WO2021169533A1 - 提升稳定性的冷媒加热控制方法、装置及空调设备 - Google Patents

提升稳定性的冷媒加热控制方法、装置及空调设备 Download PDF

Info

Publication number
WO2021169533A1
WO2021169533A1 PCT/CN2020/138168 CN2020138168W WO2021169533A1 WO 2021169533 A1 WO2021169533 A1 WO 2021169533A1 CN 2020138168 W CN2020138168 W CN 2020138168W WO 2021169533 A1 WO2021169533 A1 WO 2021169533A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating device
refrigerant
inlet valve
liquid
preset
Prior art date
Application number
PCT/CN2020/138168
Other languages
English (en)
French (fr)
Inventor
熊建国
张仕强
李立民
朱世强
李华杰
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2021169533A1 publication Critical patent/WO2021169533A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof

Definitions

  • the present disclosure relates to the field of air conditioning technology, and in particular, to a refrigerant heating control method, device, and air conditioning equipment that improve stability.
  • the gas-liquid separator has the functions of storing refrigerant and preventing compressor liquid hammer.
  • the gas-liquid separator separates the gaseous and liquid refrigerants, and the liquid refrigerant is stored in the gas-liquid separator.
  • the storage of a large amount of liquid cold in the gas-liquid separator will result in a low utilization rate of the system refrigerant, which will have a certain impact on the capacity and reliability of the system.
  • the biggest function of the gas-liquid separator known to the inventor of the present disclosure is to separate the gaseous and liquid refrigerants and prevent the compressor from liquid hammer.
  • the gas-liquid separator known by the inventor of the present disclosure can no longer meet the design requirements.
  • the liquid refrigerant in the gas-liquid separator can be heated and evaporated into a gaseous state by a heating device to participate in the system cycle.
  • a heating device due to the limited volume of the heating device, if the liquid refrigerant in the gas-liquid separator is always controlled to flow into the heating device, it will cause the liquid refrigerant to overflow The heating device thus enters the compressor.
  • the liquid refrigerant in the gas-liquid separator stops flowing into the heating device for too long, it will cause the heating device to burn dry and reduce equipment stability.
  • a refrigerant heating control method for improving stability includes: controlling the opening of an inlet valve of a heating device so that the refrigerant in the gas-liquid separator flows into the heating device; The inlet valve is opened for a first preset period of time and then the inlet valve is controlled to close, wherein the first preset period of time is based on the flow rate of the refrigerant in the pipeline between the gas-liquid separator and the heating device Determining; and controlling the inlet valve to open after the inlet valve is closed for a second preset period of time, wherein the second preset period of time is determined according to the power of the heating device.
  • the method further includes: after controlling the opening of the inlet valve of the heating device, monitoring the flow rate of the refrigerant in the pipeline; and according to the flow rate of the refrigerant, the internal capacity of the heating device and the The nominal diameter of the valve determines the first preset duration.
  • the first preset duration is determined according to the flow rate of the refrigerant in the pipeline, the internal capacity of the heating device, and the nominal diameter of the valve, which is achieved by the following formula:
  • V is the internal capacity of the heating device
  • D is the nominal diameter of the valve
  • is the flow rate of the refrigerant in the pipeline.
  • the method further includes: obtaining the power of the heating device after controlling the closing of the liquid inlet valve for a first preset period of time after the liquid inlet valve is opened, and determining the power corresponding to the power The second preset duration, wherein there is a preset correspondence between the second preset duration and the power of the heating device.
  • the preset correspondence relationship is:
  • m is the mass of the refrigerant to be heated
  • c is the latent heat of the refrigerant
  • p is the power of electric heating
  • k is the energy efficiency coefficient
  • the method further includes: controlling the heating device to turn off during the process of controlling the opening of the liquid inlet valve after the liquid inlet valve is closed for a second preset period of time.
  • a refrigerant heating control device for improving stability.
  • the device includes: a first control module for controlling the opening of the inlet valve of the heating device so that the gas-liquid separator The refrigerant flows into the heating device; the second control module is used to control the closing of the liquid inlet valve after the liquid inlet valve is opened for a first preset period of time, wherein the first preset period of time is based on the gas-liquid separation Determining the flow rate of the refrigerant in the pipeline between the heater and the heating device; and a third control module for controlling the opening of the liquid inlet valve after the liquid inlet valve is closed for a second preset period of time, wherein The second preset duration is determined according to the power of the heating device.
  • the device further includes: a flow rate monitoring module for monitoring the flow rate of the refrigerant in the pipeline; and a first determining module for determining the flow rate of the refrigerant and the internal capacity of the heating device And the nominal diameter of the valve determine the first preset duration.
  • the device further includes: a second determining module, configured to obtain the power of the heating device, and determine the second preset duration corresponding to the power.
  • the device further includes: a fourth control module, configured to control the heating device during the process of controlling the opening of the liquid inlet valve after the liquid inlet valve is closed for a second preset period of time closure.
  • a refrigerant heating control device including: a memory; and a processor coupled to the memory, and the processor is configured to execute, based on instructions stored in the memory, such as The method described earlier.
  • an air conditioner including the above-mentioned refrigerant heating control device.
  • a computer-readable storage medium on which a computer program is stored, and the program is executed by a processor to implement the above method.
  • Figure 1 is a structural diagram of a refrigerant heating device using the control method of the present disclosure
  • Fig. 2 is a flowchart of a refrigerant heating control method according to an embodiment of the present disclosure
  • Fig. 3 is a structural block diagram of a refrigerant heating control device according to an embodiment of the present disclosure
  • FIG. 4 is a structural block diagram of a refrigerant heating control device according to another embodiment of the present disclosure.
  • Fig. 5 is a structural block diagram of a refrigerant heating control device according to another embodiment of the present disclosure.
  • first, second, etc. may be used to describe the preset duration in the embodiments of the present disclosure, these preset durations should not be limited to these terms. These terms are only used to distinguish...
  • the first preset duration may also be referred to as the second preset duration, and similarly, the second preset duration may also be referred to as the first preset duration.
  • the words “if” and “if” as used herein can be interpreted as “when” or “when” or “in response to determination” or “in response to detection”.
  • the phrase “if determined” or “if detected (statement or event)” can be interpreted as “when determined” or “in response to determination” or “when detected (statement or event) )” or “in response to detection (statement or event)”.
  • the embodiments of the present disclosure provide a refrigerant heating control method, device, and air conditioning equipment that improve stability, so as to solve the problem that the conduction time between the gas-liquid separator and the heating device in the technology known by the inventor of the present disclosure cannot be controlled, resulting in equipment The problem of reduced stability.
  • Fig. 1 is a structural diagram of a refrigerant heating device adopting the control method of the present disclosure.
  • the device includes: a gas-liquid separator 11 and a heating device 12.
  • the heating device includes a heating tank 121 for containing liquid refrigerant and a heating component 122.
  • the gas-liquid separator 11 and the heating tank 121 are in communication with each other through a pipeline.
  • An inlet valve 13 is provided on the pipeline.
  • the liquid refrigerant collected by the gas-liquid separator 11 flows into the heating tank 121.
  • the liquid refrigerant in the heating tank 121 is heated by the heating member 122, evaporates into a gaseous state, is discharged through the exhaust port of the heating device 12, and returns to the compressor.
  • FIG. 2 is a flowchart of a refrigerant heating control method according to an embodiment of the present disclosure. As shown in FIG. 2, the method includes steps S101 to S103.
  • the heating device in the initial state, there is no liquid refrigerant in the heating device. If the heating device is turned on at this time, the heating device is in a dry state. If it continues to dry, the heating device will be damaged and the stability of the equipment will decrease. If the liquid inlet valve is controlled to open while the heating device is turned on, the evaporation rate of the liquid refrigerant will be large when the heating power of the heating device is large. If the liquid refrigerant in the heating device is not replenished in time, it may still cause dry burning. In order to solve the problem of dry burning, it is necessary to ensure that there is a sufficient amount of refrigerant in the heating device before the heating device is turned on. Therefore, before the heating device is turned on, the inlet valve of the heating device is controlled to open so that the liquid refrigerant collected by the gas-liquid separator enters the heating device.
  • S102 Control the liquid inlet valve to close after opening a first preset time period, where the first preset time period is determined according to the flow rate of the refrigerant in the pipeline between the gas-liquid separator and the heating device.
  • the inlet valve of the heating device When the inlet valve of the heating device is opened, the liquid refrigerant in the gas-liquid separator starts to flow into the heating device. If the inlet valve is opened for too long, the liquid refrigerant in the heating device will accumulate and eventually exceed the horizontal line where the exhaust port of the heating device is located. Then, the liquid refrigerant will flow out from the exhaust port and directly enter the compressor, causing compressor liquid shock. In order to avoid this, it is necessary to ensure that the liquid level of the liquid refrigerant does not exceed the exhaust port of the heating device. To achieve this goal, it is necessary to control the opening of the inlet valve for a maximum time not exceeding the time for the liquid level of the liquid refrigerant to reach the horizontal line where the exhaust port of the heating device is located.
  • the opening time of the liquid valve can be determined according to the volume below the exhaust port of the heating device.
  • the volume below the exhaust port of the heating device represents the volume of liquid refrigerant flowing into the heating device during the time the inlet valve is opened.
  • the flow rate of the refrigerant represents the length of the refrigerant flowing in a unit time
  • the nominal diameter of the inlet valve is equivalent to the diameter of the refrigerant liquid column. Since the cross-section of the through hole of the inlet valve is circular, with a known diameter, the area of the refrigerant liquid column can be calculated according to the area formula of the circle. Calculate the product of the length of the refrigerant flowing in a unit time and the area of the refrigerant liquid column, which is the volume of the liquid refrigerant flowing through the inlet valve in a unit time. Therefore, it can be concluded:
  • V is the internal capacity of the heating device
  • D is the nominal diameter of the valve
