WO2021172020A1 - レーザ加工装置及びレーザ加工方法 - Google Patents

レーザ加工装置及びレーザ加工方法 Download PDF

Info

Publication number
WO2021172020A1
WO2021172020A1 PCT/JP2021/005012 JP2021005012W WO2021172020A1 WO 2021172020 A1 WO2021172020 A1 WO 2021172020A1 JP 2021005012 W JP2021005012 W JP 2021005012W WO 2021172020 A1 WO2021172020 A1 WO 2021172020A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
time
light
waveform
laser
Prior art date
Application number
PCT/JP2021/005012
Other languages
English (en)
French (fr)
Inventor
隆史 栗田
一希 川合
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to EP21761258.9A priority Critical patent/EP4112220A4/en
Priority to US17/800,043 priority patent/US20230075209A1/en
Priority to KR1020227027089A priority patent/KR20220137650A/ko
Priority to CN202180017054.7A priority patent/CN115210974A/zh
Publication of WO2021172020A1 publication Critical patent/WO2021172020A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1305Feedback control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1306Stabilisation of the amplitude
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/02ASE (amplified spontaneous emission), noise; Reduction thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/10023Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by functional association of additional optical elements, e.g. filters, gratings, reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0064Anti-reflection components, e.g. optical isolators

Definitions

  • FIG. 8 is a graph showing (a) a time waveform of the laser beam La before amplification and (b) a graph showing a time waveform of the laser beam Lb after amplification.
  • FIG. 9 is a graph showing (a) a time waveform of the laser beam La before amplification and (b) a graph showing a time waveform of the laser beam Lb after amplification.
  • FIG. 10 is a graph showing an example of a time waveform of the laser beam Lb output from the optical amplifier 3, in which (a) a Gaussian waveform with a FWHM of 4 nanoseconds and (b) a Gaussian waveform with a FWHM of 32 nanoseconds. Shown.
  • FIG. 10 is a graph showing an example of a time waveform of the laser beam Lb output from the optical amplifier 3, in which (a) a Gaussian waveform with a FWHM of 4 nanoseconds and (b) a Gaussian waveform with a FWHM of 32 nanoseconds
  • FIG. 14 is a graph showing a time waveform of an optical pulse group Pb, which is an optical pulse train including a plurality of ultrashort optical pulses Pba generated as laser light Lb in the laser processing apparatus 1A of one embodiment.
  • FIG. 15 is (a) a front surface image of the work piece B after drilling observed by SEM, and (b) a back surface image of the work piece B after drilling observed by SEM.
  • FIG. 16 shows a graph showing the time waveforms of the optical pulse group Pc and the optical pulse Pd generated as the laser beam Lb in the laser processing apparatus 1A of one embodiment, and (b) after the drilling process observed by SEM. It is a surface image of the work piece B of.
  • FIG. 15 is (a) a front surface image of the work piece B after drilling observed by SEM, and (b) a back surface image of the work piece B after drilling observed by SEM.
  • FIG. 16 shows a graph showing the time waveforms of the optical pulse group Pc and the optical pulse Pd generated
  • FIG. 27 shows a processing process in which a plurality of processing processes are continuously performed in a short period of time by using the laser processing apparatus 1A of one embodiment, and (a) a plurality of layers B1 to a plurality of layers having different constituent materials from each other.
  • the time waveforms of the workpiece B having B3, the laser beam Lb irradiated on the workpiece B, and (b) the laser beam Lb are shown.
  • FIG. 28 shows a processing process in which a plurality of processing processes are continuously performed in a short period of time by using the laser processing apparatus 1A of one embodiment, and (a) a plurality of layers B1 to a plurality of layers having different constituent materials from each other.
  • the time waveforms of the workpiece B having B3, the laser beam Lb irradiated on the workpiece B, and (b) the laser beam Lb are shown.
  • FIG. 29 shows a processing process in which a plurality of processing processes are continuously performed in a short period of time by using the laser processing apparatus 1A of one embodiment, and (a) a plurality of layers B1 to a plurality of layers having different constituent materials from each other.
  • FIG. 30 shows (a) a graph showing a combination of optical pulse groups Pi, Py, and Pk corresponding to a certain processing process, (b) a graph showing an optical pulse group Pj corresponding to the next processing process, and (c). Further, it is a graph which shows the optical pulse group Pi, Pi, Pm corresponding to the next processing process.
  • FIG. 31 is a graph showing the time waveform of the laser beam Lb irradiated in one embodiment.
  • FIG. 32 is a diagram showing SEM images of holes formed in the workpiece B (a) and (b).
  • FIG. 33 is a diagram showing SEM images of holes formed in the workpiece B (a) and (b).
  • FIG. 34 is a block diagram showing a configuration of a modified example.
  • FIG. 35 is a graph showing an example of a plurality of light pulse groups irradiated on the workpiece B in one modification.
  • FIG. 1 is a block diagram schematically showing a configuration of a laser processing apparatus according to an embodiment.
  • the laser processing apparatus 1A of the present embodiment includes a semiconductor laser element 2, an optical amplifier 3, a driver circuit 4, a processing optical system 5, and a waveform output unit 6.
  • the waveform output unit 6 is composed of an electronic circuit and is electrically connected to the driver circuit 4.
  • the waveform output unit 6 calculates and generates input waveform data Da for bringing the time waveform of the optical pulse output from the optical amplifier 3 closer to the target waveform, and provides the input waveform data Da to the driver circuit 4.
  • the input end of the driver circuit 4 is electrically connected to the waveform output unit 6, and receives the input waveform data Da from the waveform output unit 6.
  • the driver circuit 4 generates a drive current id having a time waveform corresponding to the input waveform data Da.
  • the output end of the driver circuit 4 is electrically connected to the semiconductor laser element 2, and the generated drive current id is supplied to the semiconductor laser element 2. In some cases, a bias current having a constant magnitude is superimposed on the drive current id without changing with time.
  • the semiconductor laser element 2 is a laser diode and is electrically connected to the driver circuit 4.
  • the driver circuit 4 supplies the drive current id to either the cathode or the anode of the semiconductor laser element 2.
  • the semiconductor laser element 2 receives the drive current id and generates the laser beam La.
  • This laser beam La is light before amplification by the optical amplifier 3, and has a time waveform corresponding to the input waveform data Da.
  • This target waveform data is stored in the memory in advance by the operator through the data input terminal of the computer 31 before the operation of the laser processing apparatus 1A.
  • the computer 31 may design the target waveform by itself as the waveform design unit. That is, the computer 31 may calculate a target waveform for realizing the light irradiation conditions (processing conditions, observation conditions) given from the outside.
  • the target waveform data representing the calculated target waveform is stored in the memory of the computer 31.
  • the comparison unit 33 is electrically connected to the photodetection unit 14 described later, and acquires the time waveform of the laser beam Lb based on the detection signal (light intensity signal Sc) obtained from the photodetection unit 14. Further, the comparison unit 33 is electrically connected to the computer 31 and acquires the target waveform data Db from the computer 31. The comparison unit 33 compares the time waveform of the laser beam Lb with the target waveform, and sends the difference data Dc indicating the difference to the waveform adjustment unit 32.
  • the comparison unit 33 may be composed of a computer having a CPU and a memory. In that case, the comparison unit 33 may be a separate body from the computer 31, or may be realized in a computer common to the computer 31.
  • the laser processing apparatus 1A shown in FIG. 2 further includes an optical isolator 12, an optical branching section 13, and a photodetecting section 14.
  • the optical input end of the optical isolator 12 is optically coupled to the laser light output end of the semiconductor laser device 2. Further, the optical output end of the optical isolator 12 is optically coupled to the optical input end of the optical amplifier 3. That is, the optical isolator 12 is interposed on the optical path between the semiconductor laser element 2 and the optical amplifier 3.
  • the optical isolator 12 prevents the light amplified by the optical amplifier 3 from returning to the semiconductor laser element 2.
  • the ratio (branch ratio) P1 / P2 of the intensity P1 of a part Lb1 of the laser beam Lb to the intensity P2 of the rest is, for example, in the range of 0.005 to 0.01.
  • the photodetector unit 14 is optically coupled to the photobranch unit 13 and receives a part Lb1 of the amplified laser beam Lb. The remaining portion of the laser beam Lb is applied to the workpiece B via the processing optical system 5 shown in FIG.
  • the light detection unit 14 generates a light intensity signal Sc which is an electric signal corresponding to the light intensity of a part Lb1 of the laser light Lb, and provides this light intensity signal Sc to the comparison unit 33.
  • the photodetector 14 may include a photodiode and a circuit that converts the light current flowing through the photodiode into a voltage signal.
  • the light detection unit 14 may output the generated voltage signal as a light intensity signal Sc, or may convert the generated voltage signal into a digital signal and output the digital signal as a light intensity signal Sc.
  • the light intensity signal Sc is a voltage signal, it is converted into a digital signal by the comparison unit 33.
  • the photodetector 14 may include a phototube (for example, a biplanar phototube) instead of the photodiode.
  • FIG. 3 is a block diagram showing a specific example of the peripheral structure of the semiconductor laser element 2, the optical amplifier 3, the driver circuit 4, and the waveform output unit 6.
  • the laser processing apparatus 1A includes optical isolators 21, 23, 27, and 29 as the optical isolator 12 shown in FIG. 2, an optical fiber amplifier 22 as the optical amplifier 3, and a solid-state laser. It includes amplifiers 28 and 30.
  • the optical amplifier 3 is configured in multiple stages.
  • the laser processing apparatus 1A includes a bandpass filter 24, an optical fiber connector 25, and a collimator lens 26.
  • optical input end of the optical fiber amplifier 22 and the semiconductor laser element 2 are optically coupled via the optical fiber F1.
  • An optical isolator 21 is interposed between the optical fiber amplifier 22 and the semiconductor laser element 2.
  • the optical isolator 21 prevents light (laser light La and excitation light) from returning from the optical fiber amplifier 22 to the semiconductor laser device 2. As a result, damage to the semiconductor laser element 2 can be prevented.
  • optical output end of the optical fiber amplifier 22 and the bandpass filter 24 are optically coupled via the optical fiber F2.
  • An optical isolator 23 is interposed between the optical fiber amplifier 22 and the bandpass filter 24. The optical isolator 23 prevents the light after the bandpass filter 24 from returning to the optical fiber amplifier 22.
  • the collimator lens 26 is optically coupled to the optical fiber connector 25 via a space, and parallelizes (colimates) the light radially output from the optical fiber connector 25. Since the intensity of the light amplified by the solid-state laser amplifiers 28 and 30 described later is high, in order to avoid damage to the optical material such as glass by the laser, the stage after the optical fiber connector 25 is not an optical fiber but in space. Propagate. In FIG. 3, the light propagating in space is shown by a broken line.
  • the solid-state laser amplifier 28 is optically coupled to the collimator lens 26 via an optical isolator 27.
  • the optical isolator 27 prevents the light of the solid-state laser amplifier 28 from returning to the stage before the solid-state laser amplifier 28. As a result, damage to the optical fiber amplifier 22 can be prevented.
  • the solid-state laser amplifier 28 is a second-stage optical amplifier that further amplifies the amplified laser light output from the optical fiber amplifier 22.
  • the gain of the solid-state laser amplifier 28 is, for example, in the range of 3 dB to 20 dB.
  • FIG. 4 is a block diagram showing a detailed configuration example of the driver circuit 4.
  • the driver circuit 4 includes a control board 41, a waveform data storage unit 42, a waveform timing adjustment unit 43, a waveform signal generation unit 44, and a current conversion unit 45.
  • the control board 41 includes a CPU 41a and a high-speed DAC interface 41b.
  • the high-speed DAC interface 41b, the waveform data storage unit 42, the waveform timing adjustment unit 43, and the waveform signal generation unit 44 constitute a D / A conversion unit 46.
  • the D / A conversion unit 46 is an electronic circuit that converts digital input waveform data Da into an analog drive signal Sd.
  • the control board 41 is a circuit board that serves as an interface with the waveform output unit 6.
  • the CPU 41a is electrically connected to the waveform adjusting unit 32 (see FIG. 2) of the waveform output unit 6 via a communication line, and receives input waveform data Da from the waveform adjusting unit 32.
  • the CPU 41a transmits the input waveform data Da to the high-speed DAC interface 41b at an appropriate timing.
  • the high-speed DAC interface 41b temporarily stores the input waveform data Da in the waveform data storage unit 42.
  • the waveform data storage unit 42 is electrically connected to the high-speed DAC interface 41b, and is composed of, for example, a volatile storage element.
  • the waveform adjustment unit 32 of the present embodiment outputs the input waveform data Da as continuous section waveform data formed by dividing the time waveform of the input waveform data Da (details will be described later). These section waveform data are output in parallel and simultaneously for each of two or more section waveform data. Then, the waveform data storage unit 42 stores the plurality of section waveform data and outputs the plurality of section waveform data as requested.
  • the waveform timing adjustment unit 43 is electrically connected to the waveform data storage unit 42, and adjusts (controls) the timing at which the input waveform data Da is output from the waveform data storage unit 42.
  • FIG. 5 is a diagram schematically showing the function of the waveform timing adjusting unit 43. As shown in FIG. 5, the waveform timing adjusting unit 43 sequentially outputs a plurality of section waveform data DD1 to DD4 read from the waveform data storage unit 42 while giving an appropriate time difference.
  • the appropriate time difference is, for example, the time width of each section waveform data. This time width defines the time resolution of the output waveform and is 1 nanosecond in one embodiment.
  • the waveform signal generation unit 44 sequentially inputs a plurality of section waveform data DD1 to DD4 output from the waveform timing adjustment unit 43, and converts these section waveform data DD1 to DD4 into a drive signal Sd which is an analog signal (voltage signal). Convert sequentially. At this time, the time difference of the conversion timings of the section waveform data DD1 to DD4 substantially coincides with the time difference given by the waveform timing adjusting unit 43.
  • the current conversion unit 45 is electrically connected to the waveform signal generation unit 44 and converts the drive signal Sd into the drive current id. That is, the current conversion unit 45 is composed of an analog circuit including a transistor, and converts the drive signal Sd, which is a voltage signal, into the drive current id, which is a current signal.
  • the time waveform of the drive current id generated at this time is substantially the same as the time waveform of the drive signal Sd.
  • a bias current control unit 11 is further connected to the current conversion unit 45.
  • the bias current control unit 11 controls the magnitude of the bias component included in the drive current id.
  • the semiconductor laser element 2 is electrically connected to the current output end of the current conversion unit 45, receives a drive current id from the current conversion unit 45, and outputs the laser beam La.
  • the time waveform of the laser beam La is substantially the same as the time waveform of the drive current id.
  • FIG. 6 is a flowchart showing the operation of the laser processing apparatus 1A.
  • FIGS. 7 (a) to 7 (d) are diagrams schematically showing an optical pulse waveform.
  • the time waveform of an optical pulse is shown as a set of peak values (light intensity) of a plurality of continuous unit intervals.
  • the delay time TA is set as needed, and the start point of the time waveform of the optical pulse is delayed by the delay time TA from the reference time.
  • the vertical axis represents light intensity and the horizontal axis represents time.
  • the waveform adjustment unit 32 sets the initial input waveform data Da (step ST1).
  • This initial input waveform data Da is set based on the target waveform data Db.
  • the target waveform data Db is used as it is as the initial input waveform data Da.
  • the driver circuit 4 supplies the drive current id to the semiconductor laser element 2 based on the initial input waveform data Da, and the semiconductor laser element 2 outputs the laser beam La (current supply step ST2).
  • FIG. 7A schematically shows the time waveform of the laser beam La generated based on the initial input waveform data Da.
  • This laser beam La is amplified by the optical amplifier 3 (optical amplification step ST3).
  • the current supply step ST2 includes a D / A conversion step ST21 and a current conversion step ST22.
  • the D / A conversion step ST21 the D / A conversion unit 46 converts the digital input waveform data Da into an analog drive signal Sd.
  • a plurality of continuous section waveform data DD1 to DD4 formed by dividing the time waveform of the input waveform data Da are sequentially converted into drive signals Sd while giving a time difference.
  • the current conversion unit 45 converts the drive signal Sd into the drive current id.
  • FIG. 7B schematically shows the detected time waveform.
  • the time waveform of the laser beam Lb after amplification is different from the time waveform of the laser beam La before amplification.
  • One cause is that the excited state of the optical amplifier 3 changes with the passage of time. That is, immediately after the laser beam La is incident, the optical amplifier 3 is strongly excited and amplifies the laser beam La with a high gain. However, as time elapses from the start of the incident of the laser beam La, the excitation intensity of the optical amplifier 3 gradually decreases, and the amplification gain of the laser beam La also decreases accordingly.
  • FIG. 8 and 9 are graphs showing the time waveforms of the laser beam La before amplification and the laser beam Lb after amplification, which were actually measured.
  • FIG. 8A shows the time waveform (square wave) of the laser beam La before amplification
  • FIG. 8B shows the laser beam La having the time waveform shown in FIG. 8A after amplification.
  • the time waveform of the laser beam Lb of the above is shown.
  • FIG. 9A shows a time waveform (ramp wave) of the laser beam La before amplification
  • FIG. 9B amplifies the laser beam La having the time waveform shown in FIG. 9A.
  • the time waveform of the laser beam Lb after this is shown.
  • the vertical axis represents light intensity (arbitrary unit), and the horizontal axis represents time (unit: nanoseconds). As shown in these figures, the time waveform of the laser beam Lb after amplification is significantly different from the time waveform of the laser beam La before amplification.
  • the comparison unit 33 compares the time waveform of the detected laser beam Lb with the target waveform (FIG. 7C) shown in the target waveform data Db, and the difference (error) thereof. Is output (step ST51).
  • the waveform adjusting unit 32 adjusts the time waveform of the input waveform data Da based on this difference. That is, the waveform adjusting unit 32 calculates the new input waveform data Da so that the difference becomes smaller (that is, approaches 0) (step ST52).
  • FIG. 7D schematically shows the time waveform of the laser beam La generated based on the new input waveform data Da.
  • This laser beam La is amplified by the optical amplifier 3 (optical amplification step ST3).
  • the time waveform of the laser beam Lb after amplification approaches the target waveform.
  • the laser beam Lb generated in this way is irradiated to the workpiece B via the processing optical system 5 shown in FIG. 1 (light irradiation step ST6).
  • FIG. 10 and 11 are graphs showing an example of the time waveform of the laser beam Lb output from the optical amplifier 3.
  • the vertical axis represents light intensity (arbitrary unit), and the horizontal axis represents time (unit: nanoseconds).
  • FIG. 10A shows a Gaussian waveform with a full width at half maximum (FWHM) of 4 nanoseconds.
  • FIG. 10B shows a Gaussian waveform with a FWHM of 32 nanoseconds.
  • FIG. 11A shows a square wave with a FWHM of 120 nanoseconds.
  • FIG. 11B shows a ramp waveform with a FWHM of 4 nanoseconds.
  • FIG. 12 is a graph showing a time waveform (actual measurement value) of a Gaussian pulse Pa having a pulse width of 23.7 ns (FWHM) generated as a laser beam Lb in the laser processing apparatus 1A of the present embodiment.
  • the vertical axis represents the normalized intensity (arbitrary unit) and the horizontal axis represents time (unit: nanoseconds).
  • the workpiece B was irradiated with this laser beam Lb to perform drilling.
  • the wavelength of the laser light Lb is 1064 nm
  • the repetition frequency of the light pulse Pa is 300 Hz
  • the light is irradiated for 3 seconds (that is, the number of times the light pulse Pa is irradiated is 900 times)
  • the pulse energy of the light pulse Pa is 40 ⁇ J
  • the processing optical system A plano-convex lens having a focal length of 40 mm was used as the condenser lens of 5.
  • the workpiece B was made of stainless steel (SUS304) having a thickness of 50 ⁇ m, and the condensing diameter of the laser beam Lb in the workpiece B was 10 ⁇ m.
  • FIG. 14 is a graph showing a time waveform (measured value) of an optical pulse group Pb, which is an optical pulse train including a plurality of ultrashort optical pulses Pba, generated as laser light Lb in the laser processing apparatus 1A of the present embodiment. ..
  • the vertical axis represents the normalized intensity (arbitrary unit), and the horizontal axis represents time (unit: nanoseconds).
  • the workpiece B was irradiated with this laser beam Lb to perform drilling.
