WO2021172927A1 - 건설 기계 - Google Patents

건설 기계 Download PDF

Info

Publication number
WO2021172927A1
WO2021172927A1 PCT/KR2021/002445 KR2021002445W WO2021172927A1 WO 2021172927 A1 WO2021172927 A1 WO 2021172927A1 KR 2021002445 W KR2021002445 W KR 2021002445W WO 2021172927 A1 WO2021172927 A1 WO 2021172927A1
Authority
WO
WIPO (PCT)
Prior art keywords
main pump
hydraulic oil
boom
cylinder
bucket
Prior art date
Application number
PCT/KR2021/002445
Other languages
English (en)
French (fr)
Inventor
강병일
Original Assignee
두산인프라코어 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두산인프라코어 주식회사 filed Critical 두산인프라코어 주식회사
Priority to CN202180017098.XA priority Critical patent/CN115210432A/zh
Priority to US17/802,351 priority patent/US20230096479A1/en
Priority to EP21761794.3A priority patent/EP4112823A4/en
Publication of WO2021172927A1 publication Critical patent/WO2021172927A1/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2282Systems using center bypass type changeover valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2217Hydraulic or pneumatic drives with energy recovery arrangements, e.g. using accumulators, flywheels
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2239Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance
    • E02F9/2242Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2267Valves or distributors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2275Hoses and supports therefor and protection therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2289Closed circuit
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/024Installations or systems with accumulators used as a supplementary power source, e.g. to store energy in idle periods to balance pump load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/17Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/14Energy-recuperation means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20523Internal combustion engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20561Type of pump reversible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20569Type of pump capable of working as pump and motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/21Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge
    • F15B2211/212Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge the pressure sources being accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/3059Assemblies of multiple valves having multiple valves for multiple output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/31523Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source and an output member
    • F15B2211/31529Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source and an output member having a single pressure source and a single output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/31523Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source and an output member
    • F15B2211/31535Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source and an output member having multiple pressure sources and a single output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7135Combinations of output members of different types, e.g. single-acting cylinders with rotary motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7142Multiple output members, e.g. multiple hydraulic motors or cylinders the output members being arranged in multiple groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/88Control measures for saving energy

