as thin as 25nm and below. Please refer to Figure 19-20.
  • a nucleation induction point or an induction nucleation layer and a layer of black phosphorus film are sequentially formed on the silicon dioxide growth substrate.
  • the induced nucleation point or induced nucleation layer is Au 3 SnP 7 .
  • the black phosphorus film has a higher infrared absorptivity and fewer defect structures.
  • a metal electrode is deposited on the surface of the above-mentioned typical black phosphorous film to prepare a photodetector device with excellent electrical performance.
  • the black phosphorous film is a P-type semiconductor and has bipolarity.
  • the carrier mobility of the black phosphorous film can reach 1400cm 2 /Vs, the average carrier mobility is about 832cm 2 /Vs, the switching ratio can reach 10 4 -10 6 , and the Hall mobility can reach 2330cm 2 /Vs.
  • the average Hall mobility is about 1224 cm 2 /Vs.
  • the photoelectric performance of the photodetector device was tested. It has high photocurrent and fast response time in both infrared and communication bands, and its response rate and photoconductive gain in the communication band are similar to the results in Example 1.
  • This embodiment discloses a method for preparing a black phosphorous film, which specifically includes:
  • a) Provide a plurality of silicon dioxide growth substrates, white phosphorus and mineralizers, the mineralizers including tin iodide, tin and silver, wherein the gold is a uniformly arranged silicon dioxide growth substrate A layer of silver film, the thickness of the silver film is 20-180nm;
  • the mass ratio of tin iodide, tin and white phosphorus is 1:(2-40):(10-300).
  • the temperature in the reaction chamber is controlled to drop to 350°C at 1.5°C/min. After holding for 8 hours, it is cooled to room temperature. Phosphorus-containing gas is deposited on the growth substrate. The epitaxial growth is induced by the induced nucleation point or induced nucleation layer. The black phosphorous film.
  • a typical black phosphorous film prepared by the method in this embodiment is a black phosphorous crystal. Its morphology and crystal structure are similar to those in Example 1. The long diameter can reach several hundred microns, and the thickness can grow to about one micron.
  • a nucleation induction point or an induction nucleation layer and a layer of black phosphorus film are sequentially formed on the silicon dioxide growth substrate.
  • the induced nucleation point or induced nucleation layer is a compound formed of silver, tin and phosphorus.
  • the black phosphorus film has a higher infrared absorptivity and fewer defect structures.
  • a metal electrode is deposited on the surface of the above-mentioned typical black phosphorous film to prepare a photodetector device with excellent electrical performance.
  • the black phosphorous film is a P-type semiconductor and has bipolarity.
  • the carrier mobility of the black phosphorous film can reach 1232cm 2 /Vs, the average carrier mobility is about 721cm 2 /Vs, the switching ratio can reach 10 4 -10 6 , and the Hall mobility can reach 2200 cm 2 /Vs.
  • the average Hall mobility is about 1192 cm 2 /Vs.
  • the photoelectric performance of the photodetector device was tested. It has high photocurrent and fast response time in both infrared and communication bands, and its response rate and photoconductive gain in the communication band are similar to the results in Example 1.
  • This embodiment discloses a method for preparing a black phosphorous film, which specifically includes:
  • a) Provide a plurality of silicon dioxide growth substrates, phosphorus triiodide and mineralizers, the mineralizers including tin iodide, tin and gold, wherein the gold is uniformly distributed on the silicon dioxide growth substrate Arranged a layer of gold film, the thickness of the gold film is 20-180nm;
  • the mass ratio of tin iodide, tin and white phosphorus is 1:(2-20):(10-80).
  • a typical black phosphorous film prepared by the method in this embodiment is a black phosphorous crystal. Its morphology and crystal structure are similar to those in Example 1. The long diameter can reach several hundred microns and the thickness can grow to about 30nm. Please refer to the figure. twenty one.
  • a nucleation induction point or an induction nucleation layer and a layer of black phosphorus film are sequentially formed on the silicon dioxide growth substrate.
  • the induced nucleation point or induced nucleation layer is Au 3 SnP 7 .
  • the black phosphorus film has a higher infrared absorptivity and fewer defect structures.
  • a metal electrode is deposited on the surface of the above-mentioned typical black phosphorous film to prepare a photodetector device with excellent electrical performance.
  • the black phosphorous film is a P-type semiconductor and has bipolarity.
  • the carrier mobility of the black phosphorous film can reach 1550 cm 2 /Vs, the average carrier mobility is about 1068 cm 2 /Vs, the switching ratio can reach 10 4 -10 6 , and the Hall mobility can reach 2390 cm 2 /Vs.
  • the average Hall mobility is about 1048 cm 2 /Vs.
  • the photoelectric performance of the photodetector device was tested. It has high photocurrent and fast response time in both infrared and communication bands, and its response rate and photoconductive gain in the communication band are similar to the results in Example 1.
  • the present invention provides a method for preparing a black phosphorus film, which realizes the growth of a black phosphorus film with high quality and high crystallinity by adding a mineralizer and forming an induced nucleation point or an induced nucleation layer on the growth substrate .
  • the method can realize the controllable growth of the size and thickness of the black phosphorous film, is suitable for large-area and mass production of the black phosphorous film, and meets the industrialization requirements in practical applications.
  • the photodetector device prepared based on the black phosphor film provided by the present invention has higher switching ratio, light response rate and photoconductive gain, and has excellent photoelectric performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明涉及二维材料技术领域,具体是一种黑磷薄膜的制备方法,其特征在于,包括:将生长基底、含磷前驱物和矿化剂置于真空密闭的反应腔室内,其中,所述生长基底和所述含磷前驱物被置于所述真空密闭的反应腔室内的不同区域;加热所述反应腔室后保温,使所述矿化剂和部分源于含磷前驱物的含磷气体反应,在所述生长基底上形成用于诱导黑磷结晶的诱导成核点或诱导成核层;降低所述反应腔室的温度,使所述含磷气体沉积在所述生长基底上,在所述诱导成核点或诱导成核层的诱导下外延生长形成所述黑磷薄膜。本发明制备的黑磷薄膜具有高质量和高结晶性,可重复性强,适用于黑磷薄膜的大面积及批量生产,满足实际应用中的产业化需求。

