WO2021171926A1 - 電力システム、コントローラ、電力変換装置、電力システムの制御方法及びプログラム - Google Patents
電力システム、コントローラ、電力変換装置、電力システムの制御方法及びプログラム Download PDFInfo
- Publication number
- WO2021171926A1 WO2021171926A1 PCT/JP2021/003632 JP2021003632W WO2021171926A1 WO 2021171926 A1 WO2021171926 A1 WO 2021171926A1 JP 2021003632 W JP2021003632 W JP 2021003632W WO 2021171926 A1 WO2021171926 A1 WO 2021171926A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- power conversion
- output
- conversion devices
- controller
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
- H02J3/32—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/46—Controlling of the sharing of output between the generators, converters, or transformers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/493—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02B90/20—Smart grids as enabling technology in buildings sector
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/70—Smart grids as climate change mitigation technology in the energy generation sector
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/12—Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S20/00—Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
- Y04S20/12—Energy storage units, uninterruptible power supply [UPS] systems or standby or emergency generators, e.g. in the last power distribution stages
Definitions
- This disclosure generally relates to power systems, controllers, power converters, power system control methods and programs. More specifically, the present invention relates to a power system including a plurality of power conversion devices, a controller and a power conversion device used in the power system, a control method of the power system, and a program related to the control method.
- the inverter device includes an inverter circuit and a control circuit that controls the inverter circuit.
- the control circuit includes a system frequency control means, a coordinated correction value generation means, an addition means, and a communication means.
- the system frequency control means generates a compensation value for controlling the system frequency to the target value.
- the adding means adds the correction value to the compensation value to calculate the correction compensation value.
- the communication means transmits the weighted correction compensation value to another inverter device.
- the cooperative correction value generation means generates a correction value for coordinating with each inverter device by using a calculation result based on the weighted correction compensation value and the reception compensation value received by the communication means from another inverter device. do.
- An object of the present disclosure is to provide a power system, a controller, a power conversion device, a control method and a program of the power system capable of coordinating the operations of a plurality of power conversion devices.
- the power system includes a plurality of power conversion devices and a controller.
- the plurality of power converters have output ends that are electrically connected to each other.
- Each of the plurality of power conversion devices converts the input power into power and outputs the output power from the output end.
- the controller communicates with each of the plurality of power converters.
- the controller generates a command signal based on information about the output power of each of the plurality of power converters, and transmits the command signal to each of the plurality of power converters.
- Each of the plurality of power converters controls the output power by droop control based on a command signal.
- the controller according to another aspect of the present disclosure is provided in the power system described above.
- the power conversion device according to still another aspect of the present disclosure is provided in the above-mentioned power system.
- the power system control method is a power system control method including a plurality of power conversion devices and a controller.
- the plurality of power converters have output ends that are electrically connected to each other.
- the controller communicates with each of the plurality of power converters.
- the control method includes a first process, a second process, and a third process.
- each of the plurality of power conversion devices converts the input power into power and outputs the output power from the output end.
- the controller is made to generate a command signal based on the information regarding the output power of each of the plurality of power conversion devices.
- the controller is made to transmit a command signal to each of the plurality of power conversion devices.
- each of the plurality of power conversion devices controls the output power by droop control based on the command signal.
- the program according to still another aspect of the present disclosure is a program for causing one or more processors to execute the above-mentioned power system control method.
- the present disclosure has an advantage that the operations of a plurality of power conversion devices can be coordinated.
- FIG. 1 is a block diagram of an electric power system according to an embodiment.
- FIG. 2 is a block diagram of a main part of the power system of one embodiment.
- FIG. 3A is a graph showing an example of droop characteristics of the power system of one embodiment.
- FIG. 3B is a graph showing another example of the droop characteristics of the power system of one embodiment.
- FIG. 3C is a graph showing still another example of the droop characteristics of the power system of one embodiment.
- FIG. 4A is a diagram showing a comparative example with the first operation example of the electric power system of one embodiment.
- FIG. 4B is a diagram showing another comparative example with the first operation example of the power system of one embodiment.
- FIG. 4A is a diagram showing a comparative example with the first operation example of the electric power system of one embodiment.
- FIG. 4B is a diagram showing another comparative example with the first operation example of the power system of one embodiment.
- FIG. 4C is a diagram showing still another comparative example with the first operation example of the power system of one embodiment.
- FIG. 5A is a diagram showing a first operation example of the power system of one embodiment.
- FIG. 5B is a diagram showing another first operation example of the power system of one embodiment.
- FIG. 5C is a diagram showing still another first operation example of the power system of one embodiment.
- FIG. 6 is a diagram showing a comparative example with a second operation example of the electric power system of one embodiment.
- FIG. 7 is a diagram showing a second operation example of the power system of one embodiment.
- FIG. 8 is a diagram showing a third operation example of the power system of one embodiment.
- FIG. 9 is a diagram showing a fourth operation example of the power system of one embodiment.
- FIG. 5A is a diagram showing a first operation example of the power system of one embodiment.
- FIG. 5B is a diagram showing another first operation example of the power system of one embodiment.
- FIG. 5C is a diagram
- FIG. 10 is a diagram showing a fifth operation example of the electric power system of one embodiment.
- FIG. 11 is a diagram showing a sixth operation example of the power system of one embodiment.
- FIG. 12 is a flowchart showing a control method of the electric power system according to the first modification.
- FIG. 13 is a block diagram of the electric power system according to the second modification.
- Outline Figure 1 shows a block diagram of the power system according to this embodiment.
- FIG. 2 shows a block diagram of a main part of the power system of the present embodiment.
- the power system 1 of the present embodiment includes a plurality of power conversion devices 3 and a controller 2.
- the plurality of power conversion devices 3 have output terminals (secondary terminal 33) electrically connected to each other.
- the plurality of power conversion devices 3 convert the input power into power and output the output power from the output terminal (secondary side terminal 33).
- the controller 2 communicates with each of the plurality of power conversion devices 3.
- the controller 2 generates a command signal (command value P * ) based on information about the output power of each of the plurality of power conversion devices 3, and transmits the command signal to each of the plurality of power conversion devices 3.
- a command signal (command value P * ) based on information about the output power of each of the plurality of power conversion devices 3, and transmits the command signal to each of the plurality of power conversion devices 3.
- Each of the plurality of power conversion devices 3 controls the output power by droop control based on the command signal.
- information on the output power of each of the plurality of power conversion devices 3 is collected in the controller 2. Since the command signal is generated based on this information, the operations of the plurality of power conversion devices 3 can be coordinated. For example, the ratio of the output powers of the plurality of power conversion devices 3 can be controlled to be a predetermined ratio.
- Droop control refers to control that increases or decreases a physical quantity as the observed quantity increases when a certain physical quantity is targeted for operation and the observed quantity corresponding to this physical quantity is specified. Moreover, such an increase or decrease of a physical quantity is called a droop characteristic.
- the physical quantity is the amplitude and angular frequency of the output voltage of each of the plurality of power conversion devices 3.
- the observed amount is the output power (active power or inactive power) of each of the plurality of power conversion devices 3.
- the physical quantity may increase or decrease monotonically, and the physical quantity may not increase or decrease when the observed amount is changed only within a part of the range.
- power supplies 51 and 52, power lines 63, and a load 64 are provided as external configurations of the power system 1.
- a power supply 51 (or power supply 52) is electrically connected to each of the plurality of (two in FIG. 1) power conversion devices 3.
- the electric power system 1 of the present embodiment is used to convert the electric power supplied from the power source 51 (or the power source 52) by the electric power conversion device 3 and supply the converted electric power (output power) to the load 64. ..
- the load 64 is, for example, a lighting fixture, a hot water supply facility, an air conditioner, an information processing device, a mobile terminal, or the like.
- Each power conversion device 3 is connected to, for example, a single-phase two-wire system, a single-phase three-wire system, or a three-phase three-wire system electric circuit.
- each electric circuit is shown as one line.
- the controller 2 (central controller) generates a command signal related to the control of the output power of the plurality of power conversion devices 3 and transmits the command signal to the plurality of power conversion devices 3.
- Controller 2 includes a computer system having one or more processors and memory.
- the processor of the computer system executes the program stored in the memory of the computer system, at least a part of the functions of the controller 2 are realized.
- the program may be stored in a memory, provided through a telecommunication line such as the Internet, or stored in a non-temporary storage medium such as a memory card.
- the controller 2 includes a communication interface for communicating with a plurality of power conversion devices 3.
- the communication method between the controller 2 and the plurality of power conversion devices 3 may be wired communication or wireless communication.
- Each of the plurality of power conversion devices 3 is registered as a slave in the controller 2 which is a master, and communication is performed between the master and the slave.
- Each of the plurality of power conversion devices 3 autonomously controls the output power based on the command signal received from the controller 2.
- two power conversion devices 3 are provided.
- one power conversion device 3 may be referred to as a power conversion device 3A, and the other power conversion device 3 may be referred to as a power conversion device 3B.
- Each of the plurality of power converters 3 includes an AC-DC converter 31, a local controller 4, an inductor L1, a current sensor CT1, a voltage sensor VT1, a capacitor C1, a primary terminal 32, and a secondary side. It is provided with a terminal 33.
- the primary side terminal 32 is a power input end.
- the primary terminal 32 of the power converter 3A is electrically connected to the power supply 51.
- the primary terminal 32 of the power converter 3B is electrically connected to the power supply 52.
- the power supply 51 outputs power to the power conversion device 3A via the primary side terminal 32 of the power conversion device 3A, and the power supply 52 powers the power conversion device 3B via the primary side terminal 32 of the power conversion device 3B. Is output.
- the secondary side terminal 33 is a power output end.
- the secondary side terminal 33 of the power conversion device 3A and the secondary side terminal 33 of the power conversion device 3B are electrically connected to each other via the power line 63. Further, the secondary terminal 33 of each power conversion device 3 is electrically connected to the load 64 via the power line 63. That is, the plurality of power conversion devices 3 are operated in parallel. Further, the power line 63 is electrically connected to the power system.
- Each of the power supplies 51 and 52 is a DC power supply.
- Each of the power sources 51 and 52 is a power generation system, for example, a solar power generation system, a hydroelectric power generation system, a fuel cell system, a diesel power generation system, a power storage system, or the like.
- the power generation method of the power source 51 and the power generation method of the power source 52 may be the same or different. Further, the output power of the power supply 51 and the output power of the power supply 52 may be the same or different.
- the AC-DC converter 31 is a power converter including a circuit that performs power conversion. More specifically, the AC-DC converter 31 performs power conversion between DC power and AC power. More specifically, the AC-DC converter 31 performs an operation of converting DC power as input power into AC power as output power. That is, the AC-DC converter 31 is a one-way AC / DC converter. The output power of the AC-DC converter 31 is output from the secondary terminal 33 and supplied to the load 64.
- the AC-DC converter 31 electrically connected to the power supply 51 (or power supply 52) is added to the operation of converting DC power into AC power. Then, the operation of converting the AC power into the DC power may be further performed. That is, the AC-DC converter 31 may be a bidirectional AC / DC converter. In this case, the primary side terminal 32 and the secondary side terminal 33 have the functions of both the power input terminal and the power output terminal.
- a wiring impedance 61 between the secondary terminal 33 of the power conversion device 3A and the load 64.
- a wiring impedance 62 exists between the secondary terminal 33 of the power conversion device 3B and the load 64.
- impedances 61 and 62 are shown between the secondary terminal 33 and the power line 63, respectively, but in reality, the impedances 61 and 62 include the impedance of the power line 63, respectively.
- the wiring 35 between the secondary side terminal 33 and the AC terminal of the AC-DC converter 31 is provided with an inductor L1, a current sensor CT1, a voltage sensor VT1, and a capacitor C1.
- the inductor L1 and the capacitor C1 filter the AC power as the output power of the AC-DC converter 31.
- the current sensor CT1 includes, for example, an instrument transformer.
- the current sensor CT1 detects the current flowing through the wiring 35. That is, the current sensor CT1 detects the output current of the power conversion device 3.
- the voltage sensor VT1 includes, for example, an instrument transformer.
- the voltage sensor VT1 detects the voltage applied to the wiring 35. That is, the voltage sensor VT1 detects the output voltage of the power conversion device 3.
- the local controller 4 of each power converter 3 includes a computer system having one or more processors and memory.
- the processor of the computer system executes the program stored in the memory of the computer system, at least a part of the functions of the local controller 4 are realized.
- the program may be stored in a memory, provided through a telecommunication line such as the Internet, or stored in a non-temporary storage medium such as a memory card.
- the local controller 4 includes a communication interface for communicating with the controller 2.
- the local controller 4 includes a power calculation unit 41, a subtractor 42, a correction unit 43, a droop unit 44, and a converter control unit 45. doing. It should be noted that these merely indicate the functions realized by the local controller 4, and do not necessarily indicate the actual configuration.
- the power calculation unit 41 is based on the output current value Iout of the power conversion device 3 detected by the current sensor CT1 and the output voltage value Vout of the power conversion device 3 detected by the voltage sensor VT1. Calculate the output power (active power and ineffective power) of.
- FIG 2 represents the value of the active power of the output power of the power converter 3A P A, the value of the reactive power and Q A, represents the value of the output power of the active power of the power conversion device 3B and P B.
