CN111312890B - 一种采用压电剪切模式实现磁畴翻转的方法 - Google Patents

一种采用压电剪切模式实现磁畴翻转的方法 Download PDF

Info

Publication number
CN111312890B
CN111312890B CN202010246936.8A CN202010246936A CN111312890B CN 111312890 B CN111312890 B CN 111312890B CN 202010246936 A CN202010246936 A CN 202010246936A CN 111312890 B CN111312890 B CN 111312890B
Authority
CN
China
Prior art keywords
electric field
single crystal
magnetic
magnetoelectric
crystal substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010246936.8A
Other languages
English (en)
Other versions
CN111312890A (zh
Inventor
刘明
胡忠强
周子尧
王志广
吴金根
赵星儿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202010246936.8A priority Critical patent/CN111312890B/zh
Publication of CN111312890A publication Critical patent/CN111312890A/zh
Application granted granted Critical
Publication of CN111312890B publication Critical patent/CN111312890B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N35/00Magnetostrictive devices
    • H10N35/80Constructional details
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/04Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/208Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using shear or torsion displacement, e.g. d15 type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N35/00Magnetostrictive devices
    • H10N35/101Magnetostrictive devices with mechanical input and electrical output, e.g. generators, sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hall/Mr Elements (AREA)
  • Thin Magnetic Films (AREA)

Abstract

一种采用压电剪切模式实现磁畴翻转的方法,包括以下步骤:步骤1,制备磁电异质结;步骤2,电场诱导产生的剪切应变和直流偏置磁场共同作用于磁电异质结;本发明所需的磁电异质结由常见的商用菱方相压电单晶基片和工业上常用的磁性单层薄膜构成,结构简单。既无需微加工工艺引入较强的形状各向异性,也无需在制备过程中施加偏置磁场或后续磁退火引入交换偏置,便可以利用剪切应变调制的磁电效应实现电场调控局域磁畴大于90°的磁化翻转,工艺简单、能耗低,对发展低功耗磁存储和逻辑器件具有重要意义。