Definitions

  • the present invention relates to a construction machine, and more particularly, to a construction machine that uses a plurality of hydraulic pumps to drive various driving devices.
  • Construction machinery refers to all machines used in civil works, building works, or industrial sites.
  • construction machines have an engine and a hydraulic pump operated by the power of the engine, and drive or drive various work devices with the power generated through the engine and the hydraulic pump.
  • an excavator a type of construction machine, performs works such as excavation work to dig the ground at a civil engineering, construction site, construction site, loading work to transport soil, shredding work to dismantle buildings, grading work to clear the ground, etc. are doing To this end, the construction machine performs operations such as an excavation operation, a boom-up turning operation, a dump operation, and a work driving operation.
  • the excavator as a construction machine includes a lower traveling body for movement, an upper revolving body mounted on the lower traveling body and rotating, and various working devices and a driver's seat installed on the upper revolving body.
  • two main pumps 31 and 32 supply hydraulic oil. And the hydraulic oil supplied by the two main pumps 31 and 32 is distributed from the main control valve (MCV) 50 to each driving device. At this time, driving devices for supplying hydraulic oil for each main pump 31 and 32 are set.
  • MCV main control valve
  • the driving device is a boom cylinder 71 for driving the boom, an arm cylinder 72 for driving an arm, a bucket cylinder 73 for driving a bucket, and the turning of the upper revolving body.
  • the main control valve 50 controls the hydraulic oil discharged by the first boom valve 51a and the first main pump 31 for supplying the hydraulic oil discharged by the first main pump 31 to the boom cylinder 71.
  • a first travel valve 56 for supplying to the travel motor 76, a bucket valve 53 for supplying hydraulic oil discharged by the first main pump 31 to the bucket cylinder 73, a second main pump ( A swing valve 55 for supplying the hydraulic oil discharged by 32 to the swing motor 75, and a second travel valve for supplying the hydraulic oil discharged by the second main pump 32 to the second travel motor 77 ( 57), a first arm valve 52a for supplying the hydraulic oil discharged by the second main pump 32 to the arm cylinder 75, an optional valve for driving a device optionally mounted on the construction machine 10 ( 59), a traveling straight valve 58 for supplying the hydraulic oil discharged by the first main pump 31 to the second traveling motor 77 together with the first traveling motor 76 when traveling straight, a first main pump ( The second arm valve 52b for merging the hydraulic oil discharged
  • the boom cylinder 71 and the arm cylinder 72 of the various driving devices require a relatively large flow rate of hydraulic oil compared to other driving devices depending on the load.
  • the first boom valve 51a of the main control valve 50 mainly supplies the hydraulic oil discharged by the first main pump 31 to the boom cylinder 71
  • the second boom valve 51b is the second main The hydraulic oil discharged by the pump 32 may be supplementally supplied to the boom cylinder 71 .
  • the 1st arm valve 52a of the main control valve 50 mainly supplies the hydraulic oil discharged by the 2nd main pump 32 to the arm cylinder 72
  • the 2nd arm valve 52b is the 1st main The hydraulic oil discharged by the pump 31 may be supplementally supplied to the female cylinder 72 .
  • one of the main pumps 31 and 32 may supply hydraulic oil to a plurality of driving devices. And the pressure of hydraulic oil required to drive the driving device is different for each driving device.
  • one of the main pumps 31 and 32 supplies hydraulic oil to a plurality of driving devices, a lot of pressure is applied to the driving device operating at a relatively low pressure. energy loss occurs.
  • the main pumps 31 and 32 are controlled to discharge hydraulic oil in accordance with the driving device operating at the highest pressure among the plurality of driving devices supplied with the hydraulic oil. Accordingly, a hydraulic oil having a higher pressure than necessary is supplied to the drive device driven at a relatively low pressure.
  • the first main pump 31 supplying hydraulic oil to the bucket cylinder 73 is the bucket cylinder.
  • the second main pump 32 for discharging hydraulic oil of a relatively low pressure according to the operating pressure of 73 and supplying the hydraulic oil to the female cylinder 72 has a relatively high pressure according to the operating pressure of the female cylinder 72 . of working oil is discharged.
  • An embodiment of the present invention provides a construction machine capable of minimizing the occurrence of energy loss when a plurality of driving devices are simultaneously operated.
  • a construction machine has a boom cylinder for driving a boom, a swing motor for turning a slewing body, an arm cylinder for driving an arm, a bucket cylinder for driving a bucket, and hydraulic oil to the boom cylinder
  • a first main pump for supplying or recovering hydraulic oil discharged from the boom cylinder
  • a second main pump for supplying hydraulic oil to the swing motor or recovering hydraulic oil discharged from the swing motor, and to the arm cylinder or the bucket cylinder
  • a third main pump for supplying hydraulic oil.
  • the construction machine includes an engine connected to the first main pump, a first boom hydraulic line connecting the head side of the boom cylinder and the first main pump, and a rod side of the boom cylinder and the first main pump It may further include a second boom hydraulic line for connecting.
  • the first main pump may supply energy to the engine by operating with hydraulic oil discharged from the boom cylinder when the boom is lowered.
  • the construction machine further includes an accumulator for accumulating hydraulic oil, a boom regenerative valve connected to the first boom hydraulic line and the second boom hydraulic line, and a boom regenerative line connecting the boom regenerative valve and the accumulator.
  • the first main pump may supply energy to the engine by operating with the hydraulic oil supplied by the accumulator.
  • the construction machine includes a first turning hydraulic line connecting one side of the turning motor and the second main pump, and a second turning hydraulic line connecting the other side of the turning motor and the second main pump.
  • the engine may be connected to the second main pump, and the second main pump may supply energy to the engine by operating with hydraulic oil discharged from the turning motor when the turning motor is decelerated.
  • the construction machine further includes an accumulator for accumulating hydraulic oil, a turning regenerative valve connected to the first turning hydraulic line and the second turning hydraulic line, and a turning regenerative line connecting the turning regenerative valve and the accumulator.
  • an accumulator for accumulating hydraulic oil
  • a turning regenerative valve connected to the first turning hydraulic line and the second turning hydraulic line
  • a turning regenerative line connecting the turning regenerative valve and the accumulator.
  • the second main pump may supply energy to the engine by operating with the hydraulic oil supplied by the accumulator.
  • the first main pump is a bidirectional pump selectively discharging hydraulic oil to one of the first boom hydraulic line or the second boom hydraulic line
  • the second main pump is the first swing hydraulic line or the second swing hydraulic line. It may be a two-way pump that selectively discharges hydraulic oil to one of the hydraulic lines.
  • the construction machine may further include a drain tank for storing hydraulic oil discharged from the arm cylinder and the bucket cylinder, and a drain line connecting the arm cylinder and the bucket cylinder and the drain tank.
  • the construction machine may further include an engine connected to the first main pump, the second main pump, and the third main pump to provide power.
  • at least one of the first main pump and the second main pump may additionally supply energy to the engine during a regenerative operation.
  • the hydraulic oil discharged from the first main pump is supplied to the boom cylinder, and the hydraulic oil discharged from the second main pump is the turning motor Instead, it is supplied to the bucket cylinder, and the hydraulic oil discharged from the third main pump may be supplied to the female cylinder.
  • the construction machine may further include a swing valve for controlling the hydraulic oil supplied to the swing motor, and a bucket hydraulic line for supplying the hydraulic oil to the bucket cylinder.
  • the swing valve may block the hydraulic oil supplied by the second main pump to the swing motor, and the hydraulic oil discharged by the second main pump may be supplied to the bucket cylinder through the bucket hydraulic line.
  • the hydraulic oil discharged from the first main pump is supplied to the boom cylinder
  • the hydraulic oil discharged from the second main pump is supplied to the swing motor and the hydraulic oil discharged from the third main pump may be supplied to the bucket cylinder instead of the arm cylinder.
  • the construction machine may further include an arm valve for controlling the hydraulic oil supplied to the arm cylinder, and an arm-bucket merging line connected to the bucket cylinder.
  • the arm valve may block the hydraulic oil supplied by the third main pump to the arm cylinder, and the hydraulic oil discharged by the third main pump may be supplied to the bucket cylinder through the arm bucket merging line.
  • the hydraulic oil discharged from the first main pump is supplied to the boom cylinder
  • the hydraulic oil discharged from the second main pump is
  • the hydraulic oil supplied to the swing motor and discharged from the third main pump may be supplied to the bucket cylinder together with the arm cylinder.
  • the construction machine may further include an arm valve for controlling the hydraulic oil supplied to the arm cylinder, and a bucket valve for controlling the hydraulic oil supplied to the bucket cylinder.
  • the arm valve and the bucket valve may supply hydraulic oil discharged by the third main pump to the arm cylinder and the bucket cylinder, respectively.
  • the construction machine can minimize the occurrence of energy loss during simultaneous operation of a plurality of driving devices.
  • the construction machine can improve energy use efficiency by recovering energy wasted from the driving device.
  • 1 is a hydraulic circuit diagram of a conventional construction machine.
  • FIG. 2 is a hydraulic circuit diagram of a construction machine according to an embodiment of the present invention.
  • 3 to 11 are hydraulic circuit diagrams and graphs respectively showing the operating state of the construction machine of FIG. 1 .
  • the embodiment of the present invention specifically represents an ideal embodiment of the present invention. As a result, various modifications of the diagram are expected. Therefore, the embodiment is not limited to a specific shape of the illustrated area, and includes, for example, a shape modification by manufacturing.
  • the construction machine 101 may include a lower traveling body for movement, an upper revolving body mounted on the lower traveling body and rotating, and a boom, an arm, and a bucket installed in the upper revolving body.
  • the construction machine 101 includes a boom cylinder 710 , a turning motor 750 , an arm cylinder 720 , a bucket cylinder 730 , and a first main pump. 310 , a second main pump 320 , and a third main pump 330 .
  • the construction machine 101 has a first boom hydraulic line 611 , a second boom hydraulic line 612 , a first turning hydraulic line 651 , and a second turning hydraulic line 652 .
  • female hydraulic line 620, bucket hydraulic line 630, female bucket merging line 643, boom valve 510, slewing valve 550, female valve 520, bucket valve 530, accumulator ( 880), boom regenerative valve 481, boom regenerative line 681, swing regenerative valve 485, swing regenerative line 685, engine 200, drain tank 900, and drain line 690 more may include
  • the construction machine 101 may further include two driving motors for driving the undercarriage.
  • Boom cylinder 710 , arm cylinder 720 , and bucket cylinder 730 drive the boom, arm, and bucket, respectively. That is, the boom cylinder 710 , the arm cylinder 720 , and the bucket cylinder 730 operate the working device of the construction machine 101 .
  • the boom cylinder 710, the arm cylinder 720, and the bucket cylinder 730 each include a head side and a rod side.
  • the slewing motor 750 swivels the upper revolving body mounted on the lower traveling body.
  • the boom cylinder 710 , the arm cylinder 720 , the bucket cylinder 730 , and the swing motor 750 are representative driving devices used in the construction machine 101 .
  • the first main pump 310 , the second main pump 320 , and the third main pump 330 discharge hydraulic oil for operating various driving devices. That is, the hydraulic oil discharged from the first main pump 310 , the second main pump 320 , and the third main pump 330 is supplied to various driving devices through various valves.
  • the first main pump 310 , the second main pump 320 , and the third main pump 330 may be variable capacity pumps in which the flow rate of the discharged hydraulic oil varies according to the angle of the swash plate.
  • the first main pump 310 may basically supply hydraulic oil to the boom cylinder 710 .
  • the second main pump 320 may basically supply hydraulic oil to the swing motor 750 .
  • the third main pump 330 may supply hydraulic oil to the arm cylinder 720 or the bucket cylinder 730 .
  • the second main pump 320 may supply hydraulic oil to the bucket cylinder 730 instead of the swing motor 750
  • the third main pump 330 may supply hydraulic oil to the female cylinder 720 or Instead of the arm cylinder 720 , hydraulic oil may be supplied to the bucket cylinder 730 , or hydraulic oil may be supplied to the arm cylinder 720 and the bucket cylinder 730 at the same time.
  • first main pump 310 and the second main pump 320 may be bidirectional pumps, and the third main pump 330 may be a unidirectional pump.
  • first main pump 310 and the second main pump 320 may also be unidirectional pumps.
  • the boom cylinder 710 and the swing motor 750 are supplied to the boom valve 510 and the swing valve 550 to be described later. The direction of supply of hydraulic oil can be switched.
  • the engine 200 is connected to the first main pump 310 , the second main pump 320 , and the third main pump 330 to provide power.
  • the engine 200 generates power by burning fuel.
  • engine 200 may be a diesel engine or a liquefied natural gas (LNG) engine, a compressed natural gas (CNG) engine, an adsorption natural gas (ANG) engine, a liquefied petroleum gas (LPG) engine, or a gasoline engine.
  • LNG liquefied natural gas
  • CNG compressed natural gas
  • ANG adsorption natural gas
  • LPG liquefied petroleum gas
  • gasoline engine liquefied petroleum gas
  • the exemplary embodiment of the present invention is not limited thereto, and other power devices such as an electric motor may be used instead of the engine 200 .
  • the first boom hydraulic line 611 may connect the head side of the boom cylinder 710 and the first main pump 310 .
  • the second boom hydraulic line 612 may connect the rod side of the boom cylinder 720 and the first main pump 310 .
  • the first main pump 310 may selectively discharge hydraulic oil to one of the first boom hydraulic line 611 or the second boom hydraulic line 612 . . That is, when the first main pump 310 discharges hydraulic oil to the first boom hydraulic line 611 , the hydraulic oil flows into the head side of the boom cylinder 710 and the boom cylinder 710 is extended. Conversely, when the first main pump 310 discharges the hydraulic oil to the second boom hydraulic line 612 , the boom cylinder 710 is contracted while the hydraulic oil is introduced into the rod side of the boom cylinder 710 .
  • one embodiment of the present invention is not limited to the above, and even if the first main pump 310 discharges hydraulic oil in the same direction, the boom valve 510 to be described later is switched to change the operation direction of the boom cylinder 710 . It is also possible to switch As such, the first main pump 310 can basically supply hydraulic oil to the boom cylinder 710 .
  • the first turning hydraulic line 651 connects one side of the turning motor 750 and the second main pump 320 .
  • the second turning hydraulic line 652 connects the other side of the turning motor 750 and the second main pump 320 .
  • the second main pump 320 may selectively discharge hydraulic oil to one of the first turning hydraulic line 651 or the second turning hydraulic line 652. .
