WO2021170607A1 - Verfahren und vorrichtung zur herstellung von spinnvlies - Google Patents

Verfahren und vorrichtung zur herstellung von spinnvlies Download PDF

Info

Publication number
WO2021170607A1
WO2021170607A1 PCT/EP2021/054495 EP2021054495W WO2021170607A1 WO 2021170607 A1 WO2021170607 A1 WO 2021170607A1 EP 2021054495 W EP2021054495 W EP 2021054495W WO 2021170607 A1 WO2021170607 A1 WO 2021170607A1
Authority
WO
WIPO (PCT)
Prior art keywords
stretching
drying
filaments
air
exhaust air
Prior art date
Application number
PCT/EP2021/054495
Other languages
English (en)
French (fr)
Inventor
Ibrahim SAGERER-FORIC
Rudolf Kern
Alexander TEUBL
Wolfgang Engl
Original Assignee
Lenzing Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lenzing Aktiengesellschaft filed Critical Lenzing Aktiengesellschaft
Priority to EP21706951.7A priority Critical patent/EP4110980A1/de
Priority to CN202180016625.5A priority patent/CN115135820A/zh
Priority to US17/801,615 priority patent/US20230085228A1/en
Publication of WO2021170607A1 publication Critical patent/WO2021170607A1/de

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/098Melt spinning methods with simultaneous stretching
    • D01D5/0985Melt spinning methods with simultaneous stretching by means of a flowing gas (e.g. melt-blowing)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/12Stretch-spinning methods
    • D01D5/14Stretch-spinning methods with flowing liquid or gaseous stretching media, e.g. solution-blowing
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • D01F2/02Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from solutions of cellulose in acids, bases or salts
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/013Regenerated cellulose series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/10Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically
    • D04H3/11Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically by fluid jet
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • D04H3/03Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments at random
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/62Manufacturing or production processes characterised by the final manufactured product related technologies for production or treatment of textile or flexible materials or products thereof, including footwear

