WO2021169621A1 - 一种预硬化镜面模具钢板及其制造方法 - Google Patents

一种预硬化镜面模具钢板及其制造方法 Download PDF

Info

Publication number
WO2021169621A1
WO2021169621A1 PCT/CN2021/070626 CN2021070626W WO2021169621A1 WO 2021169621 A1 WO2021169621 A1 WO 2021169621A1 CN 2021070626 W CN2021070626 W CN 2021070626W WO 2021169621 A1 WO2021169621 A1 WO 2021169621A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel plate
rolling
thickness
continuous casting
steel
Prior art date
Application number
PCT/CN2021/070626
Other languages
English (en)
French (fr)
Inventor
何广霞
吴扬
李国忠
许晓红
白云
苗丕峰
黄军
葛恒贵
狄梦龙
孟羽
Original Assignee
江阴兴澄特种钢铁有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江阴兴澄特种钢铁有限公司 filed Critical 江阴兴澄特种钢铁有限公司
Priority to EP21761208.4A priority Critical patent/EP4130316A4/en
Publication of WO2021169621A1 publication Critical patent/WO2021169621A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite

Definitions

  • the invention belongs to the technical field of iron-based alloys, and specifically relates to the manufacture of pre-hardened die steel.
  • Manufacturing enterprises are upgrading toward automation, and product manufacturing has gradually shifted from relying on labor-intensive labor to relying on industrial equipment production to improve the automation level of manufacturing.
  • the large-scale and automation of production equipment has promoted the development of my country's plastic mold manufacturing industry towards large modules, high uniformity and high mirror surface. This requires the plastic mold steel to have thicker specifications, higher hardenability and more uniform performance, which is mainly manifested in larger thickness specifications, higher hardness and more uniformity, and higher density requirements.
  • manufacturers require short production cycle, low cost, and high cost performance for mold steel.
  • the widely used pre-hardened die steels are 3Cr2Mo and 3Cr2MnNiMo, the hardness of which is in the range of 28-36HRC, which can no longer meet the high dimensional accuracy and high polishing performance requirements of mirror molds.
  • the pre-hardened hardness of the die steel requires 38-42HRC.
  • This type of steel plate is mainly NAK80 pre-hardened steel from Datong, Japan, but the steel has a high alloy content and is mostly produced by steel ingot + forging + quenching and tempering process, which has a long production cycle, high cost and high price.
  • some domestic steel mills have added Cr, Mo, V and microalloy elements on the basis of 3Cr2Mo to obtain higher quality plastic mold steel.
  • the invention patent of publication number CN102650021 A adds Mn on the basis of 3Cr2Mo, and adds the microalloying element Nb to obtain a high hardenability bainite pre-hardened die steel with a hardness of 30.6-33.6HRC, which is not a high hardness Die steel, and adopts the manufacturing process of steel ingot + forging, the yield rate is low, the production cycle is long, and the production cost is high.
  • the invention patent with publication number CN109136736 A discloses a vanadium-containing plastic mold steel plate.
  • the steel plate is made of continuous casting and rolling.
  • the preparation process is short and the process is simple. Compared with the steel ingot + forging process, the production cost is lower, but it involves
  • the thickness of the steel plate is 15-80mm, and the hardness is 280-330HBW (equivalent to 29-35HRC), and the hardness still has no higher breakthrough.
  • the V-containing plastic mold steel produced by the invention patent of Publication No. CN107699801 A has refined grains and uniform hardness.
  • the production of the steel plate requires high-temperature forging, quenching and tempering treatment and secondary tempering.
  • the production cycle is long, the process is more complicated, and the heat treatment is complicated.
  • the production cost is also significantly increased, and the hardness of the steel plate core of the invention can only meet higher than 30HRC, but cannot meet higher requirements.
  • the technical problem to be solved by the present invention is to provide a pre-hardened mirror die steel plate for the above-mentioned prior art, which not only has high hardness, but also has good hardness uniformity along the thickness direction of the steel plate, and the curve fluctuation of hardness with thickness is less than or equal to 2HRC, and the steel plate flaw detection level Meet the requirements of GB/T2970 Class I.
  • the pre-hardened mirror die steel plate of the present invention is based on 3Cr2Mo, reduces the content of easily segregated elements carbon and Cr, improves the uniformity of the steel plate hardness, increases the content of relatively cheap Si and Mn, and adds appropriate alloy elements to refine Grain, increase the hardenability of the steel plate, improve the strength and hardness of the steel, and obtain a pre-hardened mirror die steel with excellent comprehensive performance and high cost performance.
  • the specific chemical composition is C: 0.28 ⁇ 0.36%, Si: 0.50 ⁇ 0.80%, Mn: 1.20 ⁇ 1.50%, P ⁇ 0.020%, S ⁇ 0.010%, Cr: 1.30 ⁇ 1.80%, Mo: 0.30 ⁇ 0.50%, Ni : 0.65 ⁇ 0.90%, V: 0.15 ⁇ 0.30%, H ⁇ 1.5ppm, the balance is Fe and unavoidable impurities.
  • the following is a description of the effect and ratio analysis of the main added elements in the steel plate of the present invention:
  • Si element has deoxidation and solid solution strengthening effects in steel, and its solid solution in austenite can inhibit the formation of pearlite, promote the transformation of bainite/martensite, and increase the hardness of the steel plate.
  • the Si content is controlled at 0.50 to 0.80%.
  • Mn element can delay the formation of high-temperature ferrite phase to improve the strength and hardenability of steel.
  • the Mn content of the present invention is controlled at 1.20 to 1.50%.
  • Cr plays a solid solution strengthening effect in plastic mold steel, improving the strength and hardness of steel. However, too high Cr is prone to segregation, so the content of Cr in the present invention is controlled at 1.30 to 1.80%.
  • Molybdenum forms carbides in the steel, which can improve the hardenability and secondary hardening of the steel sheet. Molybdenum can also increase the tempering resistance of steel, and its combined use with chromium and manganese can reduce the temper brittleness caused by it. In the present invention, the content of Mo is controlled at 0.30 to 0.50%.
  • Nickel is a strengthening element in steel, which can improve the strength and hardenability of steel, and at the same time, it does little damage to the toughness of steel. However, the cost of nickel is high, and an appropriate amount of 0.65 to 0.90% is added.
  • V Vanadium has a strong affinity with carbon and nitrogen, and forms corresponding carbon and nitrides, which are dispersed and distributed, refine the structure, reduce the overheating sensitivity of steel, and increase tempering stability.
  • the content of V in the present invention is controlled at 0.15 to 0.30%.
  • the effect of the above alloying elements is to improve the hardenability and strength of the steel plate through alloy elements such as Cr, Mo, Ni, ensure the hardness of the core of the large thickness steel plate, improve the tempering stability of the steel plate, and expand the tempering process window of the steel plate; vanadium and steel plate
  • the carbon in the carbon forms carbides, prevents grain growth, combines the rolling process to refine the grains, and improves the uniformity of the steel sheet performance; Si, Mn and other elements expand the bainite formation interval of the steel sheet, so as to obtain relatively stable shellfish after rolling
  • the steel structure is expected to reach the hardness range of the quenched and tempered state under the normalizing process designed by the present invention, so that the whole steel plate can obtain a higher and more uniform hardness value.
  • the steel plate manufacturing method corresponding to the above element design includes the following steps:
  • Heat treatment including two steps of normalizing and tempering, heating the pile-cooled steel plate to 870-910°C, holding time 2-2.5min/mm, and air cooling to room temperature after the furnace, so that the steel plate is fully transformed into bainite;
  • the normalized steel plates are tempered according to different steel plate thicknesses: the tempering temperature of 20-100mm thick steel plates is 590-620°C, the tempering temperature of thick steel plates greater than 100mm is 580-610°C, and the holding time is plate thickness mm ⁇ 3-4min/mm .
  • the die steel plate of the present invention has high hardness, good hardenability (indicated by the uniform hardness of the steel plate in the thickness direction and small fluctuation), compact internal structure, and the flaw detection level meets GB/T2970 Class I Require.
  • the thickness specification of the continuous casting material reaches 180mm, the process operability is high, the production efficiency is high, and the alloy elements and production cost are relatively economical.
  • Fig. 1 is the fluctuation curve of the full thickness hardness of each embodiment of the present invention.
  • the chemical composition of this embodiment is calculated by mass percentage: C: 0.33%, Si: 0.60%, Mn: 1.40%, P: 0.010%, S: 0.001%, Cr: 1.59%, Mo: 0.39%, Ni: 0.78 %, V: 0.21%, H ⁇ 0.8ppm, the balance is Fe and unavoidable impurity elements.
  • the specific production process is as follows:
  • a special refining slag is used for ladle furnace refining to effectively treat harmful elements such as S in the molten steel, and the refining slag is used to adsorb and remove S elements as much as possible. Then carry out 30min vacuum degassing treatment and soft argon blowing for 20min to reduce the H content in the molten steel to 0.8ppm.
  • the front surface of the continuous casting platform on the ladle is covered with carbonized rice husk for heat preservation to prevent secondary oxidation of the molten steel exposed.
  • the ladle slag detection is used, and the whole process of non-oxidation protection pouring is used.
  • the pouring superheat is controlled at 10-25°C, and the dynamic soft reduction technology is used to improve the center segregation and center porosity of the cast slab.
  • the dynamic soft reduction technology is used to improve the center segregation and center porosity of the cast slab.
  • it is continuously cast into a continuous casting billet with a thickness of 370 mm and a width of 2200 mm.