  • the second main pump 320 discharges hydraulic oil to the first turning hydraulic line 651 , the hydraulic oil is supplied to the turning motor 750 through the first turning hydraulic line 651 . At this time, one side of the turning motor 750 becomes an inlet port and the other side of the turning motor 750 becomes an exhaust port, and the turning motor 750 turns right. Conversely, when the second main pump 320 discharges hydraulic oil to the second turning hydraulic line 652 , the hydraulic oil is supplied to the other side of the turning motor 750 through the second turning hydraulic line 652 . At this time, the other side of the turning motor 750 becomes an inlet port, one side of the turning motor 750 becomes an exhaust port, and the turning motor 750 turns left.
  • one embodiment of the present invention is not limited to the above, and even if the second main pump 320 discharges hydraulic oil in the same direction, the rotation direction of the swing motor 750 is changed by switching the swing valve 550, which will be described later. It is also possible to switch
  • the bucket hydraulic line 630 is branched from the first turning hydraulic line 651 and is connected to the bucket cylinder 730 . Accordingly, the second main pump 320 basically supplies hydraulic oil to the swing motor 750 , but if necessary, it is possible to selectively supply hydraulic oil also to the bucket cylinder 730 .
  • the female hydraulic line 620 connects the head side of the female cylinder 720 and the third main pump 330 . Accordingly, the third main pump 330 can basically supply hydraulic oil to the arm cylinder 720 .
  • the arm bucket merging line 643 is branched from the arm hydraulic line 620 and is connected to the bucket hydraulic line 630 . Accordingly, the third main pump 330 basically supplies hydraulic oil to the arm cylinder 720 , but if necessary, it is possible to selectively supply hydraulic oil also to the bucket cylinder 730 .
  • the boom valve 510 is connected to the first boom hydraulic line 651 and the second boom hydraulic line 652 to control the hydraulic oil supplied to the boom cylinder 710 and the hydraulic oil discharged from the boom cylinder 710 .
  • the boom valve 510 may change the operating direction of the boom cylinder 710 through the switching operation.
  • the swing valve 550 is connected to the first swing hydraulic line 651 and the second swing hydraulic line 652 to control hydraulic oil supplied to the swing motor 750 and hydraulic oil discharged from the swing motor 750 . Also, as described above, the swing valve 550 may change the rotation direction of the swing motor 710 through a switching operation.
  • the female valve 520 is connected to the female hydraulic line 620 to control the hydraulic oil supplied to the female cylinder 720 through the female hydraulic line 620 .
  • the bucket valve 530 is connected to the bucket hydraulic line 630 to control the hydraulic oil supplied to the bucket cylinder 730 through the bucket hydraulic line 630 .
  • the drain tank 900 stores the hydraulic oil discharged from the arm cylinder 720 and the bucket cylinder 730 .
  • the drain line 690 connects the female cylinder 720 and the bucket cylinder 730 to the drain tank 900 .
  • the accumulator 880 may accumulate hydraulic oil discharged from one or more of the boom cylinder 710 and the swing motor 750 .
  • the boom regeneration valve 481 may be connected to the first boom hydraulic line 611 and the second boom hydraulic line 612 . And the boom regeneration line 681 may connect the boom regeneration valve 481 and the accumulator 880.
  • the boom regeneration valve 481 may move the hydraulic oil discharged from the boom cylinder 710 to the accumulator 880 or move the hydraulic oil accumulated in the accumulator 880 to the first main pump 310 .
  • the first main pump 310 may operate as a motor when supplied with hydraulic oil from the accumulator 880 . That is, the first main pump 310 may be both a bidirectional pump and a motor combined pump.
  • the first main pump 310 may operate with the hydraulic oil accumulated in the accumulator 880 to generate regenerative energy to supply energy to the engine 200 . That is, the first main pump 310 may operate with the high-pressure hydraulic oil accumulated in the accumulator 880 to generate power auxiliary to reduce fuel efficiency of the engine 200 .
  • the first main pump 310 may supply energy to the engine 200 by directly operating with the hydraulic oil discharged from the boom cylinder 710 when the boom is lowered.
  • the swing regenerative valve 485 is connected to the first swing hydraulic line 651 and the second swing hydraulic line 652 .
  • the swing regeneration line 685 may connect the swing regeneration valve 485 and the accumulator 880 .
  • the swing regeneration valve 485 may move the hydraulic oil discharged from the swing motor 750 to the accumulator 880 or move the hydraulic oil accumulated in the accumulator 880 to the second main pump 320 .
  • the second main pump 320 may also operate as a motor when the hydraulic oil is supplied from the accumulator 880 . That is, the second main pump 320 may also be a bidirectional pump and a motor combined pump.
  • the second main pump 320 may operate with the hydraulic oil accumulated in the accumulator 880 to generate regenerative energy to supply energy to the engine 200 . That is, the second main pump 320 operates with the high-pressure hydraulic oil accumulated in the accumulator 880 to generate power auxiliary to reduce the fuel efficiency of the engine 200 .
  • the second main pump 320 may supply energy to the engine 200 by operating with hydraulic oil discharged from the turning motor 550 when the turning motor 550 is decelerated.
  • the construction machine 101 can minimize the occurrence of energy loss during simultaneous operation of a plurality of driving devices.
  • construction machine 101 may improve energy use efficiency by recovering energy wasted from the driving device.
  • the construction machine 101 may operate in one of an excavation operation, a boom-up turning operation, a dump operation, and a work driving operation.
  • the above-described operations are only illustratively divided to explain the operation process of the construction machine 101 , and the construction machine 101 may perform various operations other than the above-mentioned operations.
  • the boom, bucket and arm operate. That is, when the boom, bucket, and arm are operated, the hydraulic oil discharged from the first main pump 310 is supplied to the boom cylinder 710 , and the hydraulic oil discharged from the second main pump 320 is replaced with the swing motor 750 .
  • the bucket cylinder 730 is supplied, and the hydraulic oil discharged from the third main pump 330 is supplied to the female cylinder 720 .
  • the hydraulic oil discharged from the first main pump 310 moves along the first boom hydraulic line 611 and is supplied to the boom cylinder 710 through the boom valve 510 .
  • the hydraulic oil discharged from the second main pump 320 moves along the bucket hydraulic line 630 and is supplied to the bucket cylinder 730 through the bucket valve 530 .
  • the swing valve 550 blocks the hydraulic oil supplied by the second main pump 320 to the swing motor 550 .
  • the hydraulic oil discharged from the third main pump 330 moves along the female hydraulic line 620 and is supplied to the female cylinder 730 through the female valve 530 .
  • the first main pump 310 discharges hydraulic oil according to the operation amount operated by the user of the operation device, not shown, and the second main pump 320 discharges hydraulic oil according to the required flow rate of the bucket cylinder 730,
  • the third main pump 330 discharges hydraulic oil according to the required flow rate of the female cylinder 720 .
  • the first main pump 310 , the second main pump 320 , and the third main pump 330 each supply hydraulic oil to one driving device, the hydraulic oil is supplied to each driving device at a pressure higher than necessary. Therefore, it is possible to minimize the wastage of energy.
  • the first main pump 31 during the excavation operation Hydraulic oil is supplied to the temporary boom cylinder 71 and the bucket cylinder 73 , and the second main pump 32 supplies hydraulic oil to the arm 72 .
  • the second arm valve 52b operates to replenish the hydraulic oil of the first main pump 31 to the arm cylinder 72 .
  • boom cylinder 71 , the arm cylinder 72 , and the bucket cylinder 73 are mainly used during the excavation operation of the conventional construction machine 10 shown in FIG. 1 .
  • descriptions of boom pilot, arm pilot, bucket pilot, and swing pilot mean signal pressures for driving the boom, arm, and bucket or swing driving, respectively.
  • the pressure of the boom valve, the arm valve, the bucket valve, and the swing valve can be seen as the pressure of the hydraulic oil supplied to the boom cylinder 71, the arm cylinder 72, the bucket cylinder 73, and the swing motor 75, respectively. have.
  • the hydraulic oil discharge pressure of the first main pump 31 and the second main pump 32 is a driving device requiring the highest operating pressure during excavation operation. determined on the basis of
  • the highest operating pressure is required for the bucket cylinder 73
  • the first main pump 31 for supplying hydraulic oil to the bucket cylinder 73 is the operating pressure of the bucket cylinder 73 .
  • the operating oil is discharged as a standard.
  • the first main pump 310 , the second main pump 320 , and the third main pump 330 are each boom cylinder 710 during the excavation operation. , since the hydraulic oil is supplied to the bucket cylinder 720 , and the arm cylinder 730 , it is possible to minimize the occurrence of energy loss as described above.
  • the boom, the swing motor 750 and the bucket operate. That is, during the operation of the boom, the swing motor 750 and the bucket, the hydraulic oil discharged from the first main pump 310 is supplied to the boom cylinder 710 , and the hydraulic oil discharged from the second main pump 320 is the swing motor It is supplied to the 750 , and the hydraulic oil discharged from the third main pump 330 is supplied to the bucket cylinder 730 instead of the female cylinder 720 .
  • the hydraulic oil discharged from the first main pump 310 moves along the first boom hydraulic line 611 and is supplied to the boom cylinder 710 through the boom valve 510 .
  • the hydraulic oil discharged from the second main pump 320 moves along the first swing hydraulic line 651 and is supplied to the swing motor 750 through the swing valve 550 .
  • the hydraulic oil discharged from the second main pump 320 according to the rotation direction of the swing motor 750 moves along the second swing hydraulic line 652 and is supplied to the swing motor 750 through the swing valve 550 .
  • the hydraulic oil discharged from the third main pump 330 moves along the arm bucket merging line 643 and the bucket hydraulic line 630 and is supplied to the bucket cylinder 730 through the bucket valve 530 .
  • the female valve 520 blocks the hydraulic oil supplied by the third main pump 330 to the female cylinder 720 .
  • the first main pump 310 discharges hydraulic oil according to the amount of operation the user manipulated the operation device (not shown), and the second main pump 320 discharges the hydraulic oil according to the required flow rate of the turning motor 750,
  • the third main pump 730 discharges hydraulic oil according to the required flow rate of the bucket cylinder 730 .
  • the first main pump 310 , the second main pump 320 , and the third main pump 330 basically supply hydraulic oil to one driving device, the pressure higher than necessary for each driving device is applied. It is possible to minimize wastage of energy because hydraulic oil is not supplied.
  • the first main pump ( 31) supplies hydraulic oil to the boom cylinder 71 and the bucket cylinder 73
  • the second main pump 32 supplies hydraulic oil to the swing motor 75
  • the second boom valve 51b operates 2
  • the main pump 32 additionally supplies hydraulic oil to the boom cylinder 71 .
  • the boom cylinder 71 the bucket cylinder 73 , and the turning motor 75 are mainly used during the boom-up turning operation of the conventional construction machine 10 shown in FIG. 1 .
  • the hydraulic oil discharge pressure of the first main pump 31 and the second main pump 32 is a driving device requiring the highest operating pressure during boom-up swing operation. is determined based on
  • the first main pump 310 discharges hydraulic oil according to the amount of operation the user manipulated by the operation device (not shown) during the boom-up swing operation
  • the second main pump 310 Since the pump 320 discharges hydraulic oil according to the required flow rate of the turning motor 750, and the third main pump 730 discharges the hydraulic oil according to the required flow rate of the bucket cylinder 730, the energy loss as described above occurrence can be minimized.
  • the boom, the swing motor 750, the arm, and the bucket operate.
  • energy is regenerated by using the inertia energy of the boom and turning. That is, it is possible to generate regenerative energy by operating the first main pump 310 and the second main pump 320 with the hydraulic oil discharged from the boom cylinder 710 and the swing motor 750 .
  • the first main pump 310 controls the speed of the boom
  • the second main pump 320 controls the swing speed
  • the hydraulic oil discharged from 330 is supplied to the arm cylinder 710 and the bucket cylinder 730 .
  • the hydraulic oil discharged from the third main pump 330 is supplied to the arm cylinder 720 through the arm valve 520 along the arm hydraulic line 620 , and the arm bucket merging line 643 and the bucket hydraulic line 630 . ) and is supplied to the bucket cylinder 730 through the bucket valve 530 .
  • the first main pump 310 controls the swash plate angle so that the speed of the boom cylinder 710 can be controlled according to the amount of operation the user manipulated the operation device, not shown, and the second main pump 320 is the user
  • the swash plate angle is controlled so that the turning speed of the turning motor 750 can be controlled according to the amount of operation of the manipulated operating device
  • the third main pump 330 is the required flow rate of the boom cylinder 710 and the bucket cylinder 730.
  • the hydraulic oil is discharged according to the required flow rate.
  • the first main pump 310 and the second main pump 320 may recover energy of the boom and swing to improve energy efficiency.
  • the first main pump 31 during the dump operation. Hydraulic oil is supplied to the temporary boom cylinder 71 and the bucket cylinder 73 , and the second main pump 32 supplies hydraulic oil to the arm cylinder 72 and the turning motor 75 .
  • a relatively high operating pressure is required for the turning motor 75 and the boom cylinder 71 during the dump operation of the conventional construction machine 10 shown in FIG. 1 , and the arm cylinder 72 and the bucket cylinder It can be seen that (73) requires a relatively low operating pressure. That is, the deviation between the operating pressure of the boom cylinder 71 supplied with the hydraulic oil from the first main pump 31 and the operating pressure of the bucket cylinder 73 is relatively large, and the The deviation between the operating pressure of the swing motor 75 and the operating pressure of the female cylinder 72 is also relatively large.
  • the first main pump 31 is the boom cylinder 71 with a high operating pressure among the boom cylinder 71 and the bucket cylinder 73 during the dump operation.
  • the hydraulic oil is discharged based on the operating pressure. Accordingly, energy loss occurs in the bucket valve 53 that supplies the hydraulic oil to the bucket cylinder 73 having a relatively low operating pressure.
  • the second main pump 32 discharges hydraulic oil based on the operating pressure of the swing motor 75 having a higher operating pressure among the swing motor 75 and the arm cylinder 72 during the dump operation. Accordingly, energy loss occurs in the first arm valve 52a that supplies hydraulic oil to the arm cylinder 72 having a relatively low operating pressure.
  • the first arm valve 52a that supplies the hydraulic oil discharged by the second main pump 32 to the arm cylinder 72 causes a loss corresponding to the area indicated by hatching in the graph of FIG. 11 .
  • the regenerable energy generated during the boom and turning process is converted into heat in the valve and lost.
  • the first main pump 310 and the second main pump 320 recover energy when the boom and the turning during the dump operation, and the third main pump 330 ) discharges the hydraulic oil according to the required flow rate of the arm cylinder 720 and the required flow rate of the bucket cylinder 730, so that the occurrence of energy loss as described above can be minimized.
  • the construction machine 101 uses three main pumps 310 , 320 , 330 to minimize the occurrence of energy loss during simultaneous operation of a plurality of driving devices. .
  • the construction machine according to an embodiment of the present invention can be used to minimize the occurrence of energy loss during simultaneous operation of a plurality of driving devices.
  • construction machine may be used to improve energy use efficiency by recovering energy wasted from the driving device.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