  • FIG. 15A is an image of the surface (laser irradiation surface) of the workpiece B after the drilling process observed by SEM.
  • FIG. 15B is an image of the back surface of the workpiece B after the drilling process observed by SEM.
  • a substantially circular through hole is formed in the workpiece B.
  • the width dx in the left-right direction of the paper surface was 28.6 ⁇ m
  • the width dy in the vertical direction of the paper surface was 25.4 ⁇ m. That is, a hole larger than that in the case of the Gaussian pulse Pa shown in FIG. 12 was formed.
  • the optical pulse group Pc includes a plurality of ultrashort optical pulses Pca, and is the same as the optical pulse group Pb shown in FIG. 14 in which the number of ultrashort optical pulses Pba is halved to five.
  • the optical pulse Pd is a single pulse having a pulse width of 71 ns.
  • the time interval ⁇ t between the optical pulse group Pc and the optical pulse Pd is 260.1 ns.
  • the wavelength of the laser beam Lb, the pulse energy, the condenser lens of the processing optical system 5, the material of the workpiece B, and the focusing diameter of the laser beam Lb were the same as described above.
  • FIG. 16B is an image of the surface (laser irradiation surface) of the workpiece B after the drilling process observed by SEM.
  • the hole did not penetrate to the back surface of the workpiece B.
  • FIG. 16B it can be seen that a substantially circular small recess is formed on the surface of the workpiece B.
  • the width dx in the left-right direction of the paper surface was 2.5 ⁇ m
  • the width dy in the vertical direction of the paper surface was 2.4 ⁇ m. That is, a recess having a diameter remarkably smaller than the focused diameter of the laser beam Lb was formed.
  • Such a recess having a diameter significantly smaller than the focused diameter of the laser beam Lb is processed by an optical pulse group Pc including a plurality of ultrashort optical pulses Pca having a time width on the order of picoseconds and on the order of nanoseconds. It is considered that this was obtained as a result of the combined processing with the optical pulse Pd having the time width of. More specifically, while the hole drilling proceeds by the optical pulse group Pc having a high peak output, the thermal machining proceeds by long-term energy irradiation through the optical pulse Pd having a low peak output, so that the workpiece is processed. It is presumed that B (SUS304) was moderately melted to form a recess having a small diameter.
  • two or more light pulse groups including one or more light pulses are irradiated to the workpiece B at a time interval ⁇ t, and two or more light pulse groups are used.
  • time waveforms of at least two light pulse groups different from each other, it is suggested that various processing that has been difficult in the past can be made possible.
  • two or more pulse groups including one or a plurality of pulses are arranged with a time interval ⁇ t from each other, and the time waveforms of at least two pulse groups of the two or more pulse groups are arranged with each other. It is realized by providing different drive current ids from the driver circuit 4 to the semiconductor laser element 2 in the current supply step ST2.
  • FIG. 18A shows an optical pulse group Pf1 including a plurality of ultrashort optical pulses Pfa and an optical pulse group Pf2 including a single optical pulse Pfb.
  • Both the ultrashort optical pulse Pfa and the optical pulse Pfb are Gaussian pulses, the time widths (FWHM) are 62 ps and 15 ns, respectively, and the time interval of the plurality of ultrashort optical pulses Pfa is 10 ns.
  • the time interval ⁇ t between the optical pulse group Pf1 and the optical pulse group Pf2 is 37.4 ns.
  • FIG. 19 shows an optical pulse group Ph1 including a single optical pulse Pha and an optical pulse group Ph2 including a single optical pulse Phb.
  • the optical pulses Pha and Phb are both Gaussian pulses, and the time widths (FWHM) are 62 ps and 12 ns, respectively.
  • the time interval ⁇ t between the optical pulse group Ph1 and the optical pulse group Ph2 is 40.9 ns.
  • 20 to 24 (a) to 24 (c) are diagrams conceptually showing various time waveforms that can be output from the laser processing apparatus 1A of the present embodiment.
  • the vertical axis represents light intensity and the horizontal axis represents time.
  • 20 (a) and 20 (b) show an example of combining an optical pulse group Pi which is an optical pulse train including a plurality of ultrashort optical pulses and an optical pulse group Pj including a single Gaussian pulse.
  • FIG. 20A shows an example in which the light pulse group Pj is irradiated after the light pulse group Pi
  • FIG. 20B shows an example in which the light pulse group Pi is irradiated after the light pulse group Pj.
  • the number of ultrashort optical pulses included in the optical pulse group Pi is arbitrary, and in the illustrated example, the number of ultrashort optical pulses is 3. Further, the peak intensities of the ultrashort optical pulses included in the optical pulse group Pi may be equal to each other, and at least one may be different from the others. Further, similarly to FIGS. 20A and 20B, in each of the examples described below, the order of the optical pulse groups may be changed as appropriate.
  • FIG. 21 (c) shows an optical pulse group Pq in which the peak intensity of each ultrashort optical pulse is monotonically decreased in an optical pulse sequence including a plurality of ultrashort optical pulses, and a single optical pulse group Pq in which the light intensity is decreased stepwise.
  • An example of combining with an optical pulse group Pr including an optical pulse is shown.
  • the number of ultrashort optical pulses included in the optical pulse group Pq is arbitrary, and in the illustrated example, the number of ultrashort optical pulses is 5. Further, the number of stages of the optical pulse constituting the optical pulse group Pr is arbitrary, and in the illustrated example, the number of stages of the optical pulse is 4.
  • FIG. 22 (c) shows an example in which two optical pulse groups Pj having different peak intensities of Gaussian pulses and an optical pulse group Pi are combined.
  • the peak intensity of the Gaussian pulse of the first optical pulse group Pj is larger than the peak intensity of the Gaussian pulse of the second optical pulse group Pj.
  • the number of ultrashort optical pulses constituting the optical pulse group Pi is 2, and the peak intensities of the ultrashort optical pulses are equal to each other.
  • FIG. 23 (b) shows an optical pulse group Pv including a plurality of ultrashort optical pulses, in which the peak intensity of each ultrashort optical pulse decreases monotonically and then increases monotonically.
  • the number of ultrashort optical pulses included in the optical pulse group Pv is arbitrary, and in the illustrated example, the number of optical pulses is 10.
  • FIG. 23 (c) shows an example of combining an optical pulse group Pw including a single optical pulse having a time waveform in which the light intensity starts from a light intensity greater than zero and the light intensity increases monotonically, and an optical pulse group Pi. show.
  • the number of ultrashort optical pulses constituting the optical pulse group Pi is 3, and the peak intensities of the ultrashort optical pulses are equal to each other.
  • FIG. 24A shows an example in which an optical pulse group Px including a single optical pulse having a triangular wave-shaped time waveform in which the light intensity monotonically increases and an optical pulse group Pi are combined.
  • the number of ultrashort optical pulses constituting the optical pulse group Pi is 6, and the peak intensities of the ultrashort optical pulses are equal to each other.
  • FIG. 24B shows a light pulse group Py including a single light pulse having a time waveform including a flat section having a constant light intensity, a light pulse group Pi, and a triangular wave shape in which the light intensity monotonically decreases.
  • An example of combining with an optical pulse group Pz including a single optical pulse having a time waveform of is shown.
  • the number of ultrashort optical pulses constituting the optical pulse group Pi is 4, and the peak intensities of the ultrashort optical pulses are equal to each other.
  • FIG. 24C shows an example in which a plurality of optical pulse groups Pj are combined at equal intervals.
  • the peak intensities of the Gaussian pulses of each optical pulse group Pj may be equal to each other, and at least one may be different from the others.
  • the pulse width (FWHM) of each ultrashort optical pulse included in the optical pulse group Pi is, for example, 1 picosecond or more and 1 nanosecond or less.
  • the pulse width (FWHM) of the Gaussian pulse included in the optical pulse group Pj is, for example, 1 nanosecond or more and 1 microsecond or less.
  • the time width of the flat section of the optical pulse constituting the optical pulse group Py is, for example, 1 microsecond or more and 1 millisecond or less.
  • the time intervals ⁇ t3 and ⁇ t4 are, for example, 1 millisecond or less, and more preferably 200 microseconds or less.
  • the surface to be processed is first cleaned by irradiating the uppermost layer B1 with the light pulse group Py shown in FIG. 26 (b).
  • the time width of the flat section where the light intensity is constant is, for example, 1 millisecond.
  • a hole B1a is formed in the uppermost layer B1 as shown in FIG. 27 (a).
  • the time width of each optical pulse constituting the optical pulse group Pi is, for example, 60 picoseconds.
  • FIG. 30A is a graph showing a combination of optical pulse groups Pi, Py, and Pk corresponding to a certain processing process.
  • FIG. 30B is a graph showing an optical pulse group Pj corresponding to the next processing process.
  • FIG. 30 (c) is a graph showing optical pulse groups Pi, Pi, Pm corresponding to the next processing process.
  • the workpiece B may be irradiated with a plurality of light pulse groups for each processing process.
  • FIG. 31 is a graph showing the time waveform of the irradiated laser beam Lb in this embodiment.
  • the laser beam Lb is used for a plurality of optical pulse groups Pi having a time waveform suitable for drilling (pre-processing) and then for deburring (post-processing). It was assumed to include a plurality of optical pulse groups Pj having suitable time waveforms.
  • the number of optical pulse group Pi is 300, the number of multiple optical pulses included in the optical pulse group Pi is 10, the energy of each optical pulse is 2 ⁇ J, and the time width (FWDM) of each optical pulse is 80 ps. , The time interval between pulses was set to 2 ns. Further, the number of optical pulse groups Pj was set to 300, the energy of the Gaussian pulses constituting the optical pulse group Pj was set to 40 ⁇ J, and the time width (FWDM) of the Gaussian pulses was set to 137 ns.
  • FIG. 32 and 33 are SEM images of holes formed in the workpiece B.
  • FIG. 32 shows (a) the front surface (laser irradiation surface) and (b) the back surface of the workpiece B after irradiation with the light pulse group Pi and before irradiation with the light pulse group Pj.
  • FIG. 33 shows the (a) front surface and (b) back surface of the workpiece B after irradiation with the light pulse group Pj.
  • FIG. 32 (a) and FIG. 33 (a) Comparing FIG. 32 (a) and FIG. 33 (a), it can be seen that the burrs around the holes generated after the irradiation of the light pulse group Pi were melted and smoothed by the irradiation of the light pulse group Pj. Further, when FIG. 32 (b) and FIG. 33 (b) are compared, it can be seen that the pore diameter on the side opposite to the laser irradiation surface has become smaller due to melting by irradiation of the light pulse group Pj.
  • the width dx in the left-right direction of the paper surface was 8.3 ⁇ m and the vertical direction of the paper surface before irradiating the optical pulse group Pj (FIG. 32 (b)).
  • the width dy was 8.1 ⁇ m and the average width was 8.2 ⁇ m, whereas after irradiation with the optical pulse group Pj (FIG. 33 (b)), the width dx in the left-right direction of the paper surface was 2.9 ⁇ m.
  • the vertical width dy of the paper surface was 2.7 ⁇ m, and the average width was 2.8 ⁇ m.
  • the waveform output unit 6 outputs the input waveform data Da
  • the driver circuit 4 uses the semiconductor laser element 2 to generate a drive current id having a time waveform corresponding to the input waveform data Da.
  • Supply to. Therefore, by including an arbitrary time waveform in the input waveform data Da, an optical pulse having an arbitrary time waveform can be output from the semiconductor laser element 2. Further, by including a plurality of pulse groups having a time difference in the input waveform data Da, a plurality of optical pulse groups having a time difference can be output from the semiconductor laser element 2.
  • the apparatus configuration can be downsized as compared with each method described in Patent Documents 1 and 2. Becomes possible.
  • a light source having an appropriate time waveform is prepared for each processing process and each processing process is performed, work for replacing the light source is required, and the optical axis shifts after the light source is replaced.
  • the time required for the processing process becomes longer, for example, more work is required to correct the problem.
  • a single group of a plurality of optical pulses having a time waveform suitable for each of a plurality of processing processes is used. It can be generated (continuously) from the semiconductor laser element 2 of the above in a short time, and the time required for the processing can be significantly shortened.
  • the driver circuit 4 (current supply step ST2) is driven by a D / A conversion unit 46 (D / A conversion step ST21) that converts digital input waveform data Da into an analog drive signal Sd. It may have a current conversion unit 45 (current conversion step ST22) that converts the signal Sd into a drive current id. Then, the D / A conversion unit 46 (D / A conversion step ST21) converts a plurality of continuous section waveform data DD1 to DD4 formed by dividing the time waveform of the input waveform data Da into the drive signal Sd while giving a time difference. It may be converted sequentially. As a result, the drive signal Sd can be made faster and the time resolution of the time waveform of the optical pulse can be improved.
  • the time width of each one or a plurality of pulses in each optical pulse group may be 1 microsecond or less.
  • the time interval between the optical pulse groups may be 200 microseconds or less.
  • the laser beam Lb containing two or more light pulse groups can be irradiated to the workpiece B in a short time, and the time required for processing can be shortened.
  • the waveform output unit 6 (in the current supply step ST2) changes the time waveform of at least one of the two or more optical pulse groups in the laser beam Lb during the processing of the workpiece B. You may.
  • the time waveform of the pulse group can be easily changed during the processing of the workpiece B in this way. Therefore, a plurality of stages of processing processes in which the time waveforms required for the laser beam are different can be continuously performed in a short time, and the time required for processing can be shortened.
  • the pulse width of one or more light pulses in one light pulse group may be 10 times or more the pulse width of one or more light pulses in another light pulse group.
  • optical pulses having greatly different pulse widths can be continuously output in a short time, and can be adapted to various processing conditions.
  • FIG. 34 is a block diagram showing a configuration of a modification of the above embodiment.
  • the laser processing apparatus 1B of the present modification further includes a spatial light modulator 7 and a driving unit 8 in addition to the configuration of the laser processing apparatus 1A of the above embodiment.
  • the spatial light modulator 7 has a plurality of pixels arranged in a two-dimensional manner, and the phase of incident light is individually modulated in each pixel.
  • the spatial light modulator 7 may be either a transmissive type or a reflective type.
  • the spatial light modulator 7 is a liquid crystal type LCOS-SLM (Liquid Crystal on Silicon-Spatial Light Modulator).
  • the spatial light modulator 7 is arranged on the optical path between the semiconductor laser element 2 and the processing optical system 5 (in the illustrated example, on the optical path between the optical amplifier 3 and the processing optical system 5).
  • the spatial light modulator 7 spatially modulates the phase of the laser beam Lb output from the optical amplifier 3, and outputs the modulated laser beam Lc to the processing optical system 5.
  • the laser beam Lc is applied to the workpiece B via the processing optical system 5. That is, in the light irradiation step ST6 shown in FIG. 6, the laser beam Lb is irradiated to the workpiece B via the spatial light modulator 7.
  • the drive unit 8 is a circuit for applying a voltage signal Sv for driving the spatial light modulator 7 to each pixel of the spatial light modulator 7.
  • the magnitude of the voltage signal Sv of each pixel is determined based on a computer-generated hologram (CGH) generated by the waveform output unit 6.
  • CGH computer-generated hologram
  • At least two parts to be processed can be irradiated with light pulse groups having different time waveforms, and these light pulse groups are continuously irradiated in a short time. be able to. Therefore, the time required for processing can be significantly shortened as compared with the conventional laser processing apparatus.
  • the laser processing apparatus and the laser processing method are not limited to the above-described embodiments and configuration examples, and various other modifications are possible.
  • the target waveform data is stored in the waveform output unit 6, but the target waveform data may be input from the outside of the laser processing apparatus 1A.
  • the optical amplifier 3 and / or the optical isolator 12 may be omitted if necessary.
  • the waveform output unit 6 has a waveform adjustment unit 32 and a comparison unit 33, and feeds back the time waveform of the laser beam Lb to generate the input waveform data Da.
  • the laser beam Lb may be generated by using the target waveform data Db from the computer 31 as it is without providing the configuration of.
  • the laser processing apparatus generates a semiconductor laser element, a waveform output unit that outputs input waveform data, and a drive current having a time waveform corresponding to the input waveform data, and supplies the drive current to the semiconductor laser element.
  • the semiconductor laser device is provided with a driver circuit for irradiating the workpiece and an optical system for irradiating the workpiece with laser light output from the semiconductor laser device. It outputs laser beams that are lined up at intervals, and the time waveforms of at least two optical pulse groups out of two or more optical pulse groups are different from each other.
  • the configuration includes at least one of the time width of each of the plurality of optical pulses and the time interval of the plurality of optical pulses.
  • the laser processing method receives a current supply step of generating a drive current having a time waveform corresponding to the input waveform data and supplying the drive current to the semiconductor laser element, and a laser beam output from the semiconductor laser element.
  • the semiconductor laser element outputs laser light in which two or more light pulse groups including one or a plurality of light pulses are lined up at intervals of each other, including a light irradiation step of irradiating the work piece.
  • the time waveforms of at least two optical pulse groups among two or more optical pulse groups are different from each other, and the time waveforms include the time waveform of each of one or more optical pulses, the time width of each of one or more optical pulses, and the plurality of optical pulses.
  • the configuration includes at least one of the time intervals of the optical pulses of.
  • the driver circuit includes a D / A conversion unit that converts digital input waveform data into an analog drive signal, and a current conversion unit that converts the drive signal into a drive current.
  • the A conversion unit may be configured to sequentially convert a plurality of continuous section waveform data formed by dividing the time waveform of the input waveform data into a drive signal while giving a time difference.
  • the time width of each one or a plurality of optical pulses in each optical pulse group may be 1 microsecond or less.
  • the waveform output unit may be configured to change the time waveform of at least one optical pulse group out of two or more optical pulse groups during processing of the workpiece. Further, in the above laser processing method, the time waveform of at least one optical pulse group among two or more optical pulse groups may be changed during the processing of the workpiece.
  • the above laser processing apparatus further includes a spatial light modulator arranged on an optical path between the semiconductor laser element and the optical system, and the spatial light modulator is a first light included in two or more optical pulse groups.
  • a spatial light modulator arranged on an optical path between the semiconductor laser element and the optical system, and the spatial light modulator is a first light included in two or more optical pulse groups.
  • the work piece in the light irradiation step, is irradiated with laser light via a spatial light modulator, and the laser light corresponding to the first light pulse group included in two or more light pulse groups is emitted.
  • Spatial light modulators are a hologram for irradiating a first irradiation position and a hologram for irradiating a second irradiation position different from the first irradiation position with a laser beam corresponding to a second light pulse group. It may be configured to be presented sequentially to.
  • the present invention can be used as a laser processing apparatus and a laser processing method capable of miniaturizing a configuration in which a plurality of light pulses having different time waveforms are applied to a work piece.
  • 1A, 1B Laser processing device, 2 ... Semiconductor laser element, 3 ... Optical amplifier, 4 ... Driver circuit, 5 ... Processing optical system, 6 ... Wave output unit, 7 ... Spatial optical modulator, 8 ... Drive unit, 11 ... Bias current control unit, 12, 21, 23, 27, 29 ... Optical isolator, 13 ... Optical branching unit, 14 ... Optical detection unit, 15 ... Optical waveform detection unit, 22 ... Optical fiber amplifier, 24 ... Band path filter, 25 ... Optical fiber connector, 26 ... Collimeter lens, 28, 30 ... Solid laser amplifier, 31 ... Computer, 32 ... Waveform adjustment unit, 33 ... Comparison unit, 41 ... Control board, 41a ...
  • Optical pulse (Gaussian pulse), Pb, Pc, Pe1, Pe2, Pf1, Pf2, Pg1, Pg2, Pg3, Ph1, Ph2, Pi-Pz, Py1, Py2, Py3 ...
  • Optical pulse group Pba, Pca, Pfa, Pga ... Ultrashort optical pulse, Pd, Pea, Peb, Pfb, Pgb, Pgc, Pha, Phb ...
  • Optical pulse Sc ... Light intensity signal, Sd ... Drive signal, Sv ... Voltage signal, TA ... Delay time, ⁇ t, ⁇ t1, ⁇ t2, ⁇ t5 ... Time interval.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Lasers (AREA)
  • Laser Beam Processing (AREA)
  • Semiconductor Lasers (AREA)

