WO2021170150A1 - 形状记忆合金诱导可调控挠曲电效应的复合材料制备方法 - Google Patents

形状记忆合金诱导可调控挠曲电效应的复合材料制备方法 Download PDF

Info

Publication number
WO2021170150A1
WO2021170150A1 PCT/CN2021/087308 CN2021087308W WO2021170150A1 WO 2021170150 A1 WO2021170150 A1 WO 2021170150A1 CN 2021087308 W CN2021087308 W CN 2021087308W WO 2021170150 A1 WO2021170150 A1 WO 2021170150A1
Authority
WO
WIPO (PCT)
Prior art keywords
shape memory
memory alloy
composite material
film
substrate
Prior art date
Application number
PCT/CN2021/087308
Other languages
English (en)
French (fr)
Inventor
王飞
郑志强
黄平
Original Assignee
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学 filed Critical 西安交通大学
Publication of WO2021170150A1 publication Critical patent/WO2021170150A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3457Sputtering using other particles than noble gas ions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/04Stamping using rigid devices or tools for dimpling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth

Definitions

  • the invention relates to the field of functional materials, and mainly relates to a method for preparing a composite material based on a shape memory alloy induced and adjustable flexural electrical effect.
  • Force-electric coupling refers to the mutual transformation between mechanical energy and electrical energy, which is highly valued in the fields of micro-electromechanical systems and other fields.
  • the flexural electrical effect has been reported by Kogan since 1964, and has attracted extensive research interest in recent years.
  • the flexural electrical effect means that the strain gradient or non-uniform strain field can locally destroy the inversion symmetry, which leads to the electric polarization of the crystal and even the centrosymmetric crystal. It describes the electrical polarization induced by the strain gradient (positive flexural electrical effect) and the mechanical deformation induced by the electric field gradient (inverse flexural electrical effect), and has a wide range of applications in the fields of energy harvesting, sensors, and actuators.
  • Hu et al. prepared the first automatic power supply system driven by a nanogenerator through the flexural electrical effect, which can realize wireless connection and be used for long-distance data transmission.
  • the present invention is to provide a method for preparing a composite material based on a shape memory alloy that induces adjustable flexural electrical effects. Flexural electrical effect. To achieve the above objective, the present invention adopts the following technical solutions:
  • a method for preparing a composite material based on a shape memory alloy-induced flexural electrical effect which is characterized in that: a shape memory alloy is used as a substrate, and after pre-deformation treatment, a flexural electrical film is prepared on the surface to obtain a double-layer structure Composite materials.
  • the shape memory alloy substrate adopts Nitinol.
  • the flexural electrical film adopts a zinc oxide film.
  • the thickness of the zinc oxide film is 0.5 ⁇ m-2 ⁇ m, and the thickness of the nickel-titanium shape memory alloy substrate is 0.1 mm-1 mm.
  • the pre-deformation treatment of the nickel-titanium shape memory alloy is to first use the indenter to treat the shape memory alloy base
  • the method for preparing a zinc oxide flexural electrical film adopts a magnetron sputtering method to prepare a zinc oxide flexural electrical film on a polished substrate surface, using zinc oxide as a target material, and argon and oxygen as sputtering gases.
  • the shape of the indenter is a rectangular steel block of 1 cm ⁇ 1 cm ⁇ 2 cm, and a large number of semi-cylindrical protrusions are processed on one end surface of the indenter.
  • the length of the semi-cylindrical protrusion is 1cm and the radius is 0.1 mm -1mm.
  • the flexural electrical properties are adjustable and can be adjusted by parameters such as the size of the zinc oxide film and the size of the indenter protrusion.
  • the composite material based on the shape memory alloy-induced flexural electrical effect prepared by the present invention can be applied to the fields of energy harvesting, sensors and the like.
  • Figure 1 Schematic diagram of the structure of a shape memory alloy induced flexural electrical effect composite material
  • Figure 2 Schematic diagram of indenter structure design
  • Figure 4 Performance test results of shape memory alloy induced flexural electrical effects.
  • FIG. 1 where 1 is a zinc oxide flexural electrical film, and 2 is a nickel-titanium shape memory alloy substrate; it can be seen from Figure 2 that there are a large number of parallel semi-cylindrical protrusions on the end surface of the indenter; It can be seen that after the pre-deformed shape memory alloy substrate is heated, a large number of protrusions are generated on its surface, so the zinc oxide film also produces a large number of protrusions and deformations;
  • Figure 4 shows the flexural electrical performance test results of the composite material. The abscissa is time and the ordinate is current. It can be seen from the figure that the composite material has an obvious flexural electrical effect. When the sample area increases, the current also increases, which indicates that the flexural electrical effect can be adjusted by controlling the sample size.
  • the present invention relates to a method for preparing a composite material with a shape memory alloy induced and adjustable flexural electrical properties, comprising a double-layer structure composed of a nickel-titanium shape memory alloy base layer 2 and a zinc oxide flexural electrical film 1, as shown in Figure 1 Shown.
  • the shape of the indenter is designed as shown in Figure 2.
  • the surface is composed of a large number of semi-cylindrical protrusions with a protrusion length of 10mm.
  • the radius of the protrusion is 0.5 mm.
  • the shape memory alloy substrate is loaded with 2000N through the indenter, and the load is maintained for 60s, so that the surface is deformed.
  • the indentation layer on the surface of the shape memory alloy substrate is polished smoothly with 400 # , 800 # , 1200 # , 1500 # , 2000 # sandpaper, and then the substrate surface is polished to a mirror surface with a polishing agent with a particle size of 0.5 ⁇ m and 0.25 ⁇ m Effect.
  • Magnetron sputtering method is used to prepare zinc oxide flexural electrical film on the surface of shape memory alloy.
  • the vacuum of the sputtering chamber is pre-evacuated to 3 ⁇ 10 -4 Pa.
  • the zinc oxide target material is used.
  • Argon and oxygen are used as sputtering gas.
  • the gas flow rate is 3sccm
  • the oxygen flow rate is 6sccm
  • the pressure of the sputtering chamber is 0.5Pa
  • the radio frequency power supply is selected
  • the preparation power is 50W
  • the bias voltage is 80V at the same time
  • the preparation time is 1 hour and 4 hours respectively to prepare oxides with different thicknesses.
  • Zinc film Zinc film.
  • Stick electrodes on the upper and lower surfaces of the prepared sample and heat it.
  • a desktop high-precision multimeter is used to measure the current signal. After heating, it can be seen that a large number of protrusions are produced on the surface of the shape memory alloy substrate, and the prepared zinc oxide film also produces a large number of protrusions corresponding to it, as shown in Figure 3.
  • the zinc oxide film During the heating process, due to the deformation of the Nitinol shape memory alloy substrate, the zinc oxide film also produces a large number of deformation areas with high strain gradients.
  • the zinc oxide film is polarized and generates an electric potential, so a significant current is generated, as shown in Figure 4 .
  • Figure 4 (a) and (b) are samples of zinc oxide thin films prepared with areas of 0.5 cm 2 and 1 cm 2 respectively. It can be seen that when the area of the film is larger, the current generated by the flexural effect is also higher. This indicates that the flexural electrical effect induced by the shape memory alloy can be controlled by parameters such as the size of the flexural electrical film and the size of the indenter.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Semiconductor Memories (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Micromachines (AREA)