본 발명의 실시예에 따른 건설 기계는 붐을 구동하는 붐 실린더와, 선회체를 선회시키는 선회 모터와, 암을 구동하는 암 실린더와, 버켓을 구동하는 버켓 실린더와, 상기 붐 실린더에 작동유를 공급하되 양 방향으로 작동유를 토출하는 제1 메인 펌프와, 상기 선회 모터에 작동유를 공급하되 양 방향으로 작동유를 토출하는 제2 메인 펌프, 그리고 상기 암 실린더 또는 상기 버켓 실린더에 작동유를 공급하는 제3 메인 펌프를 포함한다.

Description

건설 기계
본 발명은 건설 기계에 관한 것으로, 더욱 상세하게는 복수의 유압 펌프를 사용하여 각종 구동 장치를 구동하는 건설 기계에 관한 것입니다.
건설 기계는 크게 토목 공사나 건축 공사 또는 산업 현장에 사용되는 모든 기계를 말한다. 일반적으로 건설 기계는 엔진과 엔진의 동력으로 동작하는 유압 펌프를 가지며, 엔진과 유압 펌프를 통해 발생한 동력으로 주행을 하거나 각종 작업 장치를 구동한다.
예를 들어, 건설 기계의 한 종류인 굴삭기는 토목, 건축, 건설 현장에서 땅을 파는 굴삭 작업, 토사를 운반하는 적재 작업, 건물을 해체하는 파쇄 작업, 지면을 정리하는 정지 작업 등의 작업을 수행하고 있다. 이를 위해 건설 기계는 굴삭 동작, 붐업 선회 동작, 덤프 동작, 및 작업 주행 동작 등과 같은 동작들을 수행한다. 그리고 건설 기계인 굴삭기는 이동을 위한 하부 주행체와, 하부 주행체에 탑재되어 선회하는 상부 선회체, 그리고 상부 선회체에 설치된 각종 작업 장치와 운전석을 포함한다.
또한, 도 1에 도시한 바와 같이, 종래의 건설 기계(10)는 2개의 메인 펌프(31, 32)가 작동유를 공급한다. 그리고 2개의 메인 펌프(31, 32)가 공급하는 작동유를 메인 컨트롤 밸브(main control valve, MCV)(50)에서 각 구동 장치로 배분한다. 이때, 각 메인 펌프(31, 32)별로 작동유를 공급하는 구동 장치들이 설정되어 있다.
구체적으로 예를 들어 설명해 보면, 구동 장치는 붐을 구동시키기 위한 붐 실린더(71), 암을 구동시키기 위한 암 실린더(72), 버켓을 구동시키기 위한 버켓 실린더(73), 상부 선회체의 선회를 위한 선회 모터(75), 주행을 위한 제1 주행 모터(76) 및 제2 주행 모터(77)를 포함한다.
그리고 메인 컨트롤 밸브(50)는 제1 메인 펌프(31)가 토출한 작동유를 붐 실린더(71)로 공급하기 위한 제1 붐 밸브(51a), 제1 메인 펌프(31)가 토출한 작동유를 제1 주행 모터(76)로 공급하기 위한 제1 주행 밸브(56), 제1 메인 펌프(31)가 토출한 작동유를 버켓 실린더(73)로 공급하기 위한 버켓 밸브(53), 제2 메인 펌프(32)가 토출한 작동유를 선회 모터(75)로 공급하기 위한 선회 밸브(55), 제2 메인 펌프(32)가 토출한 작동유를 제2 주행 모터(77)로 공급하기 위한 제2 주행 밸브(57), 제2 메인 펌프(32)가 토출한 작동유를 암 실린더(75)로 공급하기 위한 제1 암 밸브(52a), 건설 기계(10)에 옵션으로 장착된 장치를 구동시키기 위한 옵션 밸브(59), 주행 직진 시 제1 메인 펌프(31)가 토출한 작동유를 제1 주행 모터(76)와 함께 제2 주행 모터(77)로도 공급하기 위한 주행 직진 밸브(58), 제1 메인 펌프(31)가 토출한 작동유를 암 실린더(72)로 합류시키기 위한 제2 암 밸브(52b), 및 제2 메인 펌프(32)가 토출한 작동유를 붐 실린더(71)로 합류시키기 위한 제2 붐 밸브(51b)를 포함한다.
한편, 여러 구동 장치 중 붐 실린더(71)와 암 실린더(72)에는 부하에 따라 다른 구동 장치와 대비하여 상대적으로 대유량의 작동유가 요구된다. 이에, 메인 컨트롤 밸브(50)의 제1 붐 밸브(51a)가 제1 메인 펌프(31)가 토출한 작동유를 주로 붐 실린더(71)로 공급하지만, 제2 붐 밸브(51b)가 제2 메인 펌프(32)가 토출한 작동유를 보충적으로 붐 실린더(71)로 공급할 수도 있다. 또한, 메인 컨트롤 밸브(50)의 제1 암 밸브(52a)가 제2 메인 펌프(32)가 토출한 작동유를 주로 암 실린더(72)로 공급하지만, 제2 암 밸브(52b)가 제1 메인 펌프(31)가 토출한 작동유를 보충적으로 암 실린더(72)로 공급할 수도 있다.
전술한 바와 같이, 종래의 건설 기계(10)에서는, 메인 펌프(31, 32) 중 하나가 복수의 구동 장치에 작동유를 공급하는 경우가 생기게 된다. 그리고 구동 장치가 구동되기 위해 요구되는 작동유의 압력은 구동 장치마다 상이한데, 메인 펌프(31, 32) 중 하나가 복수의 구동 장치에 작동유를 공급하게 되면, 상대적으로 저압에서 작동하는 구동 장치에 많은 에너지 손실이 발생된다. 이는 메인 펌프(31, 32)는 작동유를 공급받는 복수의 구동 장치 중 가장 높은 압력으로 동작하는 구동 장치에 맞춰 작동유를 토출하도록 제어되기 때문이다. 따라서, 상대적으로 저압으로 구동되는 구동 장치에 필요 이상으로 높은 압력의 작동유가 공급된다.
예를 들어, 버켓 실린더(73)는 낮은 압력에서 동작하고 암 실린더(72)는 높은 압력에서 동작하는 상황인 경우, 버켓 실린더(73)에 작동유를 공급하는 제1 메인 펌프(31)는 버켓 실린더(73)의 작동 압력에 맞춰 상대적으로 낮은 압력의 작동유를 토출하고, 암 실린더(72)에 작동유를 공급하는 제2 메인 펌프(32)는 암 실린더(72)의 작동 압력에 맞춰 상대적으로 높은 압력의 작동유를 토출하게 된다. 그러다 암 실린더(72)에 공급되는 작동유를 보충하기 위하여 제2 암 밸브(52b)가 제1 메인 펌프(31)에서 토출된 작동유를 암 실린더(72)로 공급하면 제1 메인 펌프(31)에서 토출되는 작동유의 압력은 암 실린더(72)의 작동 압력으로 상승되며, 제1 메인 펌프(31)가 작동유를 공급하던 버켓 실린더(73)는 보다 낮은 압력에서 동작함에도 필요 이상으로 높은 압력의 작동유를 공급받게 되어 많은 에너지 손실이 발생되는 문제점이 있다.
본 발명의 실시예는 다수의 구동 장치가 동시 동작 시 에너지 손실의 발생을 최소화할 수 있는 건설 기계를 제공한다.
본 발명의 실시예에 따르면, 건설 기계는 붐을 구동하는 붐 실린더와, 선회체를 선회시키는 선회 모터와, 암을 구동하는 암 실린더와, 버켓을 구동하는 버켓 실린더와, 상기 붐 실린더에 작동유를 공급하거나 상기 붐 실린더에서 배출된 작동유를 회수하는 제1 메인 펌프와, 상기 선회 모터에 작동유를 공급하거나 상기 선회 모터에서 배출된 작동유를 회수하는 제2 메인 펌프, 그리고 상기 암 실린더 또는 상기 버켓 실린더에 작동유를 공급하는 제3 메인 펌프를 포함한다.
상기한 건설 기계는 상기 제1 메인 펌프에 연결된 엔진과, 상기 붐 실린더의 헤드측과 상기 제1 메인 펌프를 연결하는 제1 붐 유압 라인, 그리고 상기 붐 실린더의 로드측과 상기 제1 메인 펌프를 연결하는 제2 붐 유압 라인을 더 포함할 수 있다. 그리고 상기 제1 메인 펌프는 붐 하강 시 상기 붐 실린더에서 배출된 작동유로 동작하여 상기 엔진에 에너지를 공급할 수 있다.
또한, 상기한 건설 기계는 작동유를 축적하기 위한 어큐뮬레이터와, 상기 제1 붐 유압 라인과 상기 제2 붐 유압 라인에 연결된 붐 회생 밸브, 그리고 상기 붐 회생 밸브와 상기 어큐뮬레이터를 연결하는 붐 회생 라인을 더 포할 수 있다. 그리고 상기 제1 메인 펌프는 상기 어큐뮬레이터가 공급한 작동유로 동작하여 상기 엔진에 에너지를 공급할 수 있다.
또한, 상기한 건설 기계는 상기 선회 모터의 일 측과 상기 제2 메인 펌프를 연결하는 제1 선회 유압 라인과, 상기 선회 모터의 타 측과 상기 제2 메인 펌프를 연결하는 제2 선회 유압 라인을 더 포함할 수 있다. 그리고 상기 엔진은 상기 제2 메인 펌프와 연결되며, 상기 제2 메인 펌프는 상기 선회 모터의 선회 감속 시 상기 선회 모터에서 배출된 작동유로 동작하여 상기 엔진에 에너지를 공급할 수 있다.
또한, 상기한 건설 기계는 작동유를 축적하기 위한 어큐뮬레이터와, 상기 제1 선회 유압 라인과 상기 제2 선회 유압 라인에 연결된 선회 회생 밸브, 그리고 상기 선회 회생 밸브와 상기 어큐뮬레이터를 연결하는 선회 회생 라인을 더 포할 수 있다. 그리고 상기 제2 메인 펌프는 상기 어큐뮬레이터가 공급한 작동유로 동작하여 상기 엔진에 에너지를 공급할 수 있다.
상기 제1 메인 펌프는 상기 제1 붐 유압 라인 또는 상기 제2 붐 유압 라인 중 하나에 선택적으로 작동유를 토출하는 양 방향 펌프이고, 상기 제2 메인 펌프는 상기 제1 선회 유압 라인 또는 상기 제2 선회 유압 라인 중 하나에 선택적으로 작동유를 토출하는 양 방향 펌프일 수 있다.
또한, 상기한 건설 기계는 상기 암 실린더 및 상기 버켓 실린더에서 배출된 작동유를 저장하는 드레인 탱크와, 상기 암 실린더 및 상기 버켓 실린더와 상기 드레인 탱크를 연결하는 드레인 라인을 더 포함할 수 있다.
상기한 건설 기계는 상기 제1 메인 펌프, 상기 제2 메인 펌프, 및 상기 제3 메인 펌프에 연결되어 동력을 제공하는 엔진을 더 포함할 수 있다. 그리고 상기 제1 메인 펌프 및 상기 제2 메인 펌프 중 하나 이상이 회생 동작 시 상기 엔진에 부가적으로 에너지를 공급할 수 있다.
또한, 상기한 건설 기계에서, 상기 붐과 상기 버켓 그리고 상기 암의 동작 시, 상기 제1 메인 펌프에서 토출된 작동유는 상기 붐 실린더에 공급되고, 상기 제2 메인 펌프에서 토출된 작동유는 상기 선회 모터 대신 상기 버켓 실린더로 공급되며, 상기 제3 메인 펌프에서 토출된 작동유는 상기 암 실린더에 공급될 수 있다.
상기한 건설 기계는 상기 선회 모터에 공급되는 작동유를 제어하는 선회 밸브와, 상기 버켓 실린더에 작동유를 공급하기 위한 버켓 유압 라인을 더 포함할 수 있다. 그리고 상기 선회 밸브는 상기 제2 메인 펌프가 상기 선회 모터로 공급하는 작동유를 차단하고, 상기 제2 메인 펌프가 토출한 작동유는 상기 버켓 유압 라인을 통해 상기 버켓 실린더로 공급될 수 있다.
상기한 건설 기계에서, 상기 붐과 상기 선회 모터 그리고 상기 버켓 동작 시, 상기 제1 메인 펌프에서 토출된 작동유는 상기 붐 실린더에 공급되고, 상기 제2 메인 펌프에서 토출된 작동유는 상기 선회 모터에 공급되며, 상기 제3 메인 펌프에서 토출된 작동유는 상기 암 실린더 대신 상기 버켓 실린더로 공급될 수 있다.
상기한 건설 기계는 상기 암 실린더에 공급되는 작동유를 제어하는 암 밸브와, 상기 버켓 실린더와 연결된 암 버켓 합류 라인을 더 포함할 수 있다. 그리고 상기 암 밸브는 상기 제3 메인 펌프가 상기 암 실린더로 공급하는 작동유를 차단하고, 상기 제3 메인 펌프가 토출한 작동유는 상기 암 버켓 합류 라인을 통해 상기 버켓 실린더로 공급될 수 있다.
또한, 상기한 건설 기계에서, 상기 붐과 상기 선회 모터와 상기 암 그리고 상기 버켓 동작 시, 상기 제1 메인 펌프에서 토출된 작동유는 상기 붐 실린더에 공급되고, 상기 제2 메인 펌프에서 토출된 작동유는 상기 선회 모터에 공급되며, 상기 제3 메인 펌프에서 토출된 작동유는 상기 암 실린더와 함께 상기 버켓 실린더에도 공급될 수 있다.
상기한 건설 기계는 상기 암 실린더에 공급되는 작동유를 제어하는 암 밸브와, 상기 버켓 실린더에 공급되는 작동유를 제어하는 버켓 밸브를 더 포함할 수 있다. 그리고 상기 암 밸브와 상기 버켓 밸브는 각각 상기 제3 메인 펌프가 토출한 작동유를 상기 암 실린더와 상기 버켓 실린더로 공급할 수 있다.
본 발명의 실시예에 따르면, 건설 기계는 다수의 구동 장치의 동시 동작 시 에너지 손실의 발생을 최소화할 수 있다.
또한, 본 발명의 실시예에 따르면, 건설 기계는 구동 장치에서 버려지는 에너지를 회수하여 에너지 이용 효율을 향상시킬 수 있다.
도 1은 종래의 건설 기계의 유압 회로도이다.
도 2는 본 발명의 일 실시예에 따른 건설 기계의 유압 회로도이다.
도 3 내지 도 11는 도 1의 건설 기계의 동작 상태를 각각 나타낸 유압 회로도들과 그래프들이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
또한, 여러 실시예에 있어서, 동일한 구성을 가지는 구성요소에 대해서는 동일한 부호를 사용하여 대표적으로 제1 실시예에서 설명하고, 그 외의 제2 실시예에서는 제1 실시예와 다른 구성에 대해서만 설명하기로 한다.
도면들은 개략적이고 축척에 맞게 도시되지 않았다는 것을 일러둔다. 도면에 있는 부분들의 상대적인 치수 및 비율은 도면에서의 명확성 및 편의를 위해 그 크기에 있어 과장되거나 축소되어 도시되었으며 임의의 치수는 단지 예시적인 것이지 한정적인 것은 아니다. 그리고 둘 이상의 도면에 나타나는 동일한 구조물, 요소 또는 부품에는 동일한 참조 부호가 유사한 특징을 나타내기 위해 사용된다.
본 발명의 실시예는 본 발명의 이상적인 실시예를 구체적으로 나타낸다. 그 결과, 도해의 다양한 변형이 예상된다. 따라서 실시예는 도시한 영역의 특정 형태에 국한되지 않으며, 예를 들면 제조에 의한 형태의 변형도 포함한다.
이하, 도 2를 참조하여 본 발명의 제1 실시예에 따른 건설 기계(101)를 설명한다.