Definitions

  • the invention relates to a device and a method for the production of spunbonded nonwoven, in which a spinning mass is extruded into filaments through a plurality of nozzle holes of at least one spinneret and the filaments are subjected to a stretching air stream for stretching in the extrusion direction, in which the filaments to form a spunbonded nonwoven be deposited on a perforated conveyor device and in which the spunbonded nonwoven is subsequently subjected to at least one washing and drying by means of hot air, an exhaust air stream being discharged in each case during the stretching and the washing.
  • spunbonded nonwovens or nonwovens on the one hand by the spunbond process and on the other hand by the meltblown process is known from the prior art.
  • spunbond process for example GB 2 114052 A or EP 3 088 585 A1
  • the filaments are extruded through a nozzle and drawn off and stretched by a stretching unit below.
  • meltblown process on the other hand (for example US Pat. No. 5,080,569 A, US Pat. No. 4,380,570 A or US Pat. No. 5,695,377 A), the extruded filaments are entrained and stretched by hot, fast process air as soon as they exit the nozzle.
  • the filaments are placed on a storage surface, for example a perforated conveyor belt, in a random layer to form a nonwoven, transported to post-processing steps and finally wound up as nonwoven rolls.
  • Nonwoven dryers are usually designed as through-air dryers and are connected downstream of a hydroentanglement system. In front of the hydroentanglement there is usually a card with which the fleece is produced.
  • the state of the art means that the air in the dryer is circulated and repeatedly heated up. Only part of it is discharged as exhaust air and used to preheat the fresh air.
  • the ongoing enrichment of the hot air in the dryer with steam means that the temperature of the hot air in the dryer has to be heated to over 150 ° C in order to maintain the required evaporation capacity.
  • these high temperatures lead to negative effects, in particular yellowing and embrittlement of the product.
  • the present invention has therefore set itself the task of improving a method of the type mentioned at the outset in such a way that the energy consumption during the drying of the spunbonded nonwoven can be reduced without reducing the product quality.
  • the invention achieves the stated problem in that the hot air for the drying is at least partially generated by preheating an air stream by means of one of the exhaust air streams from the drawing and the laundry.
  • the hot air for drying is at least partially preheated by preheating an air stream by means of one of the exhaust air streams from the drawing and the laundry, then on the one hand, reliable preheating of the air flow to the hot air for drying takes place and, at the same time, the energy requirement for drying the spunbonded nonwoven is minimized.
  • the efficiency of the drying can be further improved if the spunbonded nonwoven is exposed to hot air during drying and the hot air enriched with water vapor is discharged from the drying process as an exhaust air stream.
  • the drying efficiency decreases with increasing moisture content.
  • the evaporation rate of water from the spunbonded nonwoven can be kept constantly high by means of a continuous exchange of air while the exhaust air flow is removed.
  • the exhaust air flow from the drying process is used at least partially as a drawing air flow for drawing the extruded filaments in the extrusion direction, the energy consumption of the entire process can be further reduced. Since the exhaust air flow from drying is on the one hand warmer than the ambient air otherwise used for drawing, less energy is required for heating the drawing air flow. At the same time, the exhaust air flow already has a moisture content that is advantageous for drawing the filaments, so that additional conditioning of the drawing air flow with steam can be omitted.
  • the moistening of the drawing air stream can have a positive effect on the product properties of the finished spunbonded nonwoven, but the costs for an additional steam injection would be very high in order to achieve the desired moisture content.
  • the exhaust air stream from drying naturally has a very high moisture content, it has been shown that it can be used reliably, directly or at least partially, as a stretching air stream and thus no additional energy is required for heating and humidifying the stretching air stream.
  • the temperature of the exhaust air stream from the drying, which is fed in as the drawing air stream for drawing the filaments is advantageously between 80 ° C. and 160 ° C., preferably between 90 ° C. and 140 ° C., particularly preferably between 100 ° C.
  • the moisture content of the exhaust air flow is advantageously between 5 g / kg and 500 g / kg, preferably between 10 g / kg and 250 g / kg, particularly preferably between 20 g / kg and 150 g / kg.
  • Such an exhaust air flow can be reliably suitable as a drawing air flow and have a positive influence on the product properties of the finished spunbonded nonwoven, such as the filament diameter.
  • the method according to the invention thus enables, in particular, a minimization of the total energy consumption for drying and for conditioning the drawing air stream.
  • the drying can also be operated with a higher supply of fresh air and lower temperatures and nevertheless a high evaporation rate for gentle drying of the product can be achieved.
  • the hot air for drying can advantageously be heated to a temperature of less than or equal to 150.degree. C., in particular of less than or equal to 140.degree. C., particularly preferably of less than or equal to 130.degree.
  • the evaporation rates of water achieved according to the invention by applying hot air to the spunbond during drying can be between 500 and 1500 kg / h, in particular between 600 and 1400 kg / h, particularly preferably between 700 and 1300 kg / h, per meter of spunbond width.
  • the spinning mass is a Lyocell spinning mass, that is to say a solution of cellulose in a direct solvent for cellulose.
  • Such a direct solvent for cellulose is a solvent in which the cellulose is present in a non-derivatized form.
  • This can preferably be a mixture of a tertiary amine oxide such as NMMO (N-methylmorpholine-N-oxide) and water.
  • NMMO N-methylmorpholine-N-oxide
  • ionic liquids or mixtures with water are also suitable as direct solvents.
  • the cellulose content in the spinning mass can be 3% by weight to 17% by weight, in preferred embodiment variants 5% by weight to 15% by weight, and in particularly preferred embodiment variants 6% by weight to 14% by weight. -%.
  • the cellulose throughput per spunbond nozzle can be 5 kg / h to 500 kg / h per m nozzle length.
  • the moisture content of the spunbonded nonwoven before drying can be between 0.5 kg and 8 kg water per kg cellulose, preferably between 1 kg and 6 kg water per kg cellulose, particularly preferably between 2 kg and 4 kg water per kg cellulose.
  • the relative moisture content of the spunbonded nonwoven after drying can be below 30%, preferably below 20%, particularly preferably below 14%.
  • the internal structure of the spunbond can also be reliably controlled if the filaments extruded and drawn from the spinneret are partially coagulated.
  • the spinneret can be assigned a coagulation air stream having a coagulation liquid for at least partial coagulation of the filaments, whereby the internal structure of the spunbond can be controlled in a targeted manner.
  • a stream of coagulation air can preferably be a fluid containing water and / or a fluid containing coagulant, for example gas, mist, steam, etc.
  • the coagulation liquid can be a mixture of deionized water and 0% by weight to 40% by weight NMMO, preferably 10% by weight to 30% by weight NMMO, particularly preferred 15 wt% to 25 wt% NMMO. A particularly reliable coagulation of the extruded filaments can be achieved.
  • the present invention further relates to a device for the production of spunbonded nonwoven according to claim 10.
  • a device for producing spunbonded nonwoven can be created in a structurally very simple manner, which is characterized by low energy consumption and thus low operating costs.
  • both the exhaust air flows from the stretching device and from the washing device which usually have a larger amount of residual energy, can be used to heat the hot air for the dryer.
  • flow-connected is understood to mean the existence of a connection to enable, in particular a continuous, flow of fluids between two devices.
  • the exhaust air flow from the dryer which usually has residual heat and a high moisture content, can also be used at least partially to heat fresh air to the hot air.
  • the energy requirement of the entire device can be reduced further if the outlet of the dryer is in flow connection with the stretching device for supplying the stretching air stream. In this way, the exhaust air stream from the dryer can be fed directly to the stretching device as a stretching air stream. In this way it can be ensured that energy losses within the device are minimized.
  • suction for removing the exhaust air stream from the stretching device is provided in the area of the perforated conveying device, a structurally simple suction of the used stretching air stream can take place through the perforated conveying device.
  • the suction of the stretching devices being fluidically connected to the heat exchanger of the dryer, then several spinning systems can be positioned one behind the other in order to produce multi-layer spunbonded nonwovens and to dry them using the device according to the invention.
  • the suction devices for removing the exhaust air flows from all the stretching devices can be flow-connected to the dryer and thus further reduce the energy requirement for heating the fresh air. Even in the case of several exhaust air flows from one or more washes, the corresponding suction devices can be flow-connected to the dryer.
  • the exhaust air flow from the dryer can be flow-connected to a plurality of stretching devices for the supply of stretching air, as a result of which the exhaust air flow from the dryer can be used particularly efficiently.
  • several dryers can also be provided one behind the other, with the spunbonded nonwoven running through the several dryers one after the other.
  • the spunbonded nonwoven can be dried at temperatures below 100.degree. C., in preferred variants at temperatures below 90.degree. C., or in particularly preferred variants at temperatures below 80.degree.
  • the device according to the invention for the production of cellulosic spunbonded web, with energy recovery from the moist and hot exhaust air streams after the suction of the stretching device and the laundry can reduce the need for hot air circulation in the dryer and increase the proportion of fresh air in the dryer. Finally, higher evaporation rates can be achieved with a lower temperature of the hot air in the dryer.
  • Fig. 1 is a schematic representation of the method according to the invention.
  • FIG. 2 shows a schematic representation of the method according to the invention and of FIG
  • a spinning mass 2 is produced from a cellulosic raw material and fed to a spinneret 3 of the device 200.
  • the cellulosic raw material for the production of the spinning mass 2 which production is not shown in detail in the figures, can be a conventional pulp made of wood or other vegetable raw materials. However, it is also conceivable that the cellulosic raw material consists at least partially of production waste from the production of spunbonded fabrics or recycled textiles.
  • the spinning mass 2 is a solution of cellulose in NMMO and water, the cellulose content in the spinning mass being between 3% by weight and 17% by weight.
  • the spinning mass 2 is then extruded in a next step through a multiplicity of nozzle holes in the spinning nozzle 3 to form filaments 4.
  • the extruded filaments 4 are then accelerated by exposure to a drawing air stream and drawn in the extrusion direction.
  • stretching air 5 is fed to a stretching device 6 in the spinneret 3, the stretching device 6 ensuring that the stretching air stream emerges from the spinneret 3 and the filaments 4 are accelerated after their extrusion.
  • the stretching air stream can emerge between the nozzle holes of the spinneret 3.
  • the stretching air stream can alternatively exit around the nozzle holes. However, this is not shown in more detail in the figures.
  • Such spinnerets 3 with stretching devices 6 for generating a stretching air stream are known from the prior art (US Pat. No. 3,825,380 A, US 4,380,570 A, WO 2019/068764 A1).
  • the extruded and drawn filaments 4 are also acted upon by a coagulation air stream 7, which is provided by a coagulation device 8.
  • the coagulation air flow 7 usually has a coagulation liquid, for example in the form of steam, mist, etc.
  • the drawn and at least partially coagulated filaments 4 are then placed in a random position on the conveyor 9 and form the spunbonded web 1 there. After the spunbonded web 1 has been formed, it is subjected to washing 10 and hydroentanglement 11.
  • the washed and hydroentangled spunbonded nonwoven 1 is then subjected in a next step to drying 12 in a dryer 13 in order to remove the remaining moisture and to obtain a finished spunbonded nonwoven 1. Finally, the method 200 is concluded by optionally winding 14 and / or packaging the finished spunbonded nonwoven 1.
  • hot air 15 is applied to the spunbonded web 1.
  • the hot air 15 is formed by heating an air stream 16, in particular fresh air 16, in that it is passed through a plurality of heat exchangers 17.
  • the heat exchangers 17 are fed by the exhaust air stream 18 from the drawing, the exhaust air stream 19 from the laundry 10, and the exhaust air stream 20 from the drying unit 12.
  • the residual heat in the exhaust air streams 18, 19, 20 in the heat exchangers 17 is transferred to the fresh air 16 and this is thus heated.
  • the device 100 has a suction device 21 for removing the used stretching air stream as an exhaust air stream 18.
  • the suction device 21 is advantageously arranged in the area of the perforated conveying device 9 on which the spunbonded nonwoven 1 is formed.
  • a suction device 22 is provided as exhaust air flow 19 to remove the moisture-laden air.
  • the suction 20 and the suction 21 are each provided with a heat exchanger 17 flow connected.
  • the outlet of the dryer 13 is in flow connection with the heat exchanger 17 for discharging the used hot air laden with water vapor as an exhaust air stream 20.
  • the heat exchangers 17 can be designed as separate heat exchangers 17 and thus enable the air flow 16, or the fresh air 16, to be gradually heated to form the hot air 15.
  • the heat exchanger 17 can be designed as a single unit, with all exhaust air flows 18, 19, 20 running through the individual heat exchanger 17.
  • the exhaust air streams 18, 19, 20 from the drawing, the laundry 10 and the drying 12 are then discharged after they have been passed through the heat exchanger 17.
  • the exhaust air streams 18, 19, 20 can be further treated for the recovery of water and / or solvent.
  • FIG. 2 shows a method 101 according to the invention for producing cellulosic spunbonded nonwoven 1 according to a second embodiment variant or a device 201 for this purpose.
  • the method 101 differs from the method 100 shown in FIG. 1 in that the hot air enriched with water vapor is discharged from the drying unit 12 as exhaust air stream 20 through the heat exchanger 17 and, after passing through the heat exchanger 17, continues as stretching air 5 to the stretching device 6 is supplied, for which purpose the outlet of the dryer 13 for the exhaust air stream 20 is flow-connected to the stretching device 6.
  • a particularly efficient use of energy of the entire device 101 or of the entire method 201 can thus be achieved.
  • the cellulose throughput was 200 kg / h with a 1 m spunbond web width, and the spunbond web produced had a weight per unit area of 45 g / m 2 .
  • the moisture content of the spunbonded nonwoven on entry into the dryer was about 3 kg of water per kg of cellulose.
  • the finished spunbonded nonwoven had a relative moisture content of less than 10% after drying.
  • the temperature and the relative moisture content of the exhaust air flow from the spunbond storage area vary, namely between about 40 ° C and 70% at 80 mbar negative pressure in the spunbond storage area and about 60 ° C and 30%. at 140 mbar negative pressure in the spunbond depositing surface.
  • the temperature and the relative moisture content of the exhaust air flow from the laundry in turn varied depending on the negative pressure in the suction pipes of the laundry between 40 ° C and 80% at 150 mbar negative pressure and 90 ° C and 30% at 250 mbar negative pressure.
  • the exhaust air flow from the spunbond deposit was between 15,000 Nm 3 (standard cubic meters) and 30,000 Nm 3 per hour, and the exhaust air flow from the laundry was between 10,000 Nm 3 and
  • Heat recovery from the exhaust air streams would on the one hand lose a lot of energy and on the other hand would require a lot of energy to heat the fresh air in order to heat it from 15 ° C to 140 ° C, for example.
  • the heat recovery according to the invention by supplying the exhaust air streams from stretching and washing enabled the energy costs for drying to be reduced by up to 70%, since the fresh air could be tempered to 70 ° C. after passing through the heat exchanger.
  • the exhaust air stream from the drying area was fed in as drawing air for drawing the filaments, this having a temperature between 80 ° C. and 160 ° C. with a moisture content between 5 g / kg and 500 g / kg.
  • Exhaust air flow from drying as stretching air could have a positive influence on the properties of the spunbonded nonwoven.
  • the fiber diameter could be Constant drawing air pressure and spinning mass throughput can be reduced by up to 50%.
  • the use of the already very humid exhaust air stream from the drying process has reduced the costs of humidifying and heating the stretching air can be reduced by up to 70%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nonwoven Fabrics (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