Description

一种采用压电剪切模式实现磁畴翻转的方法
技术领域
本发明属于磁畴调控技术领域,特别涉及一种采用压电剪切模式实现磁畴翻转的方法。
背景技术
薄膜的磁畴动力学对于磁存储和逻辑器件的潜在应用具有重要意义。利用电场调控磁畴是实现低功耗、高密度存储的可行办法之一。其中,由于材料选择的灵活性,应变调制的磁电耦合效应在电场调控的众多途径中受到了广泛关注。然而,由于在磁电异质结中施加电场获得的应变具有单轴性,除非磁性膜具有较强的形状各向异性或单向交换耦合,否则利用应变是难以实现大于90°的磁化翻转。而大于90°的磁化翻转对于信息的非易失性存储十分重要。
发明内容
本发明的目的在于提供一种采用压电剪切模式实现磁畴翻转的方法,以解决上述问题。
为实现上述目的,本发明采用以下技术方案:
一种采用压电剪切模式实现磁畴翻转的方法,包括以下步骤:
步骤1,制备磁电异质结;
步骤2,电场诱导产生的剪切应变和直流偏置磁场共同作用于磁电异质结;
步骤3,对比剪切应变作用前的磁畴和剪切应变作用后的磁畴,利用剪切应变实现电场诱导局域磁畴翻转。
进一步的,步骤1中,制备磁电异质结,具体包括:
1)将压电单晶基片依次经过丙酮、酒精、去离子水清洗干净,并用氮气吹干表面;
2)将1)中已经清洗好的基片固定于托盘上并放置于磁控溅射的腔室中,按照正确的实验过程调整好参数,依次经过抽真空、充氩气、氩离子轰击靶材的工艺流程进行正确的磁性膜的制备实验;
3)重复2),在压电单晶基片另一侧制备金属电极,得到磁电异质结。
进一步的,步骤2中,具体包括:
1)以磁性膜为上电极、金属电极为下电极,沿压电单晶基片厚度方向施加大于压电单晶基片矫顽场的电场,对压电单晶基片进行初始极化,根据施加电场方向不同,将初始极化分为正极化和负极化;
2)沿压电单晶基片面内方向,施加直流偏置磁场于磁电异质结,并保持至实验结束;
3)根据初始极化的不同,施加极性与初始极化电场相反的电场于压电单晶基片,当电场大小接近压电单晶基片矫顽场时,基片产生剪切应变,并通过界面作用于磁性层;磁性层通过逆磁致伸缩效应,对剪切应变进行响应。
进一步的,所采用的压电单晶基片为011取向的菱方相PMN-PN或PZN-PT中的一种;磁性层为Matglas、CoFe、CoFeB、FeGaB或FeCoSiB中的一种,金属电极为Au、 Ag、Cu、Pt、Ti、Mo或Al中的一种。
进一步的,施加极性与初始极化电场相反的电场于压电单晶基片具体为:若初始极化为正,则施加负电场,若初始极化为负,则施加正电场。
进一步的,施加的直流偏置磁场大小为5-100Oe。
与现有技术相比,本发明有以下技术效果:
本发明所需的磁电异质结由常见的商用压电单晶基片和工业上常用的磁性膜构成,结构简单。既无需微加工工艺引入较强的形状各向异性,也无需在制备过程中施加偏置磁场或后续磁退火引入交换偏置,便可以利用剪切应变调制的磁电效应实现电场调控局域磁畴大于90°的磁化翻转,工艺简单、能耗低,对发展低功耗磁存储和逻辑器件具有重要意义。
附图说明
图1是本发明所制备的磁电异质结示意图。
图2是本发明所使用的菱方相铁电单晶结构示意图。
图3是本发明的不同电场下的磁畴。
具体实施方式
以下结合附图对本发明进一步说明:
请参阅图1至图3,一种采用压电剪切模式实现磁畴翻转的方法,包括以下步骤:
步骤1,制备磁电异质结;
步骤2,电场诱导产生的剪切应变和直流偏置磁场共同作用于磁电异质结;
步骤3,对比剪切应变作用前的磁畴和剪切应变作用后的磁畴,利用剪切应变实现电场诱导局域磁畴翻转。
步骤1中,制备磁电异质结,具体包括:
1)将压电单晶基片依次经过丙酮、酒精、去离子水清洗干净,并用氮气吹干表面;
2)将1)中已经清洗好的基片固定于托盘上并放置于磁控溅射的腔室中,按照正确的实验过程调整好参数,依次经过抽真空、充氩气、氩离子轰击靶材的工艺流程进行正确的磁性膜的制备实验;
3)重复2),在压电单晶基片另一侧制备金属电极,得到磁电异质结。
步骤2中,具体包括:
1)以磁性膜为上电极、金属电极为下电极,沿压电单晶基片厚度方向施加大于压电单晶基片矫顽场的电场,对压电单晶基片进行初始极化,根据施加电场方向不同,将初始极化分为正极化和负极化;
2)沿压电单晶基片面内方向,施加直流偏置磁场于磁电异质结,并保持至实验结束;
3)根据初始极化的不同,施加极性与初始极化电场相反的电场于压电单晶基片,当电场大小接近压电单晶基片矫顽场时,基片产生剪切应变,并通过界面作用于磁性层;磁性层通过逆磁致伸缩效应,对剪切应变进行响应。