  • is the flow rate of the refrigerant in the pipeline.
  • the first preset duration can be calculated from the flow rate of the refrigerant, the internal capacity of the heating device, and the nominal diameter of the valve.
  • determining the first preset duration includes: monitoring the flow rate of the refrigerant in the pipeline; and determining the first preset based on the flow rate of the refrigerant, the internal capacity of the heating device, and the nominal diameter of the valve Duration, wherein the internal capacity of the heating device and the nominal diameter of the valve are fixed values.
  • the heating device After the inlet valve is closed, the heating device is controlled to open to heat the liquid refrigerant. Since the latent heat of vaporization of the same refrigerant from liquid to gas is fixed, that is, the energy required for a certain mass of refrigerant to change from liquid to gas is constant. According to the foregoing, the volume of refrigerant inside the heating device is known Yes, the density of the same kind of refrigerant is a fixed value, so that the quality of the internal refrigerant of the heating device can be calculated. According to the type of refrigerant, the latent heat of vaporization can be determined, combined with the quality of the refrigerant, and then the heat absorbed by all the liquid refrigerant inside the heating device can be calculated.
  • the heat energy that the heating device needs to transfer to the liquid refrigerant and the heat absorbed by the refrigerant should be equal. Therefore, the heat energy that the heating device needs to transfer to the liquid refrigerant can be determined.
  • the electric energy required for heating can be calculated according to the energy conversion rate, and then according to the power of the electric heating device, the inside of the heating device can be calculated The time required for all the liquid refrigerant to evaporate, that is, the second preset time.
  • T k*m*c/p, where m is the mass of the refrigerant to be heated, and c is the latent heat of the refrigerant, p is the power of electric heating, k is the proportional coefficient, where k can be the reciprocal of the energy conversion rate. Since the energy conversion rate of the heating device is generally less than 1, the value of k is greater than 1.
  • the above process is an ideal calculation method for the second preset duration.
  • the relationship between the second preset time period and the power of the heating device is only approximately inversely proportional, and the calculated second preset time period may have a certain error, and precise control cannot be achieved.
  • the time required for all the liquid refrigerant inside the heating device to evaporate is obtained on the curve according to the actual power of the heating device, and this time is set as the second preset duration.
  • the liquid inlet valve is controlled to close after the liquid inlet valve of the heating device is opened for a first preset period of time, and after the liquid inlet valve is closed for a second preset period of time,
  • the valve can be closed in time when the refrigerant of the heating device reaches the upper limit of the capacity, so as to prevent the liquid refrigerant from overflowing the heating device and entering the compressor, causing liquid hammer.
  • the power of the heating device determine the closing time of the liquid inlet valve to avoid dry burning of the heating device.
  • This embodiment provides a refrigerant heating control method that improves stability.
  • the current control method of a gas-liquid separator and a heating device includes the following steps S1 to S3.
  • the method of this embodiment also includes: after the inlet valve is opened, according to the internal capacity of the electric heating device, the nominal diameter of the inlet valve, and the liquid refrigerant The flow rate determines the opening time t1 of the liquid valve, and the liquid inlet valve is controlled to close after the opening time t1. In this way, it is ensured that too much refrigerant does not enter into the electric heating device, so that the liquid refrigerant is always under the exhaust pipe, and prevents liquid from entering the compressor and causing hydraulic shock of the compressor.
  • the method of this embodiment further includes: after controlling the closing of the inlet valve, controlling the heating device to turn on, and determining the closing time t2 of the inlet valve according to the power of the electric heating and the latent heat of vaporization of the refrigerant used. Then control the inlet valve to open, and control the heating device to close at the same time. This can prevent dry burning, thereby preventing damage to the heating device.
  • the liquid refrigerant heating control method of this embodiment by controlling the opening time of the liquid inlet valve, the liquid refrigerant is prevented from overflowing the heating device and entering the compressor, causing liquid hammer, and by controlling the closing time of the liquid valve to avoid dry burning of the heating device.
  • the stability of the air conditioning equipment can be improved.
  • FIG. 3 is a structural block diagram of a refrigerant heating control device according to an embodiment of the present disclosure.
  • the device includes: a first control module 21 for controlling the opening of the liquid inlet valve of the heating device so that the refrigerant in the gas-liquid separator flows into the heating device.
  • a first control module 21 for controlling the opening of the liquid inlet valve of the heating device so that the refrigerant in the gas-liquid separator flows into the heating device.
  • the heating device In the initial state, there is no liquid refrigerant in the heating device. If the heating device is turned on at this time, the heating device will be in a dry state. If it continues to dry, the heating device will be damaged, and the stability of the equipment will decrease. If the liquid inlet valve is controlled to open while the heating device is turned on, the evaporation rate of the liquid refrigerant will be large when the heating power of the heating device is large. If the liquid refrigerant in the heating device is not replenished in time, it may still cause dry burning.
  • the inlet valve of the heating device should be controlled to open to make the gas-liquid separator collect The liquid refrigerant enters the heating device.
  • the device further includes: a second control module 22 for controlling the liquid inlet valve to close after being opened for a first preset period of time.
  • the first preset duration is determined according to the flow rate of the refrigerant in the pipeline between the gas-liquid separator and the heating device.
  • the second control module 22 is used to control the closing of the inlet valve after it is opened for the first preset period of time;
  • the device further includes: a third control module 23 for controlling the opening of the liquid inlet valve after the liquid inlet valve is closed for a second preset period of time.
  • the second preset duration is determined according to the power of the heating device.
  • the heating device is controlled to open to heat the liquid refrigerant.
  • the liquid refrigerant in the heating device will all evaporate into a gaseous state.
  • the inlet valve is closed, and no new liquid refrigerant is added, which will cause the heating device to dry up. Therefore, after all the liquid refrigerant in the heating device evaporates into a gaseous state, the third control module 23 needs to control the liquid inlet valve to open again.
  • Fig. 4 is a structural block diagram of a refrigerant heating control device according to another embodiment of the present disclosure. In order to determine the time when the liquid level of the liquid refrigerant reaches the exhaust port of the heating device, as shown in FIG.
  • the flow rate monitoring module 24 is used to monitor the flow rate of the refrigerant in the pipeline.
  • the flow rate monitoring module 24 may be a liquid flow rate sensor, which is arranged on the pipeline between the gas-liquid separator and the heating device.
  • the first determining module 25 is configured to determine the first preset duration according to the flow rate of the refrigerant, the internal capacity of the heating device, and the nominal diameter of the valve.
  • the first determining module is a calculation circuit. When the flow rate of the refrigerant, the internal capacity of the heating device, and the nominal diameter of the valve are known, according to the formula:
  • the first preset time duration is calculated through corresponding logical operations, where the internal capacity of the heating device refers to the volume below the horizontal line where the exhaust port of the heating device is located.
  • the device further includes: a second determining module 26 for obtaining the power of the heating device, Determine the second preset duration corresponding to the power.
  • the second determining module 26 includes a power detection circuit for detecting the current power of the heating device.
  • the second determining module 26 also includes a calculation circuit, which calculates the time required for the liquid refrigerant in the heating device to evaporate into a gaseous state based on the power of the heating device, the amount of liquid refrigerant in the heating device, and the latent heat of evaporation of the refrigerant, namely The second preset duration, or the second determining module 26 also includes a recalling unit, according to the corresponding relationship between the time required for the liquid refrigerant stored in the control device to evaporate into a gaseous state and the power of the heating device, to retrieve the current
  • the time required for the liquid refrigerant corresponding to the power to evaporate into a gas state is used as the second preset time period.
  • the device further includes: a fourth control module 27, configured to control the inlet valve after the inlet valve is closed for a second preset period of time During the opening process, the heating device is also controlled to be turned off.
  • the second control module controls the closing of the inlet valve after it is opened for a first preset period of time, and the second control module controls the closing of the inlet valve after the inlet valve is closed for a second preset period of time.
  • control its opening can close the valve in time when the refrigerant of the heating device reaches the upper limit of the capacity, to prevent the liquid refrigerant from overflowing the heating device and entering the compressor, causing liquid shock.
  • Fig. 5 is a structural block diagram of a refrigerant heating control device according to another embodiment of the present disclosure.
  • the refrigerant heating control device includes a memory 510 and a processor 520. in:
  • the memory 510 may be a magnetic disk, flash memory, or any other non-volatile storage medium.
  • the memory is used to store instructions in the embodiment corresponding to FIG. 2.
  • the processor 520 is coupled to the memory 510 and may be implemented as one or more integrated circuits, such as a microprocessor or a microcontroller.
  • the processor 520 is used to execute the instructions stored in the memory, so as to avoid the compressor's liquid hammer and the heating device's dry burning, and improve the stability of the air conditioning equipment.
  • This embodiment provides an air conditioner, including the above-mentioned refrigerant heating control device for improving stability.
  • This embodiment provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the foregoing method is implemented.
  • the device embodiments described above are merely illustrative.
  • the units described as separate components may or may not be physically separate, and the components displayed as modules may or may not be physical modules, that is, they may be located in One place, or it can be distributed to multiple network units. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each implementation manner can be implemented by means of software plus a necessary general hardware platform, and of course, it can also be implemented by hardware.
  • the above technical solution essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product can be stored in a computer-readable storage medium, such as ROM/RAM, magnetic A disc, an optical disc, etc., include several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute the methods described in each embodiment or some parts of the embodiment.