Abstract

レーザ加工装置(1A)は、半導体レーザ素子(2)と、入力波形データ(Da)を出力する波形出力部(6)と、入力波形データ(Da)に応じた時間波形を有する駆動電流(id)を半導体レーザ素子(2)に供給するドライバ回路(4)と、半導体レーザ素子(2)から出力されたレーザ光を被加工物(B)に照射する加工光学系(5)とを備える。半導体レーザ素子(2)は、一又は複数の光パルスを含む二以上の光パルス群が互いに時間間隔をあけて並ぶレーザ光(La)を出力する。二以上の光パルス群のうち少なくとも二つの光パルス群の時間波形は互いに異なる。時間波形には、一又は複数の光パルスそれぞれの時間波形、一又は複数の光パルスそれぞれの時間幅、及び複数の光パルスの時間間隔のうち少なくとも一つが含まれる。これにより、時間波形が異なる複数の光パルスを時間差をあけて被加工物に照射する構成を小型化することが可能なレーザ加工装置及びレーザ加工方法が実現される。

Description

レーザ加工装置及びレーザ加工方法
 本開示は、レーザ加工装置及びレーザ加工方法に関するものである。
 特許文献1には、レーザ加工方法に関する技術が開示されている。この方法では、10ピコ秒~100ピコ秒のパルス幅をそれぞれ有する少なくとも2つの光パルス(バースト)を組み合わせることにより、材料除去レートを増大させる。時間差を有する2つの光パルスを生成するために、レーザ発振器からのレーザ光の光路をビームスプリッタにより二分岐し、互いに異なる光路長を有する2つの光路を伝搬させた後、ビームコンバイナによってこれらの光路を結合している。
 特許文献2には、レーザ加工方法及びレーザ加工装置に関する技術が開示されている。この方法及び装置では、パルス幅が互いに異なる2種類の光パルスを被加工物に照射する。その為に、一実施例において、一方の光パルスを出力するレーザ光源と、他方の光パルスを出力する別のレーザ光源とを設けている。
特表2005-511314号公報 特開2013-128088号公報
 近年、ナノ秒やピコ秒といったオーダーの時間幅を有する光パルスを用いてレーザ加工を行う技術が研究されている。このようなレーザ加工においては、複数の光パルスを時間差をあけて照射することにより、レーザ加工における種々の効果を得ることができる。
 例えば、上述した特許文献1には、2つの光パルスを時間差をあけて照射することにより、材料除去レートを増大することが記載されている。加えて、光パルスの時間波形を複数の光パルス間で異ならせることにより、更に付加的な効果を奏することができる場合がある。例えば上述した特許文献2には、時間幅の異なる2つの光パルスを照射することにより、非加工領域の損傷を回避できることが記載されている。
 しかしながら、特許文献1に記載された方法においては、2つの光パルスの時間差を2つの光路の光路長差により実現しているので、所望の時間間隔に対応する大きさの光路長差が必要となる。例えば、時間差を5ナノ秒とする場合、光路長差は約1.5mとなる。また、時間差を5マイクロ秒とする場合、光路長差は約1500mとなる。したがって、装置規模が大きくなり過ぎるという課題がある。また、このような長い光路をレーザ光が伝搬する間に大きな損失が生じるので、エネルギー効率が低いという課題もある。
 特許文献2に一実施例として記載された装置及び方法においては、時間幅の異なる複数の光パルスのそれぞれに対応する複数のレーザ光源を必要とするので、光パルスの種類が増すほどレーザ光源の個数が増し、レーザ加工装置の小型化及び低コスト化を妨げる要因となる。
 本発明は、時間波形が異なる複数の光パルスを被加工物に照射する構成を小型化することが可能なレーザ加工装置及びレーザ加工方法を提供することを目的とする。
 本発明の実施形態は、レーザ加工装置である。レーザ加工装置は、半導体レーザ素子と、入力波形データを出力する波形出力部と、入力波形データに応じた時間波形を有する駆動電流を生成し、該駆動電流を半導体レーザ素子に供給するドライバ回路と、半導体レーザ素子から出力されたレーザ光を被加工物に照射する光学系と、を備え、半導体レーザ素子は、一又は複数の光パルスを含む二以上の光パルス群が互いに時間間隔をあけて並ぶレーザ光を出力し、二以上の光パルス群のうち少なくとも二つの光パルス群の時間波形は互いに異なり、時間波形には、一又は複数の光パルスそれぞれの時間波形、一又は複数の光パルスそれぞれの時間幅、及び複数の光パルスの時間間隔のうち少なくとも一つが含まれる。
 本発明の実施形態は、レーザ加工方法である。レーザ加工方法は、入力波形データに応じた時間波形を有する駆動電流を生成し、駆動電流を半導体レーザ素子に供給する電流供給ステップと、半導体レーザ素子から出力されたレーザ光を被加工物に照射する光照射ステップと、を含み、光照射ステップにおいて、一又は複数の光パルスを含む二以上の光パルス群が互いに時間間隔をあけて並ぶレーザ光を半導体レーザ素子が出力し、二以上の光パルス群のうち少なくとも二つの光パルス群の時間波形は互いに異なり、時間波形には、一又は複数の光パルスそれぞれの時間波形、一又は複数の光パルスそれぞれの時間幅、及び複数の光パルスの時間間隔のうち少なくとも一つが含まれる。
 上記のレーザ加工装置及びレーザ加工方法では、波形出力部が入力波形データを出力し、入力波形データに応じた時間波形を有する駆動電流をドライバ回路が半導体レーザ素子に供給する。したがって、任意の時間波形を入力波形データに含めることにより、任意の時間波形を有する光パルスを半導体レーザ素子から出力させることができる。また、時間差を有する複数のパルス群を入力波形データに含めることにより、時間差を有する複数の光パルス群を半導体レーザ素子から出力させることができる。
 すなわち、これらの装置及び方法によれば、時間波形が異なる複数の光パルス群を時間差をあけて被加工物に照射することができる。加えて、単一の半導体レーザ素子から単一の光路上に複数の光パルス群を出力させるので、特許文献1,2に記載された各方法と比較して、装置構成を小型化することが可能になる。
 本発明の実施形態によれば、時間波形が異なる複数の光パルスを被加工物に照射する構成を小型化することが可能なレーザ加工装置及びレーザ加工方法を提供することが可能となる。
図1は、一実施形態に係るレーザ加工装置の構成を概略的に示すブロック図である。 図2は、半導体レーザ素子2、光増幅器3、ドライバ回路4、及び波形出力部6の周辺構造を示すブロック図である。 図3は、半導体レーザ素子2、光増幅器3、ドライバ回路4、及び波形出力部6の周辺構造の具体例を示すブロック図である。 図4は、ドライバ回路4の詳細な構成例を示すブロック図である。 図5は、波形タイミング調整部43の機能を模式的に示す図である。 図6は、レーザ加工装置1Aの動作を示すフローチャートである。 図7は、(a)~(d)光パルス波形を模式的に示す図である。 図8は、(a)増幅前のレーザ光Laの時間波形を示すグラフ、及び(b)増幅後のレーザ光Lbの時間波形を示すグラフである。 図9は、(a)増幅前のレーザ光Laの時間波形を示すグラフ、及び(b)増幅後のレーザ光Lbの時間波形を示すグラフである。 図10は、光増幅器3から出力されるレーザ光Lbの時間波形の例を示すグラフであり、(a)FWHMが4ナノ秒のガウス波形、及び(b)FWHMが32ナノ秒のガウス波形を示している。 図11は、光増幅器3から出力されるレーザ光Lbの時間波形の例を示すグラフであり、(a)FWHMが120ナノ秒の矩形波、及び(b)FWHMが4ナノ秒のランプ波形を示している。 図12は、一実施形態のレーザ加工装置1Aにおいてレーザ光Lbとして生成された、パルス幅23.7ns(FWHM)のガウシアンパルスPaの時間波形を示すグラフである。 図13は、(a)SEMにより観察された穴あけ加工後の被加工物Bの表面画像、及び(b)SEMにより観察された穴あけ加工後の被加工物Bの裏面画像である。 図14は、一実施形態のレーザ加工装置1Aにおいてレーザ光Lbとして生成された、複数の超短光パルスPbaを含む光パルス列である光パルス群Pbの時間波形を示すグラフである。 図15は、(a)SEMにより観察された穴あけ加工後の被加工物Bの表面画像、及び(b)SEMにより観察された穴あけ加工後の被加工物Bの裏面画像である。 図16は、(a)一実施形態のレーザ加工装置1Aにおいてレーザ光Lbとして生成された光パルス群Pc及び光パルスPdの時間波形を示すグラフ、及び(b)SEMにより観察された穴あけ加工後の被加工物Bの表面画像である。 図17は、レーザ光Lbの時間波形の実施例を示すグラフである。 図18は、レーザ光Lbの時間波形の実施例を示すグラフであり、(a)複数の超短光パルスPfaを含む光パルス群Pf1と、単一の光パルスPfbを含む光パルス群Pf2、及び(b)複数の超短光パルスPgaを含む光パルス群Pg1と、単一の光パルスPgbを含む光パルス群Pg2と、単一の光パルスPgcを含む光パルス群Pg3とを示す。 図19は、レーザ光Lbの時間波形の実施例を示すグラフであって、単一の光パルスPhaを含む光パルス群Ph1と、単一の光パルスPhbを含む光パルス群Ph2とを示す。 図20は、(a)~(c)一実施形態のレーザ加工装置1Aから出力可能な種々の時間波形を概念的に示す図である。 図21は、(a)~(c)一実施形態のレーザ加工装置1Aから出力可能な種々の時間波形を概念的に示す図である。 図22は、(a)~(c)一実施形態のレーザ加工装置1Aから出力可能な種々の時間波形を概念的に示す図である。 図23は、(a)~(c)一実施形態のレーザ加工装置1Aから出力可能な種々の時間波形を概念的に示す図である。 図24は、(a)~(c)一実施形態のレーザ加工装置1Aから出力可能な種々の時間波形を概念的に示す図である。 図25は、複数の加工プロセスにそれぞれ対応する複数の光パルス群Pi,Pj,Pyを組み合わせた例を示すグラフである。 図26は、一実施形態のレーザ加工装置1Aを用いて、複数の加工プロセスを短時間の間に連続して行う場合の加工プロセスを示し、(a)互いに構成材料が異なる複数の層B1~B3を有する被加工物Bと、被加工物Bに照射されるレーザ光Lb、及び(b)レーザ光Lbの時間波形を示す。 図27は、一実施形態のレーザ加工装置1Aを用いて、複数の加工プロセスを短時間の間に連続して行う場合の加工プロセスを示し、(a)互いに構成材料が異なる複数の層B1~B3を有する被加工物Bと、被加工物Bに照射されるレーザ光Lb、及び(b)レーザ光Lbの時間波形を示す。 図28は、一実施形態のレーザ加工装置1Aを用いて、複数の加工プロセスを短時間の間に連続して行う場合の加工プロセスを示し、(a)互いに構成材料が異なる複数の層B1~B3を有する被加工物Bと、被加工物Bに照射されるレーザ光Lb、及び(b)レーザ光Lbの時間波形を示す。 図29は、一実施形態のレーザ加工装置1Aを用いて、複数の加工プロセスを短時間の間に連続して行う場合の加工プロセスを示し、(a)互いに構成材料が異なる複数の層B1~B3を有する被加工物Bと、被加工物Bに照射されるレーザ光Lb、及び(b)レーザ光Lbの時間波形を示す。 図30は、(a)或る加工プロセスに対応する光パルス群Pi,Py,Pkの組み合わせを示すグラフ、(b)次の加工プロセスに対応する光パルス群Pjを示すグラフ、及び(c)更に次の加工プロセスに対応する光パルス群Pi,Pi,Pmを示すグラフである。 図31は、一実施例において照射されたレーザ光Lbの時間波形を示すグラフである。 図32は、(a)、(b)被加工物Bに形成された孔のSEM画像を示す図である。 図33は、(a)、(b)被加工物Bに形成された孔のSEM画像を示す図である。 図34は、一変形例の構成を示すブロック図である。 図35は、一変形例において被加工物Bに照射される複数の光パルス群の例を示すグラフである。
 以下、添付図面を参照しながら、レーザ加工装置及びレーザ加工方法の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、本発明はこれらの例示に限定されるものではない。
 図1は、一実施形態に係るレーザ加工装置の構成を概略的に示すブロック図である。図1に示すように、本実施形態のレーザ加工装置1Aは、半導体レーザ素子2と、光増幅器3と、ドライバ回路4と、加工光学系5と、波形出力部6とを備える。波形出力部6は、電子回路によって構成され、ドライバ回路4と電気的に接続されている。波形出力部6は、光増幅器3から出力される光パルスの時間波形を目標波形に近づけるための入力波形データDaを演算して生成し、その入力波形データDaをドライバ回路4に提供する。
 ドライバ回路4の入力端は、波形出力部6と電気的に接続されており、波形出力部6から入力波形データDaを受け取る。ドライバ回路4は、入力波形データDaに応じた時間波形を有する駆動電流idを生成する。ドライバ回路4の出力端は、半導体レーザ素子2と電気的に接続されており、生成した駆動電流idを半導体レーザ素子2に供給する。なお、駆動電流idには、時間変化がなく大きさ一定のバイアス電流が重畳される場合もある。
 半導体レーザ素子2は、レーザダイオードであって、ドライバ回路4と電気的に接続されている。ドライバ回路4は、半導体レーザ素子2のカソード及びアノードのいずれかに対して駆動電流idを供給する。半導体レーザ素子2は、駆動電流idを受けてレーザ光Laを発生する。このレーザ光Laは、光増幅器3による増幅前の光であって、入力波形データDaに応じた時間波形を有する。
 一例では、半導体レーザ素子2は分布帰還型(DFB)レーザダイオードである。半導体レーザ素子2がDFBレーザダイオードであることにより、光増幅器3の利得の波長特性にあわせた最適化が容易にできる。半導体レーザ素子2の出力パワーは例えば数ナノジュールである。
 光増幅器3の光入力端は、半導体レーザ素子2と光学的に結合されており、半導体レーザ素子2から出力されたレーザ光Laを増幅する。光増幅器3は、レーザ光Laを電気信号に変換せず、光のまま直接増幅する。光増幅器3は、例えば光ファイバ増幅器、固体レーザ増幅器、或いはそれらの組み合わせによって構成され得る。
 光ファイバ増幅器は、例えばEr、Ybなどの不純物を添加したガラスからなる光ファイバを有し、レーザ光Laとともに或いは先立って励起光が該光ファイバに入力されることによってレーザ光Laを増幅する。また、固体レーザ増幅器は、例えばNdなどの不純物を添加した、ガラス、イットリウム・アルミニウム・ガーネット(YAG)、或いはネオジウム・イットリウム・四酸化バナジウム(YVO4)によって構成され得る。固体レーザ増幅器は、レーザ光Laとともに或いは先立って励起光が入力されることによってレーザ光Laを増幅する。光増幅器3の利得は、例えば3dB~30dBの範囲内である。
 加工光学系5は、光増幅器3の出力端から延びる光路と、該光路上に設けられた集光光学系とを含んで構成される。光増幅器3から出力された増幅後のレーザ光Lbは、加工光学系5の光路を伝搬して集光光学系に達し、集光光学系により集光されつつ被加工物Bに照射される。
 図2は、半導体レーザ素子2、光増幅器3、ドライバ回路4、及び波形出力部6の周辺構造を示すブロック図である。なお、図中の波形Aは、半導体レーザ素子2から出力されるレーザ光Laの時間波形を模式的に示している。図2に示されるように、波形出力部6は、コンピュータ31と、波形調整部32と、比較部33とを有する。
 コンピュータ31は、CPU及びメモリを有し、メモリに記憶されたプログラムに従って動作する。コンピュータ31のメモリは、本実施形態における記憶部であって、所望(任意)の時間波形、すなわち目標波形を表すデータ(以下、目標波形データという)を予め記憶している。
 この目標波形データは、レーザ加工装置1Aの動作前に、コンピュータ31のデータ入力端子を通じて、操作者により予めメモリに記憶される。或いは、コンピュータ31が、波形設計部として、目標波形を自ら設計してもよい。すなわち、外部より与えられた光照射条件(加工条件、観察条件)を実現するための目標波形を、コンピュータ31が算出してもよい。算出された目標波形を表す目標波形データは、コンピュータ31のメモリに記憶される。
 比較部33は、後述する光検出部14と電気的に接続されており、光検出部14から得られた検出信号(光強度信号Sc)に基づいて、レーザ光Lbの時間波形を取得する。また、比較部33は、コンピュータ31と電気的に接続されており、目標波形データDbをコンピュータ31から取得する。比較部33は、レーザ光Lbの時間波形と目標波形とを比較し、その差分を示す差分データDcを波形調整部32に送る。
