WO2021171482A1 - 出力回路、送信回路及び半導体集積回路 - Google Patents

出力回路、送信回路及び半導体集積回路 Download PDF

Info

Publication number
WO2021171482A1
WO2021171482A1 PCT/JP2020/008029 JP2020008029W WO2021171482A1 WO 2021171482 A1 WO2021171482 A1 WO 2021171482A1 JP 2020008029 W JP2020008029 W JP 2020008029W WO 2021171482 A1 WO2021171482 A1 WO 2021171482A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
power supply
gate
intermediate node
voltage
Prior art date
Application number
PCT/JP2020/008029
Other languages
English (en)
French (fr)
Inventor
拓実 舟山
晶詳 松田
Original Assignee
株式会社ソシオネクスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ソシオネクスト filed Critical 株式会社ソシオネクスト
Priority to PCT/JP2020/008029 priority Critical patent/WO2021171482A1/ja
Priority to JP2022502713A priority patent/JPWO2021171482A1/ja
Publication of WO2021171482A1 publication Critical patent/WO2021171482A1/ja
Priority to US17/895,763 priority patent/US11791820B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/017509Interface arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/6871Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor
    • H03K17/6872Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor using complementary field-effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/003Modifications for increasing the reliability for protection
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0814Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit
    • H03K17/08142Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit in field-effect transistor switches