Abstract

本发明公开了一种形状记忆合金诱导可调控挠曲电效应的复合材料制备方法。该复合材料的特点是以形状记忆合金作为基底,在其表面制备挠曲电薄膜,利用形状记忆合金的温控变形特性使挠曲电薄膜产生变形(高应变梯度),进而发生极化,产生电势。实现方式为:先采用压头对形状记忆合金进行压痕变形处理,随后将压痕层打磨、抛光,采用磁控溅射的方法在该基底表面制备挠曲电薄膜。对形状记忆合金基底加热,可观察到基底表面出现大量的凸起(高应变梯度区域),挠曲电薄膜材料中同样产生与之对应的大量高应变梯度的区域,挠曲电薄膜发生极化进而产生电势。该复合结构制备简单,挠曲电效应强,可规模化生产,并应用于能量俘获、传感等领域。

Description

形状记忆合金诱导可调控挠曲电效应的复合材料制备方法 技术领域
本发明涉及功能材料领域,主要涉及一种基于形状记忆合金诱导可调控挠曲电效应的复合材料制备方法。
背景技术
力电耦合是指机械能与电能之间的相互转化,在微机电系统等领域中受到高度重视。挠曲电效应作为典型的力电耦合效应,自1964年以来就已被Kogan报导,近年来引起广泛的研究兴趣。挠曲电效应是指应变梯度或非均匀应变场能够局部地破坏反演对称,从而导致晶体,甚至中心对称晶体产生电极化。它描述的是应变梯度诱导的电极化现象(正挠曲电效应)与电场梯度诱导的机械变形(逆挠曲电效应),并在能量收集、传感器、驱动器等领域中有着广泛应用。如Hu等人就通过挠曲电效应制备了第一个由纳米发电机驱动的自动供电系统,该系统可以实现无线连接且用于长距离数据传输。
大量研究表明应变梯度是挠曲电效应的重要因素,当应变相同时,微小尺寸(微纳米级别)的材料将具有更大的应变梯度,从而挠曲电效应也更显著。然而目前关于挠曲电效应的研究均集中在小尺寸材料上,这是因为在较大尺寸材料中产生高应变梯度非常困难,故挠曲电效应所能产生的电极化十分有限。如Zhu等人制备得到类似金字塔结构的复合材料,其尺寸在毫米级别。研究表明虽然由于大尺寸限制了高应变梯度的产生,但该材料仍实现了较强的挠曲电性能。因此,倘若能在大尺寸材料中实现高应变梯度,挠曲电效应将更加明显,其应用范围也更加广阔。
技术问题
为了解决上述存在的问题,本发明在于提供一种基于形状记忆合金诱导可调控挠曲电效应的复合材料制备方法,该复合材料可在大尺寸挠曲电薄膜中产生高应变梯度,进而产生强挠曲电效应。达到上述目的,本发明采用如下技术方案:
技术解决方案
一种基于形状记忆合金诱导挠曲电效应的复合材料制备方法,其特征在于:以形状记忆合金作为基底,经预变形处理后,在其表面制备挠曲电薄膜,制备得到具有双层结构的复合材料。
所述形状记忆合金基底采用镍钛合金。
所述挠曲电薄膜采用氧化锌薄膜。
所述氧化锌薄膜的厚度为0.5μm-2μm,镍钛形状记忆合金基底的厚度为0.1mm-1mm。
所述对镍钛形状记忆合金进行预变形处理,即先使用压头对形状记忆合金基
底变形处理,载荷1000-3000N,保载30-90s。随后依次用400 #、800 #、1200 #、1500 #、2000 #的砂纸打磨,再采用粒径为0.5μm、0.25μm的抛光剂将基底表面抛光至镜面效果。