 なお、比較部33は、CPU及びメモリを有するコンピュータによって構成されてもよい。その場合、比較部33は、コンピュータ31とは別体であってもよいし、コンピュータ31と共通のコンピュータ内に実現されてもよい。
 波形調整部32は、コンピュータ31と電気的に接続されており、目標波形データDbをコンピュータ31から取得する。また、波形調整部32は、比較部33と電気的に接続されており、比較部33から出力された差分データDcを取得する。波形調整部32は、これらのデータDb,Dcに基づいて、レーザ光Lbの時間波形が目標波形に近づくように(すなわち差分が小さくなるように)入力波形データDaを生成する。
 なお、波形調整部32もまた、CPU及びメモリを有するコンピュータによって構成されてもよい。その場合、波形調整部32は、コンピュータ31及び比較部33とは別体であってもよいし、コンピュータ31及び比較部33のうち少なくとも一方と共通のコンピュータ内に実現されてもよい。
 図2に示されるレーザ加工装置1Aは、光アイソレータ12、光分岐部13及び光検出部14を更に備える。光アイソレータ12の光入力端は、半導体レーザ素子2のレーザ光出力端と光学的に結合されている。また、光アイソレータ12の光出力端は、光増幅器3の光入力端と光学的に結合されている。すなわち、光アイソレータ12は、半導体レーザ素子2と光増幅器3との間の光路上に介在している。光アイソレータ12は、光増幅器3によって増幅された光が半導体レーザ素子2に戻ることを防ぐ。
 光分岐部13及び光検出部14は、光波形検出部15を構成する。光波形検出部15は、光増幅器3から出力された増幅後のレーザ光Lbの時間波形を検出する。光分岐部13は、光増幅器3の光出力端と光学的に結合されている。光分岐部13は、光増幅器3から出力された増幅後のレーザ光Lbの一部Lb1を反射(若しくは透過)することにより、増幅後のレーザ光Lbの一部Lb1をレーザ光Lbから分岐する。光分岐部13は、例えばガラス板によって構成され得る。
 レーザ光Lbの一部Lb1の強度P1と残部の強度P2との比(分岐比)P1/P2は、例えば0.005~0.01の範囲内である。光検出部14は、光分岐部13と光学的に結合されており、増幅後のレーザ光Lbの一部Lb1を受ける。なお、レーザ光Lbの残部は、図1に示された加工光学系5を介して被加工物Bに照射される。
 光検出部14は、レーザ光Lbの一部Lb1の光強度に応じた電気信号である光強度信号Scを生成し、この光強度信号Scを比較部33に提供する。一例では、光検出部14は、フォトダイオードと、フォトダイオードを流れる光電流を電圧信号に変換する回路とを含んで構成され得る。
 光検出部14は、生成した電圧信号を光強度信号Scとして出力してもよく、生成した電圧信号をディジタル信号に変換し、該ディジタル信号を光強度信号Scとして出力してもよい。光強度信号Scが電圧信号である場合、比較部33においてディジタル信号に変換される。なお、光検出部14は、フォトダイオードに代えて、光電管(例えばバイプラナ光電管)を含んでもよい。
 図3は、半導体レーザ素子2、光増幅器3、ドライバ回路4、及び波形出力部6の周辺構造の具体例を示すブロック図である。図3に示される具体例において、レーザ加工装置1Aは、図2に示された光アイソレータ12としての光アイソレータ21,23,27,及び29と、光増幅器3としての光ファイバ増幅器22、固体レーザ増幅器28及び30を備えている。このように、本具体例では光増幅器3が多段に構成されている。更に、レーザ加工装置1Aは、バンドパスフィルタ24、光ファイバコネクタ25、及びコリメータレンズ26を備えている。
 光ファイバ増幅器22の光入力端と半導体レーザ素子2とは、光ファイバF1を介して光学的に結合されている。光ファイバ増幅器22と半導体レーザ素子2との間には、光アイソレータ21が介在している。光アイソレータ21は、光ファイバ増幅器22から半導体レーザ素子2へ光(レーザ光La及び励起光)が戻ることを防ぐ。これにより、半導体レーザ素子2の損傷を防止できる。
 光ファイバ増幅器22の光出力端とバンドパスフィルタ24とは、光ファイバF2を介して光学的に結合されている。光ファイバ増幅器22とバンドパスフィルタ24との間には、光アイソレータ23が介在している。光アイソレータ23は、バンドパスフィルタ24より後段の光が光ファイバ増幅器22に戻ることを防ぐ。
 光ファイバ増幅器22は、第1段の光増幅器であって、半導体レーザ素子2から出力されたレーザ光Laを増幅する。光ファイバ増幅器22の利得は、例えば20dB~30dBの範囲内である。光ファイバ増幅器22は、例えばイッテルビウム添加ファイバ(YDF)である。バンドパスフィルタ24は、光ファイバ増幅器22から出力された光に含まれる、蛍光の波長成分を遮断する。バンドパスフィルタ24は、例えば誘電体多層膜によって構成され得る。
 バンドパスフィルタ24は、光ファイバF3を介して光ファイバコネクタ25と光学的に結合されている。光ファイバコネクタ25は、光ファイバF3を終端する。すなわち、バンドパスフィルタ24を通過した光は、光ファイバF3を伝搬して光ファイバコネクタ25に達した後、空間に出力される。
 コリメータレンズ26は、空間を介して光ファイバコネクタ25と光学的に結合されており、光ファイバコネクタ25から放射状に出力された光を平行化(コリメート)する。後述する固体レーザ増幅器28及び30によって増幅された光の強度は大きいので、ガラス等の光学材料のレーザによる損傷を回避するため、このように光ファイバコネクタ25より後段においては光ファイバではなく空間中を伝搬させる。なお、図3では、空間中を伝搬する光を破線で示している。
 固体レーザ増幅器28は、光アイソレータ27を介してコリメータレンズ26と光学的に結合されている。光アイソレータ27は、固体レーザ増幅器28の光が固体レーザ増幅器28より前段に戻ることを防ぐ。これにより、光ファイバ増幅器22の損傷を防止できる。
 固体レーザ増幅器28は、第2段の光増幅器であって、光ファイバ増幅器22から出力された増幅後のレーザ光を更に増幅する。固体レーザ増幅器28の利得は、例えば3dB~20dBの範囲内である。
 固体レーザ増幅器30は、光アイソレータ29を介して固体レーザ増幅器28と光学的に結合されている。すなわち、光ファイバ増幅器22、固体レーザ増幅器28及び30は、互いに直列に結合されている。光アイソレータ29は、固体レーザ増幅器30の光が固体レーザ増幅器30より前段に戻ることを防ぐ。これにより、固体レーザ増幅器28の損傷を防止できる。
 固体レーザ増幅器30は、第3段の光増幅器であって、固体レーザ増幅器28から出力された増幅後のレーザ光を更に増幅する。固体レーザ増幅器30の利得は、例えば3dB~10dBの範囲内である。固体レーザ増幅器30によって増幅された光は、増幅後のレーザ光Lbとして出力される。
 図4は、ドライバ回路4の詳細な構成例を示すブロック図である。図4に示されるように、ドライバ回路4は、コントロール基板41、波形データ格納部42、波形タイミング調整部43、波形信号生成部44、及び電流変換部45を有する。また、コントロール基板41は、CPU41aと、高速DACインターフェース41bとを含んで構成される。このうち、高速DACインターフェース41b、波形データ格納部42、波形タイミング調整部43、及び波形信号生成部44は、D/A変換部46を構成する。D/A変換部46は、電子回路であって、ディジタルの入力波形データDaをアナログの駆動信号Sdに変換する。
 コントロール基板41は、波形出力部6とのインターフェースを担う回路基板である。CPU41aは、波形出力部6の波形調整部32(図2を参照)と通信回線を介して電気的に接続され、波形調整部32から入力波形データDaを受け取る。CPU41aは、この入力波形データDaを、適切なタイミングで高速DACインターフェース41bに送信する。高速DACインターフェース41bは、入力波形データDaを波形データ格納部42に一時的に記憶させる。波形データ格納部42は、高速DACインターフェース41bと電気的に接続され、例えば揮発性の記憶素子によって構成される。
 本実施形態の波形調整部32は、入力波形データDaを、入力波形データDaの時間波形を分割してなる連続する複数の区間波形データとして出力する(詳しくは後述)。これらの区間波形データは、2以上の区間波形データ毎に並列且つ同時に出力される。そして、波形データ格納部42は、この複数の区間波形データを記憶するとともに、要求に応じて複数の区間波形データを出力する。
 波形タイミング調整部43は、波形データ格納部42と電気的に接続されており、波形データ格納部42から入力波形データDaが出力されるタイミングを調整(制御)する。図5は、波形タイミング調整部43の機能を模式的に示す図である。図5に示されるように、波形タイミング調整部43は、波形データ格納部42から読み出した複数の区間波形データDD1~DD4を、適切な時間差を与えながら順次出力する。ここで、適切な時間差とは、例えば各区間波形データの時間幅である。この時間幅は、出力波形の時間分解能を規定し、一実施例では1ナノ秒である。
 波形信号生成部44は、波形タイミング調整部43から出力された複数の区間波形データDD1~DD4を順次入力し、これらの区間波形データDD1~DD4をアナログ信号(電圧信号)である駆動信号Sdに順次変換する。このとき、区間波形データDD1~DD4の変換タイミングの時間差は、波形タイミング調整部43によって付与された時間差と略一致する。
 再び図4を参照する。電流変換部45は、波形信号生成部44と電気的に接続されており、駆動信号Sdを駆動電流idに変換する。すなわち、電流変換部45は、トランジスタを含むアナログ回路によって構成され、電圧信号である駆動信号Sdを、電流信号である駆動電流idに変換する。このとき生成される駆動電流idの時間波形は、駆動信号Sdの時間波形と略同一である。
 なお、電流変換部45には、更にバイアス電流制御部11が接続されている。バイアス電流制御部11は、駆動電流idに含まれるバイアス成分の大きさを制御する。半導体レーザ素子2は電流変換部45の電流出力端と電気的に接続されており、電流変換部45から駆動電流idを受けてレーザ光Laを出力する。レーザ光Laの時間波形は、駆動電流idの時間波形と略同一である。
 図6は、レーザ加工装置1Aの動作を示すフローチャートである。また、図7(a)~(d)は、光パルス波形を模式的に示す図である。これらの図では、光パルスの時間波形を、連続する複数の単位区間の波高値(光強度)の集合として示している。必要に応じて遅延時間TAが設定され、光パルスの時間波形の始点は基準時間から遅延時間TAだけ遅れる。図7(a)~(d)において、縦軸は光強度を表し、横軸は時間を表す。図6及び図7を参照しつつ、レーザ加工装置1Aの動作及び本実施形態に係るレーザ加工方法について説明する。
 まず、波形調整部32は、初期の入力波形データDaを設定する(ステップST1)。この初期の入力波形データDaは、目標波形データDbに基づいて設定される。一例では、目標波形データDbがそのまま初期の入力波形データDaとして用いられる。次に、この初期の入力波形データDaに基づいてドライバ回路4が駆動電流idを半導体レーザ素子2に供給し、半導体レーザ素子2がレーザ光Laを出力する(電流供給ステップST2)。図7(a)は、初期の入力波形データDaに基づいて生成されたレーザ光Laの時間波形を模式的に示している。このレーザ光Laは光増幅器3によって増幅される(光増幅ステップST3)。
 なお、電流供給ステップST2は、D/A変換ステップST21と、電流変換ステップST22とを含む。D/A変換ステップST21では、D/A変換部46が、ディジタルの入力波形データDaをアナログの駆動信号Sdに変換する。このとき、前述したように、入力波形データDaの時間波形を分割してなる連続する複数の区間波形データDD1~DD4(図5を参照)を、時間差を与えながら駆動信号Sdに順次変換する。電流変換ステップST22では、電流変換部45が駆動信号Sdを駆動電流idに変換する。
 続いて、光検出部14を通じて、増幅後のレーザ光Lbの時間波形を検出する(光波形検出ステップST4)。図7(b)は、検出された時間波形を模式的に示している。多くの場合、増幅後のレーザ光Lbの時間波形は、増幅前のレーザ光Laの時間波形と異なる。一つの原因としては、光増幅器3における励起状態が時間経過に応じて変化することが挙げられる。すなわち、レーザ光Laの入射直後においては光増幅器3が強く励起されており、高い利得でもってレーザ光Laを増幅する。しかし、レーザ光Laの入射開始から時間が経過すると、次第に光増幅器3の励起強度が低下し、それに伴ってレーザ光Laの増幅利得も低下する。
 図8及び図9は、実際に測定された、増幅前のレーザ光La及び増幅後のレーザ光Lbの各時間波形を示すグラフである。図8(a)は、増幅前のレーザ光Laの時間波形(矩形波)を示し、図8(b)は、図8(a)に示された時間波形を有するレーザ光Laを増幅した後のレーザ光Lbの時間波形を示す。また、図9(a)は、増幅前のレーザ光Laの時間波形(ランプ波)を示し、図9(b)は、図9(a)に示された時間波形を有するレーザ光Laを増幅した後のレーザ光Lbの時間波形を示す。なお、縦軸は光強度(任意単位)を表し、横軸は時間(単位:ナノ秒)を表す。これらの図に示されるように、増幅後のレーザ光Lbの時間波形は、増幅前のレーザ光Laの時間波形と大きく異なる。
 再び図7を参照する。波形調整ステップST5では、まず、比較部33が、検出されたレーザ光Lbの時間波形と、目標波形データDbに示される目標波形(図7(c))とを比較し、その差分(誤差)を出力する(ステップST51)。次に、波形調整部32は、この差分に基づいて入力波形データDaの時間波形を調整する。すなわち、波形調整部32は、この差分がより小さくなるように(すなわち0に近づくように)、新たな入力波形データDaを演算する(ステップST52)。
 この新たな入力波形データDaに基づいてドライバ回路4が駆動電流idを半導体レーザ素子2に供給し、半導体レーザ素子2がレーザ光Laを出力する(電流供給ステップST2)。図7(d)は、新たな入力波形データDaに基づいて生成されたレーザ光Laの時間波形を模式的に示している。このレーザ光Laは光増幅器3によって増幅される(光増幅ステップST3)。上記のステップST2~ST5を繰り返すことによって、増幅後のレーザ光Lbの時間波形が目標波形に近づく。こうして生成されたレーザ光Lbが、図1に示された加工光学系5を経て被加工物Bに照射される(光照射ステップST6)。
 図10及び図11は、光増幅器3から出力されるレーザ光Lbの時間波形の例を示すグラフである。なお、縦軸は光強度(任意単位)を表し、横軸は時間(単位:ナノ秒)を表す。図10(a)は、半値全幅(Full Width at Half Maximum:FWHM)が4ナノ秒のガウス波形を示している。図10(b)は、FWHMが32ナノ秒のガウス波形を示している。図11(a)は、FWHMが120ナノ秒の矩形波を示している。図11(b)は、FWHMが4ナノ秒のランプ波形を示している。これらのように、本実施形態のレーザ加工装置1Aによれば、任意の様々な時間波形を生成することができる。
 レーザ光Lbの好適な時間波形について更に検討する。図12は、本実施形態のレーザ加工装置1Aにおいてレーザ光Lbとして生成された、パルス幅23.7ns(FWHM)のガウシアンパルスPaの時間波形(実測値)を示すグラフである。図12において、縦軸は規格化強度(任意単位)を表し、横軸は時間(単位:ナノ秒)を表す。このレーザ光Lbを被加工物Bに照射して穴あけ加工を行った。
 なお、レーザ光Lbの波長を1064nmとし、光パルスPaの繰り返し周波数を300Hzとして3秒間照射し(すなわち光パルスPaの照射回数は900回)、光パルスPaのパルスエネルギーを40μJとし、加工光学系5の集光レンズとして焦点距離40mmの平凸レンズを用いた。また、被加工物Bを厚み50μmのステンレス鋼(SUS304)とし、被加工物Bにおけるレーザ光Lbの集光径を10μmとした。