Es wird ein Verfahren zur Herstellung von Spinnvlies (1) und eine Vorrichtung hierzu gezeigt,, bei dem eine Spinnmasse (2) durch eine Vielzahl von Düsenlöchern zumindest einer Spinndüse (3) zu Filamenten (4) extrudiert wird und die Filamente (4) zur Verstreckung in Extrusionsrichtung mit einem Verstreckungsluftstrom beaufschlagt werden, bei dem die Filamente (4) zur Bildung eines Spinnvlieses (1) auf einer perforierten Fördereinrichtung (9) abgelegt werden und bei dem das Spinnvlies (1) in weiterer Folge zumindest einer Wäsche (10) und einer Trocknung (12) mittels Heißluft (15) unterzogen wird, wobei bei der Verstreckung und der Wäsche (10) jeweils ein Abluftstrom (18, 19) abgeführt wird. Um in dem Verfahren den Energieverbrauch während der Trocknung des Spinnvlieses ohne Verminderung der Produktqualität reduzieren zu können, wird vorgeschlagen, dass die Heißluft (15) für die Trocknung (12) zumindest teilweise durch Vorwärmen eines Luftstroms (16) mittels eines der Abluftströme (18, 19) aus der Verstreckung und der Wäsche (10) erzeugt wird.

Description

Verfahren und Vorrichtung zur Herstellung von Spinnylies
Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Herstellung von Spinnvlies, bei dem eine Spinnmasse durch eine Vielzahl von Düsenlöchern zumindest einer Spinndüse zu Filamenten extrudiert wird und die Filamente zur Verstreckung in Extrusionsrichtung mit einem Verstreckungsluftstroms beaufschlagt werden, bei dem die Filamente zur Bildung eines Spinnvlieses auf einer perforierten Fördereinrichtung abgelegt werden und bei dem das Spinnvlies in weiterer Folge zumindest einer Wäsche und einer Trocknung mittels Heißluft unterzogen wird, wobei bei der Verstreckung und der Wäsche jeweils ein Abluftstrom abgeführt wird.
Stand der Technik
Aus dem Stand der Technik ist die Herstellung von Spinnvliesen bzw. Vliesstoffen einerseits nach dem Spunbond- und andererseits nach dem Meltblown-Verfahren bekannt. Beim Spunbond-Verfahren (bspw. GB 2 114052 A oder EP 3 088 585 Al) werden die Filamente durch eine Düse extrudiert und durch eine darunterliegende Verstreckungseinheit abgezogen und verstreckt. Beim Meltblown-Verfahren dagegen (bspw. US 5,080,569 A, US 4,380,570 A oder US 5,695,377 A) werden die extrudierten Filamente bereits beim Austritt aus der Düse von heißer, schneller Prozessluft mitgerissen und verstreckt. Bei beiden Technologien werden die Filamente auf einer Ablagefläche, beispielsweise einem perforierten Förderband, in Wirrlage zu einem Vliesstoff abgelegt, zu Nachbearbeitungsschritten transportiert und schließlich als Vliesrollen aufgewickelt.
Auch ist es aus dem Stand der Technik bekannt, cellulosische Spinnvliese gemäß der Spundbond-Technologie (bspw. US 8,366,988 A) und gemäß Meltblown-Technologie (bspw. US 6,358,461 A und US 6,306,334 A) herzustellen. Dabei wird eine Lyocell-Spinnmasse entsprechend den bekannten Spundbond- oder Meltblownverfahren extrudiert und verstreckt, vor der Ablage zu einem Vlies werden die Filamente allerdings noch zusätzlich mit einem Koagulationsmittel in Kontakt gebracht, um die Zellulose zu regenerieren und formstabile Filamente zu erzeugen. Die nassen Filamente werden schließlich in Wirrlage als Vliesstoff abgelegt.
Im Vergleich zu thermoplastischen Spinnvliesstoffen oder Stapelfaservliesstoffen wird für die Trocknung von cellulosichen Spinnvliesstoffen eine sehr hohe Trocknerleistung benötigt, da die beispielsweise direkt aus Lyocell-Spinnmasse hergestellten Spinnvliese nicht nur ein hohes Wasserhai tevermögen aufweisen und viel Wasser in den Trockner eintragen, sondern auch die Kristallisation der Cellulose-Moleküle erst durch den Trocknungsschritt vollendet wird. Die üblicherweise eingesetzten Trockner für die Trocknung von Vliesstoffen sind beispielsweise in DE 102009 016 019 Al und DE 102012 109 878 Al beschrieben. Üblicherweise sind Vliesstofftrockner als Durchlufttrockner ausgeführt und werden einer Wasserstrahlverfestigungsanlage nachgeschaltet. Vor der Wasserstrahlverfestigung befindet sich meistens eine Karde, mit der das Vlies hergestellt wird.
Bei der Herstellung von cellulosischem Spinnvlies wird gegenüber der Herstellung konventioneller Vliesstoffe allerdings eine hohe Wasserverdampfung in kurzer Zeit benötigt, was mit einem hohen Energieeinsatz verbunden ist. So muss bei cellulosischen Spinnvliesen gegenüber cellulosischen Stapelfaser- Vliesstoffen in der Regel die 2 bis 4-fache Menge an Wasser im Trockner abgedampft werden.
Elm die hohe Wasserverdampfung zu erreichen und trotzdem energiesparsam zu trocknen, wird beim Stand der Technik die Luft im Trockner zirkuliert und immer wieder aufgeheizt. Nur ein Teil wird als Abluft abgeführt und zur Vorwärmung der Frischluft verwendet. Die laufende Anreicherung der Heißluft im Trockner mit Wasserdampf führt allerdings dazu, dass die Temperatur der Heißluft im Trockner auf über 150 °C erhitzt werden muss, um die benötigte Verdampfungsleistung aufrecht zu erhalten. Speziell bei der Trocknung von cellulosischen Spinnvliesen führen diese hohen Temperaturen aber zu negativen Auswirkungen, insbesondere einer Vergilbung und Versprödung des Produkts.
Der Stand der Technik bietet somit keine zufriedenstellende Lösung für die energieeffiziente Hochleistungs-Trocknung von cellulosischem Spinnvlies, ohne die Produkteigenschaften nicht negativ zu beeinflussen.
Offenbamng der Erfindung
Die vorliegende Erfindung hat sich daher die Aufgabe gestellt, ein Verfahren der eingangs erwähnten Art dahingehend zu verbessern, dass der Energieverbrauch während der Trocknung des Spinnvlieses ohne Verminderung der Produktqualität reduziert werden kann.
Die Erfindung löst die gestellte Aufgabe dadurch, dass die Heißluft für die Trocknung zumindest teilweise durch Vorwärmen eines Luftstroms mittels eines der Abluftströme aus der Verstreckung und der Wäsche erzeugt wird.
Wird die Heißluft für die Trocknung zumindest teilweise durch Vorwärmen eines Luftstroms mittels eines der Abluftströme aus der Verstreckung und der Wäsche vorgewärmt, so kann einerseits eine zuverlässige Vorwärmung des Luftstroms zu der Heißluft für die Trocknung erfolgen und gleichzeitig der Energiebedarf bei der Trocknung des Spinnvlieses minimiert werden.