Definitions

  • the present invention relates to an output circuit, a transmission circuit and a semiconductor integrated circuit.
  • Patent Document 1 describes a first MIMO transistor and a second MIMO transistor connected in series between a high-potential side power supply and an output node, and a first NMOS transistor and a first NMOS transistor connected in series between a low-potential side power supply and an output node.
  • An output circuit having a 2NMOS transistor is disclosed.
  • the first epitaxial transistor is connected to the high potential side power supply side, and the second epitaxial transistor is connected to the output node side.
  • the first NMOS transistor is connected to the low potential side power supply side, and the second NMOS transistor is connected to the output node side.
  • the first capacitive coupling includes a first terminal and a second terminal, the first terminal is connected to the gate terminal of the first MIMO transistor, and the second terminal is connected to the gate terminal of the second MIMO transistor or the gate terminal of the second NMOS transistor. Connected, it controls the capacitive coupling between the first and second terminals based on the potential of the gate terminal of the first MIMO transistor.
  • the second capacitive coupling includes a third terminal and a fourth terminal, the third terminal is connected to the gate terminal of the first NMOS transistor, and the fourth terminal is connected to the gate terminal of the second NMOS transistor or the gate terminal of the second MIMO transistor. Connected, it controls the capacitive coupling between the 3rd and 4th terminals based on the potential of the gate terminal of the 1st NMOS transistor.
  • the transistor may be destroyed.
  • An object of the present invention is to prevent a voltage higher than the withstand voltage of the transistor from being applied to the transistor at the start of power down.
  • the output circuit is provided between the first power supply line having the first power supply potential and the first intermediate node, and the first conductive type first input transistor to which the first input signal is supplied to the gate. And a second input signal provided between the second intermediate node and the second power supply line having the second power supply potential, and the gate is supplied with a second input signal having the same logic as the first input signal.
  • a first which is provided between the second conductive input transistor of 2 and the first intermediate node and the output node, and has an intermediate potential between the first power supply potential and the second power supply potential at the gate.
  • FIG. 1 is a diagram showing a configuration example of a semiconductor integrated circuit according to the present embodiment.
  • FIG. 2 is a circuit diagram showing a configuration example of a driver according to the present embodiment.
  • FIG. 3 is a circuit diagram showing a configuration example of a driver having one 1.65 V power supply.
  • FIG. 4 is a timing chart showing the voltage of the power down signal and the voltage of the intermediate node.
  • FIG. 5 is a circuit diagram showing a configuration example of a 1.65V power supply.
  • FIG. 6 is a circuit diagram showing another configuration example of the 1.65V power supply.
  • FIG. 1 is a diagram showing a configuration example of the semiconductor integrated circuit 100 according to the present embodiment.
  • the semiconductor integrated circuit 100 has an internal circuit 101 and a transmission circuit 102.
  • the internal circuit 101 outputs an input signal DT1 for transmission and a power-down signal PD indicating power-down.
  • the input signal DT1 is, for example, a binary signal having a voltage in the range of 0V to 1.8V.
  • the power-down signal PD is, for example, a high level in the power-down mode and a low level in the normal mode.
  • the transmission circuit 102 receives the input signal DT1 and the power-down signal PD.
  • the transmission circuit 102 includes a level conversion circuit 111, a level conversion circuit 112, an inverter 113, a level conversion circuit 114a, a level conversion circuit 114b, a driver 115a, and a driver 115b.
  • the level conversion circuit 111 logically inverts and converts the level of the power-down signal PD, and outputs the power-down signal PD1 to the drivers 115a and 115b.
  • the power-down signal PD1 is a signal whose logic is inverted and the level is converted with respect to the power-down signal PD.
  • the power-down signal PD is, for example, a binary signal having a voltage in the range of 0V to 0.9V.
  • the power-down signal PD1 is, for example, a binary signal having a voltage in the range of 0V to 1.8V.
  • the level conversion circuit 112 logically inverts the power-down signal PD1 and converts the level, and outputs the power-down signal PD2 to the drivers 115a and 115b.
  • the power-down signal PD2 is a signal whose logic is inverted and the level is converted with respect to the power-down signal PD1. Due to the level conversion circuit 112, the power-down signal PD2 becomes a signal slightly delayed from the power-down signal PD1.
  • the rise time t2 of the power-down signal PD2 is a time slightly later than the fall time t1 of the power-down signal PD1.
  • the power-down signal PD1 is, for example, a binary signal having a voltage in the range of 0V to 1.8V.
  • the power-down signal PD2 is, for example, a binary signal having a voltage in the range of 1.8V to 3.3V. In the power-down mode, the power-down signal PD1 is at a low level and the power-down signal PD2 is at a high level. In the normal mode, the power-down signal PD1 is at a high level and the power-down signal PD2 is at a low level.
  • the level conversion circuit 114a receives the input signal DT1 and outputs the input signal DT2 whose level is converted and the logic is the same with respect to the input signal DT1.
  • the input signal DT1 is, for example, a binary signal having a voltage in the range of 0V to 1.8V.
  • the input signal DT2 is, for example, a binary signal having a voltage in the range of 1.8V to 3.3V.
  • the driver 115a is an output circuit and has an input node IN1, an input node IN2, and an output node OUT.
  • the input node IN1 of the driver 115a receives the input signal DT1.
  • the input node IN2 of the driver 115a receives the input signal DT2.
  • the output node OUT of the driver 115a outputs an output signal whose logic is inverted with respect to the input signals DT1 and DT2. Details of the driver 115a will be described later with reference to FIG.
  • the inverter 113 receives the input signal DT1 and outputs the input signal DT3 which is the logical inversion of the input signal DT1.
  • the level conversion circuit 114b receives the input signal DT3 and outputs the input signal DT4 whose level is converted and the logic is the same with respect to the input signal DT3.
  • the input signal DT3 is, for example, a binary signal having a voltage in the range of 0V to 1.8V.
  • the input signal DT4 is, for example, a binary signal having a voltage in the range of 1.8V to 3.3V.
  • the driver 115b is an output circuit and has an input node IN1, an input node IN2, and an output node OUT.
  • the input node IN1 of the driver 115b receives the input signal DT3.
  • the input node IN2 of the driver 115b receives the input signal DT4.
  • the output node OUT of the driver 115b outputs an output signal whose logic is inverted with respect to the input signals DT3 and DT4.
  • the output signal of the output node OUT of the driver 115a and the output signal of the output node OUT of the driver 115b are differential signals whose phases are mutually inverted.
  • the configuration of the driver 115b is the same as the configuration of the driver 115a.
  • the output node OUT of the driver 115a and the output node OUT of the driver 115b are connected to both ends of the terminating resistor 104 via the cable 103.
  • the transmission circuit 102 transmits a differential signal via the cable 103.
  • the transmission circuit 102 may transmit a single-ended signal instead of the differential signal.
  • FIG. 2 is a circuit diagram showing a configuration example of the driver 115a according to the present embodiment.
  • the driver 115b also has the same configuration as the driver 115a, but the configuration of the driver 115a will be described as an example.
  • the driver 115a has a 3.3V power supply 201, a 1.65V power supply 202a, 202b, buffers 203a, 203b, n-channel field effect transistors 204a, 205a, 206b, and p-channel field effect transistors 204b, 205b, 206a. ..
  • the n-channel field-effect transistors 204a, 205a and 206b are conductive field-effect transistors that are different from the p-channel field-effect transistors 204b, 205b and 206a.
  • the n-channel field-effect transistors 204a, 205a, 206b and the p-channel field-effect transistors 204b, 205b, 206a each have a withstand voltage of 1.8 V.
  • the n-channel field-effect transistors 204a, 205a, 206b and the p-channel field-effect transistors 204b, 205b, 206a when a voltage higher than 1.8 V is applied to each of the n-channel field-effect transistors 204a, 205a, 206b and the p-channel field-effect transistors 204b, 205b, 206a, the n-channel field-effect transistors 204a, 205a, 206b and p.
  • the channel field effect transistors 204b, 205b, 206a may be destroyed.
  • the n-channel field-effect transistors 204a, 205a, 206b and the p-channel field-effect transistors 204b, 205b, 206a By preventing a voltage higher than 1.8 V from being applied to each of the n-channel field-effect transistors 204a, 205a, 206b and the p-channel field-effect transistors 204b, 205b, 206a, the n-channel field-effect transistors 204a, 205a, 206b and Prevents destruction of the p-channel field effect transistors 204b, 205b, 206a.
  • the 3.3V power supply 201 is connected between the reference potential line 207 and the 3.3V line 208, and supplies 3.3V to the 3.3V line 208.
  • the 3.3V line is a power supply line having a power supply potential of 3.3V.
  • the reference potential line 207 is a power supply line having a reference potential.
  • the reference potential is, for example, the ground potential (power potential of 0 V). 3.3V is higher than the reference potential.
  • the 1.65V power supply 202a is a voltage generation circuit, which is connected between the reference potential line 207 and the intermediate node N2a, generates a clipping voltage of 1.65V, and supplies a clipping voltage of 1.65V to the intermediate node N2a. ..
  • the 1.65V power supply 202b is a voltage generation circuit, which is connected between the reference potential line 207 and the intermediate node N2b, generates a clipping voltage of 1.65V, and supplies a clipping voltage of 1.65V to the intermediate node N2b. ..
  • the 1.65V clip voltage supplied by the 1.65V power supply 202b is the same as the 1.65V clip voltage supplied by the 1.65V power supply 202a.
  • the clip voltage of 1.65V is an intermediate potential between 3.3V of the 3.3V line 208 and 0V of the reference potential line 207.
  • the p-channel field effect transistor 204b is an input transistor, the source is connected to the 3.3V line 208, the gate is connected to the input node IN2 via the buffer 203b, and the drain is connected to the intermediate node N1b.
  • the input signal DT2 is supplied to the gate of the p-channel field effect transistor 204b via the buffer 203b.
  • the buffer 203b supplies the input signal DT2 in the range of 1.8V to 3.3V to the gate of the p-channel field effect transistor 204b.
  • the n-channel field effect transistor 204a is an input transistor, the source is connected to the reference potential line 207, the gate is connected to the input node IN1 via the buffer 203a, and the drain is connected to the intermediate node N1a.
  • the input signal DT1 is supplied to the gate of the n-channel field effect transistor 204a via the buffer 203a.
  • the buffer 203a supplies the input signal DT1 in the range of 0V to 1.8V to the gate of the n-channel field effect transistor 204a.
  • the input signal DT1 is a voltage in the range of 0V to 1.8V.
  • the input signal DT2 is a voltage in the range of 1.8V to 3.3V.
  • the input signal DT2 has a voltage in a lower range, a voltage in a different range, and the same logic with respect to the input signal DT1. That is, when the input signal DT1 is at a high level (1.8V), the input signal DT2 is also at a high level (3.3V). When the input signal DT1 is low level (0V), the input signal DT2 is also low level (1.8V).
  • the p-channel field effect transistor 205b is a cascode transistor, the source is connected to the intermediate node N1b, the gate is connected to the intermediate node N2b, and the drain is connected to the output node OUT.
  • the 3.3V power supply 202b supplies a clip voltage of 1.65V to the gate of the p-channel field effect transistor 205b.
  • the n-channel field effect transistor 205a is a cascode transistor, the source is connected to the intermediate node N1a, the gate is connected to the intermediate node N2a, and the drain is connected to the output node OUT.
  • the 3.3V power supply 202a supplies a clip voltage of 1.65V to the gate of the n-channel field effect transistor 205a.
  • the n-channel field effect transistor 206b is a switch transistor, the source is connected to the intermediate node N1b, and the drain is connected to the intermediate node N2b.
  • the gate of the n-channel field effect transistor 206b receives the power-down signal PD2.
  • the power-down signal PD2 is a binary signal having a voltage in the range of 1.8V to 3.3V.
  • the power-down signal PD2 has a high level (3.3V) in the power-down mode and a low level (1.8V) in the normal mode.