Description

一种黑磷薄膜、其制备方法和应用 技术领域
本发明涉及二维材料技术领域,特别涉及一种黑磷薄膜、其制备方法和应用。
背景技术
近年来,二维材料由于其优异的性能吸引了学界和产业界的广泛关注和研究热潮。其中,石墨烯拥有非常优异的力学、光学、热学和电学等性质,因此石墨烯在电子、传感、储能、光电、半导体等诸多领域都有巨大的应用潜力。但是石墨烯也存在着一些不足,由于石墨烯的带隙是零,因此限制了其在诸如半导体逻辑器件、光电探测等领域的应用。为了解决这个问题,科学家们研究开发了其他二维材料,如过渡金属硫族化合物(TMDCs),包括MoS 2、WSe 2、WS 2等。二维TMDCs材料具有1~2eV的带隙宽度,弥补了石墨烯零带隙的不足。但是TMDCs的载流子迁移率较低(<500cm 2/Vs),远低于石墨烯,也无法媲美现有的硅材料[S.Z.Butler,et.al,ACSNANO,2013,7,2898.]。因此,迫切需要开发一种兼具带隙和高载流子迁移率的二维半导体材料。
黑磷是近年来二维材料家族诞生的新成员,黑磷具有1000cm2/Vs的室温载流子迁移率[L.Li,et.al,Nat.Nanotechnol.2014,9,372.],远高于TMDCs,可媲美传统的硅半导体材料,同时还具有105的高电流开关比等优异性能,在半导体器件领域有着广阔的应用前景。此外,黑磷拥有随厚度变化可调谐的直接带隙(带隙范围:0.3~2eV),填补了石墨烯与TMDCs之间的带隙空白,使得基于黑磷材料的光电探测器能够实现从紫外-可见光-近红外的宽波段探测[M.Buscema,et.al,Nano Lett.2014,14,3347.][J.Wu,et.al,ACS NANO,2015,9,8070.],克服了GaN、硅、InGaAs、HgCdTe等传统半导体以及TMDCs等新型二维材料在探测波段方面的局限性。正如Nature杂志知名新闻评述人Eugenie Samuel Reich在其攥写的焦点评论“Phosphorene excites materials scientists”一文中指出[E.S.Reich,et.al,Nature,2004,506,19.],黑磷,这种新型原子层厚度晶体,是继石墨烯后又一让半导体技术和产业界感到振奋的材料,为新型半导体材料的开 发带来了曙光。
黑磷能否实现在电子学和光电等领域的应用很大程度上取决于能否发展出可靠的大规模制备二维黑磷的方法。目前,获得黑磷薄膜的制备方法主要包括机械剥离法、液相分散法、等离子体刻蚀和化学沉积法等。机械剥离法是通过对黑磷块体施加机械力(摩擦力、拉力等)将黑磷纳米片层从黑磷晶体中分离出来,该方法简单易行,但是无法控制黑磷薄膜的厚度、尺寸,制备效率低[L.Li,et.al,Nat.Nanotechnol.2014,9,372.]。液相分散法是利用超声、离心等手段将黑磷晶体分散来制备黑磷纳米薄片[P.Yasaei,et.al,Adv.Mater.,2015,27:1887-1892.][D.Hanlon,et al.Nat.Commun.,2015,6:8563],该方法也存在着黑磷的尺寸和厚度难以控制等问题。等离子刻蚀是通过等离子基团与磷原子反应生成挥发性产物来实现对黑磷的减薄[Jiajie Pei,et al.Nat.Commun.,2016,7:10450.],但是等离子基团的物理轰击会对黑磷造成破坏,残留的化学杂质会引入污染从而影响黑磷的性能。上述方法均难以实现黑磷材料和器件的规模化制备及产业化。因此,亟需一种能够实现高质量、产业化的黑磷薄膜的制备方法,以解决上述技术问题。
发明内容
针对现有技术的上述问题,本发明利用范德华外延生长技术,采用一种操作简单、成本低廉的一步制备方法,可控合成了一种黑磷薄膜。
为了解决上述问题,本发明提供一种黑磷薄膜、其制备方法和应用,具体技术方案如下:
第一方面,本发明提供一种黑磷薄膜的制备方法,包括:
将生长基底、含磷前驱物和矿化剂置于真空密闭的反应腔室内,其中,所述生长基底和所述含磷前驱物被置于所述真空密闭的反应腔室内的不同区域;
加热所述反应腔室后保温,使所述矿化剂和部分源于含磷前驱物的含磷气体反应,在所述生长基底上形成用于诱导黑磷结晶的诱导成核点或诱导成核层;
降低所述反应腔室的温度,使所述含磷气体沉积在所述生长基底上,在所述诱导成核点或诱导成核层的诱导下外延生长形成所述黑磷薄膜。
第二方面,本发明提供一种由上述方法制备的黑磷薄膜,所述黑磷薄膜包括二维黑磷单晶单元。
第三方面,本发明提供一种光电材料或电子材料,所述光电材料或电子材料包括上述所述的黑磷薄膜。
第四方面,本发明提供一种光电器件,所述光电器件中包括光电材料,所述光电材料包括上述所述的黑磷薄膜。
第五方面,本发明提供一种电池,包括太阳能电池、锂硫电池、锂离子电池或钠离子电池,其特征在于,所述电池中包括导电材料,所述导电材料中包括上述所述的黑磷薄膜。
第六方面,本发明提供一种电子器件,其特征在于,所述电子器件中包括电子材料,所述电子材料包括上述所述的黑磷薄膜。
第七方面,本发明提供一种催化系统,包括催化剂,其特征在于,所述催化剂中包括上述所述的黑磷薄膜。
第八方面,本发明提供一种纳米材料,所述纳米材料包括上述所述的黑磷薄膜。
由于上述技术方案,本发明具有以下有益效果:
本发明提供了一种黑磷薄膜的制备方法,通过加入矿化剂及在生长基底上形成诱导成核点或诱导成核层实现了高质量和高结晶性的黑磷薄膜的生长。该方法原料价格低廉,生产设备成本低,操作简单,可行性高且可重复性强。通过简单的条件控制即可实现黑磷薄膜尺寸和厚度的可控生长,可适用于不同的应用需求。此外,该方法适用于黑磷薄膜的大面积及批量生产,满足实际应用中的产业化需求。
相比传统的黑磷块晶,例如具有紧密堆叠层状结构(DSL)结构的黑磷,本发明提供的黑磷薄膜具有更高的开关比、光响应率和光电导增益,且具有表面粗糙度低、光电性能良好等优点,能够直接进行微纳加工,便于相关器件的大规模研发和应用。
附图说明
为了更清楚地说明本发明的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它附图。
图1:本发明实施例提供的黑磷薄膜的显微镜图像;
图2:图1中的黑磷薄膜的原子力显微镜(AFM)图像;
图3:本发明实施例提供的黑磷薄膜的拉曼图像;
图4:本发明实施例提供的黑磷薄膜的X射线光电子能谱(XPS);
图5a:本发明实施例提供的黑磷薄膜的透射电子显微镜(TEM)横截面图;
图5b:图5a中的元素分布(mapping)图;
图6-图8:本发明实施例提供的本发明实施例提供的黑磷薄膜的高分辨透射电电子显微图像(HRTEM)和电子衍射图谱(SAED);
图9:本发明实施例提供的黑磷薄膜和传统黑磷材料的红外吸收光谱图;图中,A代表黑磷薄膜,B代表常规DSL黑磷;
图10:本发明实施例提供的黑磷薄膜和传统黑磷材料的光致发光光谱图;图中,A代表黑磷薄膜,B代表常规DSL黑磷;
图11:本发明实施例提供的一种光电探测器件的显微镜图像;
图12:本发明实施例提供的黑磷薄膜在不同温度和不同偏压下的电学测试曲线图;
图13:本发明实施例提供的黑磷薄膜在不同温度下的载流子迁移率曲线图;
图14:本发明实施例提供的黑磷薄膜在不同温度下的霍尔迁移率和霍尔浓度的曲线图;
图15:本发明实施例提供的黑磷薄膜的光电性能测试;
图16:本发明实施例提供的黑磷薄膜的光响应率和光电导增益曲线;
图17:本发明实施例提供的黑磷薄膜的光电性能测试;
图18:本发明实施例提供的黑磷薄膜的光响应率和光电导增益曲线;
图19:本发明另一实施例提供的黑磷薄膜显微镜图像;
图20:图19中黑磷薄膜的AFM图像;
图21:本发明另一实施例提供的黑磷薄膜的AFM图像。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造 性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
对于以下定义的术语,除非在权利要求书或本说明书中的其他地方给出一个不同的定义,否则应当应用这些定义。所有数值无论是否被明确指示,在此均被定义为由术语“约”修饰。术语“约”大体上是指一个数值范围,本领域的普通技术人员将该数值范围视为等同于所陈述的值以产生实质上相同的性质、功能、结果等。由一个低值和一个高值指示的一个数值范围被定义为包括该数值范围内包括的所有数值以及该数值范围内包括的所有子范围。
本发明提供一种黑磷薄膜的制备方法,包括:
S100:将生长基底、含磷前驱物和矿化剂置于真空密闭的反应腔室内,其中,所述生长基底和所述含磷前驱物被置于所述真空密闭的反应腔室内的不同区域;
S200:加热所述反应腔室后保温,使所述矿化剂和部分源于含磷前驱物的含磷气体反应,在所述生长基底上形成用于诱导黑磷结晶的诱导成核点或诱导成核层;
S300:降低所述反应腔室的温度,使所述含磷气体沉积在所述生长基底上,在所述诱导成核点或诱导成核层的诱导下外延生长形成所述黑磷薄膜。
本说明书实施例中,所述诱导成核点或诱导成核层可以是与黑磷薄膜具有相似晶格结构的化合物,或者所述诱导成核点或诱导成核层可以具有能够与黑鳞单晶的某晶面形成晶格匹配的晶面,该诱导成核点或诱导成核层可以是分布在生长基底上的晶核、微小晶粒、原子层厚度的晶片结构,也可以是连续的或者分散生长的薄膜结构。所述诱导成核点或诱导成核层能够诱导磷在生长基底上成核并生长为黑磷薄膜。
在一些实施例中,所述诱导成核点或诱导成核层可以为含磷合金,所述含磷合金具有晶体结构。优选地,该诱导成核点或诱导成核层能够在含磷气体中稳定存在,所述含磷合金可以是二元或多元含磷合金,所述含磷合金可以包括金、锡、银、铜、镁、碘化锡、铅和铟中的任意一种或几种。
在一些实施例中,所述诱导成核点或诱导成核层的暴露晶面与黑磷单晶的一个晶面形成晶格匹配。
在实际生产过程中,所述“置于真空密闭的反应腔室内”可以是直接置于加热装置的加热腔中,例如管式炉中的用于加热反应的石英管的内腔;也可以 是置于小的石英管或者玻璃管中后抽真空密封,再将处理好的石英管或者玻璃管置于加热装置的加热腔中。
需要注意的是,所述真空密闭的反应腔室包括但不限于上述描述的实现方式,可以是能够实现所述黑磷薄膜生长的真空密闭的反应腔室的任意一种生长装置或者生长容器。
在一些实施例中,所述真空密闭的反应腔室内的压强可以小于等于0.1Pa。