Dies gilt besonders dann, wenn als Luftstrom Frischluft verwendet wird und mittels eines der Abluftströme aus der Verstreckung und der Wäsche zu der Heißluft erwärmt wird. Durch Verwendung von trockener Frischluft und Erwärmung der Frischluft zu Heißluft wird eine Hochleistungstrocknung bei geringeren Temperaturen erlaubt und so eine schonende Trocknung des Produkts ohne Qualitätseinbußen ermöglicht. Wird andererseits, wie im Stand der Technik, die Abluft aus der Trocknung wieder als bereits vorgewärmte Luft der Trocknung zugeführt, so führt dies zu einem Anstieg des Feuchtigkeitsgehaltes in der Heißluft und die Effizienz während der Trocknung sinkt. Wird jedoch stattdessen Frischluft zugeführt und diese zu Heißluft erwärmt, so geht ein großer Teil der in der Abluft des Trockners gespeicherten Energie verloren, wodurch der Energieaufwand für die Trocknung drastisch steigt.
Die Effizienz der Trocknung kann weiter verbessert werden, wenn das Spinnvlies in der Trocknung mit der Heißluft beaufschlagt wird und die mit Wasserdampf angereicherte Heißluft als Abluftstrom aus der Trocknung abgeführt wird. Durch die Anreicherung der Heißluft mit Wasserdampf sinkt die Effizienz der Trocknung mit steigendem Feuchtigkeitsgehalt. Durch einen kontinuierlichen Luftaustausch unter Abführung des Abluftstroms kann hingegen die Verdampfungsrate von Wasser aus dem Spinnvlies konstant hoch gehalten werden.
Wird zudem der Abluftstrom aus der Trocknung zumindest teilweise als Verstreckungsluftstrom zur Verstreckung der extrudierten Filamente in Extrusionsrichtung verwendet, so kann der Energieverbrauch des gesamten Verfahrens weiter gesenkt werden. Da der Abluftstrom aus der Trocknung einerseits wärmer ist als die sonst zur Verstreckung verwendete Umgebungsluft, wird weniger Energie für die Heizung des Verstreckungsluftstroms benötigt. Gleichzeitig weist der Abluftstrom bereits einen für die Verstreckung der Filamente vorteilhaften Feuchtegehalt auf, womit eine zusätzliche Konditionierung des Verstreckungsluftstroms mit Dampf ausbleiben kann.
Insbesondere in Bezug auf cellulosische Spinnvliese hat sich herausgestellt, dass sich die Befeuchtung des Verstreckungsluftstroms positiv auf die Produkteigenschaften des fertigen Spinnvlieses auswirken kann, aber die Kosten für eine zusätzliche Dampfeindüsung sehr hoch wären, um den gewünschten Feuchtegehalt zu erreichen. Da der Abluftstrom aus der Trocknung naturgemäß einen sehr hohen Feuchtegehalt aufweist, hat sich gezeigt, dass dieser zuverlässig direkt oder zumindest teilweise als Verstreckungsluftstrom verwendet werden kann und somit keine zusätzliche Energie für Heizung und Befeuchtung des Verstreckungsluftstroms benötigt wird. Vorteilhaft beträgt die Temperatur des Abluftstroms aus der Trocknung, der als Verstreckungsluftstrom zur Verstreckung der Filamente zugeführt wird, zwischen 80 °C und 160 °C, bevorzugt zwischen 90 °C und 140 °C, besonders bevorzugt zwischen 100 °C und 130 °C. Zudem beträgt der Feuchtigkeitsgehalt des Abluftstroms vorteilhaft zwischen 5 g/kg und 500 g/kg, bevorzugt zwischen 10 g/kg und 250 g/kg, besonders bevorzugt zwischen 20 g/kg und 150 g/kg. Ein solcher Abluftstrom kann sich zuverlässig als Verstreckungsluftstrom eignen und die Produkteigenschaften des fertigen Spinnvlieses, wie etwa die Filamentdurchmesser, positiv beeinflussen.
Das erfindungsgemäße Verfahren ermöglicht somit insbesondere eine Minimierung des Gesamtenergieverbrauches für die Trocknung sowie für die Konditionierung des Verstreckungsluftstroms. Dadurch kann erfindungsgemäß die Trocknung auch mit einer höheren Frischluftzufuhr und geringeren Temperaturen betrieben werden und trotzdem eine hohe Verdampfungsrate für eine schonende Trocknung des Produkts erreicht werden.
So kann vorteilhafterweise die Heißluft für die Trocknung auf eine Temperatur von kleiner gleich 150 °C, insbesondere von kleiner gleich 140 °C, besonders bevorzugt von kleiner gleich 130 °C, aufgeheizt werden.
Die erfindungsgemäß durch Beaufschlagung des Spinnvlieses mit Heißluft in der Trocknung erzielten Verdampfungsraten von Wasser können zwischen 500 und 1500 kg/h, insbesondere zwischen 600 und 1400 kg/h, besonders bevorzugt zwischen 700 und 1300 kg/h, pro Meter Spinnvliesbreite betragen.
Die zuvor beschriebenen Vorteile des Verfahrens kommen besonders dann zum Tragen, wenn die Spinnmasse eine Lyocell-Spinnmasse, also eine Lösung von Cellulose in einem Direktlösemittel für Cellulose ist.
Ein solches Direktlösemittel für Cellulose ist ein Lösemittel, in dem die Cellulose in nicht- derivatisierter Form gelöst vorliegt. Dies kann bevorzugt ein Gemisch aus einem tertiären Aminoxid, wie etwaNMMO (N-Methylmorpholin-N-oxid), und Wasser sein. Alternativ eignen sich als Direktlösemittel allerdings beispielsweise auch ionische Flüssigkeiten, bzw. Mischungen mit Wasser.
Der Gehalt an Cellulose in der Spinnmasse kann dabei 3 Gew.-% bis 17 Gew.-%, in bevorzugten Ausführungsvarianten 5 Gew.-% bis 15 Gew.-%, und in besonders bevorzugen Ausführungsvarianten 6 Gew.-% bis 14 Gew.-%, betragen. Der Cellulosedurchsatz pro Spinnvliesdüse kann 5 kg/h bis 500 kg/h pro m Düsenlänge betragen.
Der Feuchtigkeitsgehalt des Spinnvlieses kann vor der Trocknung zwischen 0,5 kg und 8 kg Wasser pro kg Cellulose, bevorzugt zwischen 1 kg und 6 kg Wasser pro kg Cellulose, besonders bevorzugt zwischen 2 kg und 4 kg Wasser pro kg Cellulose, betragen.
Der relative Feuchtigkeitsgehalt des Spinnvlieses kann nach der Trocknung unter 30 %, bevorzugt unter 20 %, besonders bevorzugt unter 14 % betragen.
Die innere Struktur der Spinnvlieses kann zudem zuverlässig gesteuert werden, wenn die aus der Spinndüse extrudierten und verstreckten Filamente teilweise koaguliert werden.
Dazu kann der Spinndüse ein eine Koagulationsflüssigkeit aufweisender Koagulationsluftstrom zur zumindest teilweisen Koagulation der Filamente zugeordnet sein, wodurch die innere Struktur des Spinnvlieses gezielt gesteuert werden kann. Ein Koagulationsluftstrom kann dabei vorzugsweise ein wasserhaltiges und/oder Koagulationsmittel enthaltendes Fluid, bspw. Gas, Nebel, Dampf, etc., sein.
Wird als Direktlösemittel in der Lyocell-Spinnmasse NMMO verwendet, so kann die Koagulationsflüssigkeit ein Gemisch aus vollentsalztem Wasser und 0 Gew.-% bis 40 Gew.-% NMMO, bevorzugt 10 Gew.-% bis 30 Gew.-% NMMO, besonders bevorzugt 15 Gew.-% bis 25 Gew.-% NMMO, sein. Dabei kann eine besonders zuverlässige Koagulation der extrudierten Filamente erreicht werden.
Die vorliegende Erfindung betrifft weiters eine Vorrichtung zur Herstellung von Spinnvlies gemäß Anspruch 10.
Ist in der erfindungsgemäßen Vorrichtung zumindest eine der Absaugungen der Verstreckungseinrichtung und der Wascheinrichtung mit dem Wärmetauscher des Trockners strömungsverbunden, so kann auf konstruktiv sehr einfache Weise eine Vorrichtung zur Herstellung von Spinnvlies geschaffen werden, welche sich durch geringen Energieverbrauch und somit durch niedrige Betriebskosten auszeichnet. So können sowohl die Abluftströme aus der Verstreckungseinrichtung als auch aus der Wascheinrichtung, welche üblicherweise eine größere Menge an Restenergie aufweisen, zur Erwärmung der Heißluft für den Trockner verwendet werden. Unter „strömungsverbunden“ wird in diesem Zusammenhang das Bestehen einer Verbindung zur Ermöglichung einer, insbesondere kontinuierlichen, Strömung von Fluiden zwischen zwei Einrichtungen verstanden.
Ist zudem der Auslass des Trockners mit dem Wärmetauscher des Trockners strömungsverbunden, so kann ebenso der Abluftstrom aus dem Trockner, welcher üblicherweise eine Restwärme und einen hohen Feuchtigkeitsgehalt aufweist, zumindest teilweise zur Erwärmung von Frischluft zu der Heißluft verwendet werden.
Der Energiebedarf der gesamten Vorrichtung kann weiter gesenkt werden, wenn der Auslass des Trockners mit der Verstreckungseinrichtung zur Zufuhr des Verstreckungsluftstroms strömungsverbunden ist. Auf diese Weise kann direkt der Abluftstrom aus dem Trockner als Verstreckungsluftstrom an die Verstreckungseinrichtung zugeführt werden. So kann sichergestellt werden, dass Energieverluste im Rahmen der Vorrichtung minimiert werden.
Ist die Absaugung zum Abführen des Abluftstroms aus der Verstreckungseinrichtung im Bereich der perforierten Fördereinrichtung vorgesehen, so kann eine konstruktiv einfache Absaugung des verbrauchten Verstreckungsluftstroms durch die perforierte Fördereinrichtung hindurch erfolgen.
Weist die Vorrichtung mehrere Spinndüsen mit zugeordneten Verstreckungseinrichtungen auf, wobei die Absaugungen der Verstreckungseinrichtungen mit dem Wärmetauscher des Trockners strömungsverbunden sind, so können mehrere Spinnsysteme hintereinander positioniert werden, um mehrlagige Spinnvliese zu erzeugen und mittels der erfindungsgemäßen Vorrichtung zu trocknen. Die Absaugungen zur Abfuhr der Abluftströme aller Verstreckungseinrichtungen können dabei mit dem Trockner strömungsverbunden sein, und so den Energiebedarf für die Erwärmung der Frischluft weiter reduzieren. Auch im Falle mehrerer Abluftströme aus einer oder mehreren Wäschen können die entsprechenden Absaugungen mit dem Trockner strömungsverbunden sein.
So kann im Gegenzug der Abluftstrom des Trockners mit mehreren Verstreckungseinrichtungen zur Zufuhr von Verstreckungsluft strömungsverbunden sein, wodurch eine besonders effiziente Nutzung des Abluftstroms aus dem Trockner erfolgen kann.
Erfmdungsgemäß können auch mehrere Trockner hintereinander vorgesehen sein, wobei das Spinnvlies die mehreren Trockner der Reihe nach durchläuft. Das Spinnvlies kann dabei schon bei Temperaturen unter 100°C, in bevorzugten Varianten bei Temperaturen unter 90°C, bzw. in besonders bevorzugten Varianten bei Temperaturen unter 80°C getrocknet werden. Durch die erfindungsgemäße Vorrichtung zur Herstellung von cellulosischem Spinnvlies, mit Energierückgewinnung aus den feuchten und heißen Abluftströmen nach den Absaugungen der Verstreckungseinrichtung und der Wäsche, kann die Notwendigkeit der Zirkulation der Heißluft im Trockner verringert werden und der Anteil an Frischluft im Trockner erhöht werden. Schließlich können hierbei höhere Verdampfungsraten bei geringerer Temperatur der Heißluft im Trockner erreicht werden.
Kurzbeschreibung der Figuren
Im Folgenden werden die Ausführungsvarianten der Erfindung anhand mehrerer Figuren dargestellt. Es zeigen:
Fig. 1 eine schematische Darstellung des erfindungsgemäßen Verfahrens sowie der
Vorrichtung gemäß einer ersten Ausführungsvariante, und Fig. 2 eine schematische Darstellung des erfindungsgemäßen Verfahrens sowie der
Vorrichtung gemäß einer zweiten Ausführungsvariante.
Wege zur Ausführung der Erfindung
In Fig. 1 wird ein Verfahren 100 zur Herstellung von cellulosischem Spinnvlies 1 gemäß einer ersten Ausführungsvariante bzw. eine Vorrichtung 200 zur Durchführung des Verfahrens 100 gezeigt. In einem ersten Verfahrensschritt wird dabei eine Spinnmasse 2 aus einem cellulosi sehen Rohmaterial erzeugt und an eine Spinndüse 3 der Vorrichtung 200 zugeführt. Das cellulosische Rohmaterial zur Herstellung der Spinnmasse 2, welche Herstellung in den Figuren nicht näher dargestellt ist, kann dabei ein konventioneller Zellstoff aus Holz oder anderen pflanzlichen Ausgangsstoffen sein. Es ist aber ebenso denkbar, dass das cellulosische Rohmaterial zumindest teilweise aus Produktionsabfällen der Spinnvlies-Erzeugung oder recycelten Textilien besteht. Die Spinnmasse 2 ist dabei eine Lösung aus Cellulose in NMMO und Wasser, wobei der Gehalt an Cellulose in der Spinnmasse zwischen 3 Gew.-% und 17 Gew.-% beträgt.
Die Spinnmasse 2 wird dann in einem nächsten Schritt durch eine Vielzahl von Düsenlöchem der Spinndüse 3 zu Filamenten 4 extrudiert. Die extrudierten Filamente 4 werden dann durch Beaufschlagung mit einem Verstreckungsluftstrom beschleunigt und in Extrusionsrichtung verstreckt. Zur Erzeugung des Verstreckungsluftstroms wird einer Verstreckungseinrichtung 6 in der Spinndüse 3 Verstreckungsluft 5 zugeführt, wobei die Verstreckungseinrichtung 6 dafür sorgt, dass der Verstreckungsluftstrom aus der Spinndüse 3 austritt und die Filamente 4 nach deren Extrusion beschleunigt werden. In einer Ausführungsvariante kann der Verstreckungsluftstroms dabei zwischen den Düsenlöchem der Spinndüse 3 austreten. In einer weiteren Ausführungsvariante kann der Verstreckungsluftstrom alternativ um die Düsenlöcher herum austreten. Dies ist in den Figuren jedoch nicht näher dargestellt. Solche Spinndüsen 3 mit Verstreckungseinrichtungen 6 zur Erzeugung eines Verstreckungsluftstroms sind aus dem Stand der Technik (US 3,825,380 A, US 4,380,570 A, WO 2019/068764 Al) bekannt.
Die extrudierten und verstreckten Filamente 4 werden zudem mit einem Koagulationsluftstrom 7, welcher durch eine Koagulationseinrichtung 8 bereitgestellt wird, beaufschlagt. Der Koagulationsluftstrom 7 weist in der Regel eine Koagulationsflüssigkeit auf, etwa in Form von Dampf, Nebel, etc. Durch Kontakt der Filamente 4 mit dem Koagulationsluftstrom 7 und der darin enthaltenen Koagulationsflüssigkeit werden die Filamente 4 zumindest teilweise koaguliert, was insbesondere Verklebungen zwischen den einzelnen extrudierten Filamenten 4 reduziert.
Die verstreckten und zumindest teilweise koagulierten Filamente 4 werden dann in Wirrlage auf der Fördereinrichtung 9 abgelegt und bilden dort das Spinnvlies 1. Nach der Bildung des Spinnvlieses 1 wird dieses einer Wäsche 10 und einer Wasserstrahlverfestigung 11 unterzogen.
Das gewaschene und wasserstrahlverfestigte Spinnvlies 1 wird dann in einem nächsten Schritt einer Trocknung 12 in einem Trockner 13 unterzogen, um die verbliebene Feuchtigkeit zu entfernen und ein fertiges Spinnvlies 1 zu erhalten. Schließlich wird das Verfahren 200 durch optionales Aufwickeln 14 und/oder Verpacken des fertigen Spinnvlieses 1 abgeschlossen.
Während der Trocknung 12 im Trockner 13 wird das Spinnvlies 1 mitHeißluft 15 beaufschlagt. Die Heißluft 15 wird dabei durch Erwärmung eines Luftstroms 16, insbesondere Frischluft 16, gebildet, indem dieser durch mehrere Wärmetauscher 17 geleitet wird. Die Wärmetauscher 17 werden, wie in Fig. 1 gezeigt, durch den Abluftstrom 18 aus der Verstreckung, den Abluftstrom 19 aus der Wäsche 10, sowie den Abluftstrom 20 aus der Trocknung 12 gespeist. Dabei wird die Restwärme in den Abluftströmen 18, 19, 20 in den Wärmetauschern 17 auf die Frischluft 16 übertragen und diese damit erwärmt.
Unterhalb der Verstreckung weist die Vorrichtung 100 hierfür eine Absaugung 21 zum Abführen des verbrauchten Verstreckungsluftstroms als Abluftstrom 18 auf. Die Absaugung 21 ist dabei vorteilhafterweise im Bereich der perforierten Fördereinrichtung 9 angeordnet, auf welcher das Spinnvlies 1 gebildet wird. Gleiches gilt für die Wäsche 10, wo zum Abführen der mit Feuchtigkeit beladenen Luft als Abluftstrom 19 eine Absaugung 22 vorgesehen ist. Die Absaugung 20 und die Absaugung 21 sind dabei jeweils mit einem Wärmetauscher 17 strömungsverbunden. In ähnlicher Weise ist der Auslass des Trockners 13 zum Abführen der verbrauchten und mit Wasserdampf beladenen Heißluft als Abluftstrom 20 mit dem Wärmetauscher 17 strömungsverbunden.
Die Wärmetauscher 17 können in einer Ausführungsvariante, wie in Fig. 1 gezeigt, als getrennte Wärmetauscher 17 ausgeführt sein und so eine stufenweise Erwärmung des Luftstroms 16, bzw. der Frischluft 16, zur Heißluft 15 ermöglichen. Alternativ kann der Wärmetauscher 17 in einer weiteren Ausführungsvariante, welche in den Figuren nicht näher dargestellt ist, als einzelne Einheit ausgeführt sein, wobei alle Abluftströme 18, 19, 20 durch den einzelnen Wärmetauscher 17 laufen.
Die Abluftströme 18, 19, 20 aus der Verstreckung, der Wäsche 10 und der Trocknung 12 werden dann, nachdem sie durch die Wärmetauscher 17 geleitet wurden, abgeführt. So können etwa in einer weiteren Ausführungsform, welche in den Figuren nicht näher dargestellt ist, die Abluftströme 18, 19, 20 zur Rückgewinnung von Wasser und/oder Lösungsmittel weiterbehandelt werden.
Durch die mehrstufige Erwärmung der Frischluft 16 in den Wärmetauschern 17 durch verschiedene im Rahmen des Verfahrens 100 zur Herstellung des cellulosischen Spinnvlieses 1 anfallende Abluftströme 18, 19, 20, kann ein Verfahren mit gesamtheitlicher Energienutzung geschaffen werden, welches die Energieverluste minimiert und insbesondere eine zuverlässige und schnelle Trocknung 13 des Spinnvlieses 1 ermöglicht.
Fig. 2 zeigt ein erfindungsgemäßes Verfahren 101 zur Herstellung von cellulosischem Spinnvlies 1 gemäß einer zweiten Ausführungsvariante bzw. eine Vorrichtung 201 hierzu. Das Verfahren 101 unterscheidet sich von dem in Fig. 1 dargestellten Verfahren 100 dahingehend, dass die mit Wasserdampf angereicherte Heißluft aus der Trocknung 12 als Abluftstrom 20 durch den Wärmetauscher 17 ab geführt wird und nach dem Passieren des Wärmetauschers 17 weiter als Verstreckungsluft 5 an die Verstreckungseinrichtung 6 zugeführt wird, wozu der Auslass des Trockners 13 für den Abluftstrom 20 mit der Verstreckungseinrichtung 6 strömungsverbunden ist. Eine besonders effiziente Energienutzung der gesamten Vorrichtung 101 bzw. des gesamten Verfahrens 201 kann so erreicht werden. Hinsichtlich der weiteren Merkmale wird auf die obigen Ausführungen zu Fig. 1 verwiesen.
Beispiel Im Folgenden wird die Erfindung anhand eines Beispiels demonstriert. Im Zuge des erfmdungsgemäßen Verfahrens wurden sowohl der Abluftstrom aus der Verstreckung als auch der Abluftstrom aus der Wäsche an einen Wärmetauscher zugeführt um Frischluft zu erwärmen.
Der Cellulose-Durchsatz betrug dabei 200 kg/h bei 1 m Spinnvliesbreite, und das erzeugte Spinnvlies wies ein Flächengewicht von 45 g/m2 auf. Der Feuchtigkeitsgehalt des Spinnvlieses beim Eintritt in den Trockner betrug dabei etwa 3 kg Wasser pro kg Cellulose. Das fertige Spinnvlies wies nach der Trocknung einen relativen Feuchtigkeitsgehalt von unter 10% auf.
Dabei hat sich gezeigt, dass je nach Unterdrück in der Ablagefläche die Temperatur und der relative Feuchtigkeitsgehalt des Abluftstroms aus der Spinnvliesablage variieren, und zwar zwischen etwa 40 °C und 70 % bei 80 mbar Unterdrück in der Spinnvliesablagefläche und etwa 60 °C und 30 % bei 140 mbar Unterdrück in der Spinnvliesablagefläche.
Die Temperatur und der relative Feuchtigkeitsgehalt des Abluftstroms aus der Wäsche wiederum variierten je nach Unterdrück in den Saugrohren der Wäsche zwischen 40 °C und 80 % bei 150 mbar Unterdrück und 90 °C und 30 % bei 250 mbar Unterdrück.
Weiters hat sich gezeigt, dass die Volumenströme der beiden Abluftströme den Volumenstrom der Frischluft, der an den Trockner zugeführt wird um ein Vielfaches überstiegen. So betrug der Abluftstrom aus der Spinnvliesablage zwischen 15.000 Nm3 (Normkubikmeter) und 30.000 Nm3 pro Stunde, und der Abluftstrom aus der Wäsche zwischen 10.000 Nm3 und
20000 Nm3 pro Stunde, während an den Trockner lediglich zwischen 8.000 Nm3 und
16.000 Nm3 an Frischluft zugeführt wurden. Ohne die erfindungsgemäße
Wärmerückgewinnung aus den Abluftströmen würde einerseits viel Energie verloren gehen und andererseits viel Energie für die Erwärmung der Frischluft benötigt, um diese von bspw. 15 °C auf bspw. 140 °C zu erwärmen.
Durch die erfindungsgemäße Wärmerückgewinnung durch Zufuhr der Abluftströme aus Verstreckung und Wäsche konnten die Energiekosten für die Trocknung um bis zu 70% reduziert werden, da die Frischluft bereits nach Durchführung durch die Wärmetauscher auf 70 °C temperiert werden konnte.
Weiters wurde der Abluftstrom aus der Trocknung als Verstreckungsluft für die Verstreckung der Filamente zugeführt, wobei dieser eine Temperatur zwischen 80 °C und 160 °C mit einem Feuchtigkeitsgehalt zwischen 5 g/kg und 500 g/kg aufwies. Durch Verwendung des
Abluftstroms aus der Trocknung als Verstreckungsluft konnten die Eigenschaften des Spinnvlieses positiv beeinflussen werden. So konnten beispielsweise die Faserdurchmesser bei gleichbleibendem Verstreckungsluftdruck und Spinnmassedurchsatz um bis zu 50 % reduziert werden.
Gegenüber dem Stand der Technik, in dem die Einstellung des Feuchtigkeitsgehalts in der Verstreckungsluft beispielsweise über Dampfeindüsung erfolgt und aufgrund der hohen benötigten Luftmengen sehr kostenintensiv ist, konnten durch Verwendung des ohnehin schon sehr feuchten Abluftstroms aus der Trocknung die Kosten für die Befeuchtung und Heizung der Verstreckungsluft um bis zu 70 % reduziert werden.