  • the p-channel field effect transistor 206a is a switch transistor, the source is connected to the intermediate node N2a, and the drain is connected to the intermediate node N1a.
  • the gate of the p-channel field effect transistor 206a receives the power-down signal PD1.
  • the power-down signal PD1 is a binary signal having a voltage in the range of 0V to 1.8V.
  • the power-down signal PD1 has a low level (0V) in the power-down mode and a high level (1.8V) in the normal mode.
  • the drain of the n-channel field-effect transistor 206b and the source of the p-channel field-effect transistor 206a are electrically connected via the 1.65V power supply 202b and the 1.65V power supply 202a.
  • the operation of the normal mode will be explained.
  • the power-down signal PD1 becomes high level and the power-down signal PD2 becomes low level.
  • the p-channel effect transistor 206a and the n-channel field effect transistor 206b are turned off.
  • the gate of the p-channel field effect transistor 204b receives the input signal DT2.
  • the gate of the n-channel field effect transistor 204a inputs the input signal DT1.
  • the input signal DT1 When the input signal DT1 is low level, the input signal DT2 is also low level.
  • the p-channel field-effect transistor 204b is turned on and the n-channel field-effect transistor 204a is turned off. Then, the voltage of the output node OUT becomes a high level.
  • the input signal DT1 When the input signal DT1 is at a high level, the input signal DT2 is also at a high level.
  • the p-channel field-effect transistor 204b is turned off and the n-channel field-effect transistor 204a is turned on. Then, the voltage of the output node OUT becomes low level.
  • the driver 115a outputs a logically inverted signal to the input signals DT1 and DT2 from the output terminal OUT.
  • the operation of the power down mode will be described.
  • the power-down signal PD1 becomes low level and the power-down signal PD2 becomes high level.
  • the p-channel effect transistor 206a and the n-channel field effect transistor 206b are turned on.
  • the internal circuit 101 fixes the gate voltage of the p-channel field-effect transistor 204b at a high level and the gate voltage of the n-channel field-effect transistor 204a at a low level.
  • the p-channel field-effect transistor 204b and the n-channel field-effect transistor 204a are turned off. As a result, no current flows, so that power consumption can be reduced in the power-down mode.
  • the 1.65V power supply 202b applies 1.65V to the intermediate node N1b via the n-channel field effect transistor 206b. As a result, it is possible to prevent a voltage higher than 1.8 V from being applied to each of the p-channel field effect transistors 204b and 205b, and to prevent the p-channel field effect transistors 204b and 205b from being destroyed.
  • the 1.65V power supply 202a applies 1.65V to the intermediate node N1a via the p-channel field effect transistor 206a. As a result, it is possible to prevent a voltage higher than 1.8 V from being applied to each of the n-channel field effect transistors 204a and 205a, and to prevent the n-channel field effect transistors 204a and 205a from being destroyed.
  • the driver 115a has two 1.65V power supplies 202a and 202b. This prevents spike noise higher than 1.8 V from being applied to each of the p-channel field effect transistors 204b and 205b and the n-channel field effect transistors 204a and 205a when switching from the normal mode to the power down mode. Can be done. In order to explain this effect, a problem when the driver 115a has one 1.65V power supply 202 will be described with reference to FIGS. 3 and 4.
  • FIG. 3 is a circuit diagram showing a configuration example of a driver 115a having one 1.65V power supply 202.
  • the driver 115a of FIG. 3 is provided with one 1.65V power supply 202 instead of the two 1.65V power supplies 202a and 202b for the driver 115a of FIG.
  • the 1.65V power supply 202 supplies 1.65V to the intermediate node N2.
  • the drain of the n-channel field-effect transistor 206b and the gate of the p-channel field-effect transistor 205b are connected to the intermediate node N2.
  • the source of the p-channel field-effect transistor 206a and the gate of the n-channel field-effect transistor 205a are connected to the intermediate node N2.
  • FIG. 4 is a timing chart showing the voltage of the power-down signals PD1 and PD2 and the voltage of the intermediate node N2.
  • the power-down signal PD1 is at a high level
  • the power-down signal PD2 is at a low level.
  • the p-channel field-effect transistor 206a and the n-channel field-effect transistor 206b are turned off.
  • the 1.65V power supply 202 applies 1.65V to the intermediate node N2.
  • the power down signal PD1 transitions from high level to low level, and at time t2, the power down signal PD2 transitions from low level to high level. After time t2, the power down mode is set.
  • the level conversion circuit 112 generates a power-down signal PD2 based on the power-down signal PD1. Therefore, the rise time t2 of the power-down signal PD2 is slightly delayed from the fall time t1 of the power-down signal PD1.
  • the p-channel field effect transistor 206a changes from the off state to the on state.
  • the intermediate node N1a is 0.3V and the intermediate node N1b is 2.8V. Since the intermediate node N1a is 0.3V, when the p-channel field effect transistor 206a is turned on, a spike noise of 0.3V is generated in the intermediate node N2.
  • 0.3V spike noise of the intermediate node N2 is applied to the drain of the n-channel field effect transistor 206b.
  • 2.8V of the intermediate node N1b is applied to the source of the n-channel field effect transistor 206b.
  • the spike noise of 0.3 V of the intermediate node N2 is applied to the gate of the p-channel field effect transistor 205b.
  • 2.8V of the intermediate node N1b is applied to the source of the p-channel field effect transistor 205b.
  • the n-channel field effect transistor 206b changes from the off state to the on state.
  • the p-channel field-effect transistor 206a and the n-channel field-effect transistor 206b change from an off state to an on state at different timings when the power is down.
  • the intermediate node N1a is 0.3V and the intermediate node N1b is 2.8V. Since the intermediate node N1b is 2.8V, when the n-channel field effect transistor 206b is turned on, spike noise of 2.8V is generated in the intermediate node N2.
  • 2.8V spike noise of the intermediate node N2 is applied to the source of the p-channel field effect transistor 206a.
  • 0.3V of the intermediate node N1a is applied to the drain of the p-channel field effect transistor 206a.
  • 2.8 V spike noise of the intermediate node N2 is applied to the gate of the n-channel field effect transistor 205a.
  • 0.3V of the intermediate node N1a is applied to the source of the n-channel field effect transistor 205a.
  • the driver 105a of FIG. 2 can solve the problem caused by the spike noise described above.
  • the effect of the driver 105a of FIG. 2 having two 1.65V power supplies 202a and 202b will be described.
  • a spike noise of 0.3V is generated at the intermediate node N2a.
  • the intermediate node N2a is not directly connected to the intermediate node N2b, but is connected to the intermediate node N2b via the 1.65V power supplies 202a and 202b. Therefore, it is possible to prevent the spike noise of 0.3 V of the intermediate node N2a from propagating to the intermediate node N2b.
  • the 1.65V power supply 202b supplies 1.65V to the intermediate node N2b.
  • a voltage lower than 1.8V is applied between the source and drain of the n-channel field effect transistor 206b.
  • a voltage lower than 1.8 V is applied between the source and the gate of the p-channel field effect transistor 205b. This makes it possible to prevent the n-channel field-effect transistor 206b and the p-channel field-effect transistor 205b from being destroyed.
  • the intermediate node N2b is not directly connected to the intermediate node N2a, but is connected to the intermediate node N2a via the 1.65V power supplies 202b and 202a. Therefore, it is possible to prevent the spike noise of 2.8 V of the intermediate node N2b from propagating to the intermediate node N2a.
  • the 1.65V power supply 202a supplies 1.65V to the intermediate node N2a.
  • a voltage lower than 1.8 V is applied between the source and drain of the p-channel field effect transistor 206a.
  • a voltage lower than 1.8 V is applied between the source and the gate of the n-channel field effect transistor 205a. This makes it possible to prevent the p-channel field-effect transistor 206a and the n-channel field-effect transistor 205a from being destroyed.
  • FIG. 5 is a circuit diagram showing a configuration example of the 1.65V power supplies 202a and 202b of FIG.
  • the 1.65V power supply 202a has a resistor 501a and a resistor 502a, and supplies a clip voltage of 1.65V to the intermediate node N2a.
  • the resistor 501a is connected between the 3.3V line 208 and the intermediate node N2a.
  • the resistor 502a is connected between the intermediate node N2a and the reference potential line 207.
  • the 1.65V power supply 202b has a resistor 501b and a resistor 502b, and supplies 1.65V to the intermediate node N2b.
  • the resistor 501b is connected between the 3.3V line 208 and the intermediate node N2b.
  • the resistor 502b is connected between the intermediate node N2b and the reference potential line 207.
  • the drain of the n-channel field-effect transistor 206b and the source of the p-channel field-effect transistor 206a are electrically connected via the resistor 501a, the 3.3V line 208, and the resistor 501b. Moreover, it is electrically connected via the resistor 502a, the reference potential line 207, and the resistor 502b.
  • the clip voltage supplied to the intermediate node N2a and the intermediate node N2b is a voltage generated independently of each other by the 1.65V power supplies 202a and 202b.
  • the resistor 501a of the 1.65V power supply 202a and the resistor 501b of the 1.65V power supply 202b are both connected to the 3.3V line 208, but they need to be connected to a common power supply line.
  • the 1.65V power supplies 202a and 202b have a power supply potential different from that of the 3.3V line 208, and one or both of the resistors 501a and 501b are different from the 3.3V line 208. It may be configured to connect to a wire.
  • the drain of the n-channel field-effect transistor 206b and the source of the p-channel field-effect transistor 206a are electrically connected via the resistor 502a, the reference potential line 207, and the resistor 502b. ..
  • the clip voltage supplied to the intermediate node N2a and the intermediate node N2b is a voltage generated independently of each other by the 1.65V power supplies 202a and 202b.
  • FIG. 6 is a circuit diagram showing another configuration example of the 1.65V power supplies 202a and 202b of FIG.
  • the 1.65V power supplies 202a and 202b share a resistor 601 and a resistor 602.
  • the resistor 601 is connected between the 3.3V line 208 and the intermediate node N3.
  • the resistor 602 is connected between the intermediate node N3 and the reference potential line 207.
  • the intermediate node N3 is supplied with 1.65V, which is an intermediate potential between 3.3V and 0V.
  • the 1.65V power supply 202a further has a high resistance 603a.
  • the high resistance 603a is connected between the intermediate node N3 and the intermediate node N2a.
  • the 1.65V power supply 202b also has a high resistance 603b.
  • the high resistance 603b is connected between the intermediate node N3 and the intermediate node N2b.
  • the resistance values of the high resistances 603a and 603b are sufficiently larger than the resistance values of the resistors 601 and 602, respectively.
  • the resistance values of the high resistances 603a and 603b may be set according to the withstand voltage of each transistor and the voltage of spike noise. For example, in the case of the circuit shown in FIG. 2, it may be about 5 times larger.
  • the 1.65V power supply 202a supplies a clip voltage of 1.65V to the intermediate node N2a.
  • the 1.65V power supply 202b supplies a clip voltage of 1.65V to the intermediate node N2b.
  • the drain of the n-channel field-effect transistor 206b and the source of the p-channel field-effect transistor 206a are high resistance 603a, node N3 to which a voltage dividing voltage of 1.65V is supplied, and high resistance. It is electrically connected via 603b.
  • the resistors 601 of the 1.65V power supply 202a and 202b are configured to be connected to the 3.3V line 208, but the present invention is not limited to this, and as a modification, the 1.65V power supply 202a and the 1.65V power supply 202a and The resistor 601 of 202b may be configured to connect the resistor 601 to a power supply line different from the 3.3V line 208 having a power supply potential different from that of the 3.3V line 208.
  • the drain of the n-channel field-effect transistor 206b and the source of the p-channel field-effect transistor 206a have a high resistance of 603a, a node N3 to which a voltage dividing voltage of 1.65V is supplied, and a high. It is electrically connected via a resistor 603b.
  • the drivers 115a and 115b have two 1.65V power supplies 202a and 202b, respectively. As a result, it is possible to prevent a voltage higher than the withstand voltage of the field effect transistors 205a, 205b, 206a, 206b from being applied to the field effect transistors 205a, 205b, 206a, 206b at the start of the power down mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Logic Circuits (AREA)