施加极性与初始极化电场相反的电场于压电单晶基片具体为:若初始极化为正,则施加负电场,若初始极化为负,则施加正电场。
实施例1:
请参阅图1、图2所示,本发明的目的在于提供一种采用压电剪切模式实现磁畴翻转的方法,包括磁电异质结的制备和电场诱导产生的剪切应变和直流偏置磁场共同作用于磁电异质结的工艺。
(1)磁电异质结的制备工艺,其具体的实施工艺为:
A.将商用压电单晶基片PMN-PT(011)依次经过丙酮、酒精、去离子水清洗干净,并用氮气吹干表面。
B.将已经清洗好的基片固定于托盘上并放置于磁控溅射的腔室中,按照正确的实验过程调整好参数,依次经过抽真空、充氩气、氩离子轰击靶材的工艺流程进行正确的FeCoSiB磁性膜的制备。
C.重复步骤B,在PMN-PT(011)基片的另一侧制备20nm的铜金属电极。
上述制备所得FeCoSiB/PMN-PT(011)磁电异质结需要在磁光克尔(MOKE)显微成像系统下观测磁畴随电场的变化。
(2)电场诱导产生的剪切应变和直流偏置磁场共同作用于磁电异质结的工艺,其具体的实施工艺为:
A.将通过步骤(1)制备所得的磁电异质结放置于MOKE样品台上,通过手动聚焦,在电脑屏幕上得到清晰的样品表面形貌图。
B.以FeCoSiB磁性膜为上电极、铜电极为下电极,利用静电计沿压电单晶基片PMN-PT(011)厚度方向施加+10kV/cm电场并保持10min,对压电单晶基片进行初始极化。
C.沿PMN-PT(011)基片的[100]方向,施加大小为-300Oe的直流偏置磁场于磁电异质结,使磁性膜沿[100]方向饱和。
D.按照正确的MOKE测试步骤,在-300Oe磁场下减去背景图片,得到-300Oe对应的磁畴图。
E.保持背景图片不变,将磁场逐渐增加至-45Oe并保持至实验结束。
F.沿厚度方向施加+5kV/cm电场,并逐渐降至0kV/cm。
G.改变施加电场极性,从0kV/cm开始,以-0.2kV/cm为步长,逐渐减小电场至-4kV/cm。当施加电场接近于压电单晶基片矫顽场-1.5kV/cm时,基片产生剪切应变,并通过界面作用于磁性FeCoSiB层。
通过上述方法所得的不同电场下局域磁畴如图3所示,对比剪切应变作用前-1kV/cm 下的磁畴和剪切应变作用后-1.8kV/cm的磁畴,可得利用剪切应变实现电场诱导局域磁畴翻转大于90°。
实施例2:
本发明提供的一种采用压电剪切模式实现磁畴翻转的方法,也可以通过以下磁电异质结的制备和电场诱导产生的剪切应变实现。
(1)磁电异质结的制备工艺,其具体的实施工艺为:
A.将商用压电单晶基片PZN-PT(011)依次经过丙酮、酒精、去离子水清洗干净,并用氮气吹干表面。
B.将已经清洗好的基片固定于托盘上并放置于磁控溅射的腔室中,按照正确的实验过程调整好参数,依次经过抽真空、充氩气、氩离子轰击靶材的工艺流程进行正确的CoFeB 磁性膜的制备。
C.重复步骤B,在PZN-PT(011)基片的另一侧制备20nm的铜金属电极。
上述制备所得CoFeB/PZN-PT(011)磁电异质结需要在磁光克尔(MOKE)显微成像系统下观测磁畴随电场的变化。
(2)电场诱导产生的剪切应变和直流偏置磁场共同作用于磁电异质结的工艺,其具体的实施工艺为:
A.将通过步骤(1)制备所得的磁电异质结放置于MOKE样品台上,通过手动聚焦,在电脑屏幕上得到清晰的样品表面形貌图。
B.以CoFeB磁性膜为上电极、铜电极为下电极,利用静电计沿压电单晶基片 PZN-PT(011)厚度方向施加+10kV/cm电场并保持10min,对压电单晶基片进行初始极化。
C.沿PZN-PT(011)基片的[100]方向,施加大小为-300Oe的直流偏置磁场于磁电异质结,使磁性膜沿[100]方向饱和。
D.按照正确的MOKE测试步骤,在-300Oe磁场下减去背景图片,得到-300Oe对应的磁畴图。
E.保持背景图片不变,将磁场逐渐增加至-45Oe并保持至实验结束。
F.沿厚度方向施加+5kV/cm电场,并逐渐降至0kV/cm。
G.改变施加电场极性,从0kV/cm开始,以-0.2kV/cm为步长,逐渐减小电场至-4kV/cm。当施加电场接近于压电单晶基片矫顽场-1.5kV/cm时,基片产生剪切应变,并通过界面作用于磁性CoFeB层。
通过上述方法,对比剪切应变作用前-1kV/cm下的磁畴和剪切应变作用后-1.8kV/cm 的磁畴,可得利用剪切应变实现电场诱导局域磁畴翻转大于90°。