- the value P A of the active power obtained by the power calculation unit 41 (or P B) is output to the controller 2.
- the controller 2 generates a command signal based on information regarding the output power of each of the plurality of power conversion devices 3 (hereinafter, referred to as output power information).
- the output power information active power value P A, including P B.
- the output power information further includes correction parameters c Cincinnatir A and c Moderatorr B, which will be described later.
- the controller 2 transmits the generated command signal to each of the plurality of power conversion devices 3. The algorithm for generating the command signal will be described later.
- the command signal includes information on the command value P * of the output power of each of the plurality of power conversion devices 3.
- the controller 2 transmits the same command signal to each of the plurality of power conversion devices 3.
- the controller 2 transmits a command signal to a certain power conversion device 3 without going through another power conversion device 3. More specifically, the controller 2 broadcasts a command signal to each of the plurality of power conversion devices 3. Thereby, the responsiveness of each output power of the plurality of power conversion devices 3 can be improved.
- the controller 2 transmits the command value P * itself of the magnitude of the output power of each of the plurality of power conversion devices 3 as a command signal. Further, the command value P * of the output power is common among the plurality of power conversion devices 3. For example, the controller 2 generates a command signal that specifies a certain value (for example, 10 kW) as the command value P * of the output power, and transmits this command signal to each of the plurality of power conversion devices 3. Controller 2, for example, the value of the active power of a plurality of output power of the power converter 3 P A, the average value of P B, and the command value P *. In the present embodiment, the rated output powers of the plurality of power conversion devices 3 are the same as each other.
- the controller 2 generates a command signal that makes the absolute value of the deviation between the output powers (active powers) of the plurality of power conversion devices 3 equal to or less than a predetermined deviation threshold value. That is, at an arbitrary time point, the absolute value of the deviation between the active power of the output power of the power conversion device 3A and the active power of the output power of the power conversion device 3B is equal to or less than the deviation threshold value.
- the controller 2 transmits the same command value P * to each of the plurality of power conversion devices 3 as a command signal.
- the absolute value of the deviation between the output powers (active powers) of the plurality of power conversion devices 3 is equal to or less than the deviation threshold value even if the control delay and the error are taken into consideration. Therefore, it is possible to suppress a decrease in the life of each power conversion device 3 as compared with the case where the absolute value of the deviation is larger than the deviation threshold value.
- the comparison between the absolute value of the deviation and the deviation threshold will be described later.
- the command value P * as a command signal transmitted from the controller 2 to each power converter 3 is input to the subtractor 42. Further, the subtracter 42, the value of active power obtained by the power calculation section 41 P A (or value P B) is input. Subtractor 42 calculates a difference value which is a value obtained by subtracting the effective power value P A (or value P B) from the command value P *, and outputs to the correcting unit 43.
- the correction unit 43 generates a correction parameter based on the difference value obtained by the subtractor 42.
- the correction parameter generated by the power conversion device 3A is represented by c skilletr A
- the correction parameter generated by the power conversion device 3B is represented by c réeller B.
- the correction parameter c thoroughlyr A corrects the droop control characteristic (droop characteristic) of the power conversion device 3A.
- the correction parameter c réeller B corrects the droop control characteristics of the power converter 3B.
- a plurality of power conversion devices 3A, 3B, the output current value parameter differences and handled in accordance with the difference and the output voltage value Vout of Iout active power value P A, P B and the correction parameter c skilletr A, c réeller B, etc. It can be different, but the behavior is common. In the following, only the power conversion device 3A will be described as appropriate among the plurality of power conversion devices 3A and 3B.
- the converter control unit 45 controls the operation of the AC-DC converter 31 based on the command value E * and the command value ⁇ *.
- FIG. 3A is a diagram showing a droop characteristic in which the reactive power Q of the output power of the power conversion device 3 is used as the observed amount and the command value ⁇ * of the angular frequency of the output voltage is the operation target.
- 3B and 3C are diagrams showing droop characteristics in which the active power P is the observed amount and the command value E * of the amplitude of the output voltage is the operation target.
- 3B and 3C are droops in which the active power P of the output power of the power conversion device 3 is the observed amount and the command value E * of the amplitude of the output voltage is the operation target. Shows the characteristics.
- the active power P and the active power Q are values calculated by the power calculation unit 41.
- a P P A
- a Q Q A.
- the command value ⁇ * increases linearly as the reactive power Q increases.
- the command value E * decreases linearly as the active power P increases.
- the droop characteristic is not limited to linear and may be non-linear.
- the droop portion 44 of the power conversion device 3A corrects the droop characteristic with respect to the command value E * based on the correction parameter c skilletr A.
- the droop portion 44 of the power conversion device 3B corrects the droop characteristic with respect to the command value E * based on the correction parameter c réeller B.
- each power conversion device 3 stores the droop characteristic D1 before correction.
- the droop characteristic D1 may be determined by each power conversion device 3 or may be determined by the controller 2.
- the slope of the droop characteristic D1 is always a negative value, and the larger the rated output power of the power converter 3, the smaller the absolute value of the slope of the droop characteristic D1.
- FIG. 3C shows a droop characteristic D4 of the power conversion device 3 having a rated output power of 4 [kW] and a droop characteristic D5 of the power conversion device 3 having a rated output power of 2 [kW].
- the active power corresponding to the droop characteristic D4 is twice the active power Px corresponding to the droop characteristic D5. ..
- the absolute value of the slope of the droop characteristic D1 may be inversely proportional to the rated output power of the power converter 3.
- the droop characteristic D1 can be determined in consideration of the magnitude of the assumed impedance 61 (or impedance 62) of the wiring.
- the impedance 61 (or impedance 62) of the wiring is larger than expected, the amplitude of the actual output voltage of the power conversion device 3 becomes smaller accordingly. As a result, the output power of the power conversion device 3 becomes small.
- the command value E * of the amplitude of the output voltage becomes E 0 due to the droop characteristic D1.
- the impedance 61 (or impedance 62) of the wiring is larger than expected and the magnitude of the voltage drop exceeds the assumption by ⁇ E, the amplitude of the actual output voltage of the power conversion device 3 becomes E 0 ⁇ ⁇ E.
- control based on the drooping characteristic D1 rather than the amplitude of the output voltage of the power converter 3 to E 0, the control of the E 0 - ⁇ E.
- control based on the droop characteristic D1 is substantially based on the droop characteristic D2.
- the control based on the droop characteristic D1 is not to set the amplitude of the output voltage of the power conversion device 3 to E 0, but to set it to E 0 + ⁇ E.
- the control based on the droop characteristic D1 is substantially the control based on the droop characteristic D3.
- the correction unit 43 based on the difference value is a value obtained by subtracting the effective power value P A (or value P B) from the command value P * (positive or negative value), the correction parameter c skilletr A (or corrected Generate parameter c thoroughlyr B ). Specifically, the correction unit 43 matches the sign of the difference value with the correction parameter c skilletr A (or correction parameter c Cincinnatir B). The correction unit 43 increases the correction parameter c skilletr A (or correction parameter c Cincinnatir B ) as the difference value increases. Then, the droop portion 44 shifts the droop characteristic D1 by the value of the correction parameter c skilletr A (or the correction parameter c thoroughlyr B). Thereby, the degree to which the output power of each power conversion device 3 is affected by the variation of the impedance 61 or 62 of the corresponding wiring can be reduced.
- the command values P * of the output powers of the plurality of power conversion devices 3 are equal, but unless the droop characteristic D1 is shifted (corrected), the output powers of the power conversion devices 3 correspond to the impedance 61 or 62 of the corresponding wiring. There is a possibility of variation due to the variation of. By shifting (correcting) the droop characteristic D1, the variation in the output power of each power conversion device 3 can be reduced.
- the droop portion 44 has a droop portion 44.
- the droop characteristic D1 is corrected as follows. That is, the droop unit 44 corrects the command value E * corresponding to the arbitrary active power P so as to increase by 1 [V].
- the difference value is equal to the product of ⁇ E and the output current value Iout, ideally, the droop portion 44 changes the droop characteristic D1 to the droop characteristic D3.
- the droop The unit 44 corrects the droop characteristic D1 as follows. That is, the droop unit 44 corrects the command value E * corresponding to the arbitrary active power P so as to decrease by 1 [V]. Ideally, the droop portion 44 changes the droop characteristic D1 to the droop characteristic D2 when the difference value is equal to the product of ⁇ E and the output current value Iout.
- the converter control unit 45 controls the output power of the power conversion device 3A based on the command values E * and ⁇ * generated by the droop unit 44. That is, the converter control unit 45 controls the operation of the AC-DC converter 31 so that the amplitude and angular frequency of the output voltage of the power converter 3A converge to the command values E * and ⁇ *, respectively.
- the converter control unit 45 outputs a drive signal Sigma 1 for controlling the operation of the AC-DC converter 31.
- the converter control unit 45 controls the operation of the AC-DC converter 31 by, for example, PWM (Pulse Width Modulation) control.
- each of the plurality of power conversion devices 3 generates and outputs a correction parameter c skilletr A (or a correction parameter c Maschinenr B) that corrects the characteristics of the droop control. That is, the correction parameters c skilletr A and c Maschinenr B are output from the plurality of power conversion devices 3 to the controller 2, respectively.
- Controller 2 respectively correction parameters from a plurality of electric power converter 3 c Maschinenr A, acquires the Cor B, generates the correction parameter Cor A, the command signal based on c Cincinnatir B (command value P *). For example, when the correction parameters c skilletr A and c Maschinenr B exceed a predetermined value, the controller 2 reduces the command value P *. As a result, the correction parameters c skilletr A and c Cincinnatir B are reduced. Further, the controller 2 increases the command value P * , for example, when the correction parameters c Moderatorr A and c Maschinenr B are less than a predetermined value. As a result, the correction parameters c Moderatorr A and c Moderatorr B increase.
- the controller 2 is a command signal (command) for suppressing a voltage drop of the secondary side terminal 33 when the load 64 (power consumption) electrically connected to the secondary side terminal 33 (output end) increases. Generate the value P *).
- a generation process, a correction process, and a restriction process are executed.
- each of the plurality of power conversion devices 3 feeds back the command signal (command value P * ) to generate the correction parameter c skilletr A (or the correction parameter c Cincinnatir B).
- each of the plurality of power conversion devices 3 generates a correction parameter c skilletr A (or a correction parameter c Cincinnatir B ) based on the command signal (command value P *).
- each of the plurality of power conversion devices 3 corrects the output voltage (amplitude command value E * ) based on the correction parameter c skilletr A (or the correction parameter c thoroughlyr B).
- the controller 2 sends a command signal (correction parameter c skilletr A , c speciallyr B ) such that the absolute value of the average value of the correction values (correction parameters c skilletr A, c Cincinnatir B) of each of the output voltages of the plurality of power conversion devices 3 is set to be equal to or less than a predetermined correction threshold value.
- the controller 2 generates, for example, a command signal (command value P * ) that brings the average value of the correction values of the output voltages of the plurality of power conversion devices 3 close to 0.
- FIGS. 4A to 11 show analysis results of each parameter related to the power system 1.
- a first operation example of the power system 1 will be described with reference to FIGS. 4A to 5C.
- Three power conversion devices 3 are electrically connected to the power line 63 (see FIG. 1), and the rated output powers of the three power conversion devices 3 are the same. Then, the impedance values of the wirings corresponding to the three power conversion devices 3 are set to Z1, Z2, and Z3, respectively. It is assumed that Z1, Z2, and Z3 have only a resistance component.
- 4A to 4C are graphs showing a comparison example with the first operation example, and represent the output voltage Vout1 and the output currents Iout1 to Iout3 of the three power conversion devices 3 when the droop characteristic is not corrected.
- 5A to 5C are graphs showing a first operation example, and represent output voltages Vout1 and output currents Iout1 to Iout3 of the three power conversion devices 3 when the droop characteristic is corrected.
- Z1 Z2 ⁇ Z3.
- Z2 ⁇ Z1 Z3.
- Iout1-Iout2 and Iout2-Iout3 indicate the degree of agreement between the output currents of the three power conversion devices 3. That is, the smaller the amplitude of Iout1-Iout2, the higher the degree of coincidence between the output current of the first power conversion device 3 and the output current of the second power conversion device 3. The smaller the amplitude of Iout2-Iout3, the higher the degree of agreement between the output current of the second power conversion device 3 and the output current of the third power conversion device 3.
- the degree of matching of the output currents of the plurality of power converters 3 having the same rated output power As a result, the degree of matching of the output powers of the plurality of power conversion devices 3 can be increased. In other words, the relationship between the output powers of the plurality of power converters 3 can be brought closer to the relationship that they are equal to each other. More specifically, the absolute value of the deviation between the output powers (active powers) of the plurality of power conversion devices 3 is equal to or less than the deviation threshold value.
- the deviation threshold is a predetermined target value.
- the two power conversion devices 3A and 3B are electrically connected to the power line 63 (see FIG. 1), and the rated output powers of the two power conversion devices 3 are equal. Then, the impedance values of the wirings corresponding to the two power conversion devices 3A and 3B are set to Z1 and Z2, respectively. Z1 and Z2 are different from each other.
- FIG. 6 is a graph showing a comparison example with the second operation example, and is a graph showing the time change of each parameter when the droop characteristic is corrected and the limiting process is not performed.