Abstract

出力回路は、第1の電源線と第1の中間ノードの間に設けられる第1の入力トランジスタ(204b)と、第2の中間ノードと第2の電源線の間に設けられる第2の入力トランジスタ(204a)と、第1の中間ノードと出力ノードの間に設けられ、第1の電圧生成回路(202b)から第1のクリップ電圧を入力する第1のカスコードトランジスタ(205b)と、出力ノードと第2の中間ノードの間に設けられ、第2の電圧生成回路(202a)から第2のクリップ電圧を入力する第2のカスコードトランジスタ(205a)と、第1の中間ノードと第1のカスコードトランジスタのゲートの間に設けられ、パワーダウン時にオンする第1のスイッチトランジスタ(206b)と、第2の中間ノードと第2のカスコードトランジスタのゲートの間に設けられ、パワーダウン時にオンする第2のスイッチトランジスタ(206a)を有する。

Description

出力回路、送信回路及び半導体集積回路
 本発明は、出力回路、送信回路及び半導体集積回路に関する。
 特許文献1には、高電位側電源と出力ノード間に直列に接続される第1PMOSトランジスタと第2PMOSトランジスタと、低電位側電源と出力ノードとの間に直列に接続される第1NMOSトランジスタと第2NMOSトランジスタを有する出力回路が開示されている。第1PMOSトランジスタは高電位側電源の側に接続され、第2PMOSトランジスタは出力ノード側に接続される。第1NMOSトランジスタは低電位側電源の側に接続され、第2NMOSトランジスタは出力ノード側に接続される。
 第1容量結合部は、第1端子と第2端子とを含み、第1PMOSトランジスタのゲート端子に第1端子が接続され、第2PMOSトランジスタのゲート端子または第2NMOSトランジスタのゲート端子に第2端子が接続されて、第1PMOSトランジスタのゲート端子の電位に基づいて第1、第2端子間の容量結合を制御する。
 第2容量結合部は、第3端子と第4端子とを含み、第1NMOSトランジスタのゲート端子に第3端子が接続され、第2NMOSトランジスタのゲート端子または第2PMOSトランジスタのゲート端子に第4端子が接続されて、第1NMOSトランジスタのゲート端子の電位に基づいて第3、第4端子間の容量結合を制御する。
特開2014-209715号公報
 トランジスタの耐圧よりも高い電圧がトランジスタに印加されると、トランジスタが破壊される可能性がある。
 本発明の目的は、パワーダウン開始時に、トランジスタの耐圧よりも高い電圧がトランジスタに印加されることを防止することができるようにすることである。
 出力回路は、第1の電源電位を有する第1の電源線と第1の中間ノードの間に設けられ、ゲートに第1の入力信号が供給される第1の導電型の第1の入力トランジスタと、第2の中間ノードと第2の電源電位を有する第2の電源線の間に設けられ、ゲートに前記第1の入力信号と論理が同じである第2の入力信号が供給される第2の導電型の第2の入力トランジスタと、前記第1の中間ノードと出力ノードの間に設けられ、ゲートに前記第1の電源電位と前記第2の電源電位の中間電位を有する第1のクリップ電圧が供給される第1のカスコードトランジスタと、前記出力ノードと前記第2の中間ノードの間に設けられ、ゲートに前記第1の電源電位と前記第2の電源電位の中間電位を有する第2のクリップ電圧が供給される第2のカスコードトランジスタと、前記第1の中間ノードと前記第1のカスコードトランジスタのゲートの間に設けられ、パワーダウン時にオンする第1のスイッチトランジスタと、前記第2の中間ノードと前記第2のカスコードトランジスタのゲートの間に設けられ、パワーダウン時にオンする第2のスイッチトランジスタと、前記第1のクリップ電圧を生成する第1の電圧生成回路と、前記第2のクリップ電圧を生成する第2の電圧生成回路とを有し、前記第1のスイッチトランジスタと前記第2のスイッチトランジスタは、前記第1の電圧生成回路及び前記第2の電圧生成回路を介して電気的に接続される。
 パワーダウン開始時に、トランジスタの耐圧よりも高い電圧がトランジスタに印加されることを防止することができる。
図1は、本実施形態による半導体集積回路の構成例を示す図である。 図2は、本実施形態によるドライバの構成例を示す回路図である。 図3は、1個の1.65V電源を有するドライバの構成例を示す回路図である。 図4は、パワーダウン信号の電圧と中間ノードの電圧を示すタイミングチャートである。 図5は、1.65V電源の構成例を示す回路図である。 図6は、1.65V電源の他の構成例を示す回路図である。
 図1は、本実施形態による半導体集積回路100の構成例を示す図である。半導体集積回路100は、内部回路101と、送信回路102を有する。内部回路101は、送信するための入力信号DT1と、パワーダウンを示すパワーダウン信号PDを出力する。入力信号DT1は、例えば、0V~1.8Vの範囲の電圧の2値信号である。パワーダウン信号PDは、例えば、パワーダウンモードではハイレベルであり、通常モードではローレベルである。送信回路102は、入力信号DT1と、パワーダウン信号PDを受けとる。
 送信回路102は、レベル変換回路111と、レベル変換回路112と、インバータ113と、レベル変換回路114aと、レベル変換回路114bと、ドライバ115aと、ドライバ115bを有する。
 レベル変換回路111は、パワーダウン信号PDに対して、論理反転し、かつレベル変換し、パワーダウン信号PD1をドライバ115a及び115bに出力する。パワーダウン信号PD1は、パワーダウン信号PDに対して、論理が反転し、かつ、レベルが変換された信号である。パワーダウン信号PDは、例えば、0V~0.9Vの範囲の電圧の2値信号である。パワーダウン信号PD1は、例えば、0V~1.8Vの範囲の電圧の2値信号である。
 レベル変換回路112は、パワーダウン信号PD1に対して、論理反転し、かつレベル変換し、パワーダウン信号PD2をドライバ115a及び115bに出力する。図4に示すように、パワーダウン信号PD2は、パワーダウン信号PD1に対して、論理が反転し、かつ、レベルが変換された信号である。レベル変換回路112により、パワーダウン信号PD2は、パワーダウン信号PD1に対して、わずかに遅延した信号になる。パワーダウン信号PD2の立ち上がり時刻t2は、パワーダウン信号PD1の立ち下がり時刻t1よりわずかに遅れた時刻である。パワーダウン信号PD1は、例えば、0V~1.8Vの範囲の電圧の2値信号である。パワーダウン信号PD2は、例えば、1.8V~3.3Vの範囲の電圧の2値信号である。パワーダウンモードでは、パワーダウン信号PD1はローレベルであり、パワーダウン信号PD2はハイレベルである。通常モードでは、パワーダウン信号PD1はハイレベルであり、パワーダウン信号PD2はローレベルである。
 レベル変換回路114aは、入力信号DT1を受けとり、入力信号DT1に対して、レベルが変換され、かつ論理が同じである入力信号DT2を出力する。入力信号DT1は、例えば、0V~1.8Vの範囲の電圧の2値信号である。入力信号DT2は、例えば、1.8V~3.3Vの範囲の電圧の2値信号である。
 ドライバ115aは、出力回路であり、入力ノードIN1と、入力ノードIN2と、出力ノードOUTを有する。ドライバ115aの入力ノードIN1は、入力信号DT1を受けとる。ドライバ115aの入力ノードIN2は、入力信号DT2を受けとる。ドライバ115aの出力ノードOUTは、入力信号DT1及びDT2に対して、論理が反転した出力信号を出力する。ドライバ115aの詳細は、図2を参照しながら後述する。
 インバータ113は、入力信号DT1を受けとり、入力信号DT1を論理反転した入力信号DT3を出力する。レベル変換回路114bは、入力信号DT3を受けとり、入力信号DT3に対して、レベルが変換され、かつ論理が同じである入力信号DT4を出力する。入力信号DT3は、例えば、0V~1.8Vの範囲の電圧の2値信号である。入力信号DT4は、例えば、1.8V~3.3Vの範囲の電圧の2値信号である。
 ドライバ115bは、出力回路であり、入力ノードIN1と、入力ノードIN2と、出力ノードOUTを有する。ドライバ115bの入力ノードIN1は、入力信号DT3を受けとる。ドライバ115bの入力ノードIN2は、入力信号DT4を受けとる。ドライバ115bの出力ノードOUTは、入力信号DT3及びDT4に対して、論理が反転した出力信号を出力する。ドライバ115aの出力ノードOUTの出力信号とドライバ115bの出力ノードOUTの出力信号は、相互に位相が反転した差動信号である。ドライバ115bの構成は、ドライバ115aの構成と同様である。
 ドライバ115aの出力ノードOUTとドライバ115bの出力ノードOUTは、ケーブル103を介して、終端抵抗104の両端に接続される。送信回路102は、ケーブル103を介して、差動信号を送信する。なお、送信回路102は、差動信号の代わりに、シングルエンド信号を送信してもよい。
 図2は、本実施形態によるドライバ115aの構成例を示す回路図である。ドライバ115bもドライバ115aと同様の構成を有するが、ドライバ115aの構成を例に説明する。
 ドライバ115aは、3.3V電源201と、1.65V電源202a,202bと、バッファ203a,203bと、nチャネル電界効果トランジスタ204a,205a,206bと、pチャネル電界効果トランジスタ204b,205b,206aを有する。
 nチャネル電界効果トランジスタ204a,205a及び206bは、pチャネル電界効果トランジスタ204b,205b及び206aに対して、異なる導電型の電界効果トランジスタである。例えば、nチャネル電界効果トランジスタ204a,205a,206bとpチャネル電界効果トランジスタ204b,205b,206aは、それぞれ、耐圧が1.8Vである。
 したがって、nチャネル電界効果トランジスタ204a,205a,206bとpチャネル電界効果トランジスタ204b,205b,206aのそれぞれに1.8Vより高い電圧が印加されると、nチャネル電界効果トランジスタ204a,205a,206bとpチャネル電界効果トランジスタ204b,205b,206aが破壊される可能性がある。