所述的氧化锌挠曲电薄膜制备方法,采用磁控溅射方法在抛光后的基底表面制备氧化锌挠曲电薄膜,以氧化锌作为靶材,氩气与氧气作为溅射气体。
所述压头形状为1cm×1cm×2cm的长方形钢块,在其一端面有加工出大量半圆柱型凸起。
所述半圆柱型凸起的长度为1cm,半径为0.1 mm -1mm。
有益效果
本发明具有以下优点:
1、实现在大尺寸挠曲电薄膜中产生高的应变梯度,以产生强的挠曲电效应。
2、挠曲电性能具有可调控性,可以通过氧化锌薄膜的尺寸及压头凸起的尺寸等参数进行调节。
3、该复合材料制备工艺简单。
4、利用本发明制备的基于形状记忆合金诱导挠曲电效应的复合材料可以应用于能量收集、传感器等领域。
附图说明
图1:形状记忆合金诱导挠曲电效应复合材料的结构示意图;
图2:压头结构设计示意图;
图3:复合材料温控变形测试;
图4:形状记忆合金诱导挠曲电效应的性能测试结果。
本发明的实施方式
下面将结合附图及具体实例来详细说明本发明,但并不作为对本发明的限定。
参照图1所示,其中1为氧化锌挠曲电薄膜,2为镍钛形状记忆合金基底;从图2中可以看出压头端面有大量平行的半圆柱型的凸起;图3中可以看出经过预变形处理后的形状记忆合金基底在加热后,其表面产生大量凸起,因此氧化锌薄膜亦产生大量凸起变形;图四为复合材料的挠曲电性能测试结果。横坐标为时间,纵坐标为电流。从图中可以看出该复合材料存在明显的挠曲电效应,当样品面积增大时,电流也随之增高,这表明通过控制样品尺寸可以调节挠曲电效应。
本发明涉及一种形状记忆合金诱导可调控挠曲电性能的复合材料制备方法,包含由镍钛形状记忆合金基底层2与氧化锌挠曲电薄膜1组合而成的双层结构,如图1所示。
首先使用压头对形状记忆合金基底(10mm×10mm×0.1mm)进行预变形处理,压头形貌设计如图二所示,表面由大量半圆柱形凸起构成,凸起长度为10mm,单个凸起的半径为0.5mm。通过压头对形状记忆合金基底加载2000N,保载60s,使其表面发生变形。
将形状记忆合金基底表面的压痕层依次用400 #、800 #、1200 #、1500 #、2000 #的砂纸打磨平整,随后采用粒径为0.5μm、0.25μm的抛光剂将基底表面抛光至镜面效果。
采用磁控溅射方法在形状记忆合金表面制备氧化锌挠曲电薄膜,溅射室真空预抽至3×10 -4Pa,采用氧化锌靶材,氩气与氧气作为溅射气体,其中氩气流量为3sccm,氧气流量为6sccm,溅射室气压为0.5Pa,选用射频电源,制备功率为50W,同时加偏压80V,制备时间分别为1小时与4小时,以制备得到厚度不同的氧化锌薄膜。
将制备得到的样品上下表面贴上电极,对其进行加热,在加热过程中同时采用台式高精度万用表测量电流信号。加热后可以看到形状记忆合金基底表面产生大量凸起,制备的氧化锌薄膜也产生与之相对应的大量凸起,如图三所示。
在加热过程中由于镍钛形状记忆合金基底发生变形,使氧化锌薄膜同样产生大量具有高应变梯度的变形区域,氧化锌薄膜发生极化进而产生电势,故产生明显的电流,如图四所示。图四中(a)和(b)分别为制备面积为0.5cm 2与1cm 2的氧化锌薄膜样品,可以看出当薄膜面积更大时,挠曲电效应产生的电流也更高。这表明该形状记忆合金诱导产生的挠曲电效应可由挠曲电薄膜尺寸与压头尺寸等参数进行调控。

Claims (6)

  1. 形状记忆合金诱导可调控挠曲电效应的复合材料制备方法,其特征在于:以形状记忆合金作为基底(2),经预变形处理后,在其表面制备挠曲电薄膜(1),制备得到具有双层结构的复合材料:
    首先对镍钛形状记忆合金进行预变形处理,即先使用压头对形状记忆合金基底变形处理,载荷1000-3000N,保载30-90s,随后依次用400 #、800 #、1200 #、1500 #、2000 #的砂纸打磨,再采用粒径为0.5μm、0.25μm的抛光剂将基底表面抛光至镜面效果;
    采用磁控溅射方法在抛光后的基底表面制备氧化锌挠曲电薄膜,以氧化锌作为靶材,电源使用射频电源,氩气与氧气作为溅射气体。
  2. 根据权利1要求所述的形状记忆合金诱导可调控挠曲电效应的复合材料制备方法,其特征在于,所述形状记忆合金基底采用镍钛合金。
  3. 根据权利1要求所述的形状记忆合金诱导可调控挠曲电效应的复合材料制备方法,其特征在于,所述挠曲电薄膜采用氧化锌薄膜。
  4. 根据权利1要求所述的形状记忆合金诱导可调控挠曲电效应的复合材料制备方法,其特征在于,氧化锌薄膜的厚度为0.5μm-2μm,镍钛形状记忆合金基底的厚度为0.1mm-1mm。
  5. 根据权利要求1所述的形状记忆合金诱导可调控挠曲电效应的复合材料制备方法,其特征在于,压头形状为1cm×1cm×2cm的长方形钢块,在其一端面有加工出大量半圆柱型凸起。
  6. 根据权利要求5所述的形状记忆合金诱导可调控挠曲电效应的复合材料制备方法,其特征在于,所述半圆柱型凸起的长度为1cm,半径为0.1 mm -1mm。
PCT/CN2021/087308 2020-02-28 2021-04-14 形状记忆合金诱导可调控挠曲电效应的复合材料制备方法 WO2021170150A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010131263.1A CN111235538B (zh) 2020-02-28 2020-02-28 形状记忆合金诱导可调控挠曲电效应的复合材料制备方法
CN202010131263.1 2020-02-28

Publications (1)

Publication Number Publication Date
WO2021170150A1 true WO2021170150A1 (zh) 2021-09-02

Family

ID=70876678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/087308 WO2021170150A1 (zh) 2020-02-28 2021-04-14 形状记忆合金诱导可调控挠曲电效应的复合材料制备方法

Country Status (2)

Country Link
CN (1) CN111235538B (zh)
WO (1) WO2021170150A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111235538B (zh) * 2020-02-28 2021-03-16 西安交通大学 形状记忆合金诱导可调控挠曲电效应的复合材料制备方法
CN113083638A (zh) * 2021-03-16 2021-07-09 西安交通大学 基于预变形处理调控形状记忆合金疏水性的方法
CN113930734A (zh) * 2021-09-17 2022-01-14 中国地质大学(武汉) 一种基于4d打印技术的热电复合材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62229902A (ja) * 1986-03-31 1987-10-08 富士電機株式会社 異常検知機能をもつギヤツプレスアレスタ
CN103046018A (zh) * 2013-01-04 2013-04-17 中国石油大学(北京) 一种应用形状记忆合金赋予薄膜大弹性应变的方法
CN103045828A (zh) * 2013-01-04 2013-04-17 中国石油大学(北京) 利用形状记忆合金表面浮凸实现薄膜拉伸弹性应变的方法
CN111235538A (zh) * 2020-02-28 2020-06-05 西安交通大学 形状记忆合金诱导可调控挠曲电效应的复合材料制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7791248B2 (en) * 2006-06-30 2010-09-07 The Penn State Research Foundation Piezoelectric composite based on flexoelectric charge separation
CN104570498B (zh) * 2014-11-24 2017-10-13 深圳市华星光电技术有限公司 可挠曲液晶面板及其制作方法
EP3154099A1 (en) * 2015-10-09 2017-04-12 Institut Català de Nanociència i Nanotecnologia Flexoelectric device
CN109950045B (zh) * 2019-03-19 2020-08-14 西安交通大学 一种具有可调控类挠曲电效应的挠曲电驻极体及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62229902A (ja) * 1986-03-31 1987-10-08 富士電機株式会社 異常検知機能をもつギヤツプレスアレスタ
CN103046018A (zh) * 2013-01-04 2013-04-17 中国石油大学(北京) 一种应用形状记忆合金赋予薄膜大弹性应变的方法
CN103045828A (zh) * 2013-01-04 2013-04-17 中国石油大学(北京) 利用形状记忆合金表面浮凸实现薄膜拉伸弹性应变的方法
CN111235538A (zh) * 2020-02-28 2020-06-05 西安交通大学 形状记忆合金诱导可调控挠曲电效应的复合材料制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU YU, XU QIMING,LIU SHAN: "Progress in Properties Research and Preparing Technology of ZnO Semiconductor Materials", WUJIYAN-GONGYE = INORGANIC CHEMICALS INDUSTRY, TIANJIN HUAGONG YANJIUSUO, CN, vol. 38, no. 5, 31 May 2006 (2006-05-31), CN, pages 11 - 13, XP055840261, ISSN: 1006-4990 *

Also Published As

Publication number Publication date
CN111235538B (zh) 2021-03-16
CN111235538A (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
WO2021170150A1 (zh) 形状记忆合金诱导可调控挠曲电效应的复合材料制备方法
JP3099066B1 (ja) 薄膜構造体の製造方法
US6103305A (en) Method of forming a stress relieved amorphous tetrahedrally-coordinated carbon film
Le Ferrand Magnetic slip casting for dense and textured ceramics: A review of current achievements and issues
Choudhary et al. Structural, electrical and mechanical properties of magnetron sputtered NiTi/PZT/TiOx thin film heterostructures
Adamczyk et al. Compressive stress in nano-crystalline titanium dioxide films by aerosol deposition
CN104529532A (zh) 挠曲电压电材料
Lee et al. Effects of residual stress on the electrical properties of PZT films
CN115933014A (zh) 一种亚微米级单晶薄膜的制备方法
CN111441027B (zh) Fe70Nb10B20非晶合金薄膜的表面改性方法
Bernard et al. Microstructural, mechanical and magnetic properties of shape memory alloy Ni55Mn23Ga22 thin films deposited by radio-frequency magnetron sputtering
RU2539104C1 (ru) Способ изготовления безгистерезисного актюатора с линейной пьезоэлектрической характеристикой
CN102683003A (zh) 一种单轴磁各向异性薄膜的制备方法
Buryy et al. Simulation, making and testing of the actuator of precise positioning based on the bimorph plate of lithium niobate
CN110703167B (zh) 一种获得Fe3GeTe2的磁致伸缩系数的方法
Zate et al. Textured Ceramics for Multilayered Actuator Applications: Challenges, Trends, and Perspectives
Dausch Asymmetric 90° domain switching in rainbow actuators
Wang et al. Deflection for a magnetostrictive thin film bimorph in a magnetic field
US5827343A (en) Process for changing the bend of anodically bonded flat composite bodies made of glass and metal or semiconductor materials
CN104064350B (zh) 一种具有正磁各向异性温度系数的磁性薄膜的制备方法
Baba et al. Internal stress and adhesion of rf-sputtered MgO films on glass substrates
CN111834520B (zh) 一种表面均匀性优化的压电单晶薄膜制备方法
Chen et al. Fracture analysis of thick plasma-enhanced chemical vapor deposited oxide films for improving the structural integrity of power MEMS
CN101425357B (zh) 一种巨磁致伸缩纳米多层膜及其制备方法和应用
CN111312890B (zh) 一种采用压电剪切模式实现磁畴翻转的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21760737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21760737

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21760737

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21760737

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/05/2023)