 図13(a)は、走査型電子顕微鏡(Scanning Electron Microscope:SEM)により観察された穴あけ加工後の被加工物Bの表面(レーザ照射面)の画像である。図13(b)は、SEMにより観察された穴あけ加工後の被加工物Bの裏面の画像である。図13を参照すると、被加工物Bに略円形の貫通孔が形成されていることがわかる。被加工物Bの表面における孔の直径を計測したところ、紙面の左右方向の幅dxは19.1μm、紙面の上下方向の幅dyは21.4μmであった。すなわち、レーザ光Lbの集光径の約2倍の大きさの孔が形成された。
 図14は、本実施形態のレーザ加工装置1Aにおいてレーザ光Lbとして生成された、複数の超短光パルスPbaを含む光パルス列である光パルス群Pbの時間波形(実測値)を示すグラフである。図14において、縦軸は規格化強度(任意単位)を表し、横軸は時間(単位:ナノ秒)を表す。このレーザ光Lbを被加工物Bに照射して穴あけ加工を行った。
 なお、この光パルス群Pbを構成する各超短光パルスPbaのパルス幅を70ps(FWHM)とし、パルス同士の時間間隔を2nsとし、超短光パルスPbaの数を10本とした。また、光パルス群Pbの繰り返し周波数を300Hzとして3秒間照射し(すなわち光パルス群Pbの照射回数は900回)、各超短光パルスPbaのパルスエネルギーを40μJとした。レーザ光Lbの波長、加工光学系5の集光レンズ、被加工物Bの材質、及びレーザ光Lbの集光径は上記と同様とした。
 図15(a)は、SEMにより観察された穴あけ加工後の被加工物Bの表面(レーザ照射面)の画像である。図15(b)は、SEMにより観察された穴あけ加工後の被加工物Bの裏面の画像である。図15を参照すると、この実施例においても、被加工物Bに略円形の貫通孔が形成されていることがわかる。被加工物Bの表面における孔の直径を計測したところ、紙面の左右方向の幅dxは28.6μm、紙面の上下方向の幅dyは25.4μmであった。すなわち、図12に示されたガウシアンパルスPaの場合よりも大きな孔が形成された。
 図12に示されるガウシアンパルスPaのピーク出力は2.15GW/cmであった。一方、図14に示される複数の超短光パルスPbaはガウシアンパルスPaよりもパルス幅が小さいため、そのピーク出力は、ガウシアンパルスPaのピーク出力の約30倍(60GW/cm)となった。故に、図15ではアブレーションがより促進され、加工レートが速くなったことにより孔の径が大きくなったと推測される。
 図16(a)は、本実施形態のレーザ加工装置1Aにおいてレーザ光Lbとして生成された光パルス群Pc及び光パルスPdの時間波形(実測値)を示すグラフである。図16(a)において、縦軸は規格化強度(任意単位)を表し、横軸は時間(単位:ナノ秒)を表す。このレーザ光Lbを被加工物Bに照射して穴あけ加工を行った。
 なお、光パルス群Pcは、複数の超短光パルスPcaを含み、図14に示された光パルス群Pbにおいて超短光パルスPbaの本数を半分の5本としたものと同じである。光パルスPdは、パルス幅71nsの単一パルスである。光パルス群Pcと光パルスPdとの時間間隔Δtは260.1nsである。レーザ光Lbの波長、パルスエネルギー、加工光学系5の集光レンズ、被加工物Bの材質、及びレーザ光Lbの集光径は上記と同様とした。
 図16(b)は、SEMにより観察された穴あけ加工後の被加工物Bの表面(レーザ照射面)の画像である。なお、この実施例では、孔は被加工物Bの裏面まで貫通しなかった。図16(b)を参照すると、被加工物Bの表面に略円形の小さな凹部が形成されていることがわかる。被加工物Bの表面における凹部の直径を計測したところ、紙面の左右方向の幅dxは2.5μm、紙面の上下方向の幅dyは2.4μmであった。すなわち、レーザ光Lbの集光径よりも直径が格段に小さい凹部が形成された。
 このような、レーザ光Lbの集光径よりも格段に小さな直径を有する凹部は、ピコ秒オーダーの時間幅を有する複数の超短光パルスPcaを含む光パルス群Pcによる加工と、ナノ秒オーダーの時間幅を有する光パルスPdによる加工とが複合的になされた結果として得られたものと考えられる。より詳細には、高いピーク出力を有する光パルス群Pcにより孔加工が進む一方で、低いピーク出力を有する光パルスPdを通じた長時間のエネルギー照射による熱的な加工が進むことにより、被加工物B(SUS304)が適度に溶融し、小さな直径を有する凹部が形成されたものと推測される。
 図16に示された実施例は、一又は複数の光パルスをそれぞれ含む二以上の光パルス群を互いに時間間隔Δtをあけて被加工物Bに照射し、且つ、二以上の光パルス群のうち少なくとも二つの光パルス群の時間波形を互いに異ならせることにより、従来は困難とされていた様々な加工を可能にし得ることを示唆している。そして、このような照射態様は、一又は複数のパルスを含む二以上のパルス群が互いに時間間隔Δtをあけて並び、且つ、二以上のパルス群のうち少なくとも二つのパルス群の時間波形が互いに異なる駆動電流idを、電流供給ステップST2においてドライバ回路4から半導体レーザ素子2に提供することにより実現される。
 なお、ここでいう時間波形とは、各パルス群における一又は複数のパルスそれぞれの時間波形、各パルス群における一又は複数のパルスそれぞれの時間幅、及び各パルス群における複数のパルスの時間間隔のうち少なくとも一つを含む概念である。時間間隔Δtは、例えば200マイクロ秒以下であり、より好適には1マイクロ秒以下である。
 図17は、そのような照射態様のレーザ光Lbの時間波形の別の実施例を示すグラフ(実測値)である。図17において、縦軸は規格化強度(任意単位)を表し、横軸は時間(単位:ナノ秒)を表す。この実施例では、単一の光パルスPeaを含む光パルス群Pe1と、単一の光パルスPebを含む光パルス群Pe2とを光増幅器3から出力している。光パルスPea,Pebは共にガウシアンパルスであり、時間幅(FWHM)はそれぞれ62ps及び15nsである。光パルス群Pe1と光パルス群Pe2との時間間隔Δtは25.8nsである。
 本実施形態のレーザ加工装置1Aによれば、このように一の光パルス群Pe2に含まれる光パルスPebのパルス幅を、別の光パルス群Pe1に含まれる光パルスPeaのパルス幅の10倍以上とすることも可能である。この場合、光パルス群Pe1に対応するパルス群と、光パルス群Pe2に対応するパルス群とが時間間隔Δtをあけて並ぶ駆動電流idを、電流供給ステップST2においてドライバ回路4から半導体レーザ素子2に提供するとよい。
 図18及び図19は、更に別の実施例を示すグラフ(実測値)である。図18(a)は、複数の超短光パルスPfaを含む光パルス群Pf1と、単一の光パルスPfbを含む光パルス群Pf2とを示す。超短光パルスPfa及び光パルスPfbは共にガウシアンパルスであり、時間幅(FWHM)はそれぞれ62ps及び15nsであり、複数の超短光パルスPfaの時間間隔は10nsである。光パルス群Pf1と光パルス群Pf2との時間間隔Δtは37.4nsである。
 また、図18(b)は、複数の超短光パルスPgaを含む光パルス群Pg1と、単一の光パルスPgbを含む光パルス群Pg2と、単一の光パルスPgcを含む光パルス群Pg3とを示す。超短光パルスPga及び光パルスPgbは共にガウシアンパルスであり、光パルスPgcの時間波形は三角波である。超短光パルスPga及び光パルスPgbの時間幅(FWHM)はそれぞれ62ps及び15nsであり、光パルスPgcの時間幅は36nsである。複数の超短光パルスPgaの時間間隔は、前半が5ナノ秒、後半が10ナノ秒である。光パルス群Pg1と光パルス群Pg2との時間間隔Δt1は58.2nsであり、光パルス群Pg2と光パルス群Pg3との時間間隔Δt2は49.9nsである。
 また、図19は、単一の光パルスPhaを含む光パルス群Ph1と、単一の光パルスPhbを含む光パルス群Ph2とを示す。光パルスPha,Phbは共にガウシアンパルスであり、時間幅(FWHM)はそれぞれ62ps及び12nsである。光パルス群Ph1と光パルス群Ph2との時間間隔Δtは40.9nsである。
 なお、図18及び図19に示された各波形は、各光パルス群Pf1,Pf2(Pg1~Pg3またはPh1,Ph2)に対応するパルス群が時間間隔Δt(またはΔt1,Δt2)をあけて並ぶ駆動電流idを、電流供給ステップST2においてドライバ回路4から半導体レーザ素子2に提供するとよい。
 図20~図24の(a)~(c)は、本実施形態のレーザ加工装置1Aから出力可能な種々の時間波形を概念的に示す図である。これらの図において、縦軸は光強度を表し、横軸は時間を表す。図20(a)、(b)は、複数の超短光パルスを含む光パルス列である光パルス群Piと、単一のガウシアンパルスを含む光パルス群Pjとを組み合わせた例を示す。図20(a)は光パルス群Piの後に光パルス群Pjが照射される例を示し、図20(b)は光パルス群Pjの後に光パルス群Piが照射される例を示す。
 なお、光パルス群Piに含まれる超短光パルスの本数は任意であって、図示例では、超短光パルスの本数は3である。また、光パルス群Piに含まれる各超短光パルスのピーク強度は、互いに等しくてもよく、少なくとも1つが他と異なってもよい。また、図20(a)、(b)と同様に、以下に説明する各例においても、光パルス群の順序は適宜入れ替わってよい。
 図20(c)は、光強度が単調に増加する三角波状の時間波形を有する単一の光パルスを含む光パルス群Pkと、単一のガウシアンパルスを含む光パルス群Pjとを組み合わせた例を示す。
 図21(a)は、光パルス群Piと、単一の超短光パルスを含む光パルス群Pmと、光パルス群Pkとを組み合わせた例を示す。図示例では、光パルス群Piを構成する超短光パルスの本数は2であり、各超短光パルスのピーク強度は互いに等しい。
 図21(b)は、複数の超短光パルスを含む光パルス列であって各超短光パルスのピーク強度が単調に増加する光パルス群Pnと、光強度が階段状に増加する単一の光パルスを含む光パルス群Ppとを組み合わせた例を示す。光パルス群Pnに含まれる超短光パルスの本数は任意であって、図示例では、超短光パルスの本数は5である。また、光パルス群Ppを構成する光パルスの段数は任意であって、図示例では、光パルスの段数は2である。
 図21(c)は、複数の超短光パルスを含む光パルス列であって各超短光パルスのピーク強度が単調に減少する光パルス群Pqと、光強度が階段状に減少する単一の光パルスを含む光パルス群Prとを組み合わせた例を示す。光パルス群Pqに含まれる超短光パルスの本数は任意であって、図示例では、超短光パルスの本数は5である。また、光パルス群Prを構成する光パルスの段数は任意であって、図示例では、光パルスの段数は4である。
 図22(a)は、光強度が一定である平坦な区間を含む時間波形を有する単一の光パルスを含む光パルス群Psと、2つの光パルス群Pmとを組み合わせた例を示す。
 図22(b)は、光パルス群Pkと、複数の光パルスを含む光パルス列であって光強度が単調に増加する三角波状の時間波形を各光パルスが有する光パルス群Ptとを組み合わせた例を示す。光パルス群Ptに含まれる三角波状の光パルスの本数は任意であって、図示例では、光パルスの本数は4である。また、光パルス群Ptに含まれる各光パルスのピーク強度は、互いに等しくてもよく、少なくとも1つが他と異なってもよい。
 図22(c)は、ガウシアンパルスのピーク強度が互いに異なる2つの光パルス群Pjと、光パルス群Piとを組み合わせた例を示す。図示例では、最初の光パルス群Pjのガウシアンパルスのピーク強度が、2番目の光パルス群Pjのガウシアンパルスのピーク強度よりも大きい。また、光パルス群Piを構成する超短光パルスの本数は2であり、各超短光パルスのピーク強度は互いに等しい。
 図23(a)は、複数の超短光パルスを含む光パルス列であって、各超短光パルスのピーク強度が単調に増加したのち単調に減少する光パルス群Puと、光パルス群Pjとを組み合わせた例を示す。光パルス群Puに含まれる超短光パルスの本数は任意であって、図示例では、光パルスの本数は11である。
 図23(b)は、複数の超短光パルスを含む光パルス列であって、各超短光パルスのピーク強度が単調に減少したのち単調に増加する光パルス群Pvを示す。光パルス群Pvに含まれる超短光パルスの本数は任意であって、図示例では、光パルスの本数は10である。
 図23(c)は、ゼロより大きい光強度から開始して光強度が単調に増加する時間波形を有する単一の光パルスを含む光パルス群Pwと、光パルス群Piとを組み合わせた例を示す。図示例では、光パルス群Piを構成する超短光パルスの本数は3であり、各超短光パルスのピーク強度は互いに等しい。
 図24(a)は、光強度が単調に増加する三角波状の時間波形を有する単一の光パルスを含む光パルス群Pxと、光パルス群Piとを組み合わせた例を示す。図示例では、光パルス群Piを構成する超短光パルスの本数は6であり、各超短光パルスのピーク強度は互いに等しい。
 図24(b)は、光強度が一定である平坦な区間を含む時間波形を有する単一の光パルスを含む光パルス群Pyと、光パルス群Piと、光強度が単調に減少する三角波状の時間波形を有する単一の光パルスを含む光パルス群Pzとを組み合わせた例を示す。図示例では、光パルス群Piを構成する超短光パルスの本数は4であり、各超短光パルスのピーク強度は互いに等しい。
 図24(c)は、複数の光パルス群Pjを等間隔で組み合わせた例を示す。各光パルス群Pjのガウシアンパルスのピーク強度は、互いに等しくてもよく、少なくとも1つが他と異なってもよい。
 図25は、複数の加工プロセスにそれぞれ対応する複数の光パルス群Pi,Pj,Pyを組み合わせた例を示すグラフである。図25において、縦軸は光強度を表し、横軸は時間を表す。図25に示されるように、或る加工プロセスに対応する光パルス群Piをまず照射し、その時間Δt3後に別の加工プロセスに対応する光パルス群Pjを照射し、その時間Δt4後に更に別の加工プロセスに対応する光パルス群Pyを照射する。この場合、従来は別個のレーザ加工装置を用いて行っていたこれらの加工プロセスを、短時間の間に連続して行うことが可能になる。
 光パルス群Piに含まれる各超短光パルスのパルス幅(FWHM)は、例えば1ピコ秒以上1ナノ秒以下である。光パルス群Pjに含まれるガウシアンパルスのパルス幅(FWHM)は、例えば1ナノ秒以上1マイクロ秒以下である。光パルス群Pyを構成する光パルスの平坦区間の時間幅は、例えば1マイクロ秒以上1ミリ秒以下である。時間間隔Δt3,Δt4は、例えば1ミリ秒以下であり、より好適には200マイクロ秒以下である。
 図26~図29は、本実施形態のレーザ加工装置1Aを用いて、複数の加工プロセスを短時間の間に連続して行う場合の例を示す。図26~図29の各(a)には、互いに構成材料が異なる複数(図では3つ)の層B1~B3を有する被加工物Bと、被加工物Bに照射されるレーザ光Lbとが示されている。図26~図29の各(b)には、各加工プロセスにおけるレーザ光Lbの時間波形が示されている。
 この例では、まず図26(b)に示される光パルス群Pyを最上層B1に照射することにより、被加工面のクリーニングを行う。光パルス群Pyを構成する光パルスにおいて、光強度が一定である平坦な区間の時間幅は例えば1ミリ秒である。次に、図27(b)に示される光パルス群Piを最上層B1に照射することにより、図27(a)に示されるように、最上層B1に孔B1aを形成する。光パルス群Piを構成する各光パルスの時間幅は例えば60ピコ秒である。
 続いて、図28(b)に示される光パルス群Ppを層B2に照射することにより、図28(a)に示されるように、層B2を部分的に改質して改質領域B2aを形成する。光パルス群Ppを構成する光パルスの時間幅は例えば30ナノ秒である。続いて、図29(b)に示される光パルス群Piを層B2に照射し、その後に光パルス群Pjを層B3に照射することにより、図29(a)に示されるように、層B2に孔B2b、層B3に孔B3aをそれぞれ形成する。光パルス群Piを構成する各光パルスの時間幅は例えば60ピコ秒であり、光パルス群Pjを構成するガウシアンパルスのFWHMは例えば30ナノ秒である。
 こうして、異種材料が積層されて成る被加工物Bにおいて、短時間の間に貫通孔を形成することができる。
 なお、複数の加工プロセスに対応する複数の光パルス群の組み合わせは、次のような態様であってもよい。図30(a)は、或る加工プロセスに対応する光パルス群Pi,Py,Pkの組み合わせを示すグラフである。図30(b)は、次の加工プロセスに対応する光パルス群Pjを示すグラフである。図30(c)は、更に次の加工プロセスに対応する光パルス群Pi,Pi,Pmを示すグラフである。この例のように、加工プロセス毎に複数の光パルス群を被加工物Bに照射してもよい。