Abstract

一种提升稳定性的冷媒加热控制方法、装置及空调设备。其中,该方法包括:控制加热装置(12)的进液阀(13)开启,使所述气液分离器(11)中的冷媒流入所述加热装置(12);在开启第一预设时长后控制所述进液阀(13)关闭,其中,所述第一预设时长根据所述气液分离器(11)和所述加热装置(12)之间管路的冷媒的流速确定;在所述进液阀(13)关闭第二预设时长后,控制所述进液阀(13)开启,其中,所述第二预设时长根据所述加热装置(12)的功率确定。通过上述方法,能够避免压缩机液击和加热装置(12)干烧,提升空调设备的稳定性。

Description

提升稳定性的冷媒加热控制方法、装置及空调设备
相关申请的交叉引用
本申请是以CN申请号为202010120898.1,申请日为2020年2月26日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及空调技术领域,具体而言,涉及提升稳定性的冷媒加热控制方法、装置及空调设备。
背景技术
气液分离器作为空调系统一个重要的部件,具有存储冷媒、防止压缩机液击等作用。冷媒在系统中流动时,气液分离器将气态和液态的冷媒分离,液态冷媒存储在气液分离器中。然而大量液态冷存储在气液分离器中,会导致系统冷媒利用率低,对系统的能力和可靠性存在一定的影响。本公开的发明人已知的气液分离器最大的作用是将经气态和液态的冷媒分离,防止压缩机液击。但在连续制热系统中,本公开的发明人已知的气液分离器已经不能满足设计需求。可以通过加热装置将气液分离器中液态冷媒加热蒸发为气态后,参与系统循环,但是由于加热装置的容积有限,如果一直控制气液分离器中的液态冷媒流入加热装置,会导致液态冷媒溢出加热装置,从而进入压缩机。但是如果气液分离器中的液态冷媒停止流入加热装置的时间过长,又会导致加热装置干烧,降低设备稳定性。
本公开的发明人已知的技术中存在气液分离器与加热装置之间的导通时间无法控制,导致设备稳定性降低的问题。
发明内容
根据本公开的一个方面,提供了一种提升稳定性的冷媒加热控制方法,其中,该方法包括:控制加热装置的进液阀开启,使气液分离器中的冷媒流入所述加热装置;在所述进液阀开启第一预设时长后控制所述进液阀关闭,其中,所述第一预设时长根据所述气液分离器和所述加热装置之间的管路的冷媒的流速确定;和在所述进液阀关闭第二预设时长后,控制所述进液阀开启,其中,所述第二预设时长根据所述加热装置的功率确定。
在一些实施例中,所述方法还包括:在控制加热装置的进液阀开启之后,监测所述管路内冷媒的流速;和根据所述冷媒的流速、所述加热装置的内部容量和所述阀门的公称直径确定所述第一预设时长。
在一些实施例中,根据所述管路内冷媒的流速、所述加热装置的内部容量和所述阀门的公称直径确定所述第一预设时长,通过以下公式实现:
Figure PCTCN2020138168-appb-000001
其中,V为所述加热装置的内部容量,D为所述阀门的公称直径,υ为所述管路内冷媒的流速。
在一些实施例中,所述方法还包括:在所述进液阀开启第一预设时长后控制所述进液阀关闭之后,获取所述加热装置的功率,并确定与所述功率对应的第二预设时长,其中,所述第二预设时长与所述加热装置的功率存在预设对应关系。
在一些实施例中,所述预设对应关系为:
T=k*m*c/p,
其中,m为所需加热的冷媒的质量,c为冷媒的潜热,p为电加热的功率,k为能效系数。
在一些实施例中,所述方法还包括:在所述进液阀关闭第二预设时长后,控制所述进液阀开启的过程中,还控制所述加热装置关闭。
根据本公开的另一个方面,还提供了一种提升稳定性的冷媒加热控制装置,所述装置包括:第一控制模块,用于控制加热装置的进液阀开启,使气液分离器中的冷媒流入所述加热装置;第二控制模块,用于在所述进液阀开启第一预设时长后控制所述进液阀关闭,其中,所述第一预设时长根据所述气液分离器和所述加热装置之间的管路的冷媒的流速确定;和第三控制模块,用于在所述进液阀关闭第二预设时长后,控制所述进液阀开启,其中,所述第二预设时长根据所述加热装置的功率确定。
在一些实施例中,所述装置还包括:流速监测模块,用于监测所述管路内冷媒的流速;和第一确定模块,用于根据所述冷媒的流速、所述加热装置的内部容量和所述阀门的公称直径确定所述第一预设时长。
在一些实施例中,所述装置还包括:第二确定模块,用于获取所述加热装置的功率,确定与所述功率对应的第二预设时长。
在一些实施例中,所述装置还包括:第四控制模块,用于在所述进液阀关闭第二预设 时长后,控制所述进液阀开启的过程中,还控制所述加热装置关闭。
根据本公开的另一个方面,还提供了一种冷媒加热控制装置,包括:存储器;以及耦接至所述存储器的处理器,所述处理器被配置为基于存储在所述存储器的指令执行如前所述的方法。
根据本公开的另一个方面,还提供一种空调设备,包括上述冷媒加热控制装置。
根据本公开的另一个方面,还提供一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现上述方法。
附图说明
图1为采用本公开的控制方法的冷媒加热装置的结构图;
图2为根据本公开实施例的冷媒加热控制方法的流程图;
图3为根据本公开实施例的冷媒加热控制装置的结构框图;
图4为根据本公开另一实施例的冷媒加热控制装置的结构框图;
图5为根据本公开另一实施例的冷媒加热控制装置的结构框图。
具体实施方式
为了使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开作在一些实施例中详细描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
在本公开实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义,“多种”一般包含至少两种。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应当理解,尽管在本公开实施例中可能采用术语第一、第二等来描述预设时长,但这些预设时长不应限于这些术语。这些术语仅用来将……区分开。例如,在不脱离本公开实施例范围的情况下,第一预设时长也可以被称为第二预设时长,类似地,第二预设时长也可以被称为第一预设时长。
取决于语境,如在此所使用的词语“如果”、“若”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的商品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种商品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的商品或者装置中还存在另外的相同要素。