  • the low-magnification center segregation of continuous casting slab is C0.5, the center is loose 0.5, and there are no other defects.
  • the cooled continuous casting slab is heated to 1240°C, and the casting slab is in the furnace for 8 hours.
  • the initial rolling temperature of the blooming stage is 1032°C, and the reduction of pass is increased by 10mm on the conventional model, 40mm or more, the maximum is 55mm, and the maximum reduction rate reaches 20%.
  • the blooming is rolling in the recrystallization zone, and the rolling deformation reaches the steel plate.
  • the core is rolled into an 80mm thick intermediate billet.
  • the second stage of rolling is plate thickness finishing rolling, uncontrolled rolling, free rolling, and rolling the intermediate billet into a 28mm thick steel plate. After rolling, the steel plate is slowly cooled to room temperature after being piled at high temperature.
  • the pile-cooled steel plate is normalized in a continuous furnace at 880°C for a holding time of 2 min/mm, and air-cooled to room temperature after being discharged from the furnace.
  • the normalized steel plate is tempered at 620°C for 90 min in the furnace time. After tempering, the steel plate is tested for flaws, and the flaw detection level meets the requirements of GB/T2970 Class I.
  • the hardness test results are shown in Table 1.
  • the chemical composition of this embodiment is calculated by mass percentage: C: 0.35%, Si: 0.60%, Mn: 1.41%, P: 0.011%, S: 0.002%, Cr: 1.60%, Mo: 0.40%, Ni: 0.78 %, V: 0.21%, H ⁇ 0.8ppm, the balance is Fe and unavoidable impurity elements.
  • the specific production process is as follows:
  • the ladle slag detection is used, and the whole process of non-oxidation protection pouring is used.
  • the pouring superheat is controlled at 15-25°C.
  • the dynamic soft reduction technology is used to improve the center segregation and center porosity of the cast slab.
  • it is continuously cast into a continuous casting billet with a thickness of 450 mm and a width of 2100 mm.
  • the low-magnification center segregation of continuous casting slab is C0.5, the center is loose 0.5, and there are no other defects.
  • the cooled continuous casting slab is heated to 1250°C, and the furnace time is 9.5 hours for the casting slab.
  • the opening temperature of the blooming stage is 1030°C
  • the reduction of pass increases by 12mm on the conventional model
  • the maximum reduction is 52mm and the maximum reduction is 20%.
  • the second stage of rolling is plate-shaped and plate-thickness finishing rolling, without controlled rolling, with an opening thickness of 180mm, and finally rolling into a 160mm thick steel plate. After rolling, the steel plate is slowly cooled to room temperature after being piled at high temperature.
  • the structure of the steel sheet after rolling is bainite.
  • the pile-cooled steel plate is normalized in a continuous furnace at 890°C for a holding time of 2.5 min/mm, and air-cooled to room temperature after being discharged from the furnace. After normalizing, the steel plate is tempered at 610°C, 488min in the furnace time. After tempering, the steel plate is tested for flaws, and the flaw detection level meets the requirements of GB/T2970 Class I. The hardness test results are shown in Table 1.
  • the chemical composition of this embodiment is calculated by mass percentage: C: 0.34%, Si: 0.61%, Mn: 1.42%, P: 0.012%, S: 0.002%, Cr: 1.62%, Mo: 0.40%, Ni: 0.79 %, V: 0.22%, H ⁇ 0.8ppm, the balance is Fe and unavoidable impurity elements.
  • the specific production process is as follows:
  • the ladle slag detection is used, and the whole process of non-oxidation protection pouring is used.
  • the pouring superheat is controlled at 10-25°C, and the dynamic soft reduction technology is used to improve the center segregation and center porosity of the cast slab.
  • the dynamic soft reduction technology is used to improve the center segregation and center porosity of the cast slab.
  • it is continuously cast into a continuous casting billet with a thickness of 450 mm and a width of 2100 mm.
  • the low-magnification center segregation of continuous casting slab is C0.5, the center is loose 0.5, and there are no other defects.
  • the cooled continuous casting slab is heated to 1240°C, and the furnace time is 8 hours for the casting slab.
  • the opening temperature of the blooming stage is 1035°C, the reduction of pass increases by 13mm on the conventional model, and the maximum reduction of 50mm reaches 17%.
  • the second stage is uncontrolled rolling, plate thickness finish rolling, total reduction is only 20mm, total reduction is 10%, opening thickness is 200mm, and finally rolled into 180mm thick steel plate. After rolling, the steel plate is slowly cooled to room temperature after being piled at high temperature.
  • the pile-cooled steel plate is normalized in a continuous furnace at 890°C for a holding time of 2.5 min/mm, and air-cooled to room temperature after being discharged from the furnace. After normalizing, the steel plate is tempered at 600°C for 550min in the furnace time. After tempering, the steel plate is tested for flaws, and the flaw detection level meets the requirements of GB/T2970 Class I. The hardness test results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

一种预硬化镜面模具钢板,元素组成为C:0.28~0.36%,Si:0.50~0.80%,Mn:1.20~1.50%,P≤0.020%,S≤0.010%,Cr:1.30~1.80%,Mo:0.30~0.50%,Ni:0.65~0.90%,V:0.15~0.30%,H≤1.5ppm,余量为Fe及不可避免的杂质。采用连铸坯经轧制和下线缓冷及正火和回火热处理等工序的制造方法,获得一款高淬透性预硬化镜面模具钢板,其优点在于连铸生产效率高,制造成本低,厚度为20-180mm的所述钢板非调质态硬度达到38-42HRC,全厚度硬度波动≤2HRC,探伤级别满足GB/T2970Ⅰ级要求。

Description

一种预硬化镜面模具钢板及其制造方法 技术领域
本发明属于铁基合金技术领域,具体涉及一种预硬化模具钢的制造。
背景技术
制造型企业朝着自动化升级,产品制造逐渐由依赖人工密集型劳动转向依赖工业设备生产,提高制造的自动化水平。生产设备的大型化和自动化,推动了我国塑料模具制造业向大模块、高均匀性及高镜面发展。这就要求塑料模具钢具有更厚的规格,更高的淬透性和更均匀的性能,主要表现为厚度规格更大,硬度更高更均匀,致密度要求更高。同时制造厂为保证良好的市场竞争力,要求模具钢生产周期短,成本低,性价比高。
现在广泛使用的预硬化模具钢有3Cr2Mo、3Cr2MnNiMo,其硬度范围在28-36HRC,已不能满足镜面模具高尺寸精度和高抛光性能需求。为获得更好的抛光效果,模具钢预硬化硬度要求38-42HRC。该类钢板主要是日本大同的NAK80预硬型钢,但是该钢合金含量高,多采用钢锭+锻造+调质工艺生产,生产周期长,成本高,价格昂贵。近些年,国内一些钢厂在3Cr2Mo的基础上添加Cr、Mo、V及微合金元素来获得质量更高的塑料模具钢。
公开号CN102650021 A的发明专利在3Cr2Mo的基础上增加了Mn,加入微合金元素Nb获得了一种高淬透性贝氏体预硬型模具钢,其硬度为30.6-33.6HRC,不属于高硬度的模具钢,而且采用钢锭+锻造的制造工艺,成材率低,生产周期长,生产成本高。
公开号CN109136736 A的发明专利公开了一种含钒塑料模具钢板,该钢板采用连铸轧制成材,制备流程短,工艺简单,与钢锭+锻造的工艺相比,生产成本较低,但是所涉及的钢板厚度为15-80mm,硬度为280-330HBW(相当于29-35HRC),硬度仍然没有更高的突破。
公开号CN107699801 A的发明专利生产的含V塑料模具钢晶粒细化,硬度均匀,但是该钢板生产须进行高温锻造,调质处理及二次回火,生产周期长,工艺较复杂,复杂的热处理也显著提高了生产成本,且该发明钢板芯部硬度也只能满足高于30HRC,而无法满足更高。
公开号CN107974636 A和CN109706397 A的发明专利文献公开的高硬度塑料模具钢淬透性好,硬度高,但是均采用感应炉、电渣重熔冶炼、浇铸钢锭,锻造成材,生产周期长,生产成本高。
发明内容
本发明所要解决的技术问题是针对上述现有技术提供一种预硬化镜面模具钢板,其不仅硬度高,而且沿钢板厚度方向钢板硬度均匀性好,硬度随厚度的曲线波动≤2HRC,钢板探伤级别满足GB/T2970Ⅰ级要求。
本发明的预硬化镜面模具钢板,是在3Cr2Mo的基础上,降低易偏析元素碳、Cr的含量,提高钢板硬度均匀性,增加相对便宜的Si、Mn的含量及添加适量的合金元素,细化晶粒,增加钢板淬透性,提高钢材强度和硬度,获得一种综合性能优异、性价比高的预硬化镜面模具钢。具体化学成分为C:0.28~0.36%,Si:0.50~0.80%,Mn:1.20~1.50%,P≤0.020%,S≤0.010%,Cr:1.30~1.80%,Mo:0.30~0.50%,Ni:0.65~0.90%,V:0.15~0.30%,H≤1.5ppm,余量为Fe及不可避免的杂质。以下是对本发明钢板中主要添加元素的作用及比例分析说明:
Si:Si元素在钢中脱氧和固溶强化作用,固溶于奥氏体中能够抑制珠光体的形成,促进贝氏体/马氏体相变,提高钢板硬度。本发明Si含量控制在0.50~0.80%。
Mn:Mn元素可以延迟高温铁素体相变得发生,以提高钢材强度和淬透性。本发明Mn含量控制在1.20~1.50%。
Cr:Cr在塑料模具钢中起固溶强化作用,提高钢材强度和硬度。但是Cr过高易产生偏析,因此本发明Cr含量控制在1.30~1.80%。
Mo:钼在钢种形成碳化物,可以提高钢板淬透性以及二次硬化作用。钼还可以增加钢材的回火抗力,与铬和锰元素复合使用,可以降低其导致的回火脆性。本发明Mo含量控制在0.30~0.50%。
Ni:镍是钢中的强化元素,可以提高钢强度和淬透性,同时对钢韧性损害较小。但镍元素成本高,适量添加0.65~0.90%。
V:钒与碳、氮有极强亲和力,与之形成相应的碳、氮化物,弥散分布,细化组织,降低钢的过热敏感性,增加回火稳定性。本发明V含量控制在0.15~0.30%。
上述合金元素的效果在于:通过Cr、Mo、Ni等合金元素提高钢板淬透性及钢板强度,保证大厚度钢板芯部硬度,提高钢板回火稳定性,扩大钢板回火工艺窗口;钒与钢 板中的碳形成碳化物,阻止晶粒长大,结合轧制工艺细化晶粒,提高钢板性能均匀性;Si、Mn等元素扩大钢板贝氏体形成区间,从而在轧后获得相对稳定的贝氏体组织,以期在本发明设计的正火工艺下能够达到调质态硬度区间,使钢板通体获得更高、更均匀的硬度值。
与上述元素设计所对应的钢板制造方法,包括如下步骤:
(1)钢水冶炼:铁水经预处理及氧气转炉冶炼,随后进行钢包炉精炼和真空脱气处理;
(2)连铸:钢水连铸成厚370-450mm×宽1600-2600mm的连铸坯;
(3)轧制:将连铸坯加热到1150℃-1250℃,在炉时间为铸坯板厚cm×7~14min/cm,在初轧阶段,采用高温开轧,控制开轧温度不低于1020℃,单道次压下量为40-55mm,最大压下率≥18%,使轧制力渗透到板坯芯部,为再结晶区轧制;第二阶段为精轧,不进行控轧,将80-200mm厚的初轧钢板进行目标厚度轧制及板型精整,轧成20-180mm厚的目标钢板厚度,轧后下线堆缓冷至室温;