 ここで、複数の加工プロセスのそれぞれに対応する複数の光パルス群を被加工物Bに照射した実施例について説明する。図31は、この実施例において照射されたレーザ光Lbの時間波形を示すグラフである。図31に示されるように、この実施例では、レーザ光Lbを、孔開け加工(前加工)に適した時間波形を有する複数の光パルス群Piと、その後に、バリ取り(後加工)に適した時間波形を有する複数の光パルス群Pjとを含むものとした。
 光パルス群Piの個数を300個とし、光パルス群Piに含まれる複数の光パルスの個数を10個とし、各光パルスのエネルギーを2μJとし、各光パルスの時間幅(FWDM)を80psとし、パルス同士の時間間隔を2nsとした。また、光パルス群Pjの個数を300個とし、光パルス群Pjを構成するガウシアンパルスのエネルギーを40μJとし、ガウシアンパルスの時間幅(FWDM)を137nsとした。また、光パルス群Piと光パルス群Pjとの時間間隔Δt5を、光パルス群Piの加工後に被加工物Bが定常状態となる時間として1sとし、光パルス群Pi同士の時間間隔を3.3msとし、光パルス群Pj同士の時間間隔を3.3msとした。
 図32及び図33は、被加工物Bに形成された孔のSEM画像を示す図である。図32は、光パルス群Piを照射した後且つ光パルス群Pjを照射する前における、被加工物Bの(a)表面(レーザ照射面)及び(b)裏面を示す。また、図33は、光パルス群Pjを照射した後における、被加工物Bの(a)表面及び(b)裏面を示す。
 図32(a)と図33(a)とを比較すると、光パルス群Piの照射後に生じていた孔周辺のバリが、光パルス群Pjの照射により溶融して滑らかになったことがわかる。また、図32(b)と図33(b)とを比較すると、レーザ照射面とは反対側の孔径が、光パルス群Pjの照射による溶融によって小さくなったことがわかる。
 なお、被加工物Bの裏面における孔の直径を計測したところ、光パルス群Pjを照射する前(図32(b))では、紙面の左右方向の幅dxは8.3μm、紙面の上下方向の幅dyは8.1μm、平均幅は8.2μmであったのに対し、光パルス群Pjを照射した後(図33(b))では、紙面の左右方向の幅dxは2.9μm、紙面の上下方向の幅dyは2.7μm、平均幅は2.8μmであった。
 以上に説明した本実施形態のレーザ加工装置1A及びレーザ加工方法によって得られる効果について説明する。
 本実施形態のレーザ加工装置1A及びレーザ加工方法では、波形出力部6が入力波形データDaを出力し、入力波形データDaに応じた時間波形を有する駆動電流idをドライバ回路4が半導体レーザ素子2に供給する。したがって、任意の時間波形を入力波形データDaに含めることにより、任意の時間波形を有する光パルスを半導体レーザ素子2から出力させることができる。また、時間差を有する複数のパルス群を入力波形データDaに含めることにより、時間差を有する複数の光パルス群を半導体レーザ素子2から出力させることができる。
 すなわち、本実施形態によれば、時間波形が異なる複数の光パルス群を時間差をあけて被加工物Bに照射することができる。加えて、単一の半導体レーザ素子2から単一の光路上に複数の光パルス群を出力させるので、特許文献1,2に記載された各方法と比較して、装置構成を小型化することが可能になる。
 また、時間波形が異なる複数の光パルス群を短時間の間に(連続的に)被加工物Bに照射することにより、複数の光パルス群が被加工物Bに対して複合的に作用し、例えば図16(b)に示されるような照射径未満の直径を有する凹部の形成といった、従来は困難とされていた様々な加工形状及び加工品質を可能にできる。
 また、従来のように、加工プロセスごとに適切な時間波形を有する光源を用意して各加工プロセスを実施すると、光源を入れ替えるための作業が必要となり、また光源を入れ替えたのちに光軸のズレを修正するための作業が更に必要になるなど、加工処理に要する時間が長くなる。これに対し、本実施形態によれば、例えば図26~図29及び図31~図33に示したように、複数の加工プロセスのそれぞれに適した時間波形を有する複数の光パルス群を単一の半導体レーザ素子2から短時間の間に(連続して)発生させることができ、加工処理に要する時間を大幅に短縮することができる。
 本実施形態のように、ドライバ回路4(電流供給ステップST2)は、ディジタルの入力波形データDaをアナログの駆動信号Sdに変換するD/A変換部46(D/A変換ステップST21)と、駆動信号Sdを駆動電流idに変換する電流変換部45(電流変換ステップST22)と、を有してもよい。そして、D/A変換部46(D/A変換ステップST21)は、入力波形データDaの時間波形を分割してなる連続する複数の区間波形データDD1~DD4を、時間差を与えながら駆動信号Sdに順次変換してもよい。これにより、駆動信号Sdをより高速化して光パルスの時間波形の時間分解能を高めることができる。
 本実施形態のように、各光パルス群における一又は複数のパルスそれぞれの時間幅は1マイクロ秒以下であってもよい。このように時間幅が短い光パルスを被加工物Bに照射することにより、被加工領域の周辺への熱的な影響を制御しつつレーザ光Lbの光強度を大きくすることができ、加工精度を高めることができる。
 本実施形態のように、光パルス群同士の時間間隔が200マイクロ秒以下であってもよい。この場合、二以上の光パルス群を含むレーザ光Lbを短時間で被加工物Bに照射することができ、加工に要する時間を短縮することができる。
 本実施形態のように、波形出力部6は(電流供給ステップST2において)、レーザ光Lbにおける二以上の光パルス群のうち少なくとも一つのパルス群の時間波形を被加工物Bの加工途中に変更してもよい。本実施形態では、このように、パルス群の時間波形を被加工物Bの加工途中に変更することが容易にできる。したがって、レーザ光に求められる時間波形がそれぞれ異なる複数段階の加工プロセスを短時間のうちに連続して行うことができ、加工に要する時間を短縮することができる。
 本実施形態のように、一の光パルス群における一又は複数の光パルスのパルス幅が、別の光パルス群における一又は複数の光パルスのパルス幅の10倍以上であってもよい。本実施形態によれば、例えばこのようにパルス幅が大きく異なる光パルスを短時間のうちに連続して出力することができ、様々な加工条件に適応することができる。
 (変形例)
 図34は、上記実施形態の一変形例の構成を示すブロック図である。図34に示されるように、本変形例のレーザ加工装置1Bは、上記実施形態のレーザ加工装置1Aの構成に加えて、空間光変調器7及び駆動部8を更に備える。
 空間光変調器7は、二次元状に配列された複数の画素を有し、各画素において入射光の位相を個別に変調する。空間光変調器7は、透過型及び反射型のいずれであってもよい。一例では、空間光変調器7は液晶型のLCOS-SLM(Liquid Crystal on Silicon - Spatial Light Modulator)である。
 空間光変調器7は、半導体レーザ素子2と加工光学系5との間の光路上(図示例では、光増幅器3と加工光学系5との間の光路上)に配置されている。空間光変調器7は、光増幅器3から出力されたレーザ光Lbの位相を空間的に変調し、変調後のレーザ光Lcを加工光学系5に出力する。このレーザ光Lcは、加工光学系5を介して被加工物Bに照射される。すなわち、図6に示された光照射ステップST6において、レーザ光Lbが空間光変調器7を介して被加工物Bに照射される。
 駆動部8は、空間光変調器7を駆動するための電圧信号Svを空間光変調器7の各画素に印加するための回路である。各画素の電圧信号Svの大きさは、波形出力部6において生成される計算機生成ホログラム(CGH:Computer Generated Hologram)に基づいて決定される。
 図35は、本変形例において被加工物Bに照射される複数の光パルス群の例である。例えば、光パルス群Py1を被加工物Bに照射し、時間Δt6が経過した後、光パルス群Py2を被加工物Bに照射し、更に、時間Δt7が経過した後、光パルス群Py3を被加工物Bに照射する。このような照射態様は、ドライバ回路4からの駆動電流idに、光パルス群Py1,Py2,Py3に対応するパルス群を含めることによって実現される。
 ここで、本変形例では、各光パルス群Py1,Py2,Py3を照射する被加工物B上の位置を、光パルス群Py1,Py2,Py3毎に異ならせるか、或いは、少なくとも1つの光パルス群Py1,Py2,又はPy3の照射位置を他の光パルス群の照射位置と異ならせるためのCGHを空間光変調器7が呈示する。言い換えると、空間光変調器7は、第1の光パルス群Py1(又はPy2)を第1の照射位置に照射するためのCGHと、第2の光パルス群Py2(又はPy3)を第1の照射位置とは異なる第2の照射位置に照射するためのCGHとを順次呈示する。なお、上述した時間Δt6,Δt7は、空間光変調器7がCGHを変更するために必要な時間よりも大きい。
 本変形例によれば、少なくとも二箇所の被加工部位に対して異なる時間波形の光パルス群を照射することができ、且つ、これらの光パルス群の照射を短時間のうちに連続して行うことができる。したがって、従来のレーザ加工装置と比較して、加工に要する時間を格段に短縮することができる。
 レーザ加工装置及びレーザ加工方法は、上述した実施形態及び構成例に限られるものではなく、他に様々な変形が可能である。例えば、上記実施形態では目標波形データを波形出力部6において記憶しているが、目標波形データはレーザ加工装置1Aの外部から入力されてもよい。また、必要に応じて光増幅器3及び/又は光アイソレータ12を省いてもよい。
 また、上記実施形態では波形出力部6が波形調整部32及び比較部33を有し、レーザ光Lbの時間波形をフィードバックして入力波形データDaを生成しているが、このようなフィードバックのための構成を設けず、コンピュータ31からの目標波形データDbをそのまま用いてレーザ光Lbを生成してもよい。
 上記実施形態によるレーザ加工装置は、半導体レーザ素子と、入力波形データを出力する波形出力部と、入力波形データに応じた時間波形を有する駆動電流を生成し、該駆動電流を半導体レーザ素子に供給するドライバ回路と、半導体レーザ素子から出力されたレーザ光を被加工物に照射する光学系と、を備え、半導体レーザ素子は、一又は複数の光パルスを含む二以上の光パルス群が互いに時間間隔をあけて並ぶレーザ光を出力し、二以上の光パルス群のうち少なくとも二つの光パルス群の時間波形は互いに異なり、時間波形には、一又は複数の光パルスそれぞれの時間波形、一又は複数の光パルスそれぞれの時間幅、及び複数の光パルスの時間間隔のうち少なくとも一つが含まれる構成としている。
 上記実施形態によるレーザ加工方法は、入力波形データに応じた時間波形を有する駆動電流を生成し、駆動電流を半導体レーザ素子に供給する電流供給ステップと、半導体レーザ素子から出力されたレーザ光を被加工物に照射する光照射ステップと、を含み、光照射ステップにおいて、一又は複数の光パルスを含む二以上の光パルス群が互いに時間間隔をあけて並ぶレーザ光を半導体レーザ素子が出力し、二以上の光パルス群のうち少なくとも二つの光パルス群の時間波形は互いに異なり、時間波形には、一又は複数の光パルスそれぞれの時間波形、一又は複数の光パルスそれぞれの時間幅、及び複数の光パルスの時間間隔のうち少なくとも一つが含まれる構成としている。
 上記のレーザ加工装置において、ドライバ回路は、ディジタルの入力波形データをアナログの駆動信号に変換するD/A変換部と、駆動信号を駆動電流に変換する電流変換部と、を有し、D/A変換部は、入力波形データの時間波形を分割してなる連続する複数の区間波形データを、時間差を与えながら駆動信号に順次変換する構成としても良い。
 上記のレーザ加工方法において、電流供給ステップは、ディジタルの入力波形データをアナログの駆動信号に変換するD/A変換ステップと、駆動信号を駆動電流に変換する電流変換ステップと、を含み、D/A変換ステップでは、入力波形データの時間波形を分割してなる連続する複数の区間波形データを、時間差を与えながら駆動信号に順次変換する構成としても良い。
 これらの装置及び方法によれば、駆動信号をより高速化して光パルスの時間波形の時間分解能を高めることができる。
 上記のレーザ加工装置及びレーザ加工方法において、各光パルス群における一又は複数の光パルスそれぞれの時間幅が、1マイクロ秒以下である構成としても良い。このように時間幅が短い光パルスを被加工物に照射することにより、被加工領域の周辺への熱的な影響を制御しつつレーザ光の光強度を大きくすることができ、加工精度を高めることができる。
 上記のレーザ加工装置及びレーザ加工方法において、二以上の光パルス群同士の時間間隔が、200マイクロ秒以下である構成としても良い。この場合、二以上の光パルス群を短時間で被加工物に照射することができ、加工に要する時間を短縮することができる。
 上記のレーザ加工装置において、波形出力部は、二以上の光パルス群のうち少なくとも一つの光パルス群の時間波形を被加工物の加工途中に変更する構成としても良い。また、上記のレーザ加工方法において、二以上の光パルス群のうち少なくとも一つの光パルス群の時間波形を被加工物の加工途中に変更する構成としても良い。
 上記の装置及び方法では、このように、光パルス群の時間波形を被加工物の加工途中に変更することが容易にできる。したがって、レーザ光に求められる時間波形がそれぞれ異なる複数段階の加工を短時間のうちに連続して行うことができ、加工に要する時間を短縮することができる。
 上記のレーザ加工装置及びレーザ加工方法において、少なくとも二つの光パルス群のうち一の光パルス群における一又は複数の光パルスのパルス幅が、別の光パルス群における一又は複数の光パルスのパルス幅の10倍以上である構成としても良い。上記の装置及び方法によれば、例えばこのようにパルス幅が大きく異なる光パルスを短時間のうちに連続して出力することができ、様々な加工条件に適応することができる。
 上記のレーザ加工装置は、半導体レーザ素子と光学系との間の光路上に配置された空間光変調器を更に備え、空間光変調器は、二以上の光パルス群に含まれる第1の光パルス群に対応するレーザ光を第1の照射位置に照射するためのホログラムと、第2の光パルス群に対応するレーザ光を第1の照射位置とは異なる第2の照射位置に照射するためのホログラムとを順次呈示する構成としても良い。
 上記のレーザ加工方法は、光照射ステップにおいて、空間光変調器を介してレーザ光を被加工物に照射し、二以上の光パルス群に含まれる第1の光パルス群に対応するレーザ光を第1の照射位置に照射するためのホログラムと、第2の光パルス群に対応するレーザ光を第1の照射位置とは異なる第2の照射位置に照射するためのホログラムとを空間光変調器に順次呈示する構成としても良い。
 この場合、複数の被加工部位に対するレーザ光の照射を短時間のうちに連続して行うことができ、加工に要する時間を短縮することができる。
 本発明は、時間波形が異なる複数の光パルスを被加工物に照射する構成を小型化することが可能なレーザ加工装置及びレーザ加工方法として利用可能である。
 1A,1B…レーザ加工装置、2…半導体レーザ素子、3…光増幅器、4…ドライバ回路、5…加工光学系、6…波形出力部、7…空間光変調器、8…駆動部、11…バイアス電流制御部、12,21,23,27,29…光アイソレータ、13…光分岐部、14…光検出部、15…光波形検出部、22…光ファイバ増幅器、24…バンドパスフィルタ、25…光ファイバコネクタ、26…コリメータレンズ、28,30…固体レーザ増幅器、31…コンピュータ、32…波形調整部、33…比較部、41…コントロール基板、41a…CPU、41b…高速DACインターフェース、42…波形データ格納部、43…波形タイミング調整部、44…波形信号生成部、45…電流変換部、46…D/A変換部、B…被加工物、B1~B3…層、B1a,B2b,B3a…孔、B2a…改質領域、Da…入力波形データ、Db…目標波形データ、Dc…差分データ、DD1~DD4…区間波形データ、F1~F3…光ファイバ、id…駆動電流、La,Lb,Lc…レーザ光、Pa…光パルス(ガウシアンパルス)、Pb,Pc,Pe1,Pe2,Pf1,Pf2,Pg1,Pg2,Pg3,Ph1,Ph2,Pi~Pz,Py1,Py2,Py3…光パルス群、Pba,Pca,Pfa,Pga…超短光パルス、Pd,Pea,Peb,Pfb,Pgb,Pgc,Pha,Phb…光パルス、Sc…光強度信号、Sd…駆動信号、Sv…電圧信号、TA…遅延時間、Δt,Δt1,Δt2,Δt5…時間間隔。