Claims

Patentansprüche
1. Verfahren zur Herstellung von Spinnvlies (1), bei dem eine Spinnmasse (2) durch eine Vielzahl von Düsenlöchem zumindest einer Spinndüse (3) zu Filamenten (4) extrudiert wird und die Filamente (4) zur Verstreckung in Extrusionsrichtung mit einem Verstreckungsluftstrom beaufschlagt werden, bei dem die Filamente (4) zur Bildung eines Spinnvlieses (1) auf einer perforierten Fördereinrichtung (9) abgelegt werden und bei dem das Spinnvlies (1) in weiterer Folge zumindest einer Wäsche (10) und einer Trocknung (12) mittels Heißluft (15) unterzogen wird, wobei bei der Verstreckung und der Wäsche (10) jeweils ein Abluftstrom (18, 19) abgeführt wird, dadurch gekennzeichnet, dass die Heißluft (15) für die Trocknung (12) zumindest teilweise durch Vorwärmen eines Luftstroms (16) mittels eines der Abluftströme (18, 19) aus der Verstreckung und der Wäsche (10) erzeugt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Luftstrom (16) Frischluft (16) eingesetzt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Spinnvlies (1) in der Trocknung (12) mit der Heißluft (15) beaufschlagt wird und die mit Wasserdampf angereicherte Heißluft als Abluftstrom (20) aus der Trocknung (12) abgeführt wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der Abluftstrom (20) aus der Trocknung (12) zumindest teilweise als Verstreckungsluftstrom zur Verstreckung der extrudierten Filamente (4) in Extrusionsrichtung verwendet wird.
5. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass der Luftstrom (16) für die Trocknung (12) zumindest teilweise durch den Abluftstrom (20) aus der Trocknung (12) vorgewärmt wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Luftstrom (16) für die Trocknung (12) auf eine Temperatur von kleiner gleich 150 °C, insbesondere von kleiner gleich 140 °C, besonders bevorzugt von kleiner gleich 130 °C, aufgeheizt wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass durch Beaufschlagung des Spinnvlieses (1) mit Heißluft (15) in der Trocknung (12) zwischen 500 und 1.500 kg/h, insbesondere zwischen 600 und 1.400 kg/h, besonders bevorzugt zwischen 700 und 1.300 kg/h, Wasser pro Meter Spinnvliesbreite aus dem Spinnvlies (1) abdampft werden.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Spinnvlies (1) ein cellulosisches Spinnvlies (1), und die Spinnmasse (2) eine Lösung von Cellulose in einem Direktlösemittel, insbesondere einem tertiären Aminoxid in wässriger Lösung, ist.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Filamente (4) nach der Extrusion aus der Spinndüse (3) zumindest teilweise, insbesondere durch Beaufschlagung mit einem Koagulationsluftstrom, welcher eine Koagulationsflüssigkeit aufweist, koaguliert werden.
10. Vorrichtung zur Herstellung von Spinnvlies (1), mit zumindest einer Spinndüse (3) zur Extrusion einer Spinnmasse (2) zu Filamenten (4), mit einer der Spinndüse (3) zugeordneten Verstreckungseinrichtung (6) zur Verstreckung der extrudierten Filamente mittels eines Verstreckungsluftstroms, wobei die Verstreckungseinrichtung (6) eine Absaugung (21) zum Abführen eines Abluftstroms (18) aufweist, mit einer perforierten Fördereinrichtung (9) zur Ablage der Filamente (4) und Bildung des Spinnvlieses (1), mit einer Wascheinrichtung (10) zum Waschen des Spinnvlieses (1) nach dem Bilden, wobei die Wascheinrichtung (10) eine Absaugung (22) zum Abführen eines Abluftstroms (19) aufweist, und mit einem Trockner (13) zum Trocknen des Spinnvlieses (1) mittels Heißluft (15) nach der Wascheinrichtung (10), wobei der Trockner (13) zumindest einen Einlass für Heißluft (15) und einen Auslass für einen Abluftstrom (20) aufweist und wobei die Vorrichtung (100, 101) einen Wärmetauscher (17) zum Erwärmen eines Luftstroms (16) zu der Heißluft (15) aufweist, dadurch gekennzeichnet, dass zumindest eine der Absaugungen (21, 22) der Verstreckungseinrichtung (6) und der Wascheinrichtung (10) mit dem Wärmetauscher (17) strömungsverbunden ist.
11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass der Auslass des Trockners (13) mit dem Wärmetauscher (17) des Trockners (13) strömungsverbunden ist.
12. Vorrichtung nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass der Auslass des Trockners (13) mit der Verstreckungseinrichtung (6) zur Zufuhr des Verstreckungsluftstroms strömungsverbunden ist.
13. Vorrichtung nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass die Absaugung (21) zum Abführen des Abluftstroms (18) aus der Verstreckungseinrichtung (6) im Bereich der perforierten Fördereinrichtung (9) vorgesehen ist.
14. Vorrichtung nach einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, dass die Vorrichtung (200, 201) mehrere Spinndüsen (3) mit zugeordneten Verstreckungseinrichtungen (6) aufweist, wobei die Absaugungen (21) der Verstreckungseinrichtungen (6) mit dem Wärmetauscher (17) des Trockners (13) strömungsverbunden sind.
PCT/EP2021/054495 2020-02-24 2021-02-24 Verfahren und vorrichtung zur herstellung von spinnvlies WO2021170607A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21706951.7A EP4110980A1 (de) 2020-02-24 2021-02-24 Verfahren und vorrichtung zur herstellung von spinnvlies
CN202180016625.5A CN115135820A (zh) 2020-02-24 2021-02-24 用于制造纺粘型无纺织物的方法和装置
US17/801,615 US20230085228A1 (en) 2020-02-24 2021-02-24 Method and device for producing spunbonded fabric

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20159098 2020-02-24
EP20159098.1 2020-02-24

Publications (1)

Publication Number Publication Date
WO2021170607A1 true WO2021170607A1 (de) 2021-09-02

Family

ID=69726506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/054495 WO2021170607A1 (de) 2020-02-24 2021-02-24 Verfahren und vorrichtung zur herstellung von spinnvlies

Country Status (5)