上述制备方法利用化学气相输运的原理,在反应原料中加入了矿化剂,通过加热使矿化剂在生长基底上形成诱导成核点或诱导成核层,同时含磷前驱物生成含磷气体。含磷气体到达生长基底的上方后在诱导成核点或诱导成核层上外延形成黑磷的晶核,最终进一步生长形成黑磷薄膜。该方法原料价格低廉,生产设备成本低,操作简单,可行性高且可重复性强。通过生长条件控制即可实现黑磷薄膜尺寸和厚度的可控生长,可适用于不同的应用需求。此外,通过生产设备的合理设计,该方法适用于黑磷薄膜的大面积及批量生产,满足实际应用中的产业化需求。
本说明书的实施例中,所述含磷前驱物包括但不限于白磷、红磷和能够受热分解生成含磷气体的含磷化合物中的一种或几种。所述含磷化合物例如可以为三碘化磷、三溴化磷等。
本说明书的实施例中,所述生长基底和所述含磷前驱物被置于所述真空密闭的反应腔室内的不同区域包括:所述生长基底被置于所述真空密闭的反应腔室内温度较高的温区,所述含磷前驱物被置于所述真空密闭的反应腔室内温度较低的温区。如此,通过逆温生长的过程,能够控制在生长过程中位于生长基底附近的磷源浓度,有利于黑磷薄膜的形成,以及有利于控制产物的厚度。
在实际生产过程中,可以设置独立的加热控制系统和监测系统,为所述反应腔室提供热源,通常在加热后,反应腔室内的温度会呈现梯度变化,优选地,可以将生长基底置于温度最高的位置,并将含磷前驱物置于温度相对较低的位置。
在一些实施例中,所述生长基底与含磷前驱物所在温区的温度可以相差40℃-200℃。
本说明书的实施例中,所述方法还包括:限制所述生长基底处的用于含磷气体扩散的生长空间,通过空间限域效应实现黑磷薄膜的厚度控制。如此,通 过在生长基底处设置非常狭小的生长空间,以控制磷源的浓度、进入量和黑磷薄膜的生长速度,并控制黑磷薄膜的厚度。
优选地,在一个实施例中,可以将若干片所述生长基底相隔设置在同一温区。如此,通过增加生长基底的总面积,一方面增加了黑磷诱导成核点或诱导成核层数量,有利于黑磷的分散生长;另一方面通过空间限域效应实现了对生长基底处磷源浓度的有效调控,进而实现了黑磷薄膜厚度的调控。
需要注意的是,限制生长基底处用于含磷气体扩散的生长空间不限于上述描述的实现方式,也可以是在生长基底处设置障碍物或者是设计反应腔室的生长基底处为非常狭小的空间,以及其它能够实现生长基底处空间限域效应的实现方式。
在实际生产过程中,若干片生长基底可以堆叠设置在反应腔室内,例如可以是纵向相隔设置在水平石英管内的同一位置。
在一些实施例中,所述生长基底可以包括但不限于二氧化硅片、蓝宝石或导电玻璃生长基底等。
本说明书的实施例中,所述矿化剂包括但不限于锡、金、金锡合金、碘化锡、铅、铟、银、铜、镁和镁锡铜合金中的任意一种或几种。
在一些实施例中,所述矿化剂包括碘化锡和/或锡,所述碘化锡和/或锡与所述含磷前驱物可以被置于所述真空密闭反应腔室内的同一区域。即可以被置于同一温区。
在一些实施例中,所述矿化剂中的金、金锡合金、银、铜、镁和镁锡铜合金中的任意一种或几种可以在所述生长基底上形成薄膜,所述薄膜的厚度可以为5~180nm。
在实际生产过程中,上述在生长基底上形成薄膜可以采用但不限于沉积、溅射、蒸镀或旋涂等方法。
本一些实施例中,所述矿化剂可以包括碘化锡和锡,所述碘化锡、锡和含磷前驱物的质量比为1:(2-40):(10-300)。
本一些实施例中,所述矿化剂可以包括碘化锡和锡,所述碘化锡、锡和含磷前驱物的质量比为1:(2-20):(10-200),优选地,所述质量比为1:(2-10):(10-80)。
本说明书的实施例中,所述步骤S300中“加热所述反应腔室后保温”可以包括:加热所述反应腔室至650-900℃,保温1-5h,优选地,在一些实施例中,所 述反应腔室温度可以加热至700-800℃,保温1-3h。
在实际生产过程中,上述加热过程中的升温速度可以为(3-40)℃/min。
本说明书的实施例中,所述步骤S400中“降低所述反应腔室的温度”可以包括:降低反应腔室的温度至300~550℃,保温1-8h后,再冷却至室温。
在实际生产过程中,降低反应腔室的温度至450~550℃过程中的降温速度可以为(0.5-3)℃/min。
利用上述方法制备的黑磷薄膜的厚度大于等于1nm,其为晶体结构,所述黑磷薄膜为单晶结构或者所述黑磷薄膜包括二维黑磷单晶单元。
其中,所述二维黑磷单晶单元尺寸(横向尺寸,例如长、宽或直径)可以达到上百或微米尺寸,该黑磷薄膜具有高结晶性和高质量。
优选地,所述黑磷薄膜为晶体结构,所述黑磷薄膜可以是可以为一纳米至几百微米,具体地,可以是一纳米至几十纳米,或者也可以是一百纳米至几百微米,所述黑磷薄膜可以是P型或n型半导体,具有各向异性,优选地,具有双极性。
在一个实施例中,其层间距可以为0.45-0.55nm。其载流子迁移率能够大于等于200cm 2/Vs,优选地,可以大于等于500cm 2/Vs;霍尔迁移率能够大于等于200cm 2/Vs,优选地,可以大于等于1000cm 2/Vs;开关比可以大于等于0.5X10 4
以下介绍基于上述方法制备的一种黑磷薄膜,所述黑磷薄膜包括二维黑磷单晶单元。
本说明书实施例中,所述黑磷薄膜具有各向异性,其厚度大于等于1nm。
优选地,所述黑磷薄膜的厚度范围可以为一纳米至几百微米,具体地,可以是一纳米至几十纳米,或者也可以是一百纳米至几百微米。
优选地,所述黑磷薄膜的层间距可以为0.45-0.55nm。
本说明书实施例中,所述黑磷薄膜可以为P型或n型半导体。
进一步地,所述黑磷薄膜可以具有双极性。
更为具体地,所述黑磷薄膜的载流子迁移率能够大于等于200cm 2/Vs,优选地,可以大于等于500cm 2/Vs;霍尔迁移率能够大于等于200cm 2/Vs,优选地,可以大于等于1000cm 2/Vs;开关比可以大于等于0.5X10 4
在一些实施例中,所述黑磷薄膜包括若干形貌和晶体结构相似的二维黑磷单晶单元,所述二维黑磷单晶单元的尺寸(横向尺寸,例如长径)可为几纳米,或者几十纳米,甚至可以达到上百纳米或微米尺寸。
在一些实施例中,若干所述二维黑磷单晶单元堆叠形成所述黑磷薄膜,该堆叠的呈现形式为两两二维黑磷单晶单元的边缘相接生成为黑磷薄膜;即两两二维黑磷单晶单元的边缘接界处为晶界,若干二维黑磷单晶单元的表面形成黑磷薄膜的表面。
该黑磷薄膜具有高开关比、高光响应率、高光电导增益、表面粗糙度低和光电性能良好等优点,能够直接进行微纳加工,便于相关器件的大规模研发和应用。
本说明书还提供一种光电材料或电子材料,所述光电材料或电子材料包括上述黑磷薄膜或上述方法制备的黑磷薄膜。
本说明书还提供一种光电器件,所述光电器件中包括光电材料,所述光电材料包括上述黑磷薄膜或上述方法制备的黑磷薄膜。
本说明书还提供一种电池,包括太阳能电池、锂硫电池、锂离子电池或钠离子电池,所述电池中包括导电材料,所述导电材料中包括上述黑磷薄膜或上述方法制备的黑磷薄膜。
本说明书还提供一种电子器件,所述电子器件中包括电子材料,所述电子材料包括上述黑磷薄膜或上述方法制备的黑磷薄膜。
本说明书还提供一种催化系统,包括催化剂,所述催化剂中包括上述黑磷薄膜或上述方法制备的黑磷薄膜。
本说明书还提供一种纳米材料,所述纳米材料包括上述所述的黑磷薄膜。
以下基于上述技术方案列举本说明书的一些具体实施例。
实施例1
本实施例公开一种黑磷薄膜的制备方法,具体包括:
(1)形成诱导成核点或诱导成核层
a)提供多片二氧化硅生长基片、红磷和矿化剂,所述矿化剂包括碘化锡、锡和金,其中,所述金为所述二氧化硅生长基片上均匀布置的一层金膜,所述金膜的厚度为5-180nm;
b)将所述碘化锡、锡和红磷置于真空密闭反应腔室内的低温端,将生长基底置于真空密闭反应腔室内的高温端,其中,多片生长基底堆叠相隔设置;
c)以10℃/min的速度加热所述反应腔室至750℃,保温1h;
其中,所述碘化锡、锡和红磷的质量比为1:(2-10):(10-100)。
(2)生长黑磷薄膜
控制反应腔室内温度以1.5℃/min降至450℃,保温1.5h后,再冷却至室温,磷源的含磷气体在生长基底上沉积,在诱导成核点或诱导成核层的诱导下外延生长形成所述黑磷薄膜。
对上述方法制备的一种典型的黑磷薄膜进行了表征,请参考图1中的显微镜图像,该黑磷薄膜具有较平整表面,长径可达到几百微米。并且其厚度超薄,能够薄至10nm及以下,请参考图2中的AFM图像。
另外,请参考图3和图4,AFM表征到了黑磷的三个特征峰,XPS图谱中检测到了磷的特征峰,证明产物为黑磷。
此外,请参考图5a和图5b,通过制备完成后生长基底的TEM截面图和元素mapping图分析可知,二氧化硅生长基底上依次形成有诱导成核点或诱导成核层和一层黑磷薄膜。其中,该诱导成核点或诱导成核层为Au 3SnP 7
请参考图6-图8,HRTEM图像和SAED图谱证明本实施例中的黑磷薄膜为晶体结构,且具有高度结晶性。黑磷薄膜具有独特的结构,由二维黑磷单晶单元堆叠而成,该二维黑磷单晶单元的晶体结构属于正交晶系。其层间距约为0.5nm,沿其zigzag边界方向上的晶面间距约为0.42nm,沿其armchair边界方向上的晶面间距约为0.32nm。
同时,请参考图9-10,相比于传统DSL黑磷,上述黑磷薄膜具有更高的红外吸收率。并且,光致发光光谱具有更窄的半高宽,证明其缺陷结构更少。
进一步地,本实施例在上述典型的黑磷薄膜的表面沉积了金属电极,制备 了一种光电探测器件,如图11所示。电学性能测试表明该器件电学性能优异,该黑磷薄膜为P型半导体,具有双极性,请参考图12。且黑磷薄膜的载流子迁移率可以达到1250cm 2/Vs,平均载流子迁移率约为746cm 2/Vs,开关比达到10 4-10 6,霍尔迁移率可达到2200cm 2/Vs,平均霍尔迁移率约为1162cm 2/Vs,请参考图13-14。
此外,测试了该光电探测器件的光电性能,请参考图15-18,其在红外和通讯波段都具有高光电流和快速响应时间,其在红外波段的光响应率和光电导增益能够达到32A/W和110,在通讯波段的响应率和光电导增益可超过60A/W和580。
实施例2
本实施例公开一种黑磷薄膜的制备方法,具体包括:
(1)形成诱导成核点或诱导成核层
a)提供多片二氧化硅生长基片、白磷和矿化剂,所述矿化剂包括碘化锡、锡和金,其中,所述金为所述二氧化硅生长基片上均匀布置的一层金膜,所述金膜的厚度为5-180nm;
b)将所述碘化锡、锡和红磷置于真空密闭反应腔室内的低温端,将生长基底置于真空密闭反应腔室内的高温端,其中,多片生长基底堆叠相隔设置;
c)以20℃/min的速度加热所述反应腔室至650℃,保温2.5h;
其中,所述碘化锡、锡和白磷的质量比为1:(2-20):(10-200)。
(2)生长黑磷薄膜
控制反应腔室内温度以1.0℃/min降至500℃,保温2h后,再冷却至室温,含磷气体在生长基底上沉积,在诱导成核点或诱导成核层的诱导下外延生长形成所述黑磷薄膜。