Claims (14)

  1.  半導体レーザ素子と、
     入力波形データを出力する波形出力部と、
     前記入力波形データに応じた時間波形を有する駆動電流を生成し、該駆動電流を前記半導体レーザ素子に供給するドライバ回路と、
     前記半導体レーザ素子から出力されたレーザ光を被加工物に照射する光学系と、
    を備え、
     前記半導体レーザ素子は、一又は複数の光パルスを含む二以上の光パルス群が互いに時間間隔をあけて並ぶ前記レーザ光を出力し、
     前記二以上の光パルス群のうち少なくとも二つの前記光パルス群の時間波形は互いに異なり、
     前記時間波形には、前記一又は複数の光パルスそれぞれの時間波形、前記一又は複数の光パルスそれぞれの時間幅、及び前記複数の光パルスの時間間隔のうち少なくとも一つが含まれる、レーザ加工装置。
  2.  前記ドライバ回路は、
     ディジタルの前記入力波形データをアナログの駆動信号に変換するD/A変換部と、
     前記駆動信号を前記駆動電流に変換する電流変換部と、
    を有し、
     前記D/A変換部は、前記入力波形データの時間波形を分割してなる連続する複数の区間波形データを、時間差を与えながら前記駆動信号に順次変換する、請求項1に記載のレーザ加工装置。
  3.  各光パルス群における前記一又は複数の光パルスそれぞれの時間幅が1マイクロ秒以下である、請求項1又は2に記載のレーザ加工装置。
  4.  前記二以上の光パルス群同士の時間間隔が200マイクロ秒以下である、請求項1~3のいずれか1項に記載のレーザ加工装置。
  5.  前記波形出力部は、前記二以上の光パルス群のうち少なくとも一つの前記光パルス群の前記時間波形を前記被加工物の加工途中に変更する、請求項1~4のいずれか1項に記載のレーザ加工装置。
  6.  前記少なくとも二つの光パルス群のうち一の前記光パルス群における前記一又は複数の光パルスのパルス幅が、別の前記光パルス群における前記一又は複数の光パルスのパルス幅の10倍以上である、請求項1~5のいずれか1項に記載のレーザ加工装置。
  7.  前記半導体レーザ素子と前記光学系との間の光路上に配置された空間光変調器を更に備え、
     前記空間光変調器は、前記二以上の光パルス群に含まれる第1の前記光パルス群に対応する前記レーザ光を第1の照射位置に照射するためのホログラムと、第2の前記光パルス群に対応する前記レーザ光を前記第1の照射位置とは異なる第2の照射位置に照射するためのホログラムとを順次呈示する、請求項1~6のいずれか1項に記載のレーザ加工装置。
  8.  入力波形データに応じた時間波形を有する駆動電流を生成し、前記駆動電流を半導体レーザ素子に供給する電流供給ステップと、
     前記半導体レーザ素子から出力されたレーザ光を被加工物に照射する光照射ステップと、
    を含み、
     前記光照射ステップにおいて、一又は複数の光パルスを含む二以上の光パルス群が互いに時間間隔をあけて並ぶ前記レーザ光を前記半導体レーザ素子が出力し、
     前記二以上の光パルス群のうち少なくとも二つの前記光パルス群の時間波形は互いに異なり、
     前記時間波形には、前記一又は複数の光パルスそれぞれの時間波形、前記一又は複数の光パルスそれぞれの時間幅、及び前記複数の光パルスの時間間隔のうち少なくとも一つが含まれる、レーザ加工方法。
  9.  前記電流供給ステップは、
     ディジタルの前記入力波形データをアナログの駆動信号に変換するD/A変換ステップと、
     前記駆動信号を前記駆動電流に変換する電流変換ステップと、
    を含み、
     前記D/A変換ステップでは、前記入力波形データの時間波形を分割してなる連続する複数の区間波形データを、時間差を与えながら前記駆動信号に順次変換する、請求項8に記載のレーザ加工方法。
  10.  各光パルス群における前記一又は複数の光パルスそれぞれの時間幅を1マイクロ秒以下とする、請求項8又は9に記載のレーザ加工方法。
  11.  前記二以上の光パルス群同士の時間間隔を200マイクロ秒以下とする、請求項8~10のいずれか1項に記載のレーザ加工方法。
  12.  前記二以上の光パルス群のうち少なくとも一つの前記光パルス群の前記時間波形を前記被加工物の加工途中に変更する、請求項8~11のいずれか1項に記載のレーザ加工方法。
  13.  前記少なくとも二つの光パルス群のうち一の前記光パルス群における前記一又は複数の光パルスのパルス幅を、別の前記光パルス群における前記一又は複数の光パルスのパルス幅の10倍以上とする、請求項8~12のいずれか1項に記載のレーザ加工方法。
  14.  前記光照射ステップにおいて、空間光変調器を介して前記レーザ光を前記被加工物に照射し、前記二以上の光パルス群に含まれる第1の前記光パルス群に対応する前記レーザ光を第1の照射位置に照射するためのホログラムと、第2の前記光パルス群に対応する前記レーザ光を前記第1の照射位置とは異なる第2の照射位置に照射するためのホログラムとを前記空間光変調器に順次呈示する、請求項8~13のいずれか1項に記載のレーザ加工方法。
PCT/JP2021/005012 2020-02-26 2021-02-10 レーザ加工装置及びレーザ加工方法 WO2021172020A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21761258.9A EP4112220A4 (en) 2020-02-26 2021-02-10 LASER PROCESSING APPARATUS AND LASER PROCESSING METHOD
US17/800,043 US20230075209A1 (en) 2020-02-26 2021-02-10 Laser processing device and laser processing method
KR1020227027089A KR20220137650A (ko) 2020-02-26 2021-02-10 레이저 가공 장치 및 레이저 가공 방법
CN202180017054.7A CN115210974A (zh) 2020-02-26 2021-02-10 激光加工装置及激光加工方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-030762 2020-02-26
JP2020030762A JP7421951B2 (ja) 2020-02-26 2020-02-26 レーザ加工装置及びレーザ加工方法