(4)热处理:包括正火和回火两步,将堆冷后的钢板加热到870-910℃,保温时间2-2.5min/mm,出炉后空冷至室温,使钢板贝氏体转变充分;正火后的钢板根据不同钢板厚度安排回火:20-100mm厚钢板回火温度590-620℃,大于100mm厚钢板回火温度580-610℃,保温时间为板厚mm×3-4min/mm。
与现有技术相比,本发明的优点在于:本发明的模具钢板硬度高,淬透性好(表现为钢板在厚度方向硬度均匀,波动小),内部组织致密,探伤级别满足GB/T2970Ⅰ级要求。而且连铸成材厚度规格达到180mm,工艺可操作性高,生产效率高,合金元素和生产成本均较为经济。
附图说明
图1为本发明各实施例全厚度硬度的波动曲线。
具体实施方式
以下结合实施例对本发明作进一步详细描述,下面描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
实施例1
本实施例的化学成分按质量百分比计为:C:0.33%,Si:0.60%,Mn:1.40%,P: 0.010%,S:0.001%,Cr:1.59%,Mo:0.39%,Ni:0.78%,V:0.21%,H≤0.8ppm,余量为Fe及不可避免的杂质元素。具体生产过程如下:
(1)铁水经预处理及氧气转炉冶炼后,采用专用的精炼渣进行钢包炉精炼,有效处理钢水中S等有害元素,利用精炼渣尽可能的吸附去除S元素。然后进行30min真空脱气处理,且软吹氩20min,将钢水中H的含量降低至0.8ppm,钢包上连铸台前表面覆盖碳化稻壳保温,防钢液裸露二次氧化。
(2)连铸过程中采用大包下渣检测、全程无氧化保护浇注,连铸过程中浇注过热度控制在10-25℃,采用动态轻压下技术改善铸坯中心偏析和中心疏松。最终连铸成厚370mm×宽2200mm的连铸坯。连铸坯低倍中心偏析C0.5,中心疏松0.5,无其它缺陷。
(3)将冷却后的连铸坯加热到1240℃,铸坯板在炉时间为8小时。初轧阶段开轧温度1032℃,道次压下量在常规模型上增加10mm,40mm以上,最大到达55mm,最大压下率达到20%,初轧为再结晶区轧制,轧制变形直达钢板芯部,轧成80mm厚的中间坯。第二阶段轧制为板型板厚精整轧制,不控轧,自由轧制,将中间坯轧制成28mm厚钢板。轧后钢板高温下线堆缓冷至室温。
(4)将堆冷后的钢板在连续炉按照880℃,保温时间2min/mm正火,出炉后空冷至室温。正火后的钢板按照620℃,90min在炉时间进行回火。回火结束后钢板进行探伤,探伤级别满足GB/T2970Ⅰ级要求。硬度检测结果见表1。
实施例2
本实施例的化学成分按质量百分比计为:C:0.35%,Si:0.60%,Mn:1.41%,P:0.011%,S:0.002%,Cr:1.60%,Mo:0.40%,Ni:0.78%,V:0.21%,H≤0.8ppm,余量为Fe及不可避免的杂质元素。具体生产过程如下:
(1)铁水经预处理及氧气转炉冶炼后,采用专用的精炼渣进行钢包炉精炼,有效处理钢水中S等有害元素。然后进行35min真空处理,且软吹氩20min,将钢水中H的含量降低至0.6ppm,钢包上连铸台前表面覆盖碳化稻壳保温,防钢液裸露二次氧化。
(2)连铸过程中采用大包下渣检测、全程无氧化保护浇注,连铸过程中浇注过热度控制在15-25℃,采用动态轻压下技术改善铸坯中心偏析和中心疏松。最终连铸成厚450mm×宽2100mm的连铸坯。连铸坯低倍中心偏析C0.5,中心疏松0.5,无其它缺陷。
(3)将冷却后的连铸坯加热到1250℃,在炉时间为铸坯板9.5小时。初轧阶段开轧温度1030℃,道次压下量在常规模型上增加12mm,最大到达52mm最大压下率达到 20%。第二阶段轧制为板型板厚精整轧制,不控轧,开轧厚度180mm,最终轧制成160mm厚钢板。轧后钢板高温下线堆缓冷至室温。轧后钢板组织为贝氏体。
(4)将堆冷后的钢板在连续炉按照890℃,保温时间2.5min/mm正火,出炉后空冷至室温。正火后的钢板按照610℃,488min在炉时间进行回火。回火结束后钢板进行探伤,探伤级别满足GB/T2970Ⅰ级要求。硬度检测结果见表1。
实施例3
本实施例的化学成分按质量百分比计为:C:0.34%,Si:0.61%,Mn:1.42%,P:0.012%,S:0.002%,Cr:1.62%,Mo:0.40%,Ni:0.79%,V:0.22%,H≤0.8ppm,余量为Fe及不可避免的杂质元素。具体生产过程如下:
(1)铁水经预处理及氧气转炉冶炼后,采用专用的精炼渣进行钢包炉精炼,有效处理钢水中S等有害元素。然后进行33min真空处理,且软吹氩20min,将钢水中H的含量降低至0.8ppm,钢包上连铸台前表面覆盖碳化稻壳保温,防钢液裸露二次氧化。
(2)连铸过程中采用大包下渣检测、全程无氧化保护浇注,连铸过程中浇注过热度控制在10-25℃,采用动态轻压下技术改善铸坯中心偏析和中心疏松。最终连铸成厚450mm×宽2100mm的连铸坯。连铸坯低倍中心偏析C0.5,中心疏松0.5,无其它缺陷。
(3)将冷却后的连铸坯加热到1240℃,在炉时间为铸坯板8小时。初轧阶段开轧温度1035℃,道次压下量在常规模型上增加13mm,最大到达50mm最大压下率达到17%。第二阶段为不控制轧制,板型板厚精轧,总下压量只有20mm,总压下率为10%,开轧厚度200mm,最终轧制成180mm厚钢板。轧后钢板高温下线堆缓冷至室温。
(4)将堆冷后的钢板在连续炉按照890℃,保温时间2.5min/mm正火,出炉后空冷至室温。正火后的钢板按照600℃,550min在炉时间进行回火。回火结束后钢板进行探伤,探伤级别满足GB/T2970Ⅰ级要求。硬度检测结果见表1。
表1实施例硬度检测结果
编号 钢板厚度/mm 表面硬度(HRC) 芯部硬度(HRC)
实施例1 28 42 41.5
实施例2 160 41 40
实施例3 180 41 40
上述实施例1-3的轧制方式的采用使得钢板的致密度更高,轧后钢板获得更加稳定的贝氏体组织,为后面正火后钢板能够达到调质态硬度区间,且整板硬度波动小,硬度均匀性更好。