本实施例中方法制备的一种典型的黑磷薄膜为黑磷晶体,其形貌和晶体结构与实施例1中相似,长径可达到几百微米,厚度能够薄至25nm及以下,请参考图19-20。
此外,二氧化硅生长基底上依次形成有诱导成核点或诱导成核层和一层黑磷薄膜。其中,该诱导成核点或诱导成核层为Au 3SnP 7
同时,相比于传统DSL黑磷,上述黑磷薄膜具有更高的红外吸收率和更少的缺陷结构。
进一步地,本实施例在上述典型的黑磷薄膜的表面沉积了金属电极,制备了一种光电探测器件,该器件电学性能优异,该黑磷薄膜为P型半导体,具有双极性。且黑磷薄膜的载流子迁移率可以达到1400cm 2/Vs,平均载流子迁移率约为832cm 2/Vs,开关比达到10 4-10 6,霍尔迁移率可达到2330cm 2/Vs,平均霍尔迁移率约为1224cm 2/Vs。
此外,测试了该光电探测器件的光电性能,其在红外和通讯波段都具有高光电流和快速响应时间,其在通讯波段的响应率和光电导增益与实施例1中的结果相似。
实施例3
本实施例公开一种黑磷薄膜的制备方法,具体包括:
(1)形成诱导成核点或诱导成核层
a)提供多片二氧化硅生长基片、白磷和矿化剂,所述矿化剂包括碘化锡、锡和银,其中,所述金为所述二氧化硅生长基片上均匀布置的一层银膜,所述银膜的厚度为20-180nm;
b)将所述碘化锡、锡和红磷置于真空密闭反应腔室内的低温端,将生长基底置于真空密闭反应腔室内的高温端,其中,多片生长基底堆叠相隔设置;
c)以10℃/min的速度加热所述反应腔室至850℃,保温5h;
其中,所述碘化锡、锡和白磷的质量比为1:(2-40):(10-300)。
(2)生长黑磷薄膜
控制反应腔室内温度以1.5℃/min降至350℃,保温8h后,再冷却至室温,含磷气体在生长基底上沉积,在诱导成核点或诱导成核层的诱导下外延生长形成所述黑磷薄膜。
本实施例中方法制备的一种典型的黑磷薄膜为黑磷晶体,其形貌和晶体结构与实施例1中相似,长径可达到几百微米,厚度能够生长为约一微米。
此外,二氧化硅生长基底上依次形成有诱导成核点或诱导成核层和一层黑磷薄膜。其中,该诱导成核点或诱导成核层为由银、锡和磷形成的化合物。
同时,相比于传统DSL黑磷,上述黑磷薄膜具有更高的红外吸收率和更少的缺陷结构。
进一步地,本实施例在上述典型的黑磷薄膜的表面沉积了金属电极,制备了一种光电探测器件,该器件电学性能优异,该黑磷薄膜为P型半导体,具有 双极性。且黑磷薄膜的载流子迁移率可以达到1232cm 2/Vs,平均载流子迁移率约为721cm 2/Vs,开关比达到10 4-10 6,霍尔迁移率可达到2200cm 2/Vs,平均霍尔迁移率约为1192cm 2/Vs。
此外,测试了该光电探测器件的光电性能,其在红外和通讯波段都具有高光电流和快速响应时间,其在通讯波段的响应率和光电导增益与实施例1中的结果相似。
实施例4
本实施例公开一种黑磷薄膜的制备方法,具体包括:
(1)形成诱导成核点或诱导成核层
a)提供多片二氧化硅生长基片、三碘化磷和矿化剂,所述矿化剂包括碘化锡、锡和金,其中,所述金为所述二氧化硅生长基片上均匀布置的一层金膜,所述金膜的厚度为20-180nm;
b)将所述碘化锡、锡和红磷置于真空密闭反应腔室内的低温端,将生长基底置于真空密闭反应腔室内的高温端,其中,多片生长基底堆叠相隔设置;
c)以40℃/min的速度加热所述反应腔室至900℃,保温3h;
其中,所述碘化锡、锡和白磷的质量比为1:(2-20):(10-80)。
(2)生长黑磷薄膜
控制反应腔室内温度以1.0℃/min降至550℃,保温6h后,再冷却至室温,含磷气体在生长基底上沉积,在诱导成核点或诱导成核层的诱导下外延生长形成所述黑磷薄膜。
本实施例中方法制备的一种典型的黑磷薄膜为黑磷晶体,其形貌和晶体结构与实施例1中相似,长径可达到几百微米,厚度能够生长为约30nm,请参考图21。
此外,二氧化硅生长基底上依次形成有诱导成核点或诱导成核层和一层黑磷薄膜。其中,该诱导成核点或诱导成核层为Au 3SnP 7
同时,相比于传统DSL黑磷,上述黑磷薄膜具有更高的红外吸收率和更少的缺陷结构。
进一步地,本实施例在上述典型的黑磷薄膜的表面沉积了金属电极,制备了一种光电探测器件,该器件电学性能优异,该黑磷薄膜为P型半导体,具有双极性。且黑磷薄膜的载流子迁移率可以达到1550cm 2/Vs,平均载流子迁移率 约为1068cm 2/Vs,开关比达到10 4-10 6,霍尔迁移率可达到2390cm 2/Vs,平均霍尔迁移率约为1048cm 2/Vs。
此外,测试了该光电探测器件的光电性能,其在红外和通讯波段都具有高光电流和快速响应时间,其在通讯波段的响应率和光电导增益与实施例1中的结果相似。
综上,本发明提供了一种黑磷薄膜的制备方法,通过加入矿化剂及在生长基底上形成诱导成核点或诱导成核层实现了高质量和高结晶性的黑磷薄膜的生长。该方法可实现黑磷薄膜尺寸和厚度的可控生长,适用于黑磷薄膜的大面积及批量生产,满足实际应用中的产业化需求。相比传统的黑磷块晶制得的光电探测器件,基于本发明提供的黑磷薄膜制备的光电探测器件具有更高的开关比、光响应率和光电导增益,具有优异的光电性能。
上述说明已经充分揭露了本发明的具体实施方式。需要指出的是,熟悉该领域的技术人员对本发明的具体实施方式所做的任何改动均不脱离本发明的权利要求书的范围。相应地,本发明的权利要求的范围也并不仅仅局限于前述具体实施方式。