Country Link
US (1) US20230085228A1 (de)
EP (1) EP4110980A1 (de)
CN (1) CN115135820A (de)
TW (1) TW202138648A (de)
WO (1) WO2021170607A1 (de)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3825380A (en) 1972-07-07 1974-07-23 Exxon Research Engineering Co Melt-blowing die for producing nonwoven mats
US4380570A (en) 1980-04-08 1983-04-19 Schwarz Eckhard C A Apparatus and process for melt-blowing a fiberforming thermoplastic polymer and product produced thereby
GB2114052A (en) 1981-12-24 1983-08-17 Freudenberg Carl Polypropylene spunbond fabric
DE3603814A1 (de) * 1986-02-07 1987-08-13 Reifenhaeuser Masch Anlage fuer die herstellung eines fadenvlieses und verfahren zum betrieb einer solchen anlage
US5080569A (en) 1990-08-29 1992-01-14 Chicopee Primary air system for a melt blown die apparatus
US5695377A (en) 1996-10-29 1997-12-09 Kimberly-Clark Worldwide, Inc. Nonwoven fabrics having improved fiber twisting and crimping
US6306334B1 (en) 1996-08-23 2001-10-23 The Weyerhaeuser Company Process for melt blowing continuous lyocell fibers
US6358461B1 (en) 1996-12-10 2002-03-19 Tencel Limited Method of manufacture of nonwoven fabric
US20100162542A1 (en) * 2008-12-31 2010-07-01 Weyerhaeuser Company Method for Making Lyocell Web Product
DE102009016019A1 (de) 2009-04-02 2010-10-07 Fleissner Gmbh Trockner für textile Warenbahnen
US8366988B2 (en) 2009-12-31 2013-02-05 Acelon Chemical And Fiber Corporation Spunbond wetlaid method for producing non-woven fabrics from natural cellulose
DE102012109878A1 (de) 2012-10-17 2014-04-17 Trützschler GmbH & Co Kommanditgesellschaft Trockner für eine textile Warenbahn
EP3088585A1 (de) 2015-04-27 2016-11-02 Reifenhäuser GmbH & Co. KG Maschinenfabrik Verfahren und vorrichtung zur herstellung eines spinnvlieses aus filamenten und spinnvlies
WO2019068764A1 (de) 2017-10-06 2019-04-11 Lenzing Aktiengesellschaft Vorrichtung für die extrusion von filamenten und herstellung von spinnvliesstoffen
CN109989181A (zh) * 2019-04-30 2019-07-09 安吉万洲电气有限公司 一种用于无纺布生产的加工系统
US20190226133A1 (en) * 2016-09-01 2019-07-25 Essity Hygiene And Health Aktiebolag Process for producing nonwoven

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITFI20110076A1 (it) * 2011-04-19 2012-10-20 Unitech Textile Machinery S P A "macchina per il trattamento di tessuti con recupero di calore"
CN102797064B (zh) * 2012-08-31 2015-04-01 山东天力干燥股份有限公司 粘胶纤维的烘干与调节工艺及装置
EP3385427A1 (de) * 2017-04-03 2018-10-10 Lenzing Aktiengesellschaft Cellulosefaservliesstoff mit faserdurchmesserverteilung
TWI827634B (zh) * 2018-07-17 2024-01-01 奧地利商蘭仁股份有限公司 用於從紡絲黏合織物之生產中的處理空氣分離溶劑之方法及裝置

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3825380A (en) 1972-07-07 1974-07-23 Exxon Research Engineering Co Melt-blowing die for producing nonwoven mats
US4380570A (en) 1980-04-08 1983-04-19 Schwarz Eckhard C A Apparatus and process for melt-blowing a fiberforming thermoplastic polymer and product produced thereby
GB2114052A (en) 1981-12-24 1983-08-17 Freudenberg Carl Polypropylene spunbond fabric
DE3603814A1 (de) * 1986-02-07 1987-08-13 Reifenhaeuser Masch Anlage fuer die herstellung eines fadenvlieses und verfahren zum betrieb einer solchen anlage
US5080569A (en) 1990-08-29 1992-01-14 Chicopee Primary air system for a melt blown die apparatus
US6306334B1 (en) 1996-08-23 2001-10-23 The Weyerhaeuser Company Process for melt blowing continuous lyocell fibers
US5695377A (en) 1996-10-29 1997-12-09 Kimberly-Clark Worldwide, Inc. Nonwoven fabrics having improved fiber twisting and crimping
US6358461B1 (en) 1996-12-10 2002-03-19 Tencel Limited Method of manufacture of nonwoven fabric
US20100162542A1 (en) * 2008-12-31 2010-07-01 Weyerhaeuser Company Method for Making Lyocell Web Product
DE102009016019A1 (de) 2009-04-02 2010-10-07 Fleissner Gmbh Trockner für textile Warenbahnen
US8366988B2 (en) 2009-12-31 2013-02-05 Acelon Chemical And Fiber Corporation Spunbond wetlaid method for producing non-woven fabrics from natural cellulose
DE102012109878A1 (de) 2012-10-17 2014-04-17 Trützschler GmbH & Co Kommanditgesellschaft Trockner für eine textile Warenbahn
EP3088585A1 (de) 2015-04-27 2016-11-02 Reifenhäuser GmbH & Co. KG Maschinenfabrik Verfahren und vorrichtung zur herstellung eines spinnvlieses aus filamenten und spinnvlies
US20190226133A1 (en) * 2016-09-01 2019-07-25 Essity Hygiene And Health Aktiebolag Process for producing nonwoven
WO2019068764A1 (de) 2017-10-06 2019-04-11 Lenzing Aktiengesellschaft Vorrichtung für die extrusion von filamenten und herstellung von spinnvliesstoffen
CN109989181A (zh) * 2019-04-30 2019-07-09 安吉万洲电气有限公司 一种用于无纺布生产的加工系统

Also Published As

Publication number Publication date
TW202138648A (zh) 2021-10-16
CN115135820A (zh) 2022-09-30
EP4110980A1 (de) 2023-01-04
US20230085228A1 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
AT519489B1 (de) Verfahren und Vorrichtung zum Herstellen von Vliesen auf Cellulosebasis, die direkt aus Lyocell-Spinnlösung gebildet werden
EP1936017B1 (de) Verfahren und Vorrichtung zur Herstellung eines Spinnvlieses aus cellulosischen Filamenten
DE1760662C3 (de) Verfahren zur kontinuierlichen Herstellung von Vliesen aus pdyamidhaltigen Fäden
EP1903134A1 (de) Elastischer Vliesstoff und Verfahren zu dessen Herstellung
EP1402100B1 (de) Verfahren und vorrichtung zum behandeln einer fasermasse
EP0119521B1 (de) Kontinuierliches Verfahren zur Herstellung von Polyacrylnitrilfäden und -fasern
WO2002018682A1 (de) Verfahren zur herstellung von cellulosefasern und cellulose-filamentgarnen
WO2012119850A1 (de) Textilbehandlungsmaschine und verfahren zum trocknen textiler strukturen
WO2001086041A1 (de) Verfahren und vorrichtung zur zugspannungsfreien förderung von endlosformkörpern
WO2021170607A1 (de) Verfahren und vorrichtung zur herstellung von spinnvlies
WO2021170609A1 (de) Verfahren zur herstellung von spinnvlies
WO2021170608A1 (de) Verfahren und vorrichtung zur herstellung von spinnvlies
EP4077789B1 (de) Verfahren zur herstellung von spinnvlies
WO2021122378A1 (de) Verfahren zur herstellung von spinnvlies
EP3891326B1 (de) Verfahren und vorrichtung zur herstellung von schlauchförmigen cellulosischen spinnvliesstoffen
DE2822026A1 (de) Verfahren und vorrichtung zum kontinuierlichen schrumpfen von garnen
EP4077788A1 (de) Verfahren zur herstellung von spinnvlies
DE102004024065A1 (de) Verfahren zum Herstellen von Endlosformkörpern und Spinnkopf
DE2705013A1 (de) Verfahren zur herstellung von cellulosebahnmaterial

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21706951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021706951

Country of ref document: EP

Effective date: 20220926