本公开实施例中提供提升稳定性的冷媒加热控制方法、装置及空调设备,以解决本公开的发明人已知的技术中气液分离器与加热装置之间的导通时间无法控制,导致设备稳定性降低的问题。
下面结合附图详细说明本公开的可选实施例。
实施例1
图1为采用本公开的控制方法的冷媒加热装置的结构图。
如图1所示,所述装置包括:气液分离器11以及加热装置12。所述加热装置包括用于盛装液态冷媒的加热罐121以及加热部件122。气液分离器11和加热罐121通过管路连通。管路上设置有进液阀13。气液分离器11收集的液态冷媒流入加热罐121。利用加热部件122对加热罐121内的液态冷媒进行加热,使其蒸发为气态,通过加热装置12的排气口排出,回到压缩机。
基于上述装置,本实施例提供一种提升稳定性的冷媒加热控制方法,图2为根据本公开实施例的冷媒加热控制方法的流程图,如图2所示,该方法包括步骤S101至S103。
S101,控制加热装置的进液阀开启,使气液分离器中的冷媒流入所述加热装置。
在具体实施时,初始状态下,加热装置内没有液态冷媒。如果此时开启加热装置,加热装置处于干烧的状态。如果持续干烧,会导致加热装置损坏,导致设备的稳定性降低。如果在加热装置开启的同时,控制进液阀开启,在加热装置的加热功率很大的情况下,液态冷媒的蒸发速率会很大。如果加热装置中的液态冷媒补充的不及时,仍有可能造成干烧。为了解决干烧的问题,需保证在加热装置开启之前,加热装置中已经有足够量的冷媒。因此,在加热装置开启之前,先控制加热装置的进液阀开启,使气液分离器收集的液态冷媒进入加热装置。
S102,在开启第一预设时长后控制所述进液阀关闭,其中,所述第一预设时长根据所述气液分离器和所述加热装置之间的管路的冷媒的流速确定。
当加热装置的进液阀开启后,气液分离器内的液态冷媒开始流入加热装置。如果进液阀开启的时间过长,加热装置内的液态冷媒越积越多,最终超过加热装置的排气口所在的水平线。那么,液态冷媒将会从该排气口流出,直接进入压缩机,导致压缩机液击。为了避免这一情况发生,需保证液态冷媒的液位不超过加热装置的排气口。要实现这一目的,需要控制进液阀开启的时间最长不能超过液态冷媒的液位到达加热装置的排气口所在的水平线的时间。因此,可以根据加热装置的排气口以下的容量确定液阀开启的时间。加热装置的排气口以下的容量代表进液阀开启的时间内流入加热装置的液态冷媒的体积。那么,计算液阀开启的时间,只需计算出单位时间内流经进液阀的液态冷媒的体积。冷媒流速代表单位时间内冷媒流过的长度,而进液阀的公称直径相当于冷媒液柱的直径。由于进液阀通孔的横截面为圆形,已知直径,根据圆的面积公式可以计算冷媒液柱的面积。计算单位时间内冷媒流过的长度与冷媒液柱的面积的乘积,即为单位时间内流过进液阀的液态冷媒的体积。因此,可以得出:
Figure PCTCN2020138168-appb-000002
其中,V为所述加热装置的内部容量,D为所述阀门的公称直径,υ为所述管路内冷媒的流速。基于以上公式,可以通过所述冷媒的流速、所述加热装置的内部容量和所述阀门的公称直径计算出所述第一预设时长。加热装置的规格一旦选定,底面积,直径等形状参数,以及排气口的位置就已经确定。因此加热装置的排气口以下的容量即为定值。类似地,阀门的规格一旦选定,其公称直径也为定值。上述公式中只有冷媒的流速是变量。因此,确定第一预设时长,包括:监测所述管路内冷媒的流速;和根据所述冷媒的流速、所述加热装置的内部容量和所述阀门的公称直径确定所述第一预设时长,其中,所述加热装置的内部容量和所述阀门的公称直径为定值。
S103,在所述进液阀关闭第二预设时长后,控制所述进液阀开启,其中,所述第二预设时长根据所述加热装置的功率确定。
进液阀关闭后,控制加热装置开启,对液态冷媒加热。由于同一种冷媒由液态变为气态的蒸发潜热是固定的,即一定质量的冷媒由液态变为气态所需要的能量的是一定的,根据前述内容,加热装置的内部冷媒的体积量是已知的,同一种冷媒,其密度是定值,从而能够计算出加热装置的内部冷媒的质量。根据冷媒的种类,可以确定其蒸发潜热,结合冷媒的质量,进而能够计算出加热装置的内部液态冷媒全部蒸发所需吸收的热量。根据能量 守恒的原理,在理想状态下,加热装置需向液态冷媒传递的热能与冷媒所吸收的热量应该是相等的,因此,加热装置需向液态冷媒传递的热能可以确定。以电加热装置为例,在加热装置的能源转换率已知的情况下,根据能源转换率能够计算出加热所需的电能,再根据该电加热装置的功率,就能够计算出加热装置的内部液态冷媒全部蒸发所需的时间,即第二设预设时长。由于加热装置需转化的能量一定,根据能量、功率以及时间的关系,可以推导出:T=k*m*c/p,其中,m为所需加热的冷媒的质量,c为冷媒的潜热,p为电加热的功率,k为比例系数,其中,k可以为能源转换率的倒数。由于加热装置的能源转换率一般小于1,因此,k的值大于1。
需要说明的是,上述过程为理想状态下,第二预设时长的计算方法。但是在实际应用中,往往会存在一定偏差,第二预设时长与加热装置的功率的关系只满足近似成反比,计算得出的第二预设时长可能存在一定误差,无法实现精确控制。为了解决这一问题,可以通过实验的方式,测试不同功率下,加热装置的内部液态冷媒全部蒸发所需的时间,从而确定蒸发所需的时间与加热装置的功率的对应关系,形成对应关系曲线。在实际控制时,根据加热装置的实际功率,在曲线上获得加热装置的内部液态冷媒全部蒸发所需的时间,将该时间设定为第二预设时长。
经过第二预设时长后,加热装置中的液态冷媒全部蒸发为气态,此时控制进液阀开启。但是,这时进入加热装置中的液态冷媒量较少,加热装置中的液态冷媒的补给速度低于蒸发速度。为了进一步防止加热装置干烧,需在进液阀开启的过程中,还控制加热装置关闭。
在空调系统需要采用加热装置对液态冷媒进行加热,使其蒸发时,循环执行上述步骤S102和步骤S103。
本实施例的提升稳定性的冷媒加热控制方法,在加热装置的进液阀开启第一预设时长后控制所述进液阀关闭,在所述进液阀关闭第二预设时长后,再控制所述进液阀开启,能够在加热装置的冷媒到达容量上限时,及时关闭该阀门,避免液态冷媒溢出加热装置,进入压缩机,造成液击。此外,根据加热装置的功率,确定该进液阀关闭的时间,避免加热装置干烧。通过以上的控制方案,能够提升空调设备的稳定性。
实施例2
本实施例提供一种提升稳定性的冷媒加热控制方法,目前的气液分离器和加热装置的控制方法包括下面的步骤S1至S3。
S1,控制加热装置的进液阀开启,使气液分离器中存储的液态冷媒流入电加热装置中。