 nチャネル電界効果トランジスタ204a,205a,206bとpチャネル電界効果トランジスタ204b,205b,206aのそれぞれに1.8Vより高い電圧が印加されないようにすることにより、nチャネル電界効果トランジスタ204a,205a,206bとpチャネル電界効果トランジスタ204b,205b,206aの破壊を防止する。
 3.3V電源201は、基準電位線207と3.3V線208の間に接続され、3.3V線208に3.3Vを供給する。3.3V線は、3.3Vの電源電位を有する電源線である。基準電位線207は、基準電位を有する電源線である。基準電位は、例えばグランド電位(0Vの電源電位)である。3.3Vは、基準電位より高い。
 1.65V電源202aは、電圧生成回路であり、基準電位線207と中間ノードN2aの間に接続され、1.65Vのクリップ電圧を生成し、1.65Vのクリップ電圧を中間ノードN2aに供給する。
 1.65V電源202bは、電圧生成回路であり、基準電位線207と中間ノードN2bの間に接続され、1.65Vのクリップ電圧を生成し、1.65Vのクリップ電圧を中間ノードN2bに供給する。
 1.65V電源202bが供給する1.65Vのクリップ電圧は、1.65V電源202aが供給する1.65Vのクリップ電圧と同じ電圧である。1.65Vのクリップ電圧は、3.3V線208の3.3Vと基準電位線207の0Vとの中間電位である。
 pチャネル電界効果トランジスタ204bは、入力トランジスタであり、ソースが3.3V線208に接続され、ゲートがバッファ203bを介して入力ノードIN2に接続され、ドレインが中間ノードN1bに接続される。pチャネル電界効果トランジスタ204bのゲートには、バッファ203bを介して、入力信号DT2が供給される。バッファ203bは、1.8V~3.3Vの範囲の入力信号DT2をpチャネル電界効果トランジスタ204bのゲートに供給する。
 nチャネル電界効果トランジスタ204aは、入力トランジスタであり、ソースが基準電位線207に接続され、ゲートがバッファ203aを介して入力ノードIN1に接続され、ドレインが中間ノードN1aに接続される。nチャネル電界効果トランジスタ204aのゲートには、バッファ203aを介して、入力信号DT1が供給される。バッファ203aは、0V~1.8Vの範囲の入力信号DT1をnチャネル電界効果トランジスタ204aのゲートに供給する。
 入力信号DT1は、0V~1.8Vの範囲の電圧である。入力信号DT2は、1.8V~3.3Vの範囲の電圧である。入力信号DT2は、入力信号DT1に対して、低い範囲の電圧であり、異なる範囲の電圧であり、論理が同じである。すなわち、入力信号DT1がハイレベル(1.8V)の場合には、入力信号DT2もハイレベル(3.3V)である。入力信号DT1がローレベル(0V)の場合には、入力信号DT2もローレベル(1.8V)である。
 pチャネル電界効果トランジスタ205bは、カスコードトランジスタであり、ソースが中間ノードN1bに接続され、ゲートが中間ノードN2bに接続され、ドレインが出力ノードOUTに接続される。3.3V電源202bは、pチャネル電界効果トランジスタ205bのゲートに1.65Vのクリップ電圧を供給する。
 nチャネル電界効果トランジスタ205aは、カスコードトランジスタであり、ソースが中間ノードN1aに接続され、ゲートが中間ノードN2aに接続され、ドレインが出力ノードOUTに接続される。3.3V電源202aは、nチャネル電界効果トランジスタ205aのゲートに1.65Vのクリップ電圧を供給する。
 nチャネル電界効果トランジスタ206bは、スイッチトランジスタであり、ソースが中間ノードN1bに接続され、ドレインが中間ノードN2bに接続される。nチャネル電界効果トランジスタ206bのゲートは、パワーダウン信号PD2を受けとる。図4に示すように、パワーダウン信号PD2は、1.8V~3.3Vの範囲の電圧の2値信号である。パワーダウン信号PD2は、パワーダウンモードではハイレベル(3.3V)になり、通常モードではローレベル(1.8V)になる。
 pチャネル電界効果トランジスタ206aは、スイッチトランジスタであり、ソースが中間ノードN2aに接続され、ドレインが中間ノードN1aに接続される。pチャネル電界効果トランジスタ206aのゲートは、パワーダウン信号PD1を受けとる。図4に示すように、パワーダウン信号PD1は、0V~1.8Vの範囲の電圧の2値信号である。パワーダウン信号PD1は、パワーダウンモードではローレベル(0V)になり、通常モードではハイレベル(1.8V)になる。
 nチャネル電界効果トランジスタ206bのドレインとpチャネル電界効果トランジスタ206aのソースは、1.65V電源202b及び1.65V電源202aを介して、電気的に接続される。
 まず、通常モードの動作を説明する。通常モードでは、パワーダウン信号PD1がハイレベルになり、パワーダウン信号PD2がローレベルになる。pチャネル効果トランジスタ206aとnチャネル電界効果トランジスタ206bは、オフ状態になる。
 pチャネル電界効果トランジスタ204bのゲートは、入力信号DT2を受けとる。nチャネル電界効果トランジスタ204aのゲートは、入力信号DT1を入力する。
 入力信号DT1がローレベルである場合には、入力信号DT2もローレベルである。pチャネル電界効果トランジスタ204bがオン状態になり、nチャネル電界効果トランジスタ204aがオフ状態になる。すると、出力ノードOUTの電圧は、ハイレベルになる。
 入力信号DT1がハイレベルである場合には、入力信号DT2もハイレベルである。pチャネル電界効果トランジスタ204bがオフ状態になり、nチャネル電界効果トランジスタ204aがオン状態になる。すると、出力ノードOUTの電圧は、ローレベルになる。
 以上のように、ドライバ115aは、入力信号DT1及びDT2に対して、論理反転した信号を出力端子OUTから出力する。
 次に、パワーダウンモードの動作を説明する。パワーダウンモードでは、パワーダウン信号PD1がローレベルになり、パワーダウン信号PD2がハイレベルになる。pチャネル効果トランジスタ206aとnチャネル電界効果トランジスタ206bは、オン状態になる。
 内部回路101は、pチャネル電界効果トランジスタ204bのゲート電圧をハイレベルに固定し、nチャネル電界効果トランジスタ204aのゲート電圧をローレベルに固定する。pチャネル電界効果トランジスタ204bとnチャネル電界効果トランジスタ204aは、オフ状態になる。これにより、電流が流れないので、パワーダウンモードでは、消費電力を低減することができる。
 1.65V電源202bは、nチャネル電界効果トランジスタ206bを介して、中間ノードN1bに1.65Vを印加する。これにより、pチャネル電界効果トランジスタ204b及び205bのそれぞれに1.8Vより高い電圧が印加されることを防止し、pチャネル電界効果トランジスタ204b及び205bの破壊を防止することができる。
 1.65V電源202aは、pチャネル電界効果トランジスタ206aを介して、中間ノードN1aに1.65Vを印加する。これにより、nチャネル電界効果トランジスタ204a及び205aのそれぞれに1.8Vより高い電圧が印加されることを防止し、nチャネル電界効果トランジスタ204a及び205aの破壊を防止することができる。
 ドライバ115aは、2個の1.65V電源202a及び202bを有する。これにより、通常モードからパワーダウンモードへの切り替え時に、pチャネル電界効果トランジスタ204b,205bとnチャネル電界効果トランジスタ204a,205aのそれぞれに1.8Vより高いスパイクノイズが印加されることを防止することができる。この効果を説明するため、図3及び図4を参照しながら、ドライバ115aが1個の1.65V電源202を有する場合の課題を説明する。
 図3は、1個の1.65V電源202を有するドライバ115aの構成例を示す回路図である。図3のドライバ115aは、図2のドライバ115aに対して、2個の1.65V電源202a及び202bの代わりに、1個の1.65V電源202を設けたものである。
 1.65V電源202は、中間ノードN2に1.65Vを供給する。nチャネル電界効果トランジスタ206bのドレインとpチャネル電界効果トランジスタ205bのゲートは、中間ノードN2に接続される。pチャネル電界効果トランジスタ206aのソースとnチャネル電界効果トランジスタ205aのゲートは、中間ノードN2に接続される。
 図4は、パワーダウン信号PD1,PD2の電圧と中間ノードN2の電圧を示すタイミングチャートである。時刻t1の前は、通常モードであり、パワーダウン信号PD1がハイレベルであり、パワーダウン信号PD2がローレベルである。pチャネル電界効果トランジスタ206aとnチャネル電界効果トランジスタ206bは、オフ状態になる。1.65V電源202は、中間ノードN2に1.65Vを印加する。
 通常モードからパワーダウンモードへの切り替え時には、時刻t1では、パワーダウン信号PD1がハイレベルからローレベルに遷移し、時刻t2では、パワーダウン信号PD2がローレベルからハイレベルに遷移する。時刻t2以降は、パワーダウンモードである。
 パワーダウン信号PD1の立ち下がり時刻t1とパワーダウン信号PD2の立ち上がり時刻t2を一致させることは困難である。図1のように、レベル変換回路112は、パワーダウン信号PD1を基にパワーダウン信号PD2を生成する。そのため、パワーダウン信号PD2の立ち上がり時刻t2は、パワーダウン信号PD1の立ち下がり時刻t1よりわずかに遅れてしまう。
 時刻t1では、pチャネル電界効果トランジスタ206aは、オフ状態からオン状態に変化する。例えば、中間ノードN1aは0.3Vであり、中間ノードN1bは2.8Vである。中間ノードN1aが0.3Vであるので、pチャネル電界効果トランジスタ206aがオン状態になると、中間ノードN2には、0.3Vのスパイクノイズが発生する。