본 명세서에서는, 건설 기계(101)로 굴삭기를 예로 들어 설명한다. 즉, 건설 기계(101)는 이동을 위한 하부 주행체와, 하부 주행체에 탑재되어 선회하는 상부 선회체, 그리고 상부 선회체에 설치된 붐, 암, 및 버켓을 포함할 수 있다.
도 2에 도시한 바와 같이, 본 발명의 일 실시예에 따른 건설 기계(101)는 붐 실린더(710), 선회 모터(750), 암 실린더(720), 버켓 실린더(730), 제1 메인 펌프(310), 제2 메인 펌프(320), 및 제3 메인 펌프(330)를 포함한다.
또한, 본 발명의 일 실시예에 따른 건설 기계(101)는 제1 붐 유압 라인(611), 제2 붐 유압 라인(612), 제1 선회 유압 라인(651), 제2 선회 유압 라인(652), 암 유압 라인(620), 버켓 유압 라인(630), 암 버켓 합류 라인(643), 붐 밸브(510), 선회 밸브(550), 암 밸브(520), 버켓 밸브(530), 어큐뮬레이터(880), 붐 회생 밸브(481), 붐 회생 라인(681), 선회 회생 밸브(485), 선회 회생 라인(685), 엔진(200), 드레인 탱크(900), 및 드레인 라인(690)을 더 포함할 수 있다.
또한, 도시하지는 않았으나, 건설 기계(101)는 하부 주행체를 주행시키기 위한 2개의 주행 모터를 더 포함할 수 있다.
붐 실린더(710), 암 실린더(720), 및 버켓 실린더(730)는 각각 붐, 암, 및 버켓을 구동한다. 즉, 붐 실린더(710), 암 실린더(720), 및 버켓 실린더(730)는 건설 기계(101)의 작업 장치를 동작시킨다. 또한, 붐 실린더(710), 암 실린더(720), 및 버켓 실린더(730)는 각각 헤드측과 로드측을 포함한다.
선회 모터(750)는 하부 주행체에 탑재된 상부 선회체를 선회 운동시킨다.
전술한 바와 같이, 붐 실린더(710), 암 실린더(720), 버켓 실린더(730), 및 선회 모터(750)는 건설 기계(101)에 사용되는 대표적인 구동 장치들이다.
제1 메인 펌프(310), 제2 메인 펌프(320), 및 제3 메인 펌프(330)는 각종 구동 장치를 동작시키기 위한 작동유를 토출한다. 즉, 제1 메인 펌프(310), 제2 메인 펌프(320), 및 제3 메인 펌프(330)에서 토출된 작동유는 여러 밸브들을 통해 각종 구동 장치들로 공급된다. 또한, 제1 메인 펌프(310), 제2 메인 펌프(320), 및 제3 메인 펌프(330)는 사판의 각도에 따라 토출되는 작동유의 유량이 가변하는 가변 용량형 펌프일 수 있다.
구체적으로, 본 발명의 일 실시예에서는, 제1 메인 펌프(310)는 기본적으로 붐 실린더(710)에 작동유를 공급할 수 있다. 제2 메인 펌프(320)는 기본적으로 선회 모터(750)에 작동유를 공급할 수 있다. 그리고 제3 메인 펌프(330)는 암 실린더(720) 또는 버켓 실린더(730)에 작동유를 공급할 수 있다.
또한, 필요에 따라, 제2 메인 펌프(320)는 선회 모터(750) 대신 버켓 실린더(730)로 작동유를 공급할 수 있으며, 제3 메인 펌프(330)는 암 실린더(720)로 작동유를 공급하거나 암 실린더(720) 대신 버켓 실린더(730)로 작동유를 공급하거나 암 실린더(720)와 버켓 실린더(730)에 동시에 작동유를 공급할 수도 있다.
또한, 제1 메인 펌프(310)와 제2 메인 펌프(320)는 양 방향 펌프이고, 제3 메인 펌프(330)는 단 방향 펌프일 수 있다. 하지만, 본 발명의 일 실시예가 이에 한정되는 것은 아니며, 제1 메인 펌프(310)와 제2 메인 펌프(320)도 단 방향 펌프일 수 있다. 제1 메인 펌프(310)와 제2 메인 펌프(320)가 단 방향 펌프인 경우 후술할 붐 밸브(510)와 선회 밸브(550)를 통해 붐 실린더(710)와 선회 모터(750)로 공급되는 작동유의 공급 방향을 전환시킬 수 있다.
엔진(200)은 제1 메인 펌프(310), 제2 메인 펌프(320), 및 제3 메인 펌프(330)와 연결되어 동력을 제공한다. 엔진(200)은 연료를 연소시켜 동력을 발생시킨다. 예를 들어, 엔진(200)은 디젤 엔진이거나 액화 천연 가스(LNG) 엔진, 압축 천연 가스(CNG) 엔진, 흡착 천연 가스(ANG) 엔진, 액화 석유 가스(LPG) 엔진, 또는 가솔린 엔진일 수 있다. 하지만, 본 발명의 일 실시예가 전술한 바에 한정되는 것은 아니며, 엔진(200) 대신 전기 모터 등 다른 동력 장치가 사용될 수도 있다.
제1 붐 유압 라인(611)은 붐 실린더(710)의 헤드측과 제1 메인 펌프(310)를 연결할 수 있다.
제2 붐 유압 라인(612)은 붐 실린더(720)의 로드측과 제1 메인 펌프(310)를 연결할 수 있다.
그리고 제1 메인 펌프(310)는 양 방향 펌프이므로, 제1 메인 펌프(310)는 제1 붐 유압 라인(611) 또는 제2 붐 유압 라인(612) 중 하나에 선택적으로 작동유를 토출할 수 있다. 즉, 제1 메인 펌프(310)가 제1 붐 유압 라인(611)으로 작동유를 토출하면, 붐 실린더(710)의 헤드측으로 작동유가 유입되면서 붐 실린더(710)는 신장된다. 반대로, 제1 메인 펌프(310)가 제2 붐 유압 라인(612)으로 작동유를 토출하면, 붐 실린더(710)의 로드측으로 작동유가 유입되면서 붐 실린더(710)는 수축된다. 하지만, 본 발명의 일 실시예가 전술한 바에 한정되는 것은 아니며, 제1 메인 펌프(310)가 동일한 방향으로 작동유를 토출하더라도 후술할 붐 밸브(510)를 전환시켜 붐 실린더(710)의 작동 방향을 전환하는 것도 가능하다. 이와 같이, 제1 메인 펌프(310)는 기본적으로 붐 실린더(710)에 작동유를 공급할 수 있게 된다.
제1 선회 유압 라인(651)은 선회 모터(750)의 일 측과 제2 메인 펌프(320)를 연결한다.
제2 선회 유압 라인(652)은 선회 모터(750)의 타 측과 제2 메인 펌프(320)를 연결한다.
그리고 제2 메인 펌프(320)는 양 방향 펌프이므로, 제2 메인 펌프(320)는 제1 선회 유압 라인(651) 또는 제2 선회 유압 라인(652) 중 하나에 선택적으로 작동유를 토출할 수 있다.
예를 들어, 제2 메인 펌프(320)가 제1 선회 유압 라인(651)으로 작동유를 토출하면, 제1 선회 유압 라인(651)을 통해 선회 모터(750)에 작동유가 공급된다. 이때, 선회 모터(750)의 일 측은 유입 포트가 되고 선회 모터(750)의 타 측은 배출 포트가 되며, 선회 모터(750)는 우선회 하게 된다. 반대로, 제2 메인 펌프(320)가 제2 선회 유압 라인(652)으로 작동유를 토출하면, 제2 선회 유압 라인(652)을 통해 선회 모터(750)의 타 측으로 작동유가 공급된다. 이때, 선회 모터(750)의 타 측은 유입 포트가 되고 선회 모터(750)의 일 측은 배출 포트가 되며, 선회 모터(750)는 좌선회 하게 된다.
하지만, 본 발명의 일 실시예가 전술한 바에 한정되는 것은 아니며, 제2 메인 펌프(320)가 동일한 방향으로 작동유를 토출하더라도 후술할 선회 밸브(550)를 전환시켜 선회 모터(750)의 회전 방향을 전환하는 것도 가능하다.
버켓 유압 라인(630)은 제1 선회 유압 라인(651)에서 분기되어 버켓 실린더(730)와 연결된다. 이에, 제2 메인 펌프(320)는 기본적으로 선회 모터(750)에 작동유를 공급하지만, 필요에 따라, 버켓 실린더(730)에도 선택적으로 작동유를 공급할 수 있게 된다.
암 유압 라인(620)은 암 실린더(720)의 헤드측과 제3 메인 펌프(330)를 연결한다. 이에, 제3 메인 펌프(330)는 기본적으로 암 실린더(720)에 작동유를 공급할 수 있게 된다.
암 버켓 합류 라인(643)은 암 유압 라인(620)에서 분기되어 버켓 유압 라인(630)과 연결된다. 이에, 제3 메인 펌프(330)는 기본적으로 암 실린더(720)에 작동유를 공급하지만, 필요에 따라, 버켓 실린더(730)에도 선택적으로 작동유를 공급할 수 있게 된다.
붐 밸브(510)는 제1 붐 유압 라인(651) 및 제2 붐 유압 라인(652)에 연결되어 붐 실린더(710)에 공급되는 작동유 및 붐 실린더(710)에서 배출되는 작동유를 제어한다. 또한, 전술한 바와 같이, 붐 밸브(510)는 전환 동작을 통해 붐 실린더(710)의 작동 방향을 전환시킬 수 있다.
선회 밸브(550)는 제1 선회 유압 라인(651) 및 제2 선회 유압 라인(652)에 연결되어 선회 모터(750)에 공급되는 작동유 및 선회 모터(750)에서 배출되는 작동유를 제어한다. 또한, 전술한 바와 같이, 선회 밸브(550)는 전환 동작을 통해 선회 모터(710)의 회전 방향을 전환시킬 수 있다.
암 밸브(520)는 암 유압 라인(620)에 연결되어 암 유압 라인(620)을 통해 암 실린더(720)에 공급되는 작동유를 제어한다.
버켓 밸브(530)는 버켓 유압 라인(630)에 연결되어 버켓 유압 라인(630)을 통해 버켓 실린더(730)에 공급되는 작동유를 제어한다.
드레인 탱크(900)는 암 실린더(720) 및 버켓 실린더(730)에서 배출된 작동유를 저장한다.
드레인 라인(690)은 암 실린더(720) 및 버켓 실린더(730)와 드레인 탱크(900)를 연결한다.
어큐뮬레이터(880)는 붐 실린더(710) 및 선회 모터(750) 중 하나 이상으로부터 배출된 작동유를 축적할 수 있다.
붐 회생 밸브(481)는 제1 붐 유압 라인(611)과 제2 붐 유압 라인(612)에 연결될 수 있다. 그리고 붐 회생 라인(681)은 붐 회생 밸브(481)와 어큐뮬레이터(880)를 연결할 수 있다.
이에, 붐 회생 밸브(481)는 붐 실린더(710)에서 배출된 작동유를 어큐뮬레이터(880)로 이동시키거나 어큐뮬레이터(880)에 축적된 작동유를 제1 메인 펌프(310)로 이동시킬 수 있다. 그리고 제1 메인 펌프(310)는 어큐뮬레이터(880)로부터 작동유를 공급받으면 모터로 동작할 수 있다. 즉, 제1 메인 펌프(310)는 양 방향 펌프이자 모터 겸용 펌프일 수 있다.
이와 같이, 제1 메인 펌프(310)가 어큐뮬레이터(880)에 축적된 작동유로 동작하여 회생 에너지를 생성하여 엔진(200)에 에너지를 공급할 수 있다. 즉, 제1 메인 펌프(310)는 어큐뮬레이터(880)에 축적된 고압의 작동유로 동작하여 보조적으로 동력을 생산하여 엔진(200)의 연비를 절감시킬 수 있다.
한편, 제1 메인 펌프(310)는 붐 하강 시 붐 실린더(710)에서 배출된 작동유로 직접 동작하여 엔진(200)에 에너지를 공급할 수도 있다.
선회 회생 밸브(485)는 제1 선회 유압 라인(651)과 제2 선회 유압 라인(652)에 연결된다. 그리고 선회 회생 라인(685)은 선회 회생 밸브(485)와 어큐뮬레이터(880)를 연결할 수 있다.
이에, 선회 회생 밸브(485)는 선회 모터(750)에서 배출된 작동유를 어큐뮬레이터(880)로 이동시키거나 어큐뮬레이터(880)에 축적된 작동유를 제2 메인 펌프(320)로 이동시킬 수 있다. 그리고 제2 메인 펌프(320)도 어큐뮬레이터(880)로부터 작동유를 공급받으면 모터로 동작할 수 있다. 즉, 제2 메인 펌프(320)도 양 방향 펌프이자 모터 겸용 펌프일 수 있다.
이와 같이, 제2 메인 펌프(320)가 어큐뮬레이터(880)에 축적된 작동유로 동작하여 회생 에너지를 생성하여 엔진(200)에 에너지를 공급할 수 있다. 즉, 제2 메인 펌프(320)는 어큐뮬레이터(880)에 축적된 고압의 작동유로 동작하여 보조적으로 동력을 생산하여 엔진(200)의 연비를 절감시킬 수 있다.
한편, 제2 메인 펌프(320)는 선회 모터(550)의 선회 감속 시 선회 모터(550)에서 배출된 작동유로 동작하여 엔진(200)에 에너지를 공급할 수도 있다.
이와 같은 구성에 의하여, 본 발명의 일 실시예에 따른 건설 기계(101)는 다수의 구동 장치의 동시 동작 시 에너지 손실의 발생을 최소화할 수 있다.
또한, 본 발명의 일 실시예에 따른 건설 기계(101)는 구동 장치에서 버려지는 에너지를 회수하여 에너지 이용 효율을 향상시킬 수 있다.
이하, 도 3 내지 도 13을 참조하여 본 발명의 일 실시예에 따른 건설 기계(101)의 동작 과정을 상세히 설명한다.
본 발명의 일 실시예에 따른 건설 기계(101)는 굴삭 동작, 붐업 선회 동작, 덤프 동작, 및 작업 주행 동작 중 하나로 동작 가능하다. 하지만, 전술한 동작들은 건설 기계(101)의 동작 과정을 설명하기 위해 예시적으로 구분한 것일 뿐이며, 건설 기계(101)는 앞서 언급한 동작 이외의 다양한 동작들도 수행할 수 있다.
먼저, 도 3을 참조하여 본 발명의 일 실시예에 따른 건설 기계(101)의 굴삭 동작을 살펴본다.
굴삭 동작에서는 붐과 버켓 그리고 암이 동작한다. 즉, 붐과 버켓 그리고 암의 동작 시, 제1 메인 펌프(310)에서 토출된 작동유는 붐 실린더(710)에 공급되고, 제2 메인 펌프(320)에서 토출된 작동유는 선회 모터(750) 대신 버켓 실린더(730)로 공급되며, 제3 메인 펌프(330)에서 토출된 작동유는 암 실린더(720)에 공급된다.
구체적으로, 제1 메인 펌프(310)에서 토출된 작동유는 제1 붐 유압 라인(611)을 따라 이동하여 붐 밸브(510)를 거쳐 붐 실린더(710)로 공급된다. 제2 메인 펌프(320)에서 토출된 작동유는 버켓 유압 라인(630)을 따라 이동하여 버켓 밸브(530)를 거쳐 버켓 실린더(730)로 공급된다. 그리고 선회 밸브(550)는 제2 메인 펌프(320)가 선회 모터(550)로 공급하는 작동유를 차단한다. 제3 메인 펌프(330)에서 토출된 작동유는 암 유압 라인(620)을 따라 이동하여 암 밸브(530)를 거쳐 암 실린더(730)로 공급된다.
그리고 제1 메인 펌프(310)는 도시되지 않은 조작 장치를 사용자가 조작시킨 조작량에 맞춰 작동유를 토출하고, 제2 메인 펌프(320)는 버켓 실린더(730)의 요구 유량에 맞춰 작동유를 토출하며, 제3 메인 펌프(330)는 암 실린더(720)의 요구 유량에 맞춰 작동유를 토출하게 된다.
이와 같이, 제1 메인 펌프(310), 제2 메인 펌프(320), 및 제3 메인 펌프(330)가 각각 하나의 구동 장치에 작동유를 공급하므로, 각 구동 장치에 필요 이상의 압력으로 작동유가 공급되지 않아 에너지가 낭비되는 것을 최소화할 수 있게 된다.
앞서, 도 1에서 나타낸 바와 같은 종래의 건설 기계(10)의 굴삭 동작 과정을 본 발명의 일 실시예와 대비하여 살펴보면, 도 1의 건설 기계(10)에서는 굴삭 동작 시 제1 메인 펌프(31)가 붐 실린더(71)와 버켓 실린더(73)에 작동유를 공급하고, 제2 메인 펌프(32)가 암(72)에 작동유를 공급하게 된다.
그리고 암(72)에 대유량의 작동유가 요구되면, 제2 암 밸브(52b)가 동작하여 제1 메인 펌프(31)의 작동유를 암 실린더(72)에 보충하게 된다.
도 4를 살펴보면, 도 1에 도시한 종래의 건설 기계(10)의 굴삭 동작 시 붐 실린더(71), 암 실린더(72), 및 버켓 실린더(73)가 주로 사용됨을 알 수 있다. 도 4에서, 붐 파일럿, 암 파일럿, 버켓 파일럿, 및 선회 파일럿으로 기재된 것은 각각 붐, 암, 및 버켓을 구동하거나 선회 구동을 위한 신호 압력을 의미한다. 그리고 붐 밸브, 암 밸브, 버켓 밸브, 및 선회 밸브의 압력은 각각 붐 실린더(71), 암 실린더(72), 버켓 실린더(73), 및 선회 모터(75)에 공급되는 작동유의 압력으로 볼 수 있다.
각 구동 장치의 동작 속도는 각 밸브의 개구 면적에 의해 제어되므로, 제1 메인 펌프(31) 및 제2 메인 펌프(32)의 작동유 토출 압력은 굴삭 동작 시 가장 높은 작동 압력이 요구되는 구동 장치를 기준으로 결정된다.
그리고 도 4에서, 버켓 실린더(73)에 가장 높은 작동 압력이 요구됨을 알 수 있으며, 이에 버켓 실린더(73)에 작동유를 공급하는 제1 메인 펌프(31)는 버켓 실린더(73)의 작동 압력을 기준으로 작동유를 토출하게 된다.
이때, 제1 메인 펌프(31)로부터 버켓 실린더(73)와 함께 작동유를 공급받지만 상대적으로 작동 압력이 낮은 붐 실린더(71)와 암 실린더(72)에 각각 작동유를 공급하는 제1 붐 밸브(51a)와 제1 암 밸브(52a)에서 도 5의 그래프에서 해칭 표시된 면적만큼 손실이 발생하게 된다.
하지만, 본 발명의 일 실시예에 따른 건설 기계(101)에서는 굴삭 동작 시 제1 메인 펌프(310), 제2 메인 펌프(320), 및 제3 메인 펌프(330)가 각각 붐 실린더(710), 버켓 실린더(720), 및 암 실린더(730)에 작동유를 공급하므로, 전술한 바와 같은 에너지 손실의 발생을 최소화할 수 있다.
다음, 도 6을 참조하여 본 발명의 일 실시예에 따른 건설 기계(101)의 붐업 선회 동작을 살펴본다.
붐업 선회 동작에서는 붐과 선회 모터(750) 그리고 버켓이 동작한다. 즉, 붐과 선회 모터(750) 그리고 버켓의 동작 시, 제1 메인 펌프(310)에서 토출된 작동유는 붐 실린더(710)에 공급되고, 제2 메인 펌프(320)에서 토출된 작동유는 선회 모터(750)에 공급되며, 제3 메인 펌프(330)에서 토출된 작동유는 암 실린더(720) 대신 버켓 실린더(730)로 공급된다.
구체적으로, 제1 메인 펌프(310)에서 토출된 작동유는 제1 붐 유압 라인(611)을 따라 이동하여 붐 밸브(510)를 거쳐 붐 실린더(710)로 공급된다. 제2 메인 펌프(320)에서 토출된 작동유는 제1 선회 유압 라인(651)을 따라 이동하여 선회 밸브(550)를 거쳐 선회 모터(750)로 공급된다. 한편, 선회 모터(750)의 회전 방향에 따라 제2 메인 펌프(320)에서 토출된 작동유는 제2 선회 유압 라인(652)을 따라 이동하여 선회 밸브(550)를 거쳐 선회 모터(750)로 공급될 수도 있다. 제3 메인 펌프(330)에서 토출된 작동유는 암 버켓 합류 라인(643)과 버켓 유압 라인(630)을 따라 이동하여 버켓 밸브(530)를 거쳐 버켓 실린더(730)로 공급된다. 그리고 암 밸브(520)는 제3 메인 펌프(330)가 암 실린더(720)로 공급하는 작동유를 차단한다.
그리고 제1 메인 펌프(310)는 도시되지 않은 조작 장치를 사용자가 조작시킨 조작량에 맞춰 작동유를 토출하고, 제2 메인 펌프(320)는 선회 모터(750)의 요구 유량에 맞춰 작동유를 토출하며, 제3 메인 펌프(730)는 버켓 실린더(730)의 요구 유량에 맞춰 작동유를 토출하게 된다.
이와 같이, 제1 메인 펌프(310), 제2 메인 펌프(320), 및 제3 메인 펌프(330)가 기본적으로는 각각 하나의 구동 장치에 작동유를 공급하므로, 각 구동 장치에 필요 이상의 압력으로 작동유가 공급되지 않아 에너지가 낭비되는 것을 최소화할 수 있게 된다.
앞서, 도 1에서 나타낸 바와 같은 종래의 건설 기계(10)의 붐업 선회 동작 과정을 본 발명의 일 실시예와 대비하여 살펴보면, 도 1의 건설 기계(10)에서는 붐업 선회 동작 시 제1 메인 펌프(31)가 붐 실린더(71)와 버켓 실린더(73)에 작동유를 공급하고, 제2 메인 펌프(32)가 선회 모터(75)에 작동유를 공급함과 동시에 제2 붐 밸브(51b)가 동작하여 제2 메인 펌프(32)가 붐 실린더(71)에 작동유를 추가적으로 공급하게 된다.
도 7을 살펴보면, 도 1에 도시한 종래의 건설 기계(10)의 붐업 선회 동작 시 붐 실린더(71), 버켓 실린더(73), 및 선회 모터(75)가 주로 사용됨을 알 수 있다.
각 구동 장치의 동작 속도는 각 밸브의 개구 면적에 의해 제어되므로, 제1 메인 펌프(31) 및 제2 메인 펌프(32)의 작동유 토출 압력은 붐업 선회 동작 시 가장 높은 작동 압력이 요구되는 구동 장치를 기준으로 결정된다.
그리고 도 7에서 선회 모터(75)에 가장 높은 작동 압력이 요구됨을 알 수 있으며, 이에 선회 모터(75)에 작동유를 공급하는 제2 메인 펌프(32)는 선회 모터(75)의 작동 압력을 기준으로 작동유를 토출하게 된다.
이때, 제2 메인 펌프(31)로부터 선회 모터(75)와 함께 작동유를 공급받지만 상대적으로 작동 압력이 낮은 붐 실린더(71)에 작동유를 공급하는 제1 붐 밸브(51a)에서서 도 8의 그래프에서 해칭 표시된 면적만큼 손실이 발생하게 된다.
하지만, 본 발명의 일 실시예에 따른 건설 기계(101)에서는 붐 업 선회 동작 시 제1 메인 펌프(310)가 도시되지 않은 조작 장치를 사용자가 조작시킨 조작량에 맞춰 작동유를 토출하고, 제2 메인 펌프(320)가 선회 모터(750)의 요구 유량에 맞춰 작동유를 토출하며, 제3 메인 펌프(730)가 버켓 실린더(730)의 요구 유량에 맞춰 작동유를 토출하므로, 전술한 바와 같은 에너지 손실의 발생을 최소화할 수 있다.
다음, 도 9를 참조하여 본 발명의 일 실시예에 따른 건설 기계의 덤프 동작을 살펴본다.
덤프 동작에서는 붐과 선회 모터(750)와 암 그리고 버켓이 동작한다. 덤프 동작에서는 붐과 선회의 관성 에너지를 이용하여 에너지를 회생시킨다. 즉, 붐 실린더(710)와 선회 모터(750)에서 배출된 작동유로 제1 메인 펌프(310)와 제2 메인 펌프(320)를 동작시켜 회생 에너지를 생성할 수 있다. 이때, 붐과 선회 모터(750)와 암 그리고 버켓의 동작 시, 제1 메인 펌프(310)는 붐의 속도를 제어하고, 제2 메인 펌프(320)에서 선회 속도를 제어하며, 제3 메인 펌프(330)에서 토출된 작동유는 암 실린더(710)와 버켓 실린더(730)에 공급된다. 그리고 제3 메인 펌프(330)에서 토출된 작동유는 암 유압 라인(620)을 따라 암 밸브(520)를 거쳐 암 실린더(720)로 공급되고, 암 버켓 합류 라인(643)과 버켓 유압 라인(630)을 따라 이동하여 버켓 밸브(530)를 거쳐 버켓 실린더(730)로도 공급된다.
그리고 제1 메인 펌프(310)는 도시되지 않은 조작 장치를 사용자가 조작시킨 조작량에 맞춰 붐 실린더(710)의 속도가 제어될 수 있도록 사판각을 제어하고, 제2 메인 펌프(320)는 사용자가 조작시킨 조작 장치의 조작량에 맞춰 선회 모터(750)의 선회 속도가 제어될 수 있도록 사판각을 제어하며, 제3 메인 펌프(330)는 붐 실린더(710)의 요구 유량과 및 버켓 실린더(730)의 요구 유량에 맞춰 작동유를 토출하게 된다.
이와 같이, 제1 메인 펌프(310)와 제2 메인 펌프(320)는 붐과 선회의 에너지를 회수하여 에너지 효율을 향상시킬 수 있다.
앞서, 도 1에서 나타낸 바와 같은 종래의 건설 기계(10)의 덤프 동작 과정을 본 발명의 일 실시예와 대비하여 살펴보면, 도 1의 건설 기계(10)에서는 덤프 동작 시 제1 메인 펌프(31)가 붐 실린더(71)와 버켓 실린더(73)에 작동유를 공급하고, 제2 메인 펌프(32)가 암 실린더(72)와 선회 모터(75)에 작동유를 공급하게 된다.
도 10을 살펴보면, 도 1에 도시한 종래의 건설 기계(10)의 덤프 동작 시 선회 모터(75)와 붐 실린더(71)에는 상대적으로 높은 작동 압력이 요구되고, 암 실린더(72)와 버켓 실린더(73)에는 상대적으로 낮은 작동 압력이 요구됨을 알 수 있다. 즉, 제1 메인 펌프(31)로부터 작동유를 공급받는 붐 실린더(71)의 작동 압력과 버켓 실린더(73)의 작동 압력 간의 편차가 상대적으로 크며, 제2 메인 펌프(32)로부터 작동유를 공급받은 선회 모터(75)의 작동 압력과 암 실린더(72)의 작동 압력 간의 편차도 상대적으로 크다.
각 구동 장치의 동작 속도는 각 밸브의 개구 면적에 의해 제어되므로, 제1 메인 펌프(31)는 덤프 동작 시 붐 실린더(71)와 버켓 실린더(73) 중 작동 압력이 높은 붐 실린더(71)의 작동 압력을 기준으로 작동유를 토출하게 된다. 따라서 작동 압력이 상대적으로 낮은 버켓 실린더(73)에 작동유를 공급하는 버켓 밸브(53)에서 에너지 손실이 발생된다. 또한, 제2 메인 펌프(32)는 덤프 동작 시 선회 모터(75)와 암 실린더(72) 중 작동 압력이 높은 선회 모터(75)의 작동 압력을 기준으로 작동유를 토출하게 된다. 따라서 작동 압력이 상대적으로 낮은 암 실린더(72)에 작동유를 공급하는 제1 암 밸브(52a)에서 에너지 손실이 발생된다. 이때, 제2 메인 펌프(32)가 토출한 작동유를 암 실린더(72)로 공급하는 제1 암 밸브(52a)에서 도 11의 그래프에서 해칭 표시된 면적만큼 손실이 발생하게 된다. 또한, 붐과 선회 과정에서 발생하는 회생 가능한 에너지는 밸브에서 열로 변환되어 소실된다.
하지만, 본 발명의 일 실시예에 따른 건설 기계(101)에서는 덤프 동작 시 제1 메인 펌프(310)와 제2 메인 펌프(320)가 붐과 선회 시 에너지를 회수하고, 제3 메인 펌프(330)가 암 실린더(720)의 요구 유량과 및 버켓 실린더(730)의 요구 유량에 맞춰 작동유를 토출하므로, 전술한 바와 같은 에너지 손실의 발생을 최소화할 수 있다.
전술한 바와 같이, 본 발명의 일 실시예에 따른 건설 기계(101)는 3개의 메인 펌프(310, 320, 330)를 사용하여 다수의 구동 장치의 동시 동작 시 에너지 손실의 발생을 최소화할 수 있다.
이상 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.
그러므로 이상에서 기술한 실시예는 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해되어야 하고, 본 발명의 범위는 상기 상세한 설명은 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
< 부호의 설명 >
101: 건설 기계
200: 엔진
310: 제1 메인 펌프
320: 제2 메인 펌프
330: 제3 메인 펌프
481: 붐 회생 밸브
485: 선회 회생 밸브
510: 붐 밸브
520: 암 밸브
530: 버켓 밸브
550: 선회 밸브
611: 제1 붐 유압 라인
612: 제2 붐 유압 라인
620: 암 유압 라인
630: 버켓 유압 라인
643: 암 버켓 합류 라인
651: 제1 선회 유압 라인
652: 제2 선회 유압 라인
681: 붐 회생 라인
685: 선회 회생 라인
690: 드레인 라인
710: 붐 실린더
720: 암 실린더
730: 버켓 실린더
750: 선회 모터
880: 어큐뮬레이터
본 발명의 실시예에 따른 건설 기계는 다수의 구동 장치의 동시 동작 시 에너지 손실의 발생을 최소화하는데 사용할 수 있다.
또한, 본 발명의 실시예에 따른 건설 기계는 구동 장치에서 버려지는 에너지를 회수하여 에너지 이용 효율을 향상시키는데 사용될 수 있다.