- FIG. 7 is a graph showing a second operation example, and is a graph showing a time change of each parameter when the droop characteristic is corrected and the limiting process is performed.
- the limiting process is a process of setting the absolute value of the average value of the correction values (correction parameters c Cincinnatir A , c réeller B ) of each output voltage of the plurality of power conversion devices 3 to be equal to or less than the correction threshold value. The limiting process is always executed during the operation of the power system 1.
- the limiting process is realized, for example, by the controller 2 generating an appropriate command signal (command value P * ) based on the correction parameters c Cincinnatir A and c Cincinnatir B.
- Vout1 represents the output voltage of the power conversion device 3A
- Vout2 represents the output voltage of the power conversion device 3B
- V 63_rms represents the effective value of the voltage of the power line 63
- Iout1 represents the output current of the power conversion device 3A
- Iout2 represents the output current of the power conversion device 3B.
- P A the effective power of the value of the output power of the power converter 3A
- P B the effective power of the value of the output power of the power conversion device 3B
- P * is the power conversion devices 3A, 3B of each of the output power ( Indicates the command value of (active power).
- Q A represents the value of the reactive power of the output power of the power converter 3A
- Q B represents the value of the reactive power of the output power of the power converter 3B.
- Vout1_rms represents the effective value of the output voltage of the power conversion device 3A
- Vout2_rms represents the effective value of the output voltage of the power conversion device 3B.
- h1 is a value proportional to the correction parameter c skilletr A generated by the power conversion device 3A (correction amount)
- h2 is a value proportional to the correction parameter c skilletr B generated by the power conversion device 3B (correction amount)
- h_ave is.
- the correction amount h1 may match the correction parameter c skilletr A
- the correction amount h2 may match the correction parameter c skilletr B.
- the correction unit 43 increases the correction parameter c skilletr A (or the correction parameter c Moderatorr B) do.
- the correction parameter c thoroughlyr is compared with that before the increase of the load 64.
- a and cr B (correction amounts h1 and h2) become large.
- the effective value V 63_rms of the voltage of the power line 63 decreases as compared with before the increase of the load 64.
- the restriction process is not performed in FIG. 6, the restriction process is performed in FIG. 7. That is, in FIG. 7, the absolute value of the average value h_ave of the correction amounts h1 and h2 is equal to or less than the correction threshold value.
- the limiting process is realized, for example, by subtracting a predetermined value from each of the correction amounts h1 and h2 while maintaining the deviations of the correction amounts h1 and h2.
- the predetermined value is generated by the controller 2 based on the correction parameters c Cincinnatir A and c réeller B input to the controller 2, is included in the command signal, and is transmitted to each power conversion device 3.
- the effective value V 63_rms of the voltage of the power line 63 decreases by ⁇ V1 after the time point t1 as compared with before the time point t1.
- the effective value V 63_rms decreases only ⁇ V2 ( ⁇ V2 ⁇ V1) after the time point t1 as compared with before the time point t1. In this way, the limiting process suppresses the voltage drop of the power line 63 (secondary terminal 33) when the load 64 increases.
- the rated output powers of the two power converters 3 are different from each other. More specifically, the rated output power of the power converter 3A is 4 [kW], and the rated output power of the power converter 3B is 2 [kW]. In FIG. 9, the rated output powers of the two power converters 3 are equal. More specifically, in FIG. 9, the rated output power of each of the power converters 3A and 3B is 2 [kW].
- the effective value V 63_rms of the voltage of the power line 63 is V1 before the time point t1, and after the load 64 increases at the time point t1, the effective value V 63_rms is V2 (V2). Converges to ⁇ V1). In this way, even when a plurality of power conversion devices 3 having different rated output powers are used, the voltage drop of the power line 63 when the load 64 increases is limited processing as in the case where the rated output powers are equal to each other. Is suppressed by.
- the impedance values of the wirings corresponding to the three power conversion devices 3 are set to Z1, Z2, and Z3, respectively.
- the capacitance components of Z1, Z2, and Z3 are 0.1 [ ⁇ H]
- the resistance components of Z1 and Z2 are 400 [m ⁇ ] and 800 [m ⁇ ], respectively.
- the resistance component of Z3 is 500 [m ⁇ ]
- the resistance component of Z3 is 700 [m ⁇ ].
- the rated output power of each power converter 3 is equal. Similar to FIGS. 6 and 7, the load 64 increases at the time point t1.
- Vout3 is third output voltage of the power converter 3
- IOUT3 is third output current of the power converter 3
- P C is the third of the output power of the active power of the power converter 3 value
- Q C represents the third value of the reactive power of the output power of the power converter 3.
- Vout3_rms is the effective value of the output voltage of the third power conversion device 3
- h3 is a value proportional to the correction parameter generated by the third power conversion device 3 (correction amount)
- h_ave is the correction amount h1. , H2, and h3.
- the effective value Vout3_rms and the correction amount h3 of the output voltage of the third power conversion device 3 are different between FIGS. 10 and 11. This difference is due to the difference in the impedance Z3 of the wiring corresponding to the third power conversion device 3.
- the value P A of the three output power of the effective power of the power converter 3, P B, P C is 10, a common value in the FIG. 11 (P1 )
- the effective value V 63_rms of the voltage of the power line 63 converges to the common value (V3) in FIGS. 10 and 11.
- FIG. 12 is a flowchart showing a control method of the electric power system 1 according to the first modification.
- the same function as that of the electric power system 1 may be realized by a control method of the electric power system 1, a (computer) program, a non-temporary storage medium in which the program is stored, or the like.
- the control method of the power system 1 is a control method of the power system 1 including a plurality of power conversion devices 3 and a controller 2.
- the plurality of power conversion devices 3 have output terminals (secondary terminal 33) electrically connected to each other.
- the controller 2 communicates with each of the plurality of power conversion devices 3.
- the control method includes a first process, a second process, and a third process.
- each of the plurality of power conversion devices 3 is made to convert the input power into power, and the output power is output from the output terminal (secondary side terminal 33).
- the controller 2 is made to generate a command signal (command value P * ) based on the information regarding the output power of each of the plurality of power conversion devices 3.
- the controller 2 is made to transmit a command signal to each of the plurality of power conversion devices 3.
- each of the plurality of power conversion devices 3 controls the output power by droop control based on the command signal.
- the power calculation unit 41 of the electric power converter 3 determines the active power value P A (or value P B) of the output power.
- Each power converter 3 transmits the value of the effective calculated power P A (or value P B) to the controller 2 (step ST1 of FIG. 12).
- Controller 2 the value P A of the output power of the active power of the power converter 3 on the basis of the P B, generates a command signal (command value P *) (step ST2: second processing).
- the controller 2 transmits the generated command signal (command value P * ) to each power conversion device 3 (step ST3: third process).
- Each power conversion device 3 generates a correction parameter c skilletr A (or a correction parameter c speciallyr B ) based on a command signal (command value P *). Each power conversion device 3 transmits the generated correction parameter c skilletr A (or correction parameter c thoroughlyr B ) to the controller 2 (step ST4).
- the correction parameters c thoroughlyr A and c thoroughlyr B are used for the limiting process in the generation of the command signal (command value P *) in the step ST2 (second process).
- Each power conversion device 3 performs droop control based on a command signal (command value P * ) (step ST5: first process). That is, each power conversion device 3 generates a command value E * of the amplitude of the output voltage and a command value ⁇ * of the angular frequency of the output voltage based on the droop characteristic.
- the converter control unit 45 controls the operation of the AC-DC converter 31 based on the command value E * and the command value ⁇ *.
- the flowchart shown in FIG. 12 is merely an example of the control method of the electric power system 1 according to the first modification, and the order of processing may be appropriately changed, and the processing may be added or omitted as appropriate. ..
- the program according to one aspect is a program for causing one or more processors to execute the control method of the power system 1 described above.
- the electric power system 1 in the present disclosure includes a computer system.
- the main configuration of a computer system is a processor and memory as hardware.
- the processor executes a program stored in the memory of the computer system, at least a part of the function as the power system 1 in the present disclosure is realized.
- the program may be pre-stored in computer system memory, may be provided through a telecommunications line, and may be recorded on a non-temporary storage medium such as a computer system readable memory card, optical disk, or hard disk drive. May be provided.
- a processor in a computer system is composed of one or more electronic circuits including a semiconductor integrated circuit (IC) or a large scale integrated circuit (LSI).
- IC semiconductor integrated circuit
- LSI large scale integrated circuit
- the integrated circuit such as IC or LSI referred to here has a different name depending on the degree of integration, and includes an integrated circuit called a system LSI, VLSI (Very Large Scale Integration), or ULSI (Ultra Large Scale Integration).
- an FPGA Field-Programmable Gate Array
- a plurality of electronic circuits may be integrated on one chip, or may be distributed on a plurality of chips.
- the plurality of chips may be integrated in one device, or may be distributed in a plurality of devices.
- the computer system referred to here includes a microprocessor having one or more processors and one or more memories. Therefore, the microprocessor is also composed of one or a plurality of electronic circuits including a semiconductor integrated circuit or a large-scale integrated circuit.
- a plurality of functions in the power conversion device 3 or the controller 2 are integrated in one housing, but a component of the power conversion device 3 or the controller 2. May be distributed in a plurality of housings. Further, at least a part of the functions of the power system 1, for example, a part of the functions of the controller 2 may be realized by a cloud (cloud computing) or the like.
- At least a part of the functions of the power system 1 distributed in a plurality of devices may be integrated in one housing.
- some functions of the power system 1 distributed in the power conversion device 3 and the controller 2 may be integrated in one housing.
- At least one of the plurality of power conversion devices 3 and the controller 2 may be integrated in one housing. That is, at least one of the plurality of power conversion devices 3 may be integrated with the controller 2.
- the power system 1 may include a plurality of controllers 2. Then, the power system 1 may be used in a state where any one of the functions of the plurality of controllers 2 is enabled and the functions of the remaining controllers 2 are disabled.
- the plurality of power conversion devices 3 and the plurality of controllers 2 have a one-to-one correspondence, and each power conversion device 3 may be integrated with the corresponding controller 2.
- FIG. 13 is a block diagram of the electric power system according to the second modification.
- the power system 1 of this second modification is used together with the distribution board 7.
- the distribution board 7 includes a plurality of switches 71 and 72 (two in FIG. 13).
- the power conversion device 3A is electrically connected to the power line 63 via the switch 71, and the power conversion device 3B is electrically connected to the power line 63 via the switch 72.
- the output power of each power conversion device 3 may be supplied to the load 64 via the distribution board 7.
- the controller 2 may be provided separately from the plurality of power conversion devices 3. Further, each of the plurality of power conversion devices 3 may be provided separately from the other power conversion devices 3 and the controller 2.
- correction parameter Cor A the output destination of Cor B, for example, correction parameters Cor A
- the output destination of the correction parameter c skilletr A (or c speciallyr B ) may be, for example, a device that updates the generation algorithm of the command signal (command value P * ) based on the correction parameters c Maschinenr A and c réeller B.
- generation algorithm command signal command value P *
- command signal is generated for Cor B (command value P *)
- Each power conversion device 3 may generate a correction parameter for correcting the inclination of the droop characteristic in place of (or in addition to) the correction parameters c Cincinnatir A and c Cincinnatir B for specifying the shift amount (offset) of the droop characteristic. ..
- command signal (command value P * ) is not limited to being used for generating the correction parameters c Cincinnatir A and c Cincinnatir B.
- Command signal (command value P *) may for example be used to correct the active power value P A of the output power of each power converter 3 (or P B).
- the command signal is not limited to the command value P *.
- the controller 2 may transmit, for example, information indicating the ratio of the output power to the rated output power of each of the plurality of power conversion devices 3 as a command signal.
- each of the plurality of power conversion devices 3 obtains the command value P * of the output power (active power) by multiplying the rated output power by the value (ratio) of the command signal.
- the controller 2 for example, the sum of the command value P * obtained by a plurality of power converting apparatus 3 of the plurality of output power of the effective power of the power converter 3 value P A, to match the sum of P B , Generate a command signal.
- the power converter 3 may include a DC-DC converter.
- the DC-DC converter is electrically connected between the primary terminal 32 and the AC-DC converter 31.
- the local controller 4 may control the output power of the DC-DC converter by droop control based on the command signal (command value P *) transmitted from the controller 2.
- the power conversion device 3 may include a DC-DC converter but not an AC-DC converter 31.
- the absolute value of the average value h_ave of the correction amounts h1 and h2 is set to be equal to or less than the predetermined correction threshold value.
- the correction threshold value may change with the passage of time. For example, after the absolute value of the average value h_ave exceeds the correction threshold value, the correction threshold value may decrease with the passage of time.
- the power system (1) includes a plurality of power conversion devices (3) and a controller (2).
- Each of the plurality of power converters (3) has an output terminal (secondary terminal 33) electrically connected to each other.
- the plurality of power conversion devices (3) convert the input power into power and output the output power from the output end.
- the controller (2) communicates with each of the plurality of power converters (3).
- the controller (2) generates a command signal (command value P * ) based on the information about the output power of each of the plurality of power conversion devices (3), and sends the command signal to each of the plurality of power conversion devices (3). Send.
- Each of the plurality of power converters (3) controls the output power by droop control based on the command signal.