Claims (12)

  1. 一种黑磷薄膜的制备方法,其特征在于,包括:
    将生长基底、含磷前驱物和矿化剂置于真空密闭的反应腔室内,其中,所述生长基底和所述含磷前驱物被置于所述真空密闭的反应腔室内的不同区域;
    加热所述反应腔室后保温,使所述矿化剂和部分源于含磷前驱物的含磷气体反应,在所述生长基底上形成用于诱导黑磷结晶的诱导成核点或诱导成核层;
    降低所述反应腔室的温度,使所述含磷气体沉积在所述生长基底上,在所述诱导成核点或诱导成核层的诱导下外延生长形成所述黑磷薄膜。
  2. 根据权利要求1所述的制备方法,其特征在于,所述诱导成核点或诱导成核层为含磷合金,所述含磷合金具有晶体结构。
  3. 根据权利要求1所述的制备方法,其特征在于,所述诱导成核点或诱导成核层的暴露晶面与黑磷单晶的一个晶面形成晶格匹配。
  4. 根据权利要求1所述的制备方法,其特征在于,所述生长基底和所述含磷前驱物被置于所述真空密闭的反应腔室内的不同区域包括:所述生长基底被置于所述真空密闭的反应腔室内温度较高的温区,所述含磷前驱物被置于所述真空密闭的反应腔室内温度较低的温区。
  5. 根据权利要求1所述的制备方法,其特征在于,所述方法还包括:限制所述生长基底处的用于含磷气体扩散的生长空间,通过空间限域效应实现黑磷薄膜的厚度控制。
  6. 根据权利要求1所述的制备方法,其特征在于,所述矿化剂包括锡、金、金锡合金、碘化锡、铅、铟、银、铜、镁和镁锡铜合金中的任意一种或几种。
  7. 根据权利要求1所述的制备方法,其特征在于,所述黑磷薄膜的厚度大于等于1nm,所述黑磷薄膜包括二维黑磷单晶单元。
  8. 根据权利要求1所述的制备方法,其特征在于,所述含磷前驱物包括能够受热分解生成含磷气体的含磷化合物、白磷和红磷中一种或几种。
  9. 一种根据权利要求1-8中任一所述的方法制备的黑磷薄膜,其特征在于,所述黑磷薄膜包括二维黑磷单晶单元。
  10. 根据权利要求9所述的黑磷薄膜,其特征在于,所述黑磷薄膜具有各向异性,其厚度大于等于1nm。
  11. 一种光电材料或电子材料,其特征在于,所述光电材料或电子材料包括权利要求9-10中任一所述的黑磷薄膜。
  12. 一种光电器件或电子器件,其特征在于,所述光电器件中的光电材料或所述电子器件中的电子材料包括权利要求9-10中任一所述的黑磷薄膜。
PCT/CN2020/078188 2020-03-02 2020-03-06 一种黑磷薄膜、其制备方法和应用 WO2021174527A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010134516.0 2020-03-02
CN202010134516.0A CN111334780A (zh) 2020-03-02 2020-03-02 一种黑磷薄膜、其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2021174527A1 true WO2021174527A1 (zh) 2021-09-10

Family

ID=71179742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078188 WO2021174527A1 (zh) 2020-03-02 2020-03-06 一种黑磷薄膜、其制备方法和应用

Country Status (2)

Country Link
CN (1) CN111334780A (zh)
WO (1) WO2021174527A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113668053B (zh) * 2021-10-25 2022-01-07 中国科学院苏州纳米技术与纳米仿生研究所 黑磷薄膜反应装置、黑磷薄膜制备方法
CN114293146A (zh) * 2022-03-07 2022-04-08 中国科学院苏州纳米技术与纳米仿生研究所 黑磷及其制备方法和应用
CN114975863B (zh) * 2022-08-01 2022-09-30 深圳市汉嵙新材料技术有限公司 黑磷负极、其制备方法及锂离子电池
CN115807211B (zh) * 2023-02-08 2023-05-05 中南大学 砷磷薄膜材料的制备方法及装置
CN116200824B (zh) * 2023-05-04 2023-07-18 中国科学院苏州纳米技术与纳米仿生研究所 黑磷薄膜的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106267201A (zh) * 2016-08-26 2017-01-04 深圳先进技术研究院 一种聚合物包裹的黑磷及其制备方法与应用
CN107447193A (zh) * 2016-11-14 2017-12-08 深圳大学 一种黑磷薄膜及其制备方法
CN107634090A (zh) * 2016-07-19 2018-01-26 中国科学院苏州纳米技术与纳米仿生研究所 二维黑磷pn结、其制备方法及应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107285289B (zh) * 2016-04-01 2019-07-05 中国科学院苏州纳米技术与纳米仿生研究所 具有高光电响应率的黑磷晶体、其制备方法及应用
CN108128761B (zh) * 2018-01-30 2021-06-18 昆明理工大学 一种黑磷的连续化制备方法
CN109786483A (zh) * 2018-12-18 2019-05-21 西安电子科技大学 基于bp材料的光电探测器及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107634090A (zh) * 2016-07-19 2018-01-26 中国科学院苏州纳米技术与纳米仿生研究所 二维黑磷pn结、其制备方法及应用
CN106267201A (zh) * 2016-08-26 2017-01-04 深圳先进技术研究院 一种聚合物包裹的黑磷及其制备方法与应用
CN107447193A (zh) * 2016-11-14 2017-12-08 深圳大学 一种黑磷薄膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHI XINYAO: "Controllable Growth, Doping and Optical/Electrical Properties of Black Phosphorus", CHINESE MASTER'S THESES FULL-TEXT DATABASE, TIANJIN POLYTECHNIC UNIVERSITY, CN, 15 August 2019 (2019-08-15), CN, XP055842549, ISSN: 1674-0246 *

Also Published As

Publication number Publication date
CN111334780A (zh) 2020-06-26

Similar Documents

Publication Publication Date Title
WO2021174527A1 (zh) 一种黑磷薄膜、其制备方法和应用
Teplin et al. A new approach to thin film crystal silicon on glass: Biaxially-textured silicon on foreign template layers
TW200534382A (en) A novel technique to grow high quality SnSe epitaxy layer on Si substrate
Chaudhari et al. Heteroepitaxial silicon film growth at 600° C from an Al–Si eutectic melt
CN110055591B (zh) 二维三元原子晶体的制备方法
Xie et al. An Atomically Thin Air‐Stable Narrow‐Gap Semiconductor Cr2S3 for Broadband Photodetection with High Responsivity
Zhang et al. Synthesis of ultrathin 2D nonlayered α‐MnSe nanosheets, MnSe/WS2 heterojunction for high‐performance photodetectors
CN112086344B (zh) 一种铝镓氧/氧化镓异质结薄膜的制备方法及其在真空紫外探测中的应用
JP2016519843A (ja) Ge量子ドットの成長方法、Ge量子ドット複合材及びその応用
CN110854013A (zh) 一种大面积连续超薄二维Ga2O3非晶薄膜的制备方法与应用
Gu et al. Effects of sputtering pressure and oxygen partial pressure on amorphous Ga2O3 film-based solar-blind ultraviolet photodetectors
Zhai et al. Growth of ideal amorphous carbon films at low temperature by e-beam evaporation
Baby The formation of α-phase SnS nanostructure from a hybrid, multi-layered S/Sn/S/Sn/S thin films: phase stability, surface morphology and optical studies
RU2685032C1 (ru) Фоточувствительное устройство и способ его изготовления
He et al. Band gap energy and bowing parameter of In-rich InAlN films grown by magnetron sputtering
CN110028047B (zh) 单一取向且组分可调的CdSxSe1-x合金纳米线阵列及其制备方法
Bakin et al. Vapour phase transport growth of ZnO layers and nanostructures
CN105977135B (zh) 基于二硫化锡和磁控溅射氮化铝的氮化镓生长方法
Oh et al. Large-scale, single-oriented ZnO nanostructure on h-BN films for flexible inorganic UV sensors
Erdoğan et al. Influence of substrate and substrate temperature on the structural, optical and surface properties of InGaN thin films prepared by RFMS method
Kuo et al. Low temperature growth of heavy boron-doped hydrogenated Ge epilayers and its application in Ge/Si photodetectors
Yang et al. The epitaxial growth of (1 1 1) oriented monocrystalline Si film based on a 4: 5 Si-to-SiC atomic lattice matching interface
CN113755820A (zh) 一种大面积单层半导体二维ws2薄膜材料及其制备方法和应用
Nishida et al. Improving photoresponsivity in GaAs film grown on Al-induced-crystallized Ge on an insulator
Bhuiyan et al. Growth of single crystalline Si on graphene using RF-MBE: Orientation control with an AlN interface layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20922809

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20922809

Country of ref document: EP

Kind code of ref document: A1