Claims (5)

  1. 一种预硬化镜面模具钢板,其特征在于:其化学成分按质量百分比为C:0.28~0.36%,Si:0.50~0.80%,Mn:1.20~1.50%,P≤0.020%,S≤0.010%,Cr:1.30~1.80%,Mo:0.30~0.50%,Ni:0.65~0.90%,V:0.15~0.30%,H≤1.5ppm,余量为Fe及不可避免的杂质,厚度为20-180mm的所述钢板非调质态硬度达到38-42HRC,全厚度硬度波动≤2HRC,探伤级别满足GB/T2970Ⅰ级要求。
  2. 一种制造权利要求1所述预硬化镜面模具钢板的方法,其特征在于:包括如下步骤:
    (1)钢水冶炼:铁水经预处理及氧气转炉冶炼,随后进行钢包炉精炼和真空脱气处理;
    (2)连铸:钢水连铸成厚370-450mm×宽1600-2600mm的连铸坯;
    (3)轧制:将连铸坯加热到1150℃-1250℃,在炉时间为铸坯板厚cm×7~14min/cm,在初轧阶段,采用高温开轧,控制开轧温度不低于1020℃,单道次压下量为40-55mm,最大压下率≥18%,使轧制力渗透到板坯芯部,为再结晶区轧制;第二阶段为精轧,不进行控轧,将80-200mm厚的初轧钢板进行目标厚度轧制及板型精整,轧成20-180mm厚的目标钢板厚度,轧后下线堆缓冷至室温;
    (4)热处理:包括正火和回火两步,将堆冷后的钢板加热到870-910℃,保温时间2-2.5min/mm,出炉后空冷至室温,使钢板贝氏体转变充分;正火后的钢板根据不同钢板厚度安排回火。
  3. 根据权利要求2所述的预硬化镜面模具钢板的方法,其特征在于:步骤(1)真空脱气持续时间至少30min,且软吹氩至少20min,降低钢水中H的含量,使钢中非金属夹杂物充分上浮。
  4. 根据权利要求2所述的预硬化镜面模具钢板的方法,其特征在于:步骤(2)连铸过程中配合大包下渣检测、全程无氧化保护浇注,浇注过热度≤25℃,在连铸过程中采用动态轻压下技术改善铸坯中心偏析和中心疏松。
  5. 根据权利要求2所述的预硬化镜面模具钢板的方法,其特征在于:步骤(4)所述回火根据不同钢板厚度进行:20-100mm厚钢板回火温度590-620℃,大于100mm厚钢板回火温度580-610℃,保温时间为板厚mm×3-4min/mm。
PCT/CN2021/070626 2020-02-27 2021-01-07 一种预硬化镜面模具钢板及其制造方法 WO2021169621A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21761208.4A EP4130316A4 (en) 2020-02-27 2021-01-07 PRE-HARDENED MIRROR MOLDED STEEL PLATE AND PRODUCTION PROCESS THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010122539.X 2020-02-27
CN202010122539.XA CN111321337B (zh) 2020-02-27 2020-02-27 一种预硬化镜面模具钢板及其制造方法

Publications (1)

Publication Number Publication Date
WO2021169621A1 true WO2021169621A1 (zh) 2021-09-02

Family

ID=71169190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070626 WO2021169621A1 (zh) 2020-02-27 2021-01-07 一种预硬化镜面模具钢板及其制造方法

Country Status (3)