Claims (15)

  1. 붐을 구동하는 붐 실린더;
    선회체를 선회시키는 선회 모터;
    암을 구동하는 암 실린더;
    버켓을 구동하는 버켓 실린더;
    상기 붐 실린더에 작동유를 공급하거나 상기 붐 실린더에서 배출된 작동유를 회수하는 제1 메인 펌프;
    상기 선회 모터에 작동유를 공급하거나 상기 선회 모터에서 배출된 작동유를 회수하는 제2 메인 펌프; 및
    상기 암 실린더 또는 상기 버켓 실린더에 작동유를 공급하는 제3 메인 펌프
    를 포함하는 건설 기계.
  2. 제1항에 있어서,
    상기 제1 메인 펌프에 연결된 엔진;
    상기 붐 실린더의 헤드측과 상기 제1 메인 펌프를 연결하는 제1 붐 유압 라인; 및
    상기 붐 실린더의 로드측과 상기 제1 메인 펌프를 연결하는 제2 붐 유압 라인
    을 더 포함하며,
    상기 제1 메인 펌프는 붐 하강 시 상기 붐 실린더에서 배출된 작동유로 동작하여 상기 엔진에 에너지를 공급하는 것을 특징으로 하는 건설 기계.
  3. 제2항에 있어서,
    작동유를 축적하기 위한 어큐뮬레이터와;
    상기 제1 붐 유압 라인과 상기 제2 붐 유압 라인에 연결된 붐 회생 밸브; 그리고
    상기 붐 회생 밸브와 상기 어큐뮬레이터를 연결하는 붐 회생 라인
    를 더 포함하고,
    상기 제1 메인 펌프는 상기 어큐뮬레이터가 공급한 작동유로 동작하여 상기 엔진에 에너지를 공급하는 것을 특징으로 하는 건설 기계.
  4. 제2항에 있어서,
    상기 선회 모터의 일 측과 상기 제2 메인 펌프를 연결하는 제1 선회 유압 라인; 및
    상기 선회 모터의 타 측과 상기 제2 메인 펌프를 연결하는 제2 선회 유압 라인
    을 더 포함하고,
    상기 엔진은 상기 제2 메인 펌프와 연결되며,
    상기 제2 메인 펌프는 상기 선회 모터의 선회 감속 시 상기 선회 모터에서 배출된 작동유로 동작하여 상기 엔진에 에너지를 공급하는 것을 특징으로 하는 건설 기계.
  5. 제4항에 있어서,
    작동유를 축적하기 위한 어큐뮬레이터와;
    상기 제1 선회 유압 라인과 상기 제2 선회 유압 라인에 연결된 선회 회생 밸브; 그리고
    상기 선회 회생 밸브와 상기 어큐뮬레이터를 연결하는 선회 회생 라인
    를 더 포함하고,
    상기 제2 메인 펌프는 상기 어큐뮬레이터가 공급한 작동유로 동작하여 상기 엔진에 에너지를 공급하는 것을 특징으로 하는 건설 기계.
  6. 제4항에 있어서,
    상기 제1 메인 펌프는 상기 제1 붐 유압 라인 또는 상기 제2 붐 유압 라인 중 하나에 선택적으로 작동유를 토출하는 양 방향 펌프이고,
    상기 제2 메인 펌프는 상기 제1 선회 유압 라인 또는 상기 제2 선회 유압 라인 중 하나에 선택적으로 작동유를 토출하는 양 방향 펌프인 것을 특징으로 하는 건설 기계.
  7. 제1항에 있어서,
    상기 암 실린더 및 상기 버켓 실린더에서 배출된 작동유를 저장하는 드레인 탱크와;
    상기 암 실린더 및 상기 버켓 실린더와 상기 드레인 탱크를 연결하는 드레인 라인
    을 더 포함하는 것을 특징으로 하는 건설 기계.
  8. 제1항에 있어서,
    상기 제1 메인 펌프, 상기 제2 메인 펌프, 및 상기 제3 메인 펌프에 연결되어 동력을 제공하는 엔진을 더 포함하고,
    상기 제1 메인 펌프 및 상기 제2 메인 펌프 중 하나 이상이 회생 동작 시 상기 엔진에 부가적으로 에너지를 공급하는 것을 특징으로 하는 건설 기계.
  9. 제1항에 있어서,
    상기 붐과 상기 버켓 그리고 상기 암의 동작 시,
    상기 제1 메인 펌프에서 토출된 작동유는 상기 붐 실린더에 공급되고,
    상기 제2 메인 펌프에서 토출된 작동유는 상기 선회 모터 대신 상기 버켓 실린더로 공급되며,
    상기 제3 메인 펌프에서 토출된 작동유는 상기 암 실린더에 공급되는 것을 특징으로 하는 건설 기계.
  10. 제9항에 있어서,
    상기 선회 모터에 공급되는 작동유를 제어하는 선회 밸브와;
    상기 버켓 실린더에 작동유를 공급하기 위한 버켓 유압 라인
    을 더 포함하며,
    상기 선회 밸브는 상기 제2 메인 펌프가 상기 선회 모터로 공급하는 작동유를 차단하고, 상기 제2 메인 펌프가 토출한 작동유는 상기 버켓 유압 라인을 통해 상기 버켓 실린더로 공급되는 것을 특징으로 하는 건설 기계.
  11. 제1항에 있어서,
    상기 붐과 상기 선회 모터 그리고 상기 버켓 동작 시,
    상기 제1 메인 펌프에서 토출된 작동유는 상기 붐 실린더에 공급되고,
    상기 제2 메인 펌프에서 토출된 작동유는 상기 선회 모터에 공급되며,
    상기 제3 메인 펌프에서 토출된 작동유는 상기 암 실린더 대신 상기 버켓 실린더로 공급되는 것을 특징으로 하는 건설 기계.
  12. 제11항에 있어서,
    상기 암 실린더에 공급되는 작동유를 제어하는 암 밸브와;
    상기 버켓 실린더와 연결된 암 버켓 합류 라인
    을 더 포함하며,
    상기 암 밸브는 상기 제3 메인 펌프가 상기 암 실린더로 공급하는 작동유를 차단하고, 상기 제3 메인 펌프가 토출한 작동유는 상기 암 버켓 합류 라인을 통해 상기 버켓 실린더로 공급되는 것을 특징으로 하는 건설 기계.
  13. 제1항에 있어서,
    상기 붐과 상기 선회 모터와 상기 암 그리고 상기 버켓 동작 시,
    상기 제1 메인 펌프에서 토출된 작동유는 상기 붐 실린더에 공급되고,
    상기 제2 메인 펌프에서 토출된 작동유는 상기 선회 모터에 공급되며,
    상기 제3 메인 펌프에서 토출된 작동유는 상기 암 실린더와 함께 상기 버켓 실린더에도 공급되는 것을 특징으로 하는 건설 기계.
  14. 제13항에 있어서,
    상기 암 실린더에 공급되는 작동유를 제어하는 암 밸브와;
    상기 버켓 실린더에 공급되는 작동유를 제어하는 버켓 밸브
    를 더 포함하며,
    상기 암 밸브와 상기 버켓 밸브는 각각 상기 제3 메인 펌프가 토출한 작동유를 상기 암 실린더와 상기 버켓 실린더로 공급하는 것을 특징으로 하는 건설 기계.
  15. 붐을 구동하는 붐 실린더;
    선회체를 선회시키는 선회 모터;
    암을 구동하는 암 실린더;
    버켓을 구동하는 버켓 실린더;
    상기 붐 실린더에 작동유를 공급하거나 상기 붐 실린더에서 배출된 작동유를 회수하는 제1 메인 펌프;
    상기 선회 모터에 작동유를 공급하거나 상기 선회 모터에서 배출된 작동유를 회수하는 제2 메인 펌프;
    상기 암 실린더 또는 상기 버켓 실린더에 작동유를 공급하는 제3 메인 펌프
    상기 제1 메인 펌프, 상기 제2 메인 펌프, 및 상기 제3 메인 펌프에 연결되어 동력을 전달하는 엔진;
    상기 붐 실린더와 상기 선회 모터에서 배출된 작동유를 축적하는 어큐뮬레이터;
    상기 붐 실린더와 상기 제1 메인 펌프를 연결하는 붐 유압 라인;
    상기 붐 유압 라인에 설치된 붐 회생 밸브;
    상기 붐 회생 밸브와 상기 어큐뮬레이터를 연결하는 붐 회생 라인
    상기 선회 모터와 상기 제2 메인 펌프를 연결하는 선회 유압 라인;
    상기 선회 유압 라인에 설치된 선회 회생 밸브; 및
    상기 선회 회생 밸브와 상기 어큐뮬레이터를 연결하는 선회 회생 라인
    를 포함하고,
    상기 제1 메인 펌프는 붐 하강 시 상기 붐 실린더에서 배출된 작동유로 동작하여 상기 엔진에 에너지를 공급하거나 상기 어큐뮬레이터가 공급한 작동유로 동작하여 상기 엔진에 에너지를 공급하며,
    상기 제2 메인 펌프는 상기 선회 모터의 선회 감속 시 상기 선회 모터에서 배출된 작동유로 동작하여 상기 엔진에 에너지를 공급하거나 상기 어큐뮬레이터가 공급한 작동유로 동작하여 상기 엔진에 에너지를 공급하는 것을 특징으로 하는 건설 기계.
PCT/KR2021/002445 2020-02-27 2021-02-26 건설 기계 WO2021172927A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180017098.XA CN115210432A (zh) 2020-02-27 2021-02-26 工程机械
US17/802,351 US20230096479A1 (en) 2020-02-27 2021-02-26 Construction machine
EP21761794.3A EP4112823A4 (en) 2020-02-27 2021-02-26 CONSTRUCTION MACHINE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0024504 2020-02-27
KR1020200024504A KR20210109334A (ko) 2020-02-27 2020-02-27 건설 기계