- the operations of the plurality of power converters (3) can be coordinated.
- the controller (2) sends the same command signal (command value P * ) to each of the plurality of power conversion devices (3). To send.
- each of the plurality of power conversion devices (3) has correction parameters (c Cincinnatir A , c Cincinnatir B) for correcting the characteristics of the droop control. ) Is generated and output.
- the correction parameters (c Cincinnatir A , c réeller B ) can be used in a device external to the power conversion device (3).
- the controller (2) acquires correction parameters (c skilletr A , c réeller B ) from each of the plurality of power conversion devices (3). , Generates a command signal (command value P * ) based on the correction parameters (c Cincinnatir A , c Cincinnatir B).
- the operations of the plurality of power converters (3) are further coordinated as compared with the case where the controller (2) does not use the correction parameters (c Cincinnatir A , c Cincinnatir B) when generating the command signal. Can be made to.
- the load (64) is electrically connected to the output terminal (secondary side terminal 33).
- the controller (2) generates a command signal (command value P * ) that suppresses a voltage drop at the output end when the load (64) increases.
- each of the plurality of power conversion devices (3) feeds back a command signal (command value P * ) and a correction parameter (c Cincinnatir A). , C Cincinnatir B ) is generated.
- Each of the plurality of power converters (3) corrects the output voltage based on the correction parameters (c Cincinnatir A , c Cincinnatir B).
- the controller (2) generates a command signal that makes the absolute value of the average values of the correction values (correction parameters c Cincinnatir A , c Cincinnatir B ) of the output voltages of the plurality of power converters (3) equal to or less than a predetermined correction threshold value. ..
- the controller (2) has an absolute deviation between the output powers of the plurality of power conversion devices (3).
- a command signal (command value P * ) is generated so that the value is equal to or less than a predetermined deviation threshold value.
- At least one of the plurality of power conversion devices (3) is integrated with the controller (2). be.
- the number of devices constituting the power system (1) can be reduced.
- Configurations other than the first aspect are not essential configurations for the power system (1) and can be omitted as appropriate.
- controller (2) according to the ninth aspect is provided in the power system (1) according to any one of the first to eighth aspects.
- the operations of the plurality of power converters (3) can be coordinated.
- the power conversion device (3) according to the tenth aspect is provided in the power system (1) according to any one of the first to eighth aspects.
- the operations of the plurality of power converters (3) can be coordinated.
- control method of the power system (1) is a control method of the power system (1) including a plurality of power conversion devices (3) and a controller (2).
- the plurality of power converters (3) have output terminals (secondary terminal 33) electrically connected to each other.
- the controller (2) communicates with each of the plurality of power converters (3).
- the control method includes a first process, a second process, and a third process.
- each of the plurality of power conversion devices (3) is made to convert the input power into power and output the output power from the output end.
- the controller (2) is made to generate a command signal (command value P * ) based on the information regarding the output power of each of the plurality of power converters (3).
- the controller (2) is made to transmit a command signal to each of the plurality of power conversion devices (3).
- each of the plurality of power conversion devices (3) controls the output power by droop control based on the command signal.
- the operations of the plurality of power converters (3) can be coordinated.
- the program according to the twelfth aspect is a program for causing one or more processors to execute the control method of the power system (1) according to the eleventh aspect.
- the operations of the plurality of power converters (3) can be coordinated.
- various configurations (including modifications) of the electric power system (1) according to the embodiment can be embodied by a control method and a program.
- the power system, controller, power conversion device, control method and program of the power system of the present disclosure there is an advantage that the operations of a plurality of power conversion devices can be coordinated. Therefore, the power system, controller, power conversion device, control method and program of the power system of the present disclosure can improve the characteristics of the output power of each of the plurality of power conversion devices. That is, the power system, controller, power conversion device, control method and program of the power system of the present disclosure are industrially useful.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
Abstract
複数の電力変換装置の動作を協調させる。電力システム(1)は、複数の電力変換装置(3)と、コントローラ(2)と、を備える。複数の電力変換装置(3)は、互いに電気的に接続された出力端(2次側端子(33))を有する。複数の電力変換装置(3)の各々は、入力電力を電力変換し、出力電力を出力端から出力する。コントローラ(2)は、複数の電力変換装置(3)の各々と通信する。コントローラ(2)は、複数の電力変換装置(3)の各々の出力電力に関する情報に基づいて指令信号を生成し、指令信号を複数の電力変換装置(3)の各々に送信する。複数の電力変換装置(3)の各々は、指令信号に基づくドループ制御により出力電力を制御する。
Description
本開示は一般に電力システム、コントローラ、電力変換装置、電力システムの制御方法及びプログラムに関する。より詳細には、複数の電力変換装置を備える電力システム、この電力システムに用いられるコントローラ及び電力変換装置、この電力システムの制御方法、並びに、上記制御方法に係るプログラムに関する。
特許文献1に記載の電力システムには、主従関係にないインバータ装置(電力変換装置)が複数並列接続されている。インバータ装置は、インバータ回路と、インバータ回路を制御する制御回路と、を備える。制御回路は、系統周波数制御手段と、協調補正値生成手段と、加算手段と、通信手段と、を備える。系統周波数制御手段は、系統周波数を目標値に制御するための補償値を生成する。加算手段は、補償値に補正値を加算して補正補償値を算出する。通信手段は、重み付けされた補正補償値を、他のインバータ装置に送信する。協調補正値生成手段は、重み付けされた補正補償値と、通信手段が他のインバータ装置より受信した受信補償値とに基づく演算結果を用いて、各々のインバータ装置と協調するための補正値を生成する。
本開示は、複数の電力変換装置の動作を協調させることができる電力システム、コントローラ、電力変換装置、電力システムの制御方法及びプログラムを提供することを目的とする。
本開示の一態様に係る電力システムは、複数の電力変換装置と、コントローラと、を備える。複数の電力変換装置は、互いに電気的に接続された出力端を有する。複数の電力変換装置の各々は、入力電力を電力変換し、出力電力を前記出力端から出力する。コントローラは、複数の電力変換装置の各々と通信する。コントローラは、複数の電力変換装置の各々の出力電力に関する情報に基づいて指令信号を生成し、指令信号を複数の電力変換装置の各々に送信する。複数の電力変換装置の各々は、指令信号に基づくドループ制御により出力電力を制御する。
本開示の別の一態様に係るコントローラは、上述の電力システムに備えられる。
本開示のさらに別の一態様に係る電力変換装置は、上述の電力システムに備えられる。
本開示のさらに別の一態様に係る電力システムの制御方法は、複数の電力変換装置と、コントローラと、を備えた電力システムの制御方法である。複数の電力変換装置は、互いに電気的に接続された出力端を有する。コントローラは、複数の電力変換装置の各々と通信する。制御方法は、第1処理と、第2処理と、第3処理と、を有する。第1処理では、複数の電力変換装置の各々に、入力電力を電力変換させ、出力電力を出力端から出力させる。第2処理では、コントローラに、複数の電力変換装置の各々の前記出力電力に関する情報に基づいて指令信号を生成させる。第3処理では、コントローラに、指令信号を複数の電力変換装置の各々に送信させる。第1処理では、複数の電力変換装置の各々は、指令信号に基づくドループ制御により出力電力を制御する。
本開示のさらに別の一態様に係るプログラムは、上述の電力システムの制御方法を、1以上のプロセッサに実行させるためのプログラムである。
本開示は、複数の電力変換装置の動作を協調させることができるという利点がある。