S2,控制加热装置开启,对液态冷媒进行加热,使其转变为气态。
S3,气态冷媒流入压缩机。
在电加热的加热下液态冷媒转变为气态冷媒,加热装置中压力持续增加。出于安全性考虑,为保证机组可靠运行,本实施例的方法在上述步骤的基础上还包括:在进液阀开启后,根据电加热装置内部容量大小、进液阀的公称直径以及液态冷媒的流速确定液阀开启时间t1,控制进液阀在开启t1时间后关闭。这样保证电加热装置中不会进入过多冷媒,使液态冷媒始终处于排气管路下方,防止液体进入压机,造成压机液击。
再者,本实施例的方法还包括:在控制进液阀关闭后,控制加热装置开启,根据电加热的功率大小以及所采用的冷媒的蒸发潜热,确定进液阀关闭时间t2,在t2时间后控制进液阀开启,同时控制加热装置关闭。这样可以防止干烧,从而防止损坏加热装置。
本实施例的冷媒加热控制方法,通过控制进液阀开启的时间,避免液态冷媒溢出加热装置,进入压缩机,造成液击,以及通过控制液阀关闭的时间,避免加热装置干烧。通过以上的控制方案,能够提升空调设备的稳定性。
实施例3
本实施例提供一种提升稳定性的冷媒加热控制装置。图3为根据本公开实施例的冷媒加热控制装置的结构框图。
如图3所示,该装置包括:第一控制模块21,用于控制加热装置的进液阀开启,使气液分离器中的冷媒流入所述加热装置。在初始状态下,加热装置内没有液态冷媒,如果此时开启加热装置,加热装置会处于干烧的状态。如果持续干烧,会导致加热装置损坏,进而导致设备的稳定性降低。如果在加热装置开启的同时,控制进液阀开启,在加热装置的加热功率很大的情况下,液态冷媒的蒸发速率会很大。如果加热装置中的液态冷媒补充的不及时,仍有可能造成干烧。为了防止干烧的问题,需保证在加热装置开启之前,加热装置中已经有足够量的冷媒,因此,在加热装置开启之前,先控制加热装置的进液阀开启,使气液分离器收集的液态冷媒进入加热装置。
如图3所示,该装置还包括:第二控制模块22,用于在开启第一预设时长后控制所述进液阀关闭。所述第一预设时长根据所述气液分离器和所述加热装置之间的管路的冷媒的流速确定。当加热装置的进液阀开启后,气液分离器内的液态冷媒开始流入加热装置。如果进液阀开启的时间过长,加热装置内的液态冷媒越积越多,最终超过加热装置的排气口所在的水平线,液态冷媒将会从该排气口流出,直接进入压缩机,导致压缩机液击。为了避免这一情况发生,需保证液态冷媒的液位不超过加热装置的排气口。要实现这一目的,需要控制进液阀开启的时间最长不能超过液态冷媒的液位到达加热装置的排气口所在的 水平线的时间。因此,通过第二控制模块22,在进液阀开启第一预设时长后控制其关闭;
如图3所示,该装置还包括:第三控制模块23,用于在所述进液阀关闭第二预设时长后,控制所述进液阀开启。所述第二预设时长根据所述加热装置的功率确定。进液阀关闭后,控制加热装置开启,对液态冷媒加热。但是经过一定时间后,加热装置内的液态冷媒会全部蒸发成气态。此时进液阀处于关闭状态,没有新的液态冷媒补充进来,会造成加热装置干烧。因此,在加热装置内的液态冷媒全部蒸发成气态后,需要通过第三控制模块23控制进液阀再次开启。
图4为根据本公开另一实施例的冷媒加热控制装置的结构框图。为了确定液态冷媒的液位到达加热装置的排气口的时间,如图4所示,在上述实施例的基础上,所述装置还包括:流速监测模块24和第一确定模块25。
流速监测模块24用于监测所述管路内冷媒的流速。所述流速监测模块24可以为液体流速传感器,设置在气液分离器和加热装置之间的管路上。
第一确定模块25用于根据所述冷媒的流速、所述加热装置的内部容量和所述阀门的公称直径确定所述第一预设时长。所述第一确定模块为一个计算电路,在已知所述冷媒的流速,所述加热装置的内部容量,所述阀门的公称直径的情况下,根据公式:
Figure PCTCN2020138168-appb-000003
通过相应的逻辑运算,计算第一预设时时长,其中,所述加热装置的内部容量是指加热装置的排气口所在的水平线以下的容积。
为了确定加热装置内的液态冷媒会全部蒸发成气态,如图4所示,在上述实施例的基础上,所述装置还包括:第二确定模块26,用于获取所述加热装置的功率,确定与所述功率对应的第二预设时长。所述第二确定模块26包括一个功率检测电路,用于检测加热装置当前的功率。所述第二确定模块26还包括一个计算电路,根据加热装置的功率和加热装置内液态冷媒的量及所述冷媒的蒸发潜热计算加热装置内的液态冷媒全部蒸发成气态所需的时间,即第二预设时长,或者第二确定模块26还包括一个调取单元,根据预先存入到该控制装置的液态冷媒全部蒸发成气态所需的时间与加热装置的功率的对应关系,调取当前功率所对应的液态冷媒全部蒸发成气态所需的时间,作为第二预设时长。
经过第二预设时长后,加热装置中的液态冷媒全部蒸发为气态,此时控制进液阀开启。但是,这时进入加热装置中的液态冷媒量较少,加热装置中的液态冷媒的补给速度低于蒸发速度。为了进一步防止加热装置干烧,需在进液阀开启的过程中,还控制加热装置关闭。因此,如图4所示,在上述实施例的基础上,所述装置还包括:第四控制模块27,用于在 所述进液阀关闭第二预设时长后,控制所述进液阀开启的的过程中,还控制所述加热装置关闭。
本实施例的提升稳定性的冷媒加热控制装置,通过第二控制模块在进液阀开启第一预设时长后控制其关闭,通过第二控制模块,在进液阀关闭第二预设时长后,再控制其开启,能够在加热装置的冷媒到达容量上限时,及时关闭该阀门,避免液态冷媒溢出加热装置,进入压缩机,造成液击。此外,根据加热装置的功率,确定该进液阀关闭的时间,避免加热装置干烧。通过以上的控制方案,能够提升空调设备的稳定性。
图5为根据本公开另一实施例的冷媒加热控制装置的结构框图。该冷媒加热控制装置包括存储器510和处理器520。其中:
存储器510可以是磁盘、闪存或其它任何非易失性存储介质。存储器用于存储图2所对应实施例中的指令。
处理器520耦接至存储器510,可以作为一个或多个集成电路来实施,例如微处理器或微控制器。该处理器520用于执行存储器中存储的指令,从而能够避免压缩机液击和加热装置干烧,提升空调设备的稳定性。
实施例4
本实施例提供一种空调设备,包括上述提升稳定性的冷媒加热控制装置。
实施例5
本实施例提供一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现上述方法。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参 照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (13)