 nチャネル電界効果トランジスタ206bのドレインには、中間ノードN2の0.3Vのスパイクノイズが印加される。nチャネル電界効果トランジスタ206bのソースには、中間ノードN1bの2.8Vが印加される。これにより、nチャネル電界効果トランジスタ206bのソース及びドレイン間には、1.8Vより高い2.5V(=2.8V-0.3V)が印加される。そのため、nチャネル電界効果トランジスタ206bは、破壊される可能性が高くなる課題が生じる。
 また、pチャネル電界効果トランジスタ205bのゲートには、中間ノードN2の0.3Vのスパイクノイズが印加される。pチャネル電界効果トランジスタ205bのソースには、中間ノードN1bの2.8Vが印加される。これにより、pチャネル電界効果トランジスタ205bのソース及びゲート間には、1.8Vより高い2.5V(=2.8V-0.3V)が印加される。そのため、pチャネル電界効果トランジスタ205bは、破壊される可能性が高くなる課題が生じる。
 時刻t2では、nチャネル電界効果トランジスタ206bは、オフ状態からオン状態に変化する。pチャネル電界効果トランジスタ206aとnチャネル電界効果トランジスタ206bは、パワーダウン時に、相互に異なるタイミングでオフ状態からオン状態に変化する。例えば、中間ノードN1aは0.3Vであり、中間ノードN1bは2.8Vである。中間ノードN1bが2.8Vであるので、nチャネル電界効果トランジスタ206bがオン状態になると、中間ノードN2には、2.8Vのスパイクノイズが発生する。
 pチャネル電界効果トランジスタ206aのソースには、中間ノードN2の2.8Vのスパイクノイズが印加される。pチャネル電界効果トランジスタ206aのドレインには、中間ノードN1aの0.3Vが印加される。これにより、pチャネル電界効果トランジスタ206aのソース及びドレイン間には、1.8Vより高い2.5V(=2.8V-0.3V)が印加される。そのため、pチャネル電界効果トランジスタ206aは、破壊される可能性が高くなる課題が生じる。
 また、nチャネル電界効果トランジスタ205aのゲートには、中間ノードN2の2.8Vのスパイクノイズが印加される。nチャネル電界効果トランジスタ205aのソースには、中間ノードN1aの0.3Vが印加される。これにより、nチャネル電界効果トランジスタ205aのソース及びゲート間には、1.8Vより高い2.5V(=2.8V-0.3V)が印加される。そのため、nチャネル電界効果トランジスタ205aは、破壊される可能性が高くなる課題が生じる。
 図2のドライバ105aは、上記のスパイクノイズに起因する課題を解決することができる。以下、図2のドライバ105aが2個の1.65V電源202a及び202bを有することによる効果を説明する。
 時刻t1では、0.3Vのスパイクノイズが中間ノードN2aに発生する。しかし、中間ノードN2aは、直接、中間ノードN2bに接続されず、1.65V電源202a及び202bを介して、中間ノードN2bに接続されている。そのため、中間ノードN2aの0.3Vのスパイクノイズが中間ノードN2bに伝搬することを防止することができる。
 1.65V電源202bは、1.65Vを中間ノードN2bに供給する。これにより、nチャネル電界効果トランジスタ206bのソース及びドレイン間には、1.8Vより低い電圧が印加される。同様に、pチャネル電界効果トランジスタ205bのソース及びゲート間には、1.8Vより低い電圧が印加される。これにより、nチャネル電界効果トランジスタ206bとpチャネル電界効果トランジスタ205bの破壊を防止することができる。
 時刻t2では、2.8Vのスパイクノイズが中間ノードN2bに発生する。しかし、中間ノードN2bは、直接、中間ノードN2aに接続されず、1.65V電源202b及び202aを介して、中間ノードN2aに接続されている。そのため、中間ノードN2bの2.8Vのスパイクノイズが中間ノードN2aに伝搬することを防止することができる。
 1.65V電源202aは、1.65Vを中間ノードN2aに供給する。これにより、pチャネル電界効果トランジスタ206aのソース及びドレイン間には、1.8Vより低い電圧が印加される。同様に、nチャネル電界効果トランジスタ205aのソース及びゲート間には、1.8Vより低い電圧が印加される。これにより、pチャネル電界効果トランジスタ206aとnチャネル電界効果トランジスタ205aの破壊を防止することができる。
 図5は、図2の1.65V電源202a及び202bの構成例を示す回路図である。1.65V電源202aは、抵抗501aと、抵抗502aを有し、中間ノードN2aに1.65Vのクリップ電圧を供給する。抵抗501aは、3.3V線208と中間ノードN2aの間に接続される。抵抗502aは、中間ノードN2aと基準電位線207の間に接続される。抵抗501a及び502aが3.3Vを分圧することにより、中間ノードN2aには、3.3Vと0Vの中間電位である1.65Vが供給される。
 1.65V電源202bは、抵抗501bと、抵抗502bを有し、中間ノードN2bに1.65Vを供給する。抵抗501bは、3.3V線208と中間ノードN2bの間に接続される。抵抗502bは、中間ノードN2bと基準電位線207の間に接続される。抵抗501b及び502bが3.3Vを分圧することにより、中間ノードN2bには、3.3Vと0Vの中間電位である1.65Vが供給される。
 すなわち、図5に示した回路の場合、nチャネル電界効果トランジスタ206bのドレインとpチャネル電界効果トランジスタ206aのソースは、抵抗501a、3.3V線208及び抵抗501bを介して電気的に接続され、かつ、抵抗502a、基準電位線207及び抵抗502bを介して電気的に接続される。中間ノードN2a及び中間ノードN2bに供給されるクリップ電圧は、1.65V電源202a及び202bによって、相互に独立して生成される電圧である。
 これにより、中間ノードN2a及びN2bの一方にスパイクノイズが発生したとしても、そのスパイクノイズが中間ノードN2a及びN2bの他方に伝搬することを防止することができる。
 なお、図5においては、1.65V電源202aの抵抗501aと1.65V電源202bの抵抗501bはともに3.3V線208に接続される構成としたが、共通の電源線に接続される必要はなく、変形例として、1.65V電源202a及び202bは、抵抗501aと抵抗501bの一方、又は、両方を3.3V線208とは異なる電源電位を有する、3.3V線208とは別の電源線に接続するように構成してもよい。
 この変形例の回路の場合も、同様に、nチャネル電界効果トランジスタ206bのドレインとpチャネル電界効果トランジスタ206aのソースは、抵抗502a、基準電位線207及び抵抗502bを介して電気的に接続される。中間ノードN2a及び中間ノードN2bに供給されるクリップ電圧は、1.65V電源202a及び202bによって、相互に独立して生成される電圧である。
 これにより、中間ノードN2a及びN2bの一方にスパイクノイズが発生したとしても、そのスパイクノイズが中間ノードN2a及びN2bの他方に伝搬することを防止することができる。
 図6は、図2の1.65V電源202a及び202bの他の構成例を示す回路図である。1.65V電源202a及び202bは、抵抗601と、抵抗602を共有する。抵抗601は、3.3V線208と中間ノードN3の間に接続される。抵抗602は、中間ノードN3と基準電位線207の間に接続される。抵抗601及び602が3.3Vを分圧することにより、中間ノードN3には、3.3Vと0Vの中間電位である1.65Vが供給される。
 1.65V電源202aは、さらに、高抵抗603aを有する。高抵抗603aは、中間ノードN3と中間ノードN2aの間に接続される。1.65V電源202bは、さらに、高抵抗603bを有する。高抵抗603bは、中間ノードN3と中間ノードN2bの間に接続される。ここで、高抵抗603a及び603bの抵抗値はそれぞれ、抵抗601及び抵抗602の抵抗値よりも十分に大きいものである。高抵抗603a及び603bの抵抗値は、各トランジスタの耐圧とスパイクノイズの電圧に応じて設定すればよく、例えば、図2に示した回路の場合、5倍程度大きいものであればよい。1.65V電源202aは、中間ノードN2aに1.65Vのクリップ電圧を供給する。1.65V電源202bは、中間ノードN2bに1.65Vのクリップ電圧を供給する。
 すなわち、図6に示した回路の場合、nチャネル電界効果トランジスタ206bのドレインとpチャネル電界効果トランジスタ206aのソースは、高抵抗603a、1.65Vの分圧電圧が供給されるノードN3及び高抵抗603bを介して電気的に接続される。
 これにより、中間ノードN2a及びN2bの一方にスパイクノイズが発生したとしても、そのスパイクノイズが中間ノードN2a及びN2bの他方に伝搬することを防止することができる。
 なお、図6においては、1.65V電源202a及び202bの抵抗601は、3.3V線208に接続される構成としたが、これには限定されず、変形例として、1.65V電源202a及び202bの抵抗601は、抵抗601を3.3V線208とは異なる電源電位を有する、3.3V線208とは別の電源線に接続するように構成してもよい。
 この変形例の回路の場合も、同様に、nチャネル電界効果トランジスタ206bのドレインとpチャネル電界効果トランジスタ206aのソースは、高抵抗603a、1.65Vの分圧電圧が供給されるノードN3及び高抵抗603bを介して電気的に接続される。
 これにより、中間ノードN2a及びN2bの一方にスパイクノイズが発生したとしても、そのスパイクノイズが中間ノードN2a及びN2bの他方に伝搬することを防止することができる。
 以上のように、ドライバ115a及び115bは、それぞれ、2個の1.65V電源202a及び202bを有する。これにより、パワーダウンモードの開始時に、電界効果トランジスタ205a,205b,206a,206bの耐圧よりも高い電圧が電界効果トランジスタ205a,205b,206a,206bに印加されることを防止することができる。
 なお、上記実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
 パワーダウン開始時に、トランジスタの耐圧よりも高い電圧がトランジスタに印加されることを防止することができる。