(実施形態)
以下、実施形態に係る電力システム1について、図面を用いて説明する。ただし、下記の実施形態は、本開示の様々な実施形態の1つに過ぎない。下記の実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。
以下、実施形態に係る電力システム1について、図面を用いて説明する。ただし、下記の実施形態は、本開示の様々な実施形態の1つに過ぎない。下記の実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。
(1)概要
本実施形態に係る電力システムのブロック図を図1に示す。また、本実施形態の電力システムの要部のブロック図を、図2に示す。図1、図2に示すように、本実施形態の電力システム1は、複数の電力変換装置3と、コントローラ2と、を備える。複数の電力変換装置3は、互いに電気的に接続された出力端(2次側端子33)を有する。複数の電力変換装置3は、入力電力を電力変換し、出力電力を出力端(2次側端子33)から出力する。コントローラ2は、複数の電力変換装置3の各々と通信する。コントローラ2は、複数の電力変換装置3の各々の出力電力に関する情報に基づいて指令信号(指令値P*)を生成し、指令信号を複数の電力変換装置3の各々に送信する。複数の電力変換装置3の各々は、指令信号に基づくドループ制御により出力電力を制御する。
本実施形態に係る電力システムのブロック図を図1に示す。また、本実施形態の電力システムの要部のブロック図を、図2に示す。図1、図2に示すように、本実施形態の電力システム1は、複数の電力変換装置3と、コントローラ2と、を備える。複数の電力変換装置3は、互いに電気的に接続された出力端(2次側端子33)を有する。複数の電力変換装置3は、入力電力を電力変換し、出力電力を出力端(2次側端子33)から出力する。コントローラ2は、複数の電力変換装置3の各々と通信する。コントローラ2は、複数の電力変換装置3の各々の出力電力に関する情報に基づいて指令信号(指令値P*)を生成し、指令信号を複数の電力変換装置3の各々に送信する。複数の電力変換装置3の各々は、指令信号に基づくドループ制御により出力電力を制御する。
本実施形態によれば、複数の電力変換装置3の各々の出力電力に関する情報がコントローラ2に集約される。これらの情報に基づいて指令信号が生成されるので、複数の電力変換装置3の動作を協調させることができる。例えば、複数の電力変換装置3の出力電力の比が所定比となるよう制御することができる。
ドループ制御とは、ある物理量を操作対象とし、この物理量に対応する観測量を規定した場合に、観測量が増加するほど物理量を増加又は減少させるような制御を指す。また、物理量のこのような増加又は減少の様子は、ドループ特性と呼ばれる。本実施形態では、物理量は、複数の電力変換装置3の各々の出力電圧の振幅及び角周波数である。また、本実施形態では、観測量は、複数の電力変換装置3の各々の出力電力(有効電力又は無効電力)である。物理量は、単調に増加又は減少すればよく、観測量を一部の範囲内に限って変化させるときには物理量が増加も減少もしなくてもよい。
本実施形態では、電力システム1の外部の構成として、電源51、52と、電力線63と、負荷64と、が設けられている。複数(図1では2つ)の電力変換装置3の各々には、電源51(又は電源52)が電気的に接続される。本実施形態の電力システム1は、電源51(又は電源52)から供給される電力を電力変換装置3にて電力変換し、変換後の電力(出力電力)を負荷64に供給するために用いられる。負荷64は、例えば、照明器具、給湯設備、空調機器、情報処理装置又は携帯端末等である。
各電力変換装置3は、例えば、単相二線式、単相三線式、又は、三相三線式の電路に接続される。図1、図2では、簡略化のため、各電路を1本の線として図示している。
(2)コントローラの概要
コントローラ2(セントラルコントローラ)は、複数の電力変換装置3の出力電力の制御に係る指令信号を生成し、複数の電力変換装置3に送信する。
コントローラ2(セントラルコントローラ)は、複数の電力変換装置3の出力電力の制御に係る指令信号を生成し、複数の電力変換装置3に送信する。
コントローラ2は、1以上のプロセッサ及びメモリを有するコンピュータシステムを含んでいる。コンピュータシステムのメモリに記憶されたプログラムを、コンピュータシステムのプロセッサが実行することにより、コントローラ2の少なくとも一部の機能が実現される。プログラムは、メモリに記憶されていてもよいし、インターネット等の電気通信回線を通して提供されてもよく、メモリカード等の非一時的記憶媒体に記憶されて提供されてもよい。
また、コントローラ2は、複数の電力変換装置3と通信するための通信インタフェースを含んでいる。コントローラ2と複数の電力変換装置3との間の通信方式は、有線通信であってもよいし、無線通信であってもよい。マスタであるコントローラ2に、複数の電力変換装置3の各々がスレーブとして登録され、マスタとスレーブとの間で通信が行われる。
(3)電力変換装置
複数の電力変換装置3の各々は、コントローラ2から受信した指令信号に基づいて自律的に出力電力を制御する。本実施形態では、電力変換装置3が2つ設けられている。以下では、2つの電力変換装置3を区別するために、一方の電力変換装置3を電力変換装置3Aと称し、他方の電力変換装置3を電力変換装置3Bと称することがある。
複数の電力変換装置3の各々は、コントローラ2から受信した指令信号に基づいて自律的に出力電力を制御する。本実施形態では、電力変換装置3が2つ設けられている。以下では、2つの電力変換装置3を区別するために、一方の電力変換装置3を電力変換装置3Aと称し、他方の電力変換装置3を電力変換装置3Bと称することがある。
複数の電力変換装置3の各々は、AC-DCコンバータ31と、ローカルコントローラ4と、インダクタL1と、電流センサCT1と、電圧センサVT1と、コンデンサC1と、1次側端子32と、2次側端子33と、を備えている。
1次側端子32は、電力の入力端である。電力変換装置3Aの1次側端子32は、電源51に電気的に接続されている。電力変換装置3Bの1次側端子32は、電源52に電気的に接続されている。電源51は、電力変換装置3Aの1次側端子32を介して電力変換装置3Aに電力を出力し、電源52は、電力変換装置3Bの1次側端子32を介して電力変換装置3Bに電力を出力する。
2次側端子33は、電力の出力端である。電力変換装置3Aの2次側端子33と電力変換装置3Bの2次側端子33とは、電力線63を介して、互いに電気的に接続されている。また、各々の電力変換装置3の2次側端子33は、電力線63を介して、負荷64に電気的に接続されている。つまり、複数の電力変換装置3は、並列運転される。また、電力線63は、電力系統に電気的に接続されている。
電源51、52の各々は、直流電源である。電源51、52の各々は、発電システムであって、例えば、太陽光発電システム、水力発電システム、燃料電池システム、ディーゼル発電システム又は蓄電システム等である。電源51の発電方式と電源52の発電方式とは、同じであってもよいし、異なっていてもよい。また、電源51の出力電力と電源52の出力電力とが、同じであってもよいし、異なっていてもよい。
AC-DCコンバータ31には、電源51(又は電源52)から入力電力としての直流電力が入力される。AC-DCコンバータ31は、電力変換を行う回路を含む電力変換器である。より詳細には、AC-DCコンバータ31は、直流電力と交流電力との間で電力変換を行う。更に詳細には、AC-DCコンバータ31は、入力電力としての直流電力を、出力電力としての交流電力に変換する動作を行う。すなわち、AC-DCコンバータ31は、片方向AC/DCコンバータである。AC-DCコンバータ31の出力電力は、2次側端子33から出力され、負荷64に供給される。
なお、電源51(又は電源52)が蓄電システムである場合に、この電源51(又は電源52)に電気的に接続されたAC-DCコンバータ31は、直流電力を交流電力に変換する動作に加えて、交流電力を直流電力に変換する動作を更に行ってもよい。すなわち、AC-DCコンバータ31は、双方向AC/DCコンバータであってもよい。この場合、1次側端子32及び2次側端子33は、電力の入力端と電力の出力端との両方の機能を有する。
電力変換装置3Aの2次側端子33と負荷64との間には、配線のインピーダンス61が存在する。電力変換装置3Bの2次側端子33と負荷64との間には、配線のインピーダンス62が存在する。図1では、インピーダンス61、62はそれぞれ2次側端子33と電力線63との間に図示しているが、実際には、インピーダンス61、62はそれぞれ電力線63のインピーダンスを含む。
2次側端子33とAC-DCコンバータ31のAC端子との間の配線35には、インダクタL1と、電流センサCT1と、電圧センサVT1と、コンデンサC1と、が設けられている。
インダクタL1及びコンデンサC1は、AC-DCコンバータ31の出力電力としての交流電力をフィルタする。
電流センサCT1は、例えば、計器用変流器を含む。電流センサCT1は、配線35に流れる電流を検出する。すなわち、電流センサCT1は、電力変換装置3の出力電流を検出する。
電圧センサVT1は、例えば、計器用変圧器を含む。電圧センサVT1は、配線35に印加された電圧を検出する。すなわち、電圧センサVT1は、電力変換装置3の出力電圧を検出する。
各電力変換装置3のローカルコントローラ4は、1以上のプロセッサ及びメモリを有するコンピュータシステムを含んでいる。コンピュータシステムのメモリに記憶されたプログラムを、コンピュータシステムのプロセッサが実行することにより、ローカルコントローラ4の少なくとも一部の機能が実現される。プログラムは、メモリに記憶されていてもよいし、インターネット等の電気通信回線を通して提供されてもよく、メモリカード等の非一時的記憶媒体に記憶されて提供されてもよい。
また、ローカルコントローラ4は、コントローラ2と通信するための通信インタフェースを含んでいる。
(4)ローカルコントローラ及びコントローラの詳細
図2に示すように、ローカルコントローラ4は、電力演算部41と、減算器42と、補正部43と、ドループ部44と、コンバータ制御部45と、を有している。なお、これらは、ローカルコントローラ4によって実現される機能を示しているに過ぎず、必ずしも実体のある構成を示しているわけではない。電力演算部41は、電流センサCT1で検出された電力変換装置3の出力電流値Ioutと、電圧センサVT1で検出された電力変換装置3の出力電圧値Voutと、に基づいて、電力変換装置3の出力電力(有効電力及び無効電力)を演算する。図2では、電力変換装置3Aの出力電力の有効電力の値をPA、無効電力の値をQAと表し、電力変換装置3Bの出力電力の有効電力の値をPBと表している。電力演算部41で求められた有効電力の値PA(又はPB)は、コントローラ2へ出力される。
図2に示すように、ローカルコントローラ4は、電力演算部41と、減算器42と、補正部43と、ドループ部44と、コンバータ制御部45と、を有している。なお、これらは、ローカルコントローラ4によって実現される機能を示しているに過ぎず、必ずしも実体のある構成を示しているわけではない。電力演算部41は、電流センサCT1で検出された電力変換装置3の出力電流値Ioutと、電圧センサVT1で検出された電力変換装置3の出力電圧値Voutと、に基づいて、電力変換装置3の出力電力(有効電力及び無効電力)を演算する。図2では、電力変換装置3Aの出力電力の有効電力の値をPA、無効電力の値をQAと表し、電力変換装置3Bの出力電力の有効電力の値をPBと表している。電力演算部41で求められた有効電力の値PA(又はPB)は、コントローラ2へ出力される。
コントローラ2は、複数の電力変換装置3の各々の出力電力に関する情報(以下、出力電力情報と称す)に基づいて指令信号を生成する。本実施形態では、出力電力情報は、有効電力の値PA、PBを含む。また、出力電力情報は、後述の補正パラメータcоrA、cоrBを更に含む。コントローラ2は、生成した指令信号を複数の電力変換装置3の各々に送信する。指令信号を生成するアルゴリズムについては後述する。
指令信号は、複数の電力変換装置3の各々の出力電力の指令値P*の情報を含む。ここで、コントローラ2は、複数の電力変換装置3の各々に、同一の指令信号を送信する。コントローラ2は、ある電力変換装置3に対して、別の電力変換装置3を介さずに指令信号を送信する。より詳細には、コントローラ2は、複数の電力変換装置3の各々に、指令信号をブロードキャストにより送信する。これにより、複数の電力変換装置3の各々の出力電力の応答性を改善できる。
本実施形態では、コントローラ2は、複数の電力変換装置3の各々の出力電力の大きさの指令値P*そのものを、指令信号として送信する。また、複数の電力変換装置3間で、出力電力の指令値P*は共通である。例えば、コントローラ2は、出力電力の指令値P*として、ある値(例えば、10kW)を指定する指令信号を生成し、この指令信号を複数の電力変換装置3の各々へ送信する。コントローラ2は、例えば、複数の電力変換装置3の出力電力の有効電力の値PA、PBの平均値を、指令値P*とする。本実施形態では、複数の電力変換装置3の各々の定格出力電力は互いに同じである。
また、コントローラ2は、複数の電力変換装置3の出力電力(有効電力)間の偏差の絶対値を所定の偏差閾値以下にするような指令信号を生成する。つまり、任意の時点において、電力変換装置3Aの出力電力の有効電力と電力変換装置3Bの出力電力の有効電力との偏差の絶対値が偏差閾値以下となる。本実施形態では、コントローラ2は、複数の電力変換装置3の各々に対して同じ指令値P*を、指令信号として送信する。その結果として、本実施形態では、制御の遅れ及び誤差等を加味しても、複数の電力変換装置3の出力電力(有効電力)間の偏差の絶対値が偏差閾値以下となる。よって、偏差の絶対値が偏差閾値よりも大きい場合と比較して、各電力変換装置3の寿命の低下を抑制できる。偏差の絶対値と偏差閾値との比較については、後述する。
コントローラ2から各電力変換装置3へ送信された指令信号としての指令値P*は、減算器42に入力される。また、減算器42には、電力演算部41で求められた有効電力の値PA(又は値PB)が入力される。減算器42は、指令値P*から有効電力の値PA(又は値PB)を引いた値である差分値を求め、補正部43へ出力する。
補正部43は、減算器42で求められた差分値に基づいて、補正パラメータを生成する。図2では、電力変換装置3Aで生成される補正パラメータをcоrAと表し、電力変換装置3Bで生成される補正パラメータをcоrBと表している。補正パラメータcоrAは、電力変換装置3Aのドループ制御の特性(ドループ特性)を補正する。補正パラメータcоrBは、電力変換装置3Bのドループ制御の特性を補正する。
複数の電力変換装置3A、3Bは、出力電流値Ioutの違い及び出力電圧値Voutの違い等に応じて扱うパラメータ(有効電力の値PA、PB及び補正パラメータcоrA、cоrB等)が異なり得るが、動作は共通である。以下では、適宜、複数の電力変換装置3A、3Bのうち、電力変換装置3Aのみに着目して説明する。
電力変換装置3Aのドループ部44は、有効電力の値PAと、無効電力の値QAと、補正パラメータcоrAと、に基づいて、電力変換装置3Aの出力電圧の指令値E*(振幅)及び出力電圧の角周波数の指令値ω*を生成する。コンバータ制御部45は、指令値E*及び指令値ω*に基づいてAC-DCコンバータ31の動作を制御する。