  1. 一种冷媒加热控制方法,包括:
    控制加热装置的进液阀开启,使气液分离器中的冷媒流入所述加热装置;
    在所述进液阀开启第一预设时长后控制所述进液阀关闭,其中,所述第一预设时长根据所述气液分离器和所述加热装置之间的管路的冷媒的流速确定;和
    在所述进液阀关闭第二预设时长后,控制所述进液阀开启,其中,所述第二预设时长根据所述加热装置的功率确定。
  2. 根据权利要求1所述的方法,还包括:
    在控制所述加热装置的进液阀开启之后,监测所述管路内冷媒的流速;和
    根据所述冷媒的流速、所述加热装置的内部容量和所述阀门的公称直径确定所述第一预设时长。
  3. 根据权利要求1所述的方法,其中,根据所述冷媒的流速、所述加热装置的内部容量和所述阀门的公称直径确定所述第一预设时长,通过以下公式实现:
    Figure PCTCN2020138168-appb-100001
    其中,V为所述加热装置的内部容量,D为所述阀门的公称直径,υ为所述管路内冷媒的流速。
  4. 根据权利要求1所述的方法,还包括:
    在所述进液阀开启第一预设时长后控制所述进液阀关闭之后,获取所述加热装置的功率,并确定与所述功率对应的第二预设时长,其中,所述第二预设时长与所述加热装置的功率存在预设对应关系。
  5. 根据权利要求4所述的方法,其中,所述预设对应关系为:
    T=k*m*c/p
    其中,m为所需加热的冷媒的质量,c为冷媒的潜热,p为电加热的功率,k为能效系数。
  6. 根据权利要求1所述的方法,还包括:
    在所述进液阀关闭第二预设时长后,控制所述进液阀开启的过程中,还控制所述加热装置关闭。
  7. 一种冷媒加热控制装置,包括:
    第一控制模块,用于控制加热装置的进液阀开启,使气液分离器中的冷媒流入所述加热装置;
    第二控制模块,用于在所述进液阀开启第一预设时长后控制所述进液阀关闭,其中,所述第一预设时长根据所述气液分离器和所述加热装置之间的管路的冷媒的流速确定;和
    第三控制模块,用于在所述进液阀关闭第二预设时长后,控制所述进液阀开启,其中,所述第二预设时长根据所述加热装置的功率确定。
  8. 根据权利要求7所述的装置,还包括:
    流速监测模块,用于监测所述管路内冷媒的流速;和
    第一确定模块,用于根据所述冷媒的流速、所述加热装置的内部容量和所述阀门的公称直径确定所述第一预设时长。
  9. 根据权利要求7所述的装置,还包括:
    第二确定模块,用于获取所述加热装置的功率,确定与所述功率对应的第二预设时长。
  10. 根据权利要求7所述的装置,还包括:
    第四控制模块,用于在所述进液阀关闭第二预设时长后,控制所述进液阀开启的过程中,控制所述加热装置关闭。
  11. 一种冷媒加热控制装置,包括:
    存储器;以及
    耦接至所述存储器的处理器,所述处理器被配置为基于存储在所述存储器的指令执行如权利要求1至6任意一项所述的方法。
  12. 一种空调设备,包括:如权利要求7至11中任一项所述的冷媒加热控制装置。
  13. 一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现如权利要求1至6中任一项所述的方法。
PCT/CN2020/138168 2020-02-26 2020-12-22 提升稳定性的冷媒加热控制方法、装置及空调设备 WO2021169533A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010120898.1 2020-02-26
CN202010120898.1A CN111306855B (zh) 2020-02-26 2020-02-26 提升稳定性的冷媒加热控制方法、装置及空调设备

Publications (1)

Publication Number Publication Date
WO2021169533A1 true WO2021169533A1 (zh) 2021-09-02

Family

ID=71156761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138168 WO2021169533A1 (zh) 2020-02-26 2020-12-22 提升稳定性的冷媒加热控制方法、装置及空调设备

Country Status (2)

Country Link
CN (1) CN111306855B (zh)
WO (1) WO2021169533A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114704933A (zh) * 2022-02-18 2022-07-05 青岛海尔空调器有限总公司 用于控制直流空调器的方法及装置、空调器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111306855B (zh) * 2020-02-26 2021-01-08 珠海格力电器股份有限公司 提升稳定性的冷媒加热控制方法、装置及空调设备
CN111578442B (zh) * 2020-05-12 2022-06-17 宁波奥克斯电气股份有限公司 一种压缩机防回液控制方法、装置及空调器
CN114484728B (zh) * 2022-01-25 2023-09-08 宁波奥克斯电气股份有限公司 空调回液保护的控制方法、装置及空调器

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3439178B2 (ja) * 1993-12-28 2003-08-25 三菱電機株式会社 冷凍サイクル装置
CN1461400A (zh) * 2000-09-01 2003-12-10 辛文特公司 蒸汽压缩机系统的除霜方法及装置
CN101539348A (zh) * 2008-03-18 2009-09-23 Lg电子株式会社 空调及其控制方法
CN104634020A (zh) * 2015-01-23 2015-05-20 西安交通大学 一种用于空气源热泵的除霜系统
CN104913557A (zh) * 2015-05-29 2015-09-16 广东美的制冷设备有限公司 功率控制方法、功率控制系统、气液分离器和空调器
CN105627650A (zh) * 2016-01-18 2016-06-01 珠海格力电器股份有限公司 一种液态冷媒控制方法及装置
CN106196792A (zh) * 2016-08-24 2016-12-07 珠海格力电器股份有限公司 一种气液分离器的积液控制方法、装置及空调器系统
CN109798701A (zh) * 2019-03-21 2019-05-24 珠海格力电器股份有限公司 用于连续制热的空调控制系统、空调控制方法及空调
CN110736272A (zh) * 2019-09-26 2020-01-31 青岛海尔空调器有限总公司 用于空调补气增焓的控制方法、控制装置及空调
CN111306855A (zh) * 2020-02-26 2020-06-19 珠海格力电器股份有限公司 提升稳定性的冷媒加热控制方法、装置及空调设备

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169272A (ja) * 1987-12-24 1989-07-04 Mitsubishi Electric Corp 冷媒装置
JPH02298770A (ja) * 1989-05-10 1990-12-11 Daikin Ind Ltd マルチ形空気調和機
JP2001263847A (ja) * 2000-03-17 2001-09-26 Fujitsu General Ltd 空気調和機の冷凍サイクル
KR100499485B1 (ko) * 2002-11-23 2005-07-07 엘지전자 주식회사 다수개의 압축기가 구비된 히트펌프 시스템의어큐뮬레이터
KR100504923B1 (ko) * 2003-09-17 2005-07-29 엘지전자 주식회사 히트펌프용 어큐뮬레이터의 유체혼합장치
CN100455954C (zh) * 2004-07-08 2009-01-28 乐金电子(天津)电器有限公司 热泵用储液罐的流体混合装置
KR100943972B1 (ko) * 2008-12-11 2010-02-26 에스에이비(주) 압축기 과부하가 방지가능한 환경 대응형 히트펌프 냉난방 시스템
CN101865562B (zh) * 2010-04-27 2012-02-01 中国科学院亚热带农业生态研究所 高精度自动无间隔切换均匀控温方法及装置
CN102200384A (zh) * 2011-03-07 2011-09-28 烟台欧立特制药装备有限公司 对冻干机热媒循环系统的热媒进行加热的系统及加热方法
CN104251575B (zh) * 2013-06-26 2016-12-07 广东美的暖通设备有限公司 压缩机组件及具有其的空调器
CN103727714B (zh) * 2013-12-18 2015-10-21 西安交通大学 一种热泵热水器的除霜系统及其控制方法
CN103983041B (zh) * 2014-04-15 2016-02-03 无锡冠亚恒温制冷技术有限公司 反应釜用高放热量的制冷加热控温系统
US20170016659A1 (en) * 2015-07-14 2017-01-19 Nortek Global Hvac Llc Refrigerant charge and control method for heat pump systems
CN110530077A (zh) * 2019-09-26 2019-12-03 珠海格力电器股份有限公司 可自动调节的冷媒量调节装置、方法及空调设备
CN110645745A (zh) * 2019-10-23 2020-01-03 珠海格力电器股份有限公司 可连续制热的空调及其控制方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3439178B2 (ja) * 1993-12-28 2003-08-25 三菱電機株式会社 冷凍サイクル装置
CN1461400A (zh) * 2000-09-01 2003-12-10 辛文特公司 蒸汽压缩机系统的除霜方法及装置
CN101539348A (zh) * 2008-03-18 2009-09-23 Lg电子株式会社 空调及其控制方法
CN104634020A (zh) * 2015-01-23 2015-05-20 西安交通大学 一种用于空气源热泵的除霜系统
CN104913557A (zh) * 2015-05-29 2015-09-16 广东美的制冷设备有限公司 功率控制方法、功率控制系统、气液分离器和空调器
CN105627650A (zh) * 2016-01-18 2016-06-01 珠海格力电器股份有限公司 一种液态冷媒控制方法及装置
CN106196792A (zh) * 2016-08-24 2016-12-07 珠海格力电器股份有限公司 一种气液分离器的积液控制方法、装置及空调器系统
CN109798701A (zh) * 2019-03-21 2019-05-24 珠海格力电器股份有限公司 用于连续制热的空调控制系统、空调控制方法及空调
CN110736272A (zh) * 2019-09-26 2020-01-31 青岛海尔空调器有限总公司 用于空调补气增焓的控制方法、控制装置及空调
CN111306855A (zh) * 2020-02-26 2020-06-19 珠海格力电器股份有限公司 提升稳定性的冷媒加热控制方法、装置及空调设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114704933A (zh) * 2022-02-18 2022-07-05 青岛海尔空调器有限总公司 用于控制直流空调器的方法及装置、空调器
CN114704933B (zh) * 2022-02-18 2023-12-19 青岛海尔空调器有限总公司 用于控制直流空调器的方法及装置、空调器

Also Published As

Publication number Publication date
CN111306855A (zh) 2020-06-19
CN111306855B (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
WO2021169533A1 (zh) 提升稳定性的冷媒加热控制方法、装置及空调设备
US10619864B2 (en) Heat pump water heater and control method thereof
CN102472543B (zh) 制冷剂控制系统和方法
KR101237216B1 (ko) 공기조화기 및 그 제어방법
WO2021063088A1 (zh) 变频器的冷却系统、方法及空调设备
WO2023087661A1 (zh) 一种加湿器、控制方法、空调器、装置及存储介质
WO2019037722A1 (zh) 空调系统及其控制方法
JP2017096564A (ja) 冷凍サイクルシステムおよび液バック防止方法
WO2021077915A1 (zh) 连续制热控制系统、方法及空调设备
JPH0849930A (ja) 熱ポンプ装置
WO2024012144A1 (zh) 多联机系统的控制方法、装置、多联机系统和存储介质
KR102191560B1 (ko) 히트펌프 시스템 및 그 제어 방법
WO2022038869A1 (ja) 電池温調システム
JP2013068370A (ja) 冷房システム
US20220095492A1 (en) Cooling loops for buffering cooling capacity variations
CN111121242B (zh) 一种空调系统运行参数的调节方法、调节装置和空调系统
JPS59229139A (ja) 太陽熱利用給湯装置
CN111306852A (zh) 一种防止换热器结霜的空调系统及其控制方法
CN110906580A (zh) 空调系统的控制方法
CN114738927B (zh) 空调器的控制方法、控制器、空调器及存储介质
JP2001235248A (ja) 空気調和装置
CN216844910U (zh) 一种空调器
WO2021258689A1 (zh) 换热系统、空调设备和空调设备的控制方法
CN112303928B (zh) 一种热泵热水机组和控制方法
JPS6222379B2 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20921553

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20921553

Country of ref document: EP

Kind code of ref document: A1