Publications (1)

Publication Number Publication Date
WO2021172020A1 true WO2021172020A1 (ja) 2021-09-02

Family

ID=77491431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005012 WO2021172020A1 (ja) 2020-02-26 2021-02-10 レーザ加工装置及びレーザ加工方法

Country Status (7)

Country Link
US (1) US20230075209A1 (ja)
EP (1) EP4112220A4 (ja)
JP (1) JP7421951B2 (ja)
KR (1) KR20220137650A (ja)
CN (1) CN115210974A (ja)
TW (1) TW202138093A (ja)
WO (1) WO2021172020A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005511314A (ja) 2001-12-04 2005-04-28 ジェネラル アトミックス レーザ加工における材料除去レートを増大する方法および装置
JP2010082672A (ja) * 2008-10-01 2010-04-15 Hamamatsu Photonics Kk レーザ加工装置およびレーザ加工方法
JP2013128088A (ja) 2011-11-18 2013-06-27 Hamamatsu Photonics Kk レーザ加工方法及びレーザ加工装置
JP2015503856A (ja) * 2012-01-13 2015-02-02 イ−エスアイ−パイロフォトニクスレーザーズ インコーポレイテッド 所定の出力パルスプロファイルを出射するパルスレーザ源のための方法及びシステム
US20150336208A1 (en) * 2014-05-22 2015-11-26 LSPT Technologies, Inc. Temporal pulse shaping for laser shock peening
JP2017064747A (ja) * 2015-09-29 2017-04-06 株式会社東京精密 レーザー加工装置及びレーザー加工方法
WO2018105082A1 (ja) * 2016-12-08 2018-06-14 ギガフォトン株式会社 レーザ装置及びレーザ加工システム
WO2018110222A1 (ja) * 2016-12-16 2018-06-21 浜松ホトニクス株式会社 レーザ装置及び波形制御方法
WO2020059247A1 (ja) * 2018-09-21 2020-03-26 浜松ホトニクス株式会社 レーザ装置及びレーザ波形制御方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4198123B2 (ja) 2005-03-22 2008-12-17 浜松ホトニクス株式会社 レーザ加工方法
CN102939184A (zh) * 2010-05-04 2013-02-20 Esi-派罗弗特尼克斯雷射股份有限公司 用于使用激光脉冲序列钻孔的方法和装置
US9102007B2 (en) 2013-08-02 2015-08-11 Rofin-Sinar Technologies Inc. Method and apparatus for performing laser filamentation within transparent materials

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005511314A (ja) 2001-12-04 2005-04-28 ジェネラル アトミックス レーザ加工における材料除去レートを増大する方法および装置
JP2010082672A (ja) * 2008-10-01 2010-04-15 Hamamatsu Photonics Kk レーザ加工装置およびレーザ加工方法
JP2013128088A (ja) 2011-11-18 2013-06-27 Hamamatsu Photonics Kk レーザ加工方法及びレーザ加工装置
JP2015503856A (ja) * 2012-01-13 2015-02-02 イ−エスアイ−パイロフォトニクスレーザーズ インコーポレイテッド 所定の出力パルスプロファイルを出射するパルスレーザ源のための方法及びシステム
US20150336208A1 (en) * 2014-05-22 2015-11-26 LSPT Technologies, Inc. Temporal pulse shaping for laser shock peening
JP2017064747A (ja) * 2015-09-29 2017-04-06 株式会社東京精密 レーザー加工装置及びレーザー加工方法
WO2018105082A1 (ja) * 2016-12-08 2018-06-14 ギガフォトン株式会社 レーザ装置及びレーザ加工システム
WO2018110222A1 (ja) * 2016-12-16 2018-06-21 浜松ホトニクス株式会社 レーザ装置及び波形制御方法
WO2020059247A1 (ja) * 2018-09-21 2020-03-26 浜松ホトニクス株式会社 レーザ装置及びレーザ波形制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4112220A4

Also Published As

Publication number Publication date
EP4112220A1 (en) 2023-01-04
TW202138093A (zh) 2021-10-16
US20230075209A1 (en) 2023-03-09
KR20220137650A (ko) 2022-10-12
JP7421951B2 (ja) 2024-01-25
EP4112220A4 (en) 2024-03-27
CN115210974A (zh) 2022-10-18
JP2021136316A (ja) 2021-09-13

Similar Documents

Publication Publication Date Title
US8121155B2 (en) Fiber laser based production of laser drilled microvias for multi-layer drilling, dicing, trimming or milling applications
US7528342B2 (en) Method and apparatus for via drilling and selective material removal using an ultrafast pulse laser
JP5358060B2 (ja) 極端紫外光源装置
US8309885B2 (en) Pulse temporal programmable ultrafast burst mode laser for micromachining
TWI387170B (zh) 同時模式鎖定q開關雷射
KR101272407B1 (ko) 레이저 가공 장치, 레이저 광원 장치, 및, 레이저 광원 장치의 제어 방법
JP2010528865A (ja) 複数のレーザ波長及びパルス幅による穴あけ加工
TW201110492A (en) Method and system for stable and tunable high power pulsed laser system
WO2005043699B1 (en) Laser processing of a locally heated target material
US20080053970A1 (en) Soldering method and laser soldering apparatus
KR20060099517A (ko) 국부적으로 가열된 대상 물질의 레이저 처리
JP2024020355A (ja) レーザー送達アドレス指定可能アレイのための用途、方法、及びシステム
JP6680494B2 (ja) レーザ加工方法及びレーザ加工装置
WO2013146197A1 (ja) レーザアニール装置及びレーザアニール方法
JP2008044000A (ja) 加工深さを増加したレーザ加工装置
JP2007029952A (ja) レーザ加工装置及びレーザ加工方法
WO2021172020A1 (ja) レーザ加工装置及びレーザ加工方法
FR2814599A1 (fr) Dispositif laser de forte puissance crete et application a la generation de lumiere dans l'extreme ultra violet
WO2004097520A2 (en) Fiber laser-based euv-lithography
JP5374724B2 (ja) 極端紫外光源装置
JP6238675B2 (ja) レーザ加工方法及びインクジェットヘッドの製造方法
US20030039293A1 (en) Eye safe monolithic compact laser
JP2007133310A (ja) パルス多重化波長変換光学系
EP3911126A1 (en) Euv radiation source
KR20160118723A (ko) 버스트 모드의 펄스 레이저 발생 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21761258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021761258

Country of ref document: EP

Effective date: 20220926