図3A~図3Cに、電力変換装置3のドループ特性の一例を図示する。電力変換装置3Aと電力変換装置3Bとでドループ特性は異なり得る。図3Aは、電力変換装置3の出力電力の無効電力Qを観測量とし、出力電圧の角周波数の指令値ω*を操作対象とするドループ特性を示す図である。図3Bおよび図3Cは、有効電力Pを観測量とし、出力電圧の振幅の指令値E*を操作対象とするドループ特性を示す図である。図3B、図3Cの実線部分(ドループ特性D1、D4、D5)は、電力変換装置3の出力電力の有効電力Pを観測量とし、出力電圧の振幅の指令値E*を操作対象とするドループ特性を示す。有効電力P及び無効電力Qは、電力演算部41で算出される値である。電力変換装置3Aでは、P=PAであり、Q=QAである。
図3Aに示すドループ特性では、無効電力Qの増加に伴い、指令値ω*が線形に増加する。図3B、図3Cに示すドループ特性では、有効電力Pの増加に伴い、指令値E*が線形に減少する。なお、ドループ特性は、線形に限定されず、非線形であってもよい。
ここで、電力変換装置3Aのドループ部44は、補正パラメータcоrAに基づいて、指令値E*に関するドループ特性を補正する。電力変換装置3Bのドループ部44は、補正パラメータcоrBに基づいて、指令値E*に関するドループ特性を補正する。ドループ特性を補正することにより、電力変換装置3A、3Bにそれぞれ対応する配線のインピーダンス61、62がそれぞれ電力変換装置3A、3Bの出力電力に及ぼす影響を低減できる。
まず、各電力変換装置3は、補正前のドループ特性D1を記憶している。ドループ特性D1は、各電力変換装置3が決定してもよいし、コントローラ2が決定してもよい。例えば、ドループ特性D1の傾きは必ず負の値であり、電力変換装置3の定格出力電力が大きいほど、ドループ特性D1の傾きの絶対値が小さい。
また、図3Cでは、定格出力電力が4[kW]の電力変換装置3のドループ特性D4と、定格出力電力が2[kW]の電力変換装置3のドループ特性D5と、を示している。指令値E*がEx(Emin≦Ex≦Emax:Emin=最小値、Emax=最大値)のとき、ドループ特性D4に対応する有効電力は、ドループ特性D5に対応する有効電力Pxの2倍である。このように、ドループ特性D1の傾きの絶対値が、電力変換装置3の定格出力電力に反比例していてもよい。
配線のインピーダンス61(又はインピーダンス62)が大きいほど、電圧降下により、電力変換装置3の出力電圧の振幅は小さくなる。ドループ特性D1は、配線の想定されるインピーダンス61(又はインピーダンス62)の大きさを加味して決定され得る。
しかしながら、配線のインピーダンス61(又はインピーダンス62)が想定よりも大きいと、これに応じて電力変換装置3の実際の出力電圧の振幅は小さくなる。その結果、電力変換装置3の出力電力が小さくなる。例えば、図3Bで、ドループ部44に入力される有効電力P=P0の場合、ドループ特性D1により出力電圧の振幅の指令値E*はE0となる。ところが、配線のインピーダンス61(又はインピーダンス62)が想定よりも大きく、電圧降下の大きさが想定をΔEだけ上回ると、電力変換装置3の実際の出力電圧の振幅は、E0-ΔEとなる。つまり、ドループ特性D1に基づく制御は、電力変換装置3の出力電圧の振幅をE0にするのではなく、E0-ΔEにする制御となる。要するに、ドループ特性D1に基づく制御は、実質的にドループ特性D2に基づく制御となる。
また、配線のインピーダンス61(又はインピーダンス62)が想定よりも小さいと、これに応じて電力変換装置3の実際の出力電圧の振幅は大きくなる。その結果、電力変換装置3の出力電力が大きくなる。例えば、図3Bで、配線のインピーダンス61(又はインピーダンス62)が想定よりも小さく、電圧降下の大きさが想定をΔEだけ下回ると、電力変換装置3の実際の出力電圧の振幅は、E0+ΔEとなる。つまり、ドループ特性D1に基づく制御は、電力変換装置3の出力電圧の振幅をE0にするのではなく、E0+ΔEにする制御となる。要するに、ドループ特性D1に基づく制御は、実質的にドループ特性D3に基づく制御となる。
そこで、補正部43は、指令値P*から有効電力の値PA(又は値PB)を減算した値である差分値(正又は負の値)に基づいて、補正パラメータcоrA(又は補正パラメータcоrB)を生成する。具体的には、補正部43は、上記差分値と補正パラメータcоrA(又は補正パラメータcоrB)との符号を一致させる。補正部43は、上記差分値が大きいほど、補正パラメータcоrA(又は補正パラメータcоrB)を大きくする。そして、ドループ部44は、補正パラメータcоrA(又は補正パラメータcоrB)の値だけ、ドループ特性D1をシフトさせる。これにより、各電力変換装置3の出力電力が対応する配線のインピーダンス61又は62のばらつきに影響される程度を低減できる。
本実施形態では複数の電力変換装置3の出力電力の指令値P*が等しいが、ドループ特性D1をシフト(補正)しないと、各電力変換装置3の出力電力が対応する配線のインピーダンス61又は62のばらつきに起因してばらつく可能性がある。ドループ特性D1をシフト(補正)することで、各電力変換装置3の出力電力のばらつきを低減できる。
例えば、インピーダンス61(又はインピーダンス62)が比較的大きく、上記差分値が100[W]の場合の補正パラメータcоrA(又は補正パラメータcоrB)が1[V]であると、ドループ部44は、ドループ特性D1を、次のように補正する。すなわち、ドループ部44は、任意の有効電力Pに対応する指令値E*が1[V]だけ増加するように補正する。上記差分値がΔEと出力電流値Ioutとの積に等しい場合、理想的には、ドループ部44は、ドループ特性D1をドループ特性D3に変更する。
また、例えば、インピーダンス61(又はインピーダンス62)が比較的小さく、上記差分値が-100[W]の場合の補正パラメータcоrA(又は補正パラメータcоrB)が-1[V]であると、ドループ部44は、ドループ特性D1を、次のように補正する。すなわち、ドループ部44は、任意の有効電力Pに対応する指令値E*が1[V]だけ減少するように補正する。上記差分値が-ΔEと出力電流値Ioutとの積に等しい場合、理想的には、ドループ部44は、ドループ特性D1をドループ特性D2に変更する。
コンバータ制御部45は、ドループ部44で生成された指令値E*、ω*に基づいて、電力変換装置3Aの出力電力を制御する。つまり、コンバータ制御部45は、電力変換装置3Aの出力電圧の振幅及び角周波数がそれぞれ指令値E*、ω*に収束するように、AC-DCコンバータ31の動作を制御する。コンバータ制御部45は、AC-DCコンバータ31の動作を制御するための駆動信号Sig1を出力する。コンバータ制御部45は、例えば、PWM(Pulse Width Modulation)制御により、AC-DCコンバータ31の動作を制御する。
また、複数の電力変換装置3の各々は、ドループ制御の特性を補正する補正パラメータcоrA(又は補正パラメータcоrB)を生成及び出力する。つまり、複数の電力変換装置3からコントローラ2へそれぞれ補正パラメータcоrA、cоrBが出力される。
コントローラ2は、複数の電力変換装置3からそれぞれ補正パラメータcоrA、cоrBを取得し、補正パラメータcоrA、cоrBに基づいて指令信号(指令値P*)を生成する。コントローラ2は、例えば、補正パラメータcоrA、cоrBが所定値を上回る場合、指令値P*を減少させる。これにより、補正パラメータcоrA、cоrBが減少する。また、コントローラ2は、例えば、補正パラメータcоrA、cоrBが所定値を下回る場合、指令値P*を増加させる。これにより、補正パラメータcоrA、cоrBが増加する。
また、コントローラ2は、2次側端子33(出力端)に電気的に接続された負荷64(消費電力)が増加する際の2次側端子33の電圧低下を抑制するような指令信号(指令値P*)を生成する。これを実現するために、生成処理、補正処理及び制限処理が実行される。生成処理として、複数の電力変換装置3の各々は、指令信号(指令値P*)をフィードバックして補正パラメータcоrA(又は補正パラメータcоrB)を生成する。言い換えると、複数の電力変換装置3の各々は、指令信号(指令値P*)に基づいて補正パラメータcоrA(又は補正パラメータcоrB)を生成する。補正処理として、複数の電力変換装置3の各々は、補正パラメータcоrA(又は補正パラメータcоrB)に基づいて出力電圧(振幅の指令値E*)を補正する。制限処理として、コントローラ2は、複数の電力変換装置3の各々の出力電圧の補正値(補正パラメータcоrA、cоrB)の平均値の絶対値を所定の補正閾値以下にするような指令信号(指令値P*)を生成する。コントローラ2は、例えば、複数の電力変換装置3の各々の出力電圧の補正値の平均値を0に近づけるような指令信号(指令値P*)を生成する。
次の「(5)第1動作例」では、生成処理、補正処理及び制限処理の実行結果を説明する。
(5)第1動作例
図4A~図11は、電力システム1に係る各パラメータの解析結果を表す。以下では、まず図4A~図5Cを参照して、電力システム1の第1動作例を説明する。
図4A~図11は、電力システム1に係る各パラメータの解析結果を表す。以下では、まず図4A~図5Cを参照して、電力システム1の第1動作例を説明する。
電力線63(図1参照)には、3つの電力変換装置3が電気的に接続されており、3つの電力変換装置3の定格出力電力は同じであるする。そして、3つの電力変換装置3に対応する配線のインピーダンスの値を、それぞれZ1、Z2、Z3とする。Z1、Z2、Z3は抵抗成分のみを有するとする。
図4A~図4Cは、第1動作例との比較例を示すグラフであり、ドループ特性の補正が行われない場合の3つの電力変換装置3の出力電圧Vout1及び出力電流Iout1~Iout3を表す。図5A~図5Cは、第1動作例を示すグラフであり、ドループ特性の補正が行われる場合の3つの電力変換装置3の出力電圧Vout1及び出力電流Iout1~Iout3を表す。
図4A、図5Aでは、Z1=Z2=Z3である。図4B、図5Bでは、Z1=Z2<Z3である。図4C、図5Cでは、Z2<Z1<Z3である。
Iout1-Iout2及びIout2-Iout3は、3つの電力変換装置3の出力電流の一致度を示している。つまり、Iout1-Iout2の振幅が小さいほど、1つ目の電力変換装置3の出力電流と2つ目の電力変換装置3の出力電流との一致度が高い。Iout2-Iout3の振幅が小さいほど、2つ目の電力変換装置3の出力電流と3つ目の電力変換装置3の出力電流との一致度が高い。
図4Aに示すように、ドループ特性の補正が行われない場合であっても、インピーダンスが等しい場合は、Iout1-Iout2の振幅及びIout2-Iout3の振幅が小さい。つまり、3つの電力変換装置3の出力電流の一致度が高い。
図4Bに示すように、ドループ特性の補正が行われない場合であって、Z2とZ3とが相違すると、Iout2-Iout3の振幅が大きい。つまり、2つ目の電力変換装置3の出力電流と3つ目の電力変換装置3の出力電流との一致度が低い。
図4Cに示すように、ドループ特性の補正が行われない場合であって、Z1~Z3がすべて互いに相違すると、Iout1-Iout2の振幅及びIout2-Iout3の振幅が大きい。つまり、3つの電力変換装置3の出力電流の一致度が低い。
これに対して、ドループ特性の補正が行われると、図5A~図5Cに示すように、Z1、Z2、Z3の大小関係に依らずに、Iout1-Iout2の振幅及びIout2-Iout3の振幅が小さい。つまり、3つの電力変換装置3の出力電流の一致度が高い。
このように、ドループ特性の補正が行われることで、定格出力電力が等しい複数の電力変換装置3の出力電流の一致度を高められる。その結果、複数の電力変換装置3の出力電力の一致度を高められる。言い換えると、複数の電力変換装置3の出力電力の関係を、互いに等しいという関係に近づけられる。より詳細には、複数の電力変換装置3の出力電力(有効電力)間の偏差の絶対値は、偏差閾値以下となる。偏差閾値は、予め決められた目標値である。
(6)第2動作例
次に、図6、図7を参照して、電力システム1の第2動作例を説明する。
次に、図6、図7を参照して、電力システム1の第2動作例を説明する。
電力線63(図1参照)には、2つの電力変換装置3A、3Bが電気的に接続されており、2つの電力変換装置3の定格出力電力は等しいとする。そして、2つの電力変換装置3A、3Bに対応する配線のインピーダンスの値を、それぞれZ1、Z2とする。Z1、Z2は互いに異なる。
図6は、第2動作例との比較例を示すグラフであり、ドループ特性の補正が行われ、かつ、制限処理が行われない場合の各パラメータの時間変化を表すグラフである。図7は、第2動作例を示すグラフであり、ドループ特性の補正が行われ、かつ、制限処理が行われる場合の各パラメータの時間変化を表すグラフである。制限処理とは、複数の電力変換装置3の各々の出力電圧の補正値(補正パラメータcоrA、cоrB)の平均値の絶対値を補正閾値以下にする処理である。制限処理は、電力システム1の動作中に常に実行される。
制限処理は、例えば、コントローラ2が補正パラメータcоrA、cоrBに基づいて適宜の指令信号(指令値P*)を生成することで実現される。
(6-1)凡例
Vout1は、電力変換装置3Aの出力電圧、Vout2は、電力変換装置3Bの出力電圧、V63_rmsは、電力線63の電圧の実効値を表す。Iout1は、電力変換装置3Aの出力電流、Iout2は、電力変換装置3Bの出力電流を表す。
Vout1は、電力変換装置3Aの出力電圧、Vout2は、電力変換装置3Bの出力電圧、V63_rmsは、電力線63の電圧の実効値を表す。Iout1は、電力変換装置3Aの出力電流、Iout2は、電力変換装置3Bの出力電流を表す。
PAは、電力変換装置3Aの出力電力の有効電力の値、PBは、電力変換装置3Bの出力電力の有効電力の値、P*は、電力変換装置3A、3Bの各々の出力電力(有効電力)の指令値を表す。QAは、電力変換装置3Aの出力電力の無効電力の値、QBは、電力変換装置3Bの出力電力の無効電力の値を表す。
Vout1_rmsは、電力変換装置3Aの出力電圧の実効値、Vout2_rmsは、電力変換装置3Bの出力電圧の実効値を表す。
h1は、電力変換装置3Aで生成される補正パラメータcоrAに比例する値(補正量)、h2は、電力変換装置3Bで生成される補正パラメータcоrBに比例する値(補正量)、h_aveは、補正量h1、h2の平均値を表す。なお、補正量h1は補正パラメータcоrAと一致してもよく、補正量h2は補正パラメータcоrBと一致してもよい。
(6-2)説明
時点t1において、2次側端子33(出力端)に電気的に接続された負荷64(消費電力)が増加する。これにより、出力電力の有効電力が増加し、出力電圧の実効値(rms:root mean square)は低下する。
時点t1において、2次側端子33(出力端)に電気的に接続された負荷64(消費電力)が増加する。これにより、出力電力の有効電力が増加し、出力電圧の実効値(rms:root mean square)は低下する。
上述の通り、指令値P*から有効電力の値PA(又はPB)を引いた値である差分値が大きいほど、補正部43は、補正パラメータcоrA(又は補正パラメータcоrB)を大きくする。負荷64が増加する際(時点t1)に、複数の電力変換装置3とコントローラ2との通信遅延等により各電力変換装置3の応答が遅れると、負荷64の増加前と比較して補正パラメータcоrA、cоrB(補正量h1、h2)が大きくなる。これにより、負荷64の増加前と比較して、電力線63の電圧の実効値V63_rmsが低下する。