Country Link
EP (1) EP4130316A4 (zh)
CN (1) CN111321337B (zh)
WO (1) WO2021169621A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114196813A (zh) * 2021-12-06 2022-03-18 山西太钢不锈钢股份有限公司 一种用于3Cr13模具钢中厚板预硬的热处理工艺
CN114317932A (zh) * 2021-12-27 2022-04-12 中航卓越锻造(无锡)有限公司 一种获取厚壁高筒环锻件平衡态组织的热处理方法
CN114427065A (zh) * 2021-12-28 2022-05-03 南阳汉冶特钢有限公司 一种250-400mm厚高品质低成本塑料模具钢1.2738的生产方法
CN114672743A (zh) * 2022-03-02 2022-06-28 福建三宝钢铁有限公司 一种低合金结构钢q355的制备方法
CN114770049A (zh) * 2022-05-13 2022-07-22 无锡华美新材料有限公司 一种5g通讯pcb制造用超硬模板制造方法
CN114807757A (zh) * 2022-04-25 2022-07-29 朝阳联强轧辊有限公司 一种大中型槽钢成品机架用模具钢轧辊及其铸造工艺
CN115354228A (zh) * 2022-08-29 2022-11-18 山东钢铁集团日照有限公司 一种高均匀性预硬化塑料模具钢的生产方法
CN115491511A (zh) * 2022-09-01 2022-12-20 大冶特殊钢有限公司 一种高韧性超高强度钢及其制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111321337B (zh) * 2020-02-27 2021-02-26 江阴兴澄特种钢铁有限公司 一种预硬化镜面模具钢板及其制造方法
CN113481357B (zh) * 2021-06-30 2022-06-21 江苏省沙钢钢铁研究院有限公司 塑料模具钢板及其生产方法
CN113621885B (zh) * 2021-08-18 2022-02-22 宝武集团鄂城钢铁有限公司 一种硼处理的预硬化塑料模具特厚钢板及其生产方法
CN114592107B (zh) * 2021-11-09 2023-08-04 山西太钢不锈钢股份有限公司 一种预硬耐蚀4Cr16NiMo模具钢中厚板的制备方法
CN114807747A (zh) * 2022-03-28 2022-07-29 江阴兴澄特种钢铁有限公司 一种塑料模具用9840合金钢板及其生产方法
CN114892094B (zh) * 2022-05-31 2023-03-03 宝武集团鄂城钢铁有限公司 一种预硬型镜面塑料模具钢及其生产方法
CN115976405B (zh) * 2022-12-14 2024-08-30 南阳汉冶特钢有限公司 一种大厚度SM3Cr2Ni1Mo模具钢及其生产方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009046721A (ja) * 2007-08-17 2009-03-05 Sumitomo Metal Ind Ltd 熱処理用鋼板
CN102650021A (zh) 2012-05-28 2012-08-29 上海大学 贝氏体预硬型塑料模具钢及其制备和热处理方法
CN104911321A (zh) * 2015-06-12 2015-09-16 江阴兴澄特种钢铁有限公司 一种塑料模具钢的特厚板生产工艺
CN104988434A (zh) * 2015-07-04 2015-10-21 江阴兴澄特种钢铁有限公司 一种含硫塑料模具钢厚板及其生产工艺
CN107699801A (zh) 2017-09-04 2018-02-16 唐山志威科技有限公司 一种模芯用含v塑料模具钢zw616及其制备方法
CN107974623A (zh) * 2017-12-22 2018-05-01 浙江天基重工机械有限公司 一种塑料模具钢及其制作方法
CN107974636A (zh) 2017-12-06 2018-05-01 钢铁研究总院 一种高硬度高淬透性预硬化塑料模具钢及其制备方法
CN109136736A (zh) 2017-06-28 2019-01-04 广东韶钢松山股份有限公司 一种含钒塑料模具钢板及其制造方法
CN109234495A (zh) * 2018-10-16 2019-01-18 江阴兴澄特种钢铁有限公司 一种低圧缩比高探伤要求SM4Gr2MnNi模具钢板的连铸生产工艺
CN109706397A (zh) 2019-01-18 2019-05-03 东北大学 一种预硬型塑料模具钢及其制备方法
CN110396648A (zh) * 2019-06-29 2019-11-01 江阴兴澄特种钢铁有限公司 一种连铸坯生产特厚合金模具钢板及其制造方法
CN111321337A (zh) * 2020-02-27 2020-06-23 江阴兴澄特种钢铁有限公司 一种预硬化镜面模具钢板及其制造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248320A (ja) * 2007-03-30 2008-10-16 National Institute For Materials Science フェライト系耐熱鋼とその製造方法
CN104532154B (zh) * 2014-04-28 2016-08-24 如皋市宏茂重型锻压有限公司 高硬度高抛光预硬化塑胶模具钢及其制备工艺
JP5979338B1 (ja) * 2014-11-18 2016-08-24 Jfeスチール株式会社 材質均一性に優れた厚肉高靭性高張力鋼板およびその製造方法
JP2017179596A (ja) * 2016-03-29 2017-10-05 株式会社神戸製鋼所 高炭素鋼板およびその製造方法
US20190226066A1 (en) * 2017-06-21 2019-07-25 Nippon Steel & Sumitomo Metal Corporation Steel plate

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009046721A (ja) * 2007-08-17 2009-03-05 Sumitomo Metal Ind Ltd 熱処理用鋼板
CN102650021A (zh) 2012-05-28 2012-08-29 上海大学 贝氏体预硬型塑料模具钢及其制备和热处理方法
CN104911321A (zh) * 2015-06-12 2015-09-16 江阴兴澄特种钢铁有限公司 一种塑料模具钢的特厚板生产工艺
CN104988434A (zh) * 2015-07-04 2015-10-21 江阴兴澄特种钢铁有限公司 一种含硫塑料模具钢厚板及其生产工艺
CN109136736A (zh) 2017-06-28 2019-01-04 广东韶钢松山股份有限公司 一种含钒塑料模具钢板及其制造方法
CN107699801A (zh) 2017-09-04 2018-02-16 唐山志威科技有限公司 一种模芯用含v塑料模具钢zw616及其制备方法
CN107974636A (zh) 2017-12-06 2018-05-01 钢铁研究总院 一种高硬度高淬透性预硬化塑料模具钢及其制备方法
CN107974623A (zh) * 2017-12-22 2018-05-01 浙江天基重工机械有限公司 一种塑料模具钢及其制作方法
CN109234495A (zh) * 2018-10-16 2019-01-18 江阴兴澄特种钢铁有限公司 一种低圧缩比高探伤要求SM4Gr2MnNi模具钢板的连铸生产工艺
CN109706397A (zh) 2019-01-18 2019-05-03 东北大学 一种预硬型塑料模具钢及其制备方法
CN110396648A (zh) * 2019-06-29 2019-11-01 江阴兴澄特种钢铁有限公司 一种连铸坯生产特厚合金模具钢板及其制造方法
CN111321337A (zh) * 2020-02-27 2020-06-23 江阴兴澄特种钢铁有限公司 一种预硬化镜面模具钢板及其制造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114196813A (zh) * 2021-12-06 2022-03-18 山西太钢不锈钢股份有限公司 一种用于3Cr13模具钢中厚板预硬的热处理工艺
CN114196813B (zh) * 2021-12-06 2023-09-26 山西太钢不锈钢股份有限公司 一种用于3Cr13模具钢中厚板预硬的热处理工艺
CN114317932A (zh) * 2021-12-27 2022-04-12 中航卓越锻造(无锡)有限公司 一种获取厚壁高筒环锻件平衡态组织的热处理方法
CN114427065A (zh) * 2021-12-28 2022-05-03 南阳汉冶特钢有限公司 一种250-400mm厚高品质低成本塑料模具钢1.2738的生产方法
CN114672743A (zh) * 2022-03-02 2022-06-28 福建三宝钢铁有限公司 一种低合金结构钢q355的制备方法
CN114807757A (zh) * 2022-04-25 2022-07-29 朝阳联强轧辊有限公司 一种大中型槽钢成品机架用模具钢轧辊及其铸造工艺
CN114770049A (zh) * 2022-05-13 2022-07-22 无锡华美新材料有限公司 一种5g通讯pcb制造用超硬模板制造方法
CN114770049B (zh) * 2022-05-13 2023-12-15 无锡华美新材料有限公司 一种5g通讯pcb制造用超硬模板制造方法
CN115354228A (zh) * 2022-08-29 2022-11-18 山东钢铁集团日照有限公司 一种高均匀性预硬化塑料模具钢的生产方法
CN115491511A (zh) * 2022-09-01 2022-12-20 大冶特殊钢有限公司 一种高韧性超高强度钢及其制备方法
CN115491511B (zh) * 2022-09-01 2023-11-28 大冶特殊钢有限公司 一种高韧性超高强度钢及其制备方法

Also Published As

Publication number Publication date
EP4130316A4 (en) 2023-10-25
CN111321337A (zh) 2020-06-23
CN111321337B (zh) 2021-02-26
EP4130316A1 (en) 2023-02-08

Similar Documents

Publication Publication Date Title
WO2021169621A1 (zh) 一种预硬化镜面模具钢板及其制造方法
WO2022022047A1 (zh) 一种低温环境下使用的低屈强比粒状贝氏体高强钢板及其制造方法
CN106011643B (zh) 一种抗拉强度590MPa级冷轧双相钢及其制备方法
CN109112423B (zh) 一种优良低温韧性特厚合金钢板及其制备方法
CN102653846B (zh) 一种水电用大厚度易焊接调质高强度钢板及其生产方法
WO2013044641A1 (zh) 一种屈服强度700MPa级高强度高韧性钢板及其制造方法
CN102899571A (zh) 一种预硬型塑料模具钢及其制造方法
CN113621885B (zh) 一种硼处理的预硬化塑料模具特厚钢板及其生产方法
CN107130172B (zh) 布氏硬度400hbw级整体硬化型高韧性易焊接特厚耐磨钢板及其制造方法
CN109280854A (zh) 980MPa级低碳冷轧双相钢及其制备方法
CN112981232B (zh) 一种连铸坯成材低压缩比高探伤质量要求的12Cr2Mo1VR钢板及生产工艺
CN109722598A (zh) 一种12Cr1MoV加钒铬钼钢板及其生产方法
CN114959509A (zh) 690MPa级高韧性钢板及其生产方法
CN115261734A (zh) 一种工程机械用高均质非调质钢及生产方法
CN115094322A (zh) 一种80mm厚690MPa级超高强韧海工钢板及其制备方法
CN114752851B (zh) 一种屈服强度960MPa级低裂纹敏感性钢板及其制造方法
CN112981240B (zh) 一种q550md低合金高强钢板及其生产方法
CN112981238B (zh) 一种连铸坯生产锻件标准的q460d钢板及其制造方法
CN115572901A (zh) 一种630MPa级高调质稳定性低碳低合金钢板及其制造方法
CN115074618A (zh) 一种低压缩比低温韧性优良的150mm厚FH550级海洋工程钢板及其制备方法
CN110592470B (zh) 一种保低温韧性的大厚度SA302GrC钢板及其制备方法
CN116770169B (zh) 一种201-300mm厚易切削预硬型模具钢板及其制造方法
CN116377328B (zh) 一种x60钢板及其制造方法
CN116005067B (zh) 一种抗热损伤机车车轮及其生产方法和应用
CN111074160B (zh) 一种高红硬模具钢及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21761208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021761208

Country of ref document: EP

Effective date: 20220927