Claims (5)

1.一种采用压电剪切模式实现磁畴翻转的方法,其特征在于,包括以下步骤:
步骤1,制备磁电异质结;
步骤2,电场诱导产生的剪切应变和直流偏置磁场共同作用于磁电异质结;
步骤3,对比剪切应变作用前的磁畴和剪切应变作用后的磁畴,利用剪切应变实现电场诱导局域磁畴翻转;
步骤2中,具体包括:
1)以磁性膜为上电极、金属电极为下电极,沿压电单晶基片厚度方向施加大于压电单晶基片矫顽场的电场,对压电单晶基片进行初始极化,根据施加电场方向不同,将初始极化分为正极化和负极化;
2)沿压电单晶基片面内方向,施加直流偏置磁场于磁电异质结,并保持至实验结束;
3)根据初始极化的不同,施加极性与初始极化电场相反的电场于压电单晶基片,当电场大小接近压电单晶基片矫顽场时,基片产生剪切应变,并通过界面作用于磁性层;磁性层通过逆磁致伸缩效应,对剪切应变进行响应。
2.根据权利要求1所述的一种采用压电剪切模式实现磁畴翻转的方法,其特征在于,步骤1中,制备磁电异质结,具体包括:
1)将压电单晶基片依次经过丙酮、酒精、去离子水清洗干净,并用氮气吹干表面;
2)将1)中已经清洗好的基片固定于托盘上并放置于磁控溅射的腔室中,按照正确的实验过程调整好参数,依次经过抽真空、充氩气、氩离子轰击靶材的工艺流程进行正确的磁性膜制备实验;
3)重复2),在压电单晶基片另一侧制备金属电极,得到磁电异质结。
3.根据权利要求1所述的一种采用压电剪切模式实现磁畴翻转的方法,其特征在于,所采用的压电单晶基片为011取向的菱方相PMN-PT或PZN-PT中的一种;磁性层为Matglas、CoFe、CoFeB、FeGaB或FeCoSiB中的一种,金属电极为Au、Ag、Cu、Pt、Ti、Mo或Al中的一种。
4.根据权利要求1所述的一种采用压电剪切模式实现磁畴翻转的方法,其特征在于,施加极性与初始极化电场相反的电场于压电单晶基片具体为:若初始极化为正,则施加负电场,若初始极化为负,则施加正电场。
5.根据权利要求1所述的一种采用压电剪切模式实现磁畴翻转的方法,其特征在于,施加的直流偏置磁场大小为5-100Oe。
CN202010246936.8A 2020-03-31 2020-03-31 一种采用压电剪切模式实现磁畴翻转的方法 Active CN111312890B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010246936.8A CN111312890B (zh) 2020-03-31 2020-03-31 一种采用压电剪切模式实现磁畴翻转的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010246936.8A CN111312890B (zh) 2020-03-31 2020-03-31 一种采用压电剪切模式实现磁畴翻转的方法

Publications (2)

Publication Number Publication Date
CN111312890A CN111312890A (zh) 2020-06-19
CN111312890B true CN111312890B (zh) 2021-12-28