図6では制限処理が行われないのに対して、図7では制限処理が行われる。つまり、図7では、補正量h1、h2の平均値h_aveの絶対値は補正閾値以下となる。制限処理は、例えば、補正量h1、h2の偏差を維持したまま、補正量h1、h2の各々から所定値を引くことで実現される。上記所定値は、コントローラ2に入力された補正パラメータcоrA、cоrBに基づいて、コントローラ2で生成され、指令信号に含まれて各電力変換装置3に送信される。
図6では、電力線63の電圧の実効値V63_rmsは、時点t1の前と比較して時点t1の後にΔV1だけ低下する。これに対して、図7では実効値V63_rmsは、時点t1の前と比較して時点t1の後にΔV2(ΔV2<ΔV1)しか低下しない。このように、制限処理により、負荷64が増加する際の電力線63(2次側端子33)の電圧低下が抑制される。
(7)第3動作例及び第4動作例
次に、図8を参照して、電力システム1の第3動作例を説明し、図9を参照して、電力システム1の第4動作例を説明する。
次に、図8を参照して、電力システム1の第3動作例を説明し、図9を参照して、電力システム1の第4動作例を説明する。
電力線63(図1参照)には、2つの電力変換装置3A、3Bが電気的に接続されているとする。そして、2つの電力変換装置3A、3Bに対応する配線のインピーダンスの値を、それぞれZ1、Z2とする。Z1、Z2は互いに異なる。図8、図9は、ドループ特性の補正が行われ、かつ、制限処理が行われる場合の各パラメータの時間変化を表すグラフである。各パラメータの意味は、「(6-1)凡例」を参照されたい。
図8では、2つの電力変換装置3の定格出力電力は互いに異なる。より詳細には、電力変換装置3Aの定格出力電力は4[kW]であり、電力変換装置3Bの定格出力電力は2[kW]である。図9では、2つの電力変換装置3の定格出力電力は等しい。より詳細には、図9では、電力変換装置3A、3Bの各々の定格出力電力は2[kW]である。
図8、図9のいずれでも、時点t1の前の時点に電力線63の電圧の実効値V63_rmsはV1であり、時点t1において負荷64が増加した後、実効値V63_rmsはV2(V2<V1)に収束する。このように、定格出力電力が互いに異なる複数の電力変換装置3を用いる場合であっても、定格出力電力が互いに等しい場合と同様に、負荷64が増加する際の電力線63の電圧低下が制限処理により抑制される。
(8)第5動作例及び第6動作例
次に、図10を参照して、電力システム1の第5動作例を説明し、図11を参照して、電力システム1の第6動作例を説明する。
次に、図10を参照して、電力システム1の第5動作例を説明し、図11を参照して、電力システム1の第6動作例を説明する。
電力線63(図1参照)には、電力変換装置3A、3Bと3つ目の電力変換装置3とからなる3つの電力変換装置3が電気的に接続されているとする。そして、3つの電力変換装置3に対応する配線のインピーダンスの値を、それぞれZ1、Z2、Z3とする。図10、図11では、Z1、Z2、Z3の各々の容量成分は0.1[μH]であり、Z1、Z2の抵抗成分はそれぞれ400[mΩ]、800[mΩ]である。図10では、Z3の抵抗成分は500[mΩ]であり、図11では、Z3の抵抗成分は700[mΩ]である。各々の電力変換装置3の定格出力電力は等しい。図6、図7と同様に、時点t1において負荷64が増加する。
図10、図11は、ドループ特性の補正が行われ、かつ、制限処理が行われる場合の各パラメータの時間変化を表すグラフである。各パラメータの意味は、「(6-1)凡例」を参照されたい。また、Vout3は、3つ目の電力変換装置3の出力電圧、Iout3は、3つ目の電力変換装置3の出力電流、PCは、3つ目の電力変換装置3の出力電力の有効電力の値、QCは、3つ目の電力変換装置3の出力電力の無効電力の値を表す。Vout3_rmsは、3つ目の電力変換装置3の出力電圧の実効値、h3は、3つ目の電力変換装置3で生成される補正パラメータに比例する値(補正量)、h_aveは、補正量h1、h2、h3の平均値を表す。
図10と図11とで、3つ目の電力変換装置3の出力電圧の実効値Vout3_rms及び補正量h3は異なる。この差異は、3つ目の電力変換装置3に対応する配線のインピーダンスZ3の違いに起因する。しかしながら、ドループ特性の補正及び制限処理を行うことにより、3つの電力変換装置3の出力電力の有効電力の値PA、PB、PCは、図10、図11とで共通の値(P1)に収束し、電力線63の電圧の実効値V63_rmsは、図10、図11とで共通の値(V3)に収束する。
(第一変形例)
以下、第一変形例に係る電力システム1について、図12を用いて説明する。実施形態と同様の構成については、同一の符号を付して説明を省略する。図12は、第一変形例に係る電力システム1の制御方法を示すフローチャートである。
以下、第一変形例に係る電力システム1について、図12を用いて説明する。実施形態と同様の構成については、同一の符号を付して説明を省略する。図12は、第一変形例に係る電力システム1の制御方法を示すフローチャートである。
電力システム1と同様の機能は、電力システム1の制御方法、(コンピュータ)プログラム、又はプログラムを記憶した非一時的記憶媒体等で具現化されてもよい。
一態様に係る電力システム1の制御方法は、複数の電力変換装置3と、コントローラ2と、を備えた電力システム1の制御方法である。複数の電力変換装置3は、互いに電気的に接続された出力端(2次側端子33)を有する。コントローラ2は、複数の電力変換装置3の各々と通信する。制御方法は、第1処理と、第2処理と、第3処理と、を有する。第1処理では、複数の電力変換装置3の各々に、入力電力を電力変換させ、出力電力を出力端(2次側端子33)から出力させる。第2処理では、コントローラ2に、複数の電力変換装置3の各々の出力電力に関する情報に基づいて指令信号(指令値P*)を生成させる。第3処理では、コントローラ2に、指令信号を複数の電力変換装置3の各々に送信させる。第1処理では、複数の電力変換装置3の各々は、指令信号に基づくドループ制御により出力電力を制御する。
より詳細には、各電力変換装置3の電力演算部41は、出力電力の有効電力の値PA(又は値PB)を求める。各電力変換装置3は、求めた有効電力の値PA(又は値PB)をコントローラ2に送信する(図12のステップST1)。コントローラ2は、電力変換装置3の出力電力の有効電力の値PA、PBに基づいて、指令信号(指令値P*)を生成する(ステップST2:第2処理)。コントローラ2は、生成した指令信号(指令値P*)を各電力変換装置3に送信する(ステップST3:第3処理)。
各電力変換装置3は、指令信号(指令値P*)に基づいて補正パラメータcоrA(又は補正パラメータcоrB)を生成する。各電力変換装置3は、生成した補正パラメータcоrA(又は補正パラメータcоrB)をコントローラ2に送信する(ステップST4)。補正パラメータcоrA、cоrBは、ステップST2(第2処理)での指令信号(指令値P*)の生成において、制限処理に用いられる。
各電力変換装置3は、指令信号(指令値P*)に基づくドループ制御を行う(ステップST5:第1処理)。すなわち、各電力変換装置3は、ドループ特性に基づいて出力電圧の振幅の指令値E*及び出力電圧の角周波数の指令値ω*を生成する。コンバータ制御部45は、指令値E*及び指令値ω*に基づいてAC-DCコンバータ31の動作を制御する。
なお、図12に示すフローチャートは、本第一変形例に係る電力システム1の制御方法の一例に過ぎず、処理の順序が適宜変更されてもよいし、処理が適宜追加又は省略されてもよい。
一態様に係るプログラムは、上記の電力システム1の制御方法を1以上のプロセッサに実行させるためのプログラムである。
本開示における電力システム1は、コンピュータシステムを含んでいる。コンピュータシステムは、ハードウェアとしてのプロセッサ及びメモリを主構成とする。コンピュータシステムのメモリに記憶されたプログラムをプロセッサが実行することによって、本開示における電力システム1としての機能の少なくとも一部が実現される。プログラムは、コンピュータシステムのメモリに予め記憶されてもよく、電気通信回線を通じて提供されてもよく、コンピュータシステムで読み取り可能なメモリカード、光学ディスク、ハードディスクドライブ等の非一時的記憶媒体に記録されて提供されてもよい。コンピュータシステムのプロセッサは、半導体集積回路(IC)又は大規模集積回路(LSI)を含む1または複数の電子回路で構成される。ここでいうIC又はLSI等の集積回路は、集積の度合いによって呼び方が異なっており、システムLSI、VLSI(Very Large Scale Integration)、又はULSI(Ultra Large Scale Integration)と呼ばれる集積回路を含む。さらに、LSIの製造後にプログラムされる、FPGA(Field-Programmable Gate Array)、又はLSI内部の接合関係の再構成若しくはLSI内部の回路区画の再構成が可能な論理デバイスについても、プロセッサとして採用することができる。複数の電子回路は、1つのチップに集約されていてもよいし、複数のチップに分散して設けられていてもよい。複数のチップは、1つの装置に集約されていてもよいし、複数の装置に分散して設けられていてもよい。ここでいうコンピュータシステムは、1以上のプロセッサ及び1以上のメモリを有するマイクロコントローラを含む。したがって、マイクロコントローラについても、半導体集積回路又は大規模集積回路を含む1または複数の電子回路で構成される。
また、電力変換装置3又はコントローラ2における複数の機能が、1つの筐体内に集約されていることは電力変換装置3又はコントローラ2に必須の構成ではなく、電力変換装置3又はコントローラ2の構成要素は、複数の筐体に分散して設けられていてもよい。さらに、電力システム1の少なくとも一部の機能、例えば、コントローラ2の一部の機能がクラウド(クラウドコンピューティング)等によって実現されてもよい。
また、実施形態において、複数の装置に分散されている電力システム1の少なくとも一部の機能が、1つの筐体内に集約されていてもよい。例えば、電力変換装置3とコントローラ2とに分散されている電力システム1の一部の機能が、1つの筐体内に集約されていてもよい。
例えば、複数の電力変換装置3のうち少なくとも1つとコントローラ2とが、1つの筐体内に集約されていてもよい。つまり、複数の電力変換装置3のうち少なくとも1つは、コントローラ2と一体であってもよい。また、電力システム1は、コントローラ2を複数備えていてもよい。そして、複数のコントローラ2のうちいずれか1つの機能が有効にされ、残りのコントローラ2の機能が無効にされた状態で、電力システム1が用いられればよい。複数の電力変換装置3と複数のコントローラ2とが一対一で対応し、各電力変換装置3は、対応するコントローラ2と一体であってもよい。
(第二変形例)
以下、第二変形例に係る電力システム1について、図13を用いて説明する。実施形態と同様の構成については、同一の符号を付して説明を省略する。図13は、第二変形例に係る電力システムのブロック図である。
以下、第二変形例に係る電力システム1について、図13を用いて説明する。実施形態と同様の構成については、同一の符号を付して説明を省略する。図13は、第二変形例に係る電力システムのブロック図である。
本第二変形例の電力システム1は、分電盤7と共に用いられる。分電盤7は、複数(図13では2つ)のスイッチ71、72を備えている。電力変換装置3Aは、スイッチ71を介して電力線63に電気的に接続され、電力変換装置3Bは、スイッチ72を介して電力線63に電気的に接続される。
すなわち、本第二変形例のように、各電力変換装置3の出力電力は、分電盤7を介して負荷64に供給されてもよい。
(実施形態のその他の変形例)
以下、実施形態のその他の変形例を列挙する。以下の変形例は、適宜組み合わせて実現されてもよい。また、以下の変形例は、上述の変形例と適宜組み合わせて実現されてもよい。
以下、実施形態のその他の変形例を列挙する。以下の変形例は、適宜組み合わせて実現されてもよい。また、以下の変形例は、上述の変形例と適宜組み合わせて実現されてもよい。
コントローラ2は、複数の電力変換装置3とは別個に提供されてもよい。また、複数の電力変換装置3の各々は、他の電力変換装置3及びコントローラ2とは別個に提供されてもよい。
複数の電力変換装置3から出力される補正パラメータcоrA、cоrBの出力先は、コントローラ2に限定されない。補正パラメータcоrA、cоrBの出力先は、例えば、補正パラメータcоrA、cоrBを記憶する装置であってもよい。また、補正パラメータcоrA(又はcоrB)の出力先は、例えば、指令信号(指令値P*)の生成アルゴリズムを補正パラメータcоrA、cоrBに基づいて更新する装置であってもよい。指令信号(指令値P*)の生成アルゴリズムが更新されると、ある有効電力の値PA、PB及びある補正パラメータcоrA、cоrBに対して生成される指令信号(指令値P*)が、更新前とは変わり得る。
各々の電力変換装置3は、ドループ特性のシフト量(オフセット)を指定する補正パラメータcоrA、cоrBに代えて(又は加えて)、ドループ特性の傾きを補正する補正パラメータを生成してもよい。
指令信号(指令値P*)は、補正パラメータcоrA、cоrBの生成に用いられることに限定されない。指令信号(指令値P*)は、例えば、各電力変換装置3の出力電力の有効電力の値PA(又はPB)を補正するために用いられてもよい。
指令信号は、指令値P*に限定されない。コントローラ2は、例えば、複数の電力変換装置3の各々の定格出力電力に対する出力電力の比を示す情報を、指令信号として送信してもよい。この場合、複数の電力変換装置3の各々は、定格出力電力に指令信号の値(比)を乗算することで、出力電力(有効電力)の指令値P*を求める。また、コントローラ2は、例えば、複数の電力変換装置3で求められる指令値P*の和が複数の電力変換装置3の出力電力の有効電力の値PA、PBの和と一致するように、指令信号を生成する。
電力変換装置3は、DC-DCコンバータを備えていてもよい。DC-DCコンバータは、1次側端子32とAC-DCコンバータ31との間に電気的に接続される。ローカルコントローラ4は、コントローラ2から送信される指令信号(指令値P*)に基づいたドループ制御により、DC-DCコンバータの出力電力を制御してもよい。また、負荷64が直流負荷の場合、電力変換装置3はDC-DCコンバータを備える一方でAC-DCコンバータ31を備えていなくてもよい。
制限処理において、補正量h1、h2の平均値h_aveの絶対値は所定の補正閾値以下にされる。ここで、補正閾値は、時間経過に伴って変化してもよい。例えば、平均値h_aveの絶対値が補正閾値を上回った後、補正閾値が時間経過に伴って減少してもよい。
(まとめ)
以上説明した実施形態等から、以下の態様が開示されている。
以上説明した実施形態等から、以下の態様が開示されている。
第1の態様に係る電力システム(1)は、複数の電力変換装置(3)と、コントローラ(2)と、を備える。複数の電力変換装置(3)の各々は、互いに電気的に接続された出力端(2次側端子33)を有する。複数の電力変換装置(3)は、入力電力を電力変換し、出力電力を出力端から出力する。コントローラ(2)は、複数の電力変換装置(3)の各々と通信する。コントローラ(2)は、複数の電力変換装置(3)の各々の出力電力に関する情報に基づいて指令信号(指令値P*)を生成し、指令信号を複数の電力変換装置(3)の各々に送信する。複数の電力変換装置(3)の各々は、指令信号に基づくドループ制御により出力電力を制御する。
上記の構成によれば、複数の電力変換装置(3)の動作を協調させることができる。
また、第2の態様に係る電力システム(1)では、第1の態様において、コントローラ(2)は、複数の電力変換装置(3)の各々に、互いに同一の指令信号(指令値P*)を送信する。
上記の構成によれば、複数の電力変換装置(3)の各々の出力電力の応答性を改善できる。
また、第3の態様に係る電力システム(1)では、第1又は2の態様において、複数の電力変換装置(3)の各々は、ドループ制御の特性を補正する補正パラメータ(cоrA、cоrB)を生成して出力する。
上記の構成によれば、電力変換装置(3)の外部の装置で補正パラメータ(cоrA、cоrB)を利用できる。
また、第4の態様に係る電力システム(1)では、第3の態様において、コントローラ(2)は、複数の電力変換装置(3)の各々から補正パラメータ(cоrA、cоrB)を取得し、補正パラメータ(cоrA、cоrB)に基づいて指令信号(指令値P*)を生成する。
上記の構成によれば、コントローラ(2)が指令信号を生成する際に補正パラメータ(cоrA、cоrB)を用いない場合と比較して、複数の電力変換装置(3)の動作を更に協調させることができる。
また、第5の態様に係る電力システム(1)では、第4の態様において、出力端(2次側端子33)には、負荷(64)が電気的に接続される。コントローラ(2)は、負荷(64)が増加する際の出力端の電圧低下を抑制するような指令信号(指令値P*)を生成する。
上記の構成によれば、負荷(64)の増加が電力システム(1)に及ぼす影響を低減できる。
また、第6の態様に係る電力システム(1)では、第5の態様において、複数の電力変換装置(3)の各々は、指令信号(指令値P*)をフィードバックして補正パラメータ(cоrA、cоrB)を生成する。複数の電力変換装置(3)の各々は、補正パラメータ(cоrA、cоrB)に基づいて出力電圧を補正する。コントローラ(2)は、複数の電力変換装置(3)の出力電圧の補正値(補正パラメータcоrA、cоrB)の平均値の絶対値を所定の補正閾値以下にするような指令信号を生成する。
上記の構成によれば、負荷(64)の増加時に、通信遅延等により出力端(2次側端子33)の電圧が低下する程度を低減できる。
また、第7の態様に係る電力システム(1)では、第1~6の態様のいずれか1つにおいて、コントローラ(2)は、複数の電力変換装置(3)の出力電力間の偏差の絶対値を所定の偏差閾値以下にするような指令信号(指令値P*)を生成する。
上記の構成によれば、出力電力間の偏差の絶対値が偏差閾値よりも大きい場合と比較して、各電力変換装置(3)の寿命の低下を抑制できる。
また、第8の態様に係る電力システム(1)では、第1~7の態様のいずれか1つにおいて、複数の電力変換装置(3)のうち少なくとも1つは、コントローラ(2)と一体である。
上記の構成によれば、電力システム(1)を構成する装置の個数を低減できる。
第1の態様以外の構成については、電力システム(1)に必須の構成ではなく、適宜省略可能である。
また、第9の態様に係るコントローラ(2)は、第1~8の態様のいずれか1つに係る電力システム(1)に備えられる。
上記の構成によれば、複数の電力変換装置(3)の動作を協調させることができる。
また、第10の態様に係る電力変換装置(3)は、第1~8の態様のいずれか1つに係る電力システム(1)に備えられる。
上記の構成によれば、複数の電力変換装置(3)の動作を協調させることができる。
また、第11の態様に係る電力システム(1)の制御方法は、複数の電力変換装置(3)と、コントローラ(2)と、を備えた電力システム(1)の制御方法である。複数の電力変換装置(3)は、互いに電気的に接続された出力端(2次側端子33)を有する。コントローラ(2)は、複数の電力変換装置(3)の各々と通信する。制御方法は、第1処理と、第2処理と、第3処理と、を有する。第1処理では、複数の電力変換装置(3)の各々に、入力電力を電力変換させ、出力電力を出力端から出力させる。第2処理では、コントローラ(2)に、複数の電力変換装置(3)の各々の出力電力に関する情報に基づいて指令信号(指令値P*)を生成させる。第3処理では、コントローラ(2)に、指令信号を複数の電力変換装置(3)の各々に送信させる。第1処理では、複数の電力変換装置(3)の各々は、指令信号に基づくドループ制御により出力電力を制御する。
上記の構成によれば、複数の電力変換装置(3)の動作を協調させることができる。
また、第12の態様に係るプログラムは、第11の態様に係る電力システム(1)の制御方法を、1以上のプロセッサに実行させるためのプログラムである。
上記の構成によれば、複数の電力変換装置(3)の動作を協調させることができる。
上記態様に限らず、実施形態に係る電力システム(1)の種々の構成(変形例を含む)は、制御方法及びプログラムにて具現化可能である。
本開示の電力システム、コントローラ、電力変換装置、電力システムの制御方法及びプログラムによれば、複数の電力変換装置の動作を協調させることができるという利点がある。そのため、本開示の電力システム、コントローラ、電力変換装置、電力システムの制御方法及びプログラムは、複数の電力変換装置の各々の出力電力の特性を改善できる。すなわち、本開示の電力システム、コントローラ、電力変換装置、電力システムの制御方法及びプログラムは、産業上有用である。
1 電力システム
2 コントローラ
3、3A、3B 電力変換装置
33 2次側端子(出力端)
64 負荷
P* 指令値(指令信号)
2 コントローラ
3、3A、3B 電力変換装置
33 2次側端子(出力端)
64 負荷
P* 指令値(指令信号)
Claims (12)
- 互いに電気的に接続された出力端をそれぞれ有し、入力電力を電力変換し、出力電力を前記出力端から出力する複数の電力変換装置と、
前記複数の電力変換装置の各々と通信するコントローラと、を備え、
前記コントローラは、前記複数の電力変換装置の各々の前記出力電力に関する情報に基づいて指令信号を生成し、前記指令信号を前記複数の電力変換装置の各々に送信し、
前記複数の電力変換装置の各々は、前記指令信号に基づくドループ制御により前記出力電力を制御する、
電力システム。 - 前記コントローラは、前記複数の電力変換装置の各々に、互いに同一の前記指令信号を送信する、
請求項1に記載の電力システム。 - 前記複数の電力変換装置の各々は、前記ドループ制御の特性を補正する補正パラメータを生成して出力する、
請求項1又は2に記載の電力システム。 - 前記コントローラは、前記複数の電力変換装置の各々から前記補正パラメータを取得し、前記補正パラメータに基づいて前記指令信号を生成する、
請求項3に記載の電力システム。 - 前記出力端には、負荷が電気的に接続され、
前記コントローラは、前記負荷が増加する際の前記出力端の電圧低下を抑制するような前記指令信号を生成する、
請求項4に記載の電力システム。 - 前記複数の電力変換装置の各々は、前記指令信号をフィードバックして前記補正パラメータを生成し、
前記複数の電力変換装置の各々は、前記補正パラメータに基づいて前記出力電圧を補正し、
前記コントローラは、前記複数の電力変換装置の前記出力電圧の補正値の平均値の絶対値を所定の補正閾値以下にするような前記指令信号を生成する、
請求項5に記載の電力システム。 - 前記コントローラは、前記複数の電力変換装置の前記出力電力間の偏差の絶対値を所定の偏差閾値以下にするような前記指令信号を生成する、
請求項1~6のいずれか一項に記載の電力システム。 - 前記複数の電力変換装置のうち少なくとも1つは、前記コントローラと一体である、
請求項1~7のいずれか一項に記載の電力システム。 - 請求項1~8のいずれか一項に記載の電力システムに備えられる、
コントローラ。 - 請求項1~8のいずれか一項に記載の電力システムに備えられる、
電力変換装置。 - 互いに電気的に接続された出力端を有する複数の電力変換装置と、
前記複数の電力変換装置の各々と通信するコントローラと、を備えた電力システムの制御方法であって、
前記複数の電力変換装置の各々に、入力電力を電力変換させ、出力電力を前記出力端から出力させる第1処理と、
前記コントローラに、前記複数の電力変換装置の各々の前記出力電力に関する情報に基づいて指令信号を生成させる第2処理と、
前記コントローラに、前記指令信号を前記複数の電力変換装置の各々に送信させる第3処理と、を有し、
前記第1処理では、前記複数の電力変換装置の各々は、前記指令信号に基づくドループ制御により前記出力電力を制御する、
電力システムの制御方法。 - 請求項11に記載の電力システムの制御方法を、1以上のプロセッサに実行させるための、
プログラム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020032390A JP2023037045A (ja) | 2020-02-27 | 2020-02-27 | 電力システム、コントローラ、電力変換装置、電力システムの制御方法及びプログラム |
JP2020-032390 | 2020-02-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021171926A1 true WO2021171926A1 (ja) | 2021-09-02 |
Family
ID=77490101
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/003632 WO2021171926A1 (ja) | 2020-02-27 | 2021-02-02 | 電力システム、コントローラ、電力変換装置、電力システムの制御方法及びプログラム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2023037045A (ja) |
WO (1) | WO2021171926A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016119820A (ja) * | 2014-12-24 | 2016-06-30 | 富士電機株式会社 | 自立運転システム |
JP2017158266A (ja) * | 2016-02-29 | 2017-09-07 | パナソニックIpマネジメント株式会社 | 電力供給システム、電力供給装置および制御装置 |
JP2020018108A (ja) * | 2018-07-25 | 2020-01-30 | パナソニックIpマネジメント株式会社 | 蓄電システム |
-
2020
- 2020-02-27 JP JP2020032390A patent/JP2023037045A/ja active Pending
-
2021
- 2021-02-02 WO PCT/JP2021/003632 patent/WO2021171926A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016119820A (ja) * | 2014-12-24 | 2016-06-30 | 富士電機株式会社 | 自立運転システム |
JP2017158266A (ja) * | 2016-02-29 | 2017-09-07 | パナソニックIpマネジメント株式会社 | 電力供給システム、電力供給装置および制御装置 |
JP2020018108A (ja) * | 2018-07-25 | 2020-01-30 | パナソニックIpマネジメント株式会社 | 蓄電システム |
Also Published As
Publication number | Publication date |
---|---|
JP2023037045A (ja) | 2023-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8582336B2 (en) | Power supply circuit capable of handling direct current and alternating current and power supply control method | |
US8300437B2 (en) | Multi-output DC-to-DC conversion apparatus with voltage-stabilizing function | |
EP2719068B1 (en) | Dc/ac converter and method of controlling a dc/ac converter | |
US9344000B2 (en) | Power module varying bias power and distributed power supply apparatus | |
TWI767399B (zh) | 具有分段線性負載線的電壓調節器 | |
KR20150083039A (ko) | 제로 크로싱 보상 전류 및 저항기에 의한 케이블 보상 | |
CN111262283A (zh) | 交直流微电网变换器级联系统的协同控制方法 | |
Srinivasan et al. | Decentralized control of a vehicular microgrid with constant power loads | |
CN109245530B (zh) | 一种用于稳定输出信号的电路以及电源转换器 | |
WO2021171926A1 (ja) | 電力システム、コントローラ、電力変換装置、電力システムの制御方法及びプログラム | |
CN115632545B (zh) | 一种电源环流的控制方法及系统 | |
JP6523592B1 (ja) | 電力変換装置 | |
US9893608B2 (en) | Power supply device | |
US11462988B1 (en) | Power supply system and current control based on consumption by dynamic loads | |
WO2022030363A1 (ja) | 電力システム、コントローラ、電力変換装置、電力システムの制御方法及びプログラム | |
KR20200017947A (ko) | Dc-dc 컨버터 기능을 포함하는 전압 밸런서 | |
KR102307824B1 (ko) | 전원 장치 및 그 전류 균등화 방법 | |
CN113765375A (zh) | 一种基于恒压源及直流升压的水下电源系统 | |
JP2023504879A (ja) | 電力変換器のbus電圧バランス調整方法、電力変換器、記憶媒体及び電子装置 | |
CN111756262A (zh) | 一种基于功率交互的并联逆变器下垂控制方法 | |
JP6799502B2 (ja) | 太陽光発電用電力変換装置および太陽光発電用電力変換装置の制御方法 | |
CN110417234B (zh) | 变流器的控制方法 | |
KR20080092745A (ko) | 가변 승압비를 갖는 고주파 트랜스를 이용한 계통 연계형인버터 시스템 | |
JP2017515454A (ja) | 設定可能なインバータ装置、該インバータ装置を備える太陽光発電システム | |
WO2022059617A1 (ja) | 電力変換器、電力変換器の制御方法、電力システム、電力システムの制御方法およびプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21761844 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21761844 Country of ref document: EP Kind code of ref document: A1 |