Claims (16)

  1.  第1の電源電位を有する第1の電源線と第1の中間ノードの間に設けられ、ゲートに第1の入力信号が供給される、第1の導電型の第1の入力トランジスタと、
     第2の中間ノードと第2の電源電位を有する第2の電源線の間に設けられ、ゲートに前記第1の入力信号と論理が同じである第2の入力信号が供給される、第2の導電型の第2の入力トランジスタと、
     前記第1の中間ノードと出力ノードの間に設けられ、ゲートに前記第1の電源電位と前記第2の電源電位の中間電位を有する第1のクリップ電圧が供給される第1のカスコードトランジスタと、
     前記出力ノードと前記第2の中間ノードの間に設けられ、ゲートに前記第1の電源電位と前記第2の電源電位の中間電位を有する第2のクリップ電圧が供給される第2のカスコードトランジスタと、
     前記第1の中間ノードと前記第1のカスコードトランジスタのゲートの間に設けられ、パワーダウン時にオンする第1のスイッチトランジスタと、
     前記第2の中間ノードと前記第2のカスコードトランジスタのゲートの間に設けられ、パワーダウン時にオンする第2のスイッチトランジスタと、
     前記第1のクリップ電圧を生成する第1の電圧生成回路と、
     前記第2のクリップ電圧を生成する第2の電圧生成回路とを有し、
     前記第1のスイッチトランジスタと前記第2のスイッチトランジスタは、前記第1の電圧生成回路及び前記第2の電圧生成回路を介して電気的に接続される出力回路。
  2.  前記第1の電圧生成回路は、
     前記第1の電源線と前記第1のカスコードトランジスタのゲートの間に設けられる第1の抵抗と、
     前記第2の電源線と前記第1のカスコードトランジスタのゲートの間に設けられる第2の抵抗とを有し、
     前記第2の電圧生成回路は、
     前記第1の電源線と前記第2のカスコードトランジスタのゲートの間に設けられる第3の抵抗と、
     前記第2の電源線と前記第2のカスコードトランジスタのゲートの間に設けられる第4の抵抗とを有し、
     前記第1のスイッチトランジスタと前記第2のスイッチトランジスタは、前記第1の抵抗、前記第1の電源線及び前記第3の抵抗を介して電気的に接続され、かつ、前記第2の抵抗、前記第2の電源線及び前記第4の抵抗を介して電気的に接続される請求項1に記載の出力回路。
  3.  前記第1の電圧生成回路は、
     第3の電源電位を有する第3の電源線と前記第1のカスコードトランジスタのゲートの間に設けられる第1の抵抗と、
     前記第2の電源線と前記第1のカスコードトランジスタのゲートの間に設けられる第2の抵抗とを有し、
     前記第2の電圧生成回路は、
     第4の電源電位を有する第4の電源線と前記第2のカスコードトランジスタのゲートの間に設けられる第3の抵抗と、
     前記第2の電源線と前記第2のカスコードトランジスタのゲートの間に設けられる第4の抵抗とを有し、
     前記第1のスイッチトランジスタと前記第2のスイッチトランジスタは、前記第2の抵抗、前記第2の電源線及び前記第4の抵抗を介して電気的に接続される請求項1に記載の出力回路。
  4.  前記第1の電圧生成回路と前記第2の生成回路は、
     第5の電源電位を有する第5の電源線と第3の中間ノードの間に設けられる第1の抵抗と、
     前記第2の電源線と前記第3の中間ノードの間に設けられる第2の抵抗とを共有し、
     前記第1の電圧生成回路は、前記第3の中間ノードと前記第1のカスコードトランジスタのゲートの間に設けられ、前記第1の抵抗及び前記第2の抵抗よりも大きい抵抗値を有する第3の抵抗を有し、
     前記第2の電圧生成回路は、前記第3の中間ノードと前記第2のカスコードトランジスタのゲートの間に設けられ、前記第1の抵抗及び前記第2の抵抗よりも大きい抵抗値を有する第4の抵抗を有し、
     前記第1のスイッチトランジスタと前記第2のスイッチトランジスタは、前記第3の抵抗、前記第3の中間ノード及び前記第4の抵抗を介して電気的に接続される請求項1に記載の出力回路。
  5.  前記第5の電源電位は、前記第1の電源電位に等しい請求項4に記載の出力回路。
  6.  前記第1のクリップ電圧と前記第2のクリップ電圧は、前記第1の電圧生成回路及び前記第2の電圧生成回路によって、相互に独立して生成される電圧である請求項1~3のいずれか1項に記載の出力回路。
  7.  前記第1のカスコードトランジスタは、前記第1導電型のトランジスタであり、
     前記第2のカスコードトランジスタは、前記第2導電型のトランジスタである請求項1~6のいずれか1項に記載の出力回路。
  8.  前記第1のスイッチトランジスタは、前記第2導電型のトランジスタであり、
     前記第2のスイッチトランジスタは、前記第1導電型のトランジスタである請求項1~7のいずれか1項に記載の出力回路。
  9.  前記第1の入力トランジスタは、pチャネル電界効果トランジスタであり、
     前記第2の入力トランジスタは、nチャネル電界効果トランジスタであり、
     前記第1のカスコードトランジスタは、pチャネル電界効果トランジスタであり、
     前記第2のカスコードトランジスタは、nチャネル電界効果トランジスタであり、
     前記第1のスイッチトランジスタは、nチャネル電界効果トランジスタであり、
     前記第2のスイッチトランジスタは、pチャネル電界効果トランジスタである請求項1~8のいずれか1項に記載の出力回路。
  10.  前記第1の入力トランジスタは、ソースが前記第1の電源線に接続され、ドレインが前記第1の中間ノードに接続され、
     前記第2の入力トランジスタは、ソースが前記第2の電源線に接続され、ドレインが前記第2の中間ノードに接続され、
     前記第1のカスコードトランジスタは、ソースが前記第1の中間ノードに接続され、ドレインが前記出力ノードに接続され、
     前記第2のカスコードトランジスタは、ソースが前記第2の中間ノードに接続され、ドレインが前記出力ノードに接続され、
     前記第1のスイッチトランジスタは、ソースが前記第1の中間ノードに接続され、ドレインが前記第1のカスコードトランジスタのゲートに接続され、
     前記第2のスイッチトランジスタは、ソースが前記第2のカスコードトランジスタのゲートに接続され、ドレインが前記第2の中間ノードに接続される請求項1~9のいずれか1項に記載の出力回路。
  11.  前記第1の入力信号は、第1の範囲の電圧であり、
     前記第2の入力信号は、前記第1の範囲とは異なる第2の範囲の電圧である請求項1~10のいずれか1項に記載の出力回路。
  12.  前記第1のスイッチトランジスタのゲートは、前記第1の範囲の電圧の第1のパワーダウン信号を入力し、
     前記第2のスイッチトランジスタのゲートは、前記第2の範囲の電圧の第2のパワーダウン信号を入力する請求項11に記載の出力回路。
  13.  前記第2の範囲の電圧は、前記第1の範囲の電圧より低い請求項11又は12に記載の出力回路。
  14.  前記第1のスイッチトランジスタと前記第2のスイッチトランジスタは、パワーダウン時に、相互に異なるタイミングでオフからオンに変化する請求項1~13のいずれか1項に記載の出力回路。
  15.  第2の入力信号に対してレベルが変換され、かつ論理が同じである第1の入力信号を出力するレベル変換回路と、
     前記第1の入力信号と前記第2の入力信号が入力される出力回路とを有し、
     前記出力回路は、
     第1の電源電位を有する第1の電源線と第1の中間ノードの間に設けられ、ゲートに前記第1の入力信号が供給される第1の導電型の第1の入力トランジスタと、
     第2の中間ノードと第2の電源電位を有する第2の電源線の間に設けられ、ゲートに前記第2の入力信号が供給される第2の導電型の第2の入力トランジスタと、
     前記第1の中間ノードと出力ノードの間に設けられ、ゲートに前記第1の電源電位と前記第2の電源電位の中間電位を有する第1のクリップ電圧が供給される第1のカスコードトランジスタと、
     前記出力ノードと前記第2の中間ノードの間に設けられ、ゲートに前記第1の電源電位と前記第2の電源電位の中間電位を有する第2のクリップ電圧が供給される第2のカスコードトランジスタと、
     前記第1の中間ノードと前記第1のカスコードトランジスタのゲートの間に設けられ、パワーダウン時にオンする第1のスイッチトランジスタと、
     前記第2の中間ノードと前記第2のカスコードトランジスタのゲートの間に設けられ、パワーダウン時にオンする第2のスイッチトランジスタと、
     前記第1のクリップ電圧を生成する第1の電圧生成回路と、
     前記第2のクリップ電圧を生成する第2の電圧生成回路とを有し、
     前記第1のスイッチトランジスタと前記第2のスイッチトランジスタは、前記第1の電圧生成回路及び前記第2の電圧生成回路を介して電気的に接続される送信回路。
  16.  第2の入力信号を出力する内部回路と、
     前記第2の入力信号が入力される送信回路とを有し、
     前記送信回路は、
     前記第2の入力信号に対して、レベルが変換され、かつ論理が同じである第1の入力信号を出力するレベル変換回路と、
     前記第1の入力信号と前記第2の入力信号が入力される出力回路とを有し、
     前記出力回路は、
     第1の電源電位を有する第1の電源線と第1の中間ノードの間に設けられ、ゲートに前記第1の入力信号が供給される第1の導電型の第1の入力トランジスタと、
     第2の中間ノードと第2の電源電位を有する第2の電源線の間に設けられ、ゲートに前記第2の入力信号が供給される第2の導電型の第2の入力トランジスタと、
     前記第1の中間ノードと出力ノードの間に設けられ、ゲートに前記第1の電源電位と前記第2の電源電位の中間電位を有する第1のクリップ電圧が供給される第1のカスコードトランジスタと、
     前記出力ノードと前記第2の中間ノードの間に設けられ、ゲートに前記第1の電源電位と前記第2の電源電位の中間電位を有する第2のクリップ電圧が供給される第2のカスコードトランジスタと、
     前記第1の中間ノードと前記第1のカスコードトランジスタのゲートの間に設けられ、パワーダウン時にオンする第1のスイッチトランジスタと、
     前記第2の中間ノードと前記第2のカスコードトランジスタのゲートの間に設けられ、パワーダウン時にオンする第2のスイッチトランジスタと、
     前記第1のクリップ電圧を生成する第1の電圧生成回路と、
     前記第2のクリップ電圧を生成する第2の電圧生成回路とを有し、
     前記第1のスイッチトランジスタと前記第2のスイッチトランジスタは、前記第1の電圧生成回路及び前記第2の電圧生成回路を介して電気的に接続される半導体集積回路。
PCT/JP2020/008029 2020-02-27 2020-02-27 出力回路、送信回路及び半導体集積回路 WO2021171482A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/008029 WO2021171482A1 (ja) 2020-02-27 2020-02-27 出力回路、送信回路及び半導体集積回路
JP2022502713A JPWO2021171482A1 (ja) 2020-02-27 2020-02-27
US17/895,763 US11791820B2 (en) 2020-02-27 2022-08-25 Output circuit, transmission circuit, and semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/008029 WO2021171482A1 (ja) 2020-02-27 2020-02-27 出力回路、送信回路及び半導体集積回路

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/895,763 Continuation US11791820B2 (en) 2020-02-27 2022-08-25 Output circuit, transmission circuit, and semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
WO2021171482A1 true WO2021171482A1 (ja) 2021-09-02

Family

ID=77490029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008029 WO2021171482A1 (ja) 2020-02-27 2020-02-27 出力回路、送信回路及び半導体集積回路

Country Status (3)

Country Link
US (1) US11791820B2 (ja)
JP (1) JPWO2021171482A1 (ja)
WO (1) WO2021171482A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003504860A (ja) * 1999-06-29 2003-02-04 コックレア リミティド 標準cmosプロセスの高電圧保護回路
JP2015164248A (ja) * 2014-02-28 2015-09-10 株式会社ソシオネクスト 入出力回路
US20150381179A1 (en) * 2014-06-27 2015-12-31 Mstar Semiconductor, Inc. Signal transmission circuit suitable for ddr
JP2016054542A (ja) * 2015-11-27 2016-04-14 ルネサスエレクトロニクス株式会社 差動出力回路および半導体装置
JP2016167748A (ja) * 2015-03-10 2016-09-15 株式会社メガチップス 出力バッファ回路

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6307408B1 (en) * 2000-04-05 2001-10-23 Conexant Systems, Inc. Method and apparatus for powering down a line driver
US7741874B2 (en) * 2006-04-12 2010-06-22 Nxp B.V. Electronic circuit
JP2011004313A (ja) 2009-06-22 2011-01-06 Renesas Electronics Corp 半導体集積回路装置
JP2012191275A (ja) 2011-03-09 2012-10-04 Toshiba Corp Vco回路
JP5848679B2 (ja) 2012-09-04 2016-01-27 ルネサスエレクトロニクス株式会社 差動出力回路および半導体装置
JP6167914B2 (ja) 2013-03-29 2017-07-26 株式会社ソシオネクスト 出力回路
KR102242582B1 (ko) * 2014-10-10 2021-04-22 삼성전자주식회사 수신 회로 및 그것의 신호 수신 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003504860A (ja) * 1999-06-29 2003-02-04 コックレア リミティド 標準cmosプロセスの高電圧保護回路
JP2015164248A (ja) * 2014-02-28 2015-09-10 株式会社ソシオネクスト 入出力回路
US20150381179A1 (en) * 2014-06-27 2015-12-31 Mstar Semiconductor, Inc. Signal transmission circuit suitable for ddr
JP2016167748A (ja) * 2015-03-10 2016-09-15 株式会社メガチップス 出力バッファ回路
JP2016054542A (ja) * 2015-11-27 2016-04-14 ルネサスエレクトロニクス株式会社 差動出力回路および半導体装置

Also Published As

Publication number Publication date
US20220407519A1 (en) 2022-12-22
JPWO2021171482A1 (ja) 2021-09-02
US11791820B2 (en) 2023-10-17

Similar Documents

Publication Publication Date Title
JP3657235B2 (ja) レベルシフタ回路及び該レベルシフタ回路を備えた半導体装置
JP2993462B2 (ja) 出力バッファ回路
US7701262B2 (en) Transmission line drivers and serial interface data transmission devices including the same
JP2008312214A (ja) Ac接続を用いたレベル・シフトするためのシステムおよび方法
US9806716B2 (en) Output signal generation circuitry for converting an input signal from a source voltage domain into an output signal for a destination voltage domain
US9525421B2 (en) High speed low voltage hybrid output driver for FPGA I/O circuits
US7825699B2 (en) Receiver circuit having compensated offset voltage
US8044684B1 (en) Input and output buffer including a dynamic driver reference generator
KR20040075024A (ko) 하프-브릿지 구동기 및 그러한 구동기를 갖는 파워 변환시스템
US20080088365A1 (en) Semiconductor device and method for decreasing noise of output driver
US20060038593A1 (en) Semiconductor integrated circuit
US20120013496A1 (en) Switched capacitor type d/a converter
US10560084B2 (en) Level shift circuit
KR20080013759A (ko) 입출력 회로
JP4731333B2 (ja) レベルシフト回路
WO2021171482A1 (ja) 出力回路、送信回路及び半導体集積回路
WO2012042683A1 (ja) レベルシフト回路
US20070063738A1 (en) CMOS logic circuitry
JP4630782B2 (ja) レベルシフト回路
WO2004066499A1 (ja) 半導体集積回路
JP5576248B2 (ja) 電源スイッチ回路
US20130257490A1 (en) Driver circuit and semiconductor device
US10256818B2 (en) Level shifter
JP2015164248A (ja) 入出力回路
KR100535249B1 (ko) 레벨 쉬프터를 이용한 고속 동작 저전압 차동 신호 방식입력 버퍼

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20921900

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022502713

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20921900

Country of ref document: EP

Kind code of ref document: A1