Publications (1)

Publication Number Publication Date
WO2021172927A1 true WO2021172927A1 (ko) 2021-09-02

Family

ID=77490142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/002445 WO2021172927A1 (ko) 2020-02-27 2021-02-26 건설 기계

Country Status (5)

Country Link
US (1) US20230096479A1 (ko)
EP (1) EP4112823A4 (ko)
KR (1) KR20210109334A (ko)
CN (1) CN115210432A (ko)
WO (1) WO2021172927A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337216B2 (ko) * 1980-09-16 1988-07-25 Hitachi Construction Machinery
KR20030036186A (ko) * 2000-05-23 2003-05-09 코벨코 겐키 가부시키가이샤 건설 기계
JP2010084888A (ja) * 2008-10-01 2010-04-15 Caterpillar Japan Ltd 油圧式作業機械の動力回生機構
KR20160101926A (ko) * 2013-12-26 2016-08-26 두산인프라코어 주식회사 붐 에너지 회생 제어 회로 및 제어 방법
KR20170049462A (ko) * 2015-10-28 2017-05-10 가부시키가이샤 고마쓰 세이사쿠쇼 건설 기계의 구동 장치

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4369625A (en) * 1979-06-27 1983-01-25 Hitachi Construction Machinery Co., Ltd. Drive system for construction machinery and method of controlling hydraulic circuit means thereof
JP2004190845A (ja) * 2002-12-13 2004-07-08 Shin Caterpillar Mitsubishi Ltd 作業機械の駆動装置
JP4509877B2 (ja) * 2005-06-29 2010-07-21 キャタピラージャパン株式会社 作業機械のハイブリッドシステム
GB0614534D0 (en) * 2006-07-21 2006-08-30 Artemis Intelligent Power Ltd Fluid power distribution and control system
JP2010242796A (ja) * 2009-04-01 2010-10-28 Sumitomo (Shi) Construction Machinery Co Ltd 建設機械用油圧制御回路
KR101601979B1 (ko) * 2009-12-24 2016-03-10 두산인프라코어 주식회사 건설장비의 펌프제어 작동시스템
US9068578B2 (en) * 2011-10-21 2015-06-30 Caterpillar Inc. Hydraulic system having flow combining capabilities
US20130098012A1 (en) * 2011-10-21 2013-04-25 Patrick Opdenbosch Meterless hydraulic system having multi-circuit recuperation
JP2013245787A (ja) * 2012-05-28 2013-12-09 Hitachi Constr Mach Co Ltd 作業機械の駆動装置
CN104903595B (zh) * 2013-01-08 2017-03-08 日立建机株式会社 工作机械的液压系统
JP5961580B2 (ja) * 2013-04-11 2016-08-02 日立建機株式会社 作業機械の駆動装置
JP5973979B2 (ja) * 2013-11-21 2016-08-23 日立建機株式会社 作業機械の駆動装置
JP6235917B2 (ja) * 2014-01-23 2017-11-22 川崎重工業株式会社 液圧駆動システム
CN106062386B (zh) * 2014-06-26 2017-12-19 日立建机株式会社 作业机械
JP6555709B2 (ja) * 2015-04-17 2019-08-07 キャタピラー エス エー アール エル 流体圧回路および作業機械
JP6615138B2 (ja) * 2017-03-01 2019-12-04 日立建機株式会社 建設機械の駆動装置
CN107420357B (zh) * 2017-07-21 2019-01-01 广西柳工机械股份有限公司 闭式液压系统
CN108729492A (zh) * 2018-06-06 2018-11-02 马鞍山松鹤信息科技有限公司 一种油液混合动力挖掘机势能回收方法
JP6975102B2 (ja) * 2018-06-26 2021-12-01 日立建機株式会社 建設機械

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337216B2 (ko) * 1980-09-16 1988-07-25 Hitachi Construction Machinery
KR20030036186A (ko) * 2000-05-23 2003-05-09 코벨코 겐키 가부시키가이샤 건설 기계
JP2010084888A (ja) * 2008-10-01 2010-04-15 Caterpillar Japan Ltd 油圧式作業機械の動力回生機構
KR20160101926A (ko) * 2013-12-26 2016-08-26 두산인프라코어 주식회사 붐 에너지 회생 제어 회로 및 제어 방법
KR20170049462A (ko) * 2015-10-28 2017-05-10 가부시키가이샤 고마쓰 세이사쿠쇼 건설 기계의 구동 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4112823A4 *

Also Published As

Publication number Publication date
US20230096479A1 (en) 2023-03-30
EP4112823A4 (en) 2024-05-15
CN115210432A (zh) 2022-10-18
EP4112823A1 (en) 2023-01-04
KR20210109334A (ko) 2021-09-06

Similar Documents

Publication Publication Date Title
WO2017094986A1 (ko) 건설기계의 유압 시스템 및 유압 제어 방법
WO2014014146A1 (ko) 건설기계용 유량 컨트롤밸브
WO2012091184A1 (ko) 건설기계의 에너지 재생 시스템
WO2012002589A1 (ko) 건설기계의 유압펌프 제어장치
WO2016060348A1 (ko) 회전장치를 갖는 굴착기용 암
WO2011078586A9 (ko) 하이브리드 굴삭기 붐 구동시스템 및 그 제어방법
WO2012153880A1 (ko) 하이브리드 액츄에이터의 급정지 장치가 구비되는 하이브리드 굴삭기
WO2017094985A1 (ko) 건설기계의 유압 제어 장치 및 유압 제어 방법
WO2015111775A1 (ko) 건설기계용 재생유량 제어장치 및 그 제어방법
WO2016195374A1 (ko) 건설기계의 유압 시스템
WO2020067584A1 (en) Regeneration system and method of energy released from working implement
WO2018048291A1 (ko) 건설기계의 제어 시스템 및 건설기계의 제어 방법
WO2013062156A1 (ko) 액츄에이터 충격 감소시스템이 구비된 하이브리드 굴삭기
WO2019074301A1 (ko) 건설기계의 붐 증속 유압 시스템
WO2022025556A1 (ko) 건설 기계
WO2015099353A1 (ko) 붐 에너지 회생 제어 회로 및 제어 방법
WO2013100457A1 (ko) 굴삭기 주행 연비 절감 시스템
WO2014069702A1 (ko) 건설기계의 선회 제어장치 및 그 제어방법
WO2021172927A1 (ko) 건설 기계
WO2020045706A1 (en) Hydraulic circuit for construction equipment
WO2013103157A2 (ko) 건설기계용 덤프 구동 제어방법
WO2022019691A1 (ko) 건설 기계 및 그 제어 방법
WO2016204309A1 (ko) 건설기계용 아암 재생장치 및 제어방법
JP3145668B2 (ja) 油圧式建設機械の非常脱出装置と非常脱出方法
WO2020166975A1 (ko) 건설 기계

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21761794

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021761794

Country of ref document: EP

Effective date: 20220927