Family

ID=71147449

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010246936.8A Active CN111312890B (zh) 2020-03-31 2020-03-31 一种采用压电剪切模式实现磁畴翻转的方法

Country Status (1)

Country Link
CN (1) CN111312890B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8531083B2 (en) * 2008-02-25 2013-09-10 Resonance Semiconductor Corporation Devices having a tunable acoustic path length and methods for making same
CN103427018B (zh) * 2013-07-10 2016-01-27 北京师范大学 一种具有磁畴壁可调控锰氧化物薄膜的器件及磁畴壁调控方法
CN106328807A (zh) * 2016-11-08 2017-01-11 郑州轻工业学院 一种电写磁读磁电存储单元及制备方法
CN110749847B (zh) * 2019-10-14 2021-11-12 清华大学 基于直流偏置磁场的最优直流偏置磁场值的确定方法

Also Published As

Publication number Publication date
CN111312890A (zh) 2020-06-19

Similar Documents

Publication Publication Date Title
Vélez et al. Competing effects at Pt/YIG interfaces: Spin Hall magnetoresistance, magnon excitations, and magnetic frustration
CN106531884B (zh) 电压控制磁随机存储单元、存储器及其构成的逻辑器件
Gopman et al. Strain-assisted magnetization reversal in Co/Ni multilayers with perpendicular magnetic anisotropy
Kleemann Multiferroic and magnetoelectric nanocomposites for data processing
Liedke et al. Induced anisotropies in exchange-coupled systems on rippled substrates
Mohanan et al. Spin Hall effect mediated current-induced deterministic switching in all-metallic perpendicularly magnetized Pt/Co/Pt trilayers
Yamamoto et al. Write-error reduction of voltage-torque-driven magnetization switching by a controlled voltage pulse
Zhang et al. Large reversible electric-voltage manipulation of magnetism in NiFe/BaTiO3 heterostructures at room temperature
Yang et al. Electric field control of magnetism in FePd/PMN-PT heterostructure for magnetoelectric memory devices
AU2021102996A4 (en) Topological Magnetic structure and preparation method thereof, regulation method of topological magnetic structure and memory based on the topological magnetic structure
Yagmur et al. Magnetization-dependent inverse spin Hall effect in compensated ferrimagnet TbCo alloys
Pati et al. Voltage-driven strain-induced coexistence of both volatile and non-volatile interfacial magnetoelectric behaviors in LSMO/PMN-PT (0 0 1)
US3039891A (en) Method of treating ni-fe thin metal film of body of magnetic material by subjecting to heat treatment in a magnetic field oriented transversely to the preferred axis of magnetization
Yang et al. Inhibition of skyrmion Hall effect by a stripe domain wall
Zhang et al. Perpendicular Magnetization Switching Driven by Spin‐Orbit Torque for Artificial Synapses in Epitaxial Pt‐Based Multilayers
Park et al. Magneto-optic spatial light modulators driven by an electric field
CN111312890B (zh) 一种采用压电剪切模式实现磁畴翻转的方法
Guo et al. Magnetism manipulation in ferromagnetic/ferroelectric heterostructures by electric field induced strain
Panchal et al. Strain and electric field control of magnetic and electrical transport properties in a magnetoelastically coupled Fe 3 O 4/BaTiO 3 (001) heterostructure
Kikuchi et al. Voltage-induced coercivity change in FePt/MgO stacks with different FePt thicknesses
CN108154990B (zh) 多层膜中非易失性斯格明子的生成方法
CN107799650A (zh) 一种铁电异质结及其制备方法和电控微波电子元器件
El Hadri et al. Suppression of all-optical switching in He+-irradiated Co/Pt multilayers: influence of the domain-wall energy
Moutis et al. Voltage-induced modification in magnetic coercivity of patterned Co50Fe50 thin film on piezoelectric substrate
Lian et al. Influence of the magnetic state on the voltage-controlled magnetoelectric effect in a multiferroic artificial heterostructure YIG/PMN-PZT

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant