WO2021169221A1 - 多污渍清洁机器人及基于其的移动路径控制方法 - Google Patents
多污渍清洁机器人及基于其的移动路径控制方法 Download PDFInfo
- Publication number
- WO2021169221A1 WO2021169221A1 PCT/CN2020/112545 CN2020112545W WO2021169221A1 WO 2021169221 A1 WO2021169221 A1 WO 2021169221A1 CN 2020112545 W CN2020112545 W CN 2020112545W WO 2021169221 A1 WO2021169221 A1 WO 2021169221A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stain
- array
- point
- cleaning robot
- camera device
- Prior art date
Links
- 238000004140 cleaning Methods 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000005108 dry cleaning Methods 0.000 abstract description 16
- 238000009510 drug design Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J11/00—Manipulators not otherwise provided for
- B25J11/008—Manipulators for service tasks
- B25J11/0085—Cleaning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1656—Programme controls characterised by programming, planning systems for manipulators
- B25J9/1664—Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1679—Programme controls characterised by the tasks executed
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F43/00—Dry-cleaning apparatus or methods using volatile solvents
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0221—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving a learning process
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0246—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
- G05D1/0253—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means extracting relative motion information from a plurality of images taken successively, e.g. visual odometry, optical flow
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0276—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
Definitions
- the invention relates to the field of smart home furnishings, in particular to a multi-stain cleaning robot and a movement path control method based thereon.
- the purpose of the present invention is to provide a multi-stain cleaning robot and a movement path control method based thereon, which can clean multiple stains at the same time, and improve the efficiency of dry cleaning clothes.
- Multi-stain cleaning robot including:
- a camera device capable of taking pictures of each stain point in turn.
- the servo system can drive the mechanical arm to move to the corresponding stain point, and is connected with the mechanical arm.
- the camera device adopts a camera, an electronic camera or a digital camera.
- the servo system adopts a host computer or a handheld mobile device.
- the movement path control method of the multi-stain cleaning robot includes the following steps:
- step S3 Replace the initial position of the camera device with the first movement point, and perform step S2 again, so that the element array2[0] with the smallest number in the array array2 is written into the array sport, which is recorded as the second movement point, By analogy, finally the smallest numbered element array(n)[0] in the array array(n) is written into the array sport, which is recorded as the nth movement point;
- the one or more technical solutions provided in the embodiments of the present invention have at least the following beneficial effects: Based on the hardware support of the robotic arm, the camera device and the servo system, it can provide good mechanical dry cleaning conditions, and the efficiency is more optimized than manual cleaning.
- each stain point is scanned in order by the camera device, and the relative distance is sorted by the servo system. Therefore, the distance of each stain point can be clearly arranged, so that it is convenient to drive the robotic arm to be sequentially separated
- the dry cleaning is achieved at each stain point, which will not miss any stain point, but also ensure the effectiveness of the path and prevent the robot arm from generating redundant paths. Therefore, the present invention has reasonable design and intelligent control, can perform stable and rapid dry cleaning for multiple stains at the same time, and improves the efficiency and efficiency of dry cleaning clothes.
- the way of scanning each stain by the imaging device is from top to bottom.
- step S3 using a bubble sorting algorithm to sort the disordered elements in the array array1 includes:
- FIG. 1 is a schematic block diagram of the structure of a multi-stain cleaning robot according to an embodiment of the present invention
- FIG. 2 is a schematic diagram of a control flow of a method for controlling a movement path of a multi-stain cleaning robot according to an embodiment of the present invention
- FIG. 3 is a schematic flow chart of the steps of the bubble sorting algorithm used in the movement path control method of the multi-stain cleaning robot according to the embodiment of the present invention.
- the multi-stain cleaning robot includes:
- the camera device 100 can take images of each stain point in sequence.
- the servo system 200 can drive the mechanical arm 300 to move to the corresponding stain point, and is connected with the mechanical arm 300.
- the movement path control method of the multi-stain cleaning robot includes the following steps:
- step S3 Replace the initial position of the camera device 100 with the first movement point, and perform step S2 again, so that the element array2[0] with the smallest number in the array array2 is written into the array sport, which is recorded as the second movement point , And so on, and finally write the smallest numbered element array(n)[0] in the array array(n) into the array sport, which is recorded as the nth movement point;
- the robot arm 300 is made to reach the corresponding stain points for cleaning.
- the camera device 100 based on the hardware support of the robotic arm 300, the camera device 100, and the servo system 200, good mechanical dry cleaning conditions can be provided. Compared with manual cleaning, the efficiency is more optimized.
- the camera device 100 sequentially Scan each stain point and sort its relative distance through the servo system 200. Therefore, the distance of each stain point can be clearly arranged, so that it is convenient to drive the robotic arm 300 to reach each stain point in order to achieve dry cleaning. , It will not miss any stain point, but also ensure the validity of the path, and prevent the robot arm 300 from generating redundant paths; and the array record sorting method is more intelligent and can respond to the stain point distance data in time, so Controlling the robotic arm 300 is more intelligent and effective. Therefore, the present invention has reasonable design and intelligent control, can perform stable and rapid dry cleaning for multiple stains at the same time, and improves the efficiency and efficiency of dry cleaning clothes.
- the method flow is as follows: first determine the initial position of the camera device 100, that is, the origin (X0, Y0), scan and view the stains by the camera device 100 in turn, and the scanned stain coordinates are sequentially recorded as (X1, Y1) ), (X2,Y2)...(Xn,Yn), calculate the distance from each stain point to the origin in the servo system 200 in turn
- the smallest Dmin is selected by the bubble sorting method and determined as the first moving point, marked as the number 1, and the distance from the first moving point to other stain points is calculated
- the smallest Dmin is determined as the second moving point, marked as the number 2, and so on to mark the remaining stain points until Dn.
- the robot arm 300 is allowed to reach different stain points, and the dry cleaning of these stain points can be realized respectively, which is very convenient and reliable.
- the camera device 100 uses a camera, an electronic camera or a digital camera, and the servo system 200 uses a host computer or a handheld mobile device.
- the selection of the camera device 100 is not limited. It only needs to be connected to the servo system 200 to ensure stable upload of image information.
- the servo system 200 is controlled by a host computer, and the response is relatively timely, which is convenient for users to understand in time. The movement of the robotic arm 300.
- the method of scanning each stain by the imaging device 100 is from top to bottom. Specifically, by scanning and checking the stains sequentially from top to bottom by the camera device 100, the panoramic range covered by the clothes can be scanned sequentially, which can prevent the omission of stain points, and the scanning effect is better.
- step S3 using a bubble sorting algorithm to sort the disordered elements in the array array1 includes:
- the bubble sorting algorithm can reasonably compare and sort each element in the array array1, ensuring that the element with the smallest sequence number can be found stably from the array array1, thereby meeting the data filtering requirements.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Mechanical Engineering (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Robotics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Textile Engineering (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Electromagnetism (AREA)
- Manipulator (AREA)
Abstract
本发明公开了多污渍清洁机器人及基于其的移动路径控制方法,相比于传统技术,基于机械臂、摄像装置和伺服系统的硬件支持,能够提供良好的机械干洗条件,相比于人工清洗,效率更加优化,尤其是,通过摄像装置按次序地扫描各个污渍点,并通过伺服系统对其相对距离进行排序,因此,能够将各污渍点的远近距离了解排列清楚,从而方便驱动机械臂能够按序地分别到达各污渍点处实现干洗清洁,既不会遗漏任一污渍点,也保证了路径有效性,防止机械臂产生多余路径。因此,本发明设计合理,控制智能化,能够同时针对多处污渍进行稳定、快速地干洗清洁,提高了干洗衣物的效能效率。
Description
本发明涉及智能家居领域,尤其是多污渍清洁机器人及基于其的移动路径控制方法。
现有的衣物干洗普遍采用人工清洗的方式,过程显得较为繁琐且耗时较长,面对衣物上出现的微小污渍时,需要人们花费大量时间进行验衣检查,这会花费人们宝贵时间,且仍有可能出现忽略污渍的情况,这是目前干洗方式所存在的一个较为严重的问题,即效率相对不高,且洗衣质量不能得到保证。
发明内容
为了解决上述问题,本发明的目的是提供多污渍清洁机器人及基于其的移动路径控制方法,能够同时针对多处污渍进行清洁,提高了干洗衣物的效能效率。
为了弥补现有技术的不足,本发明实施例采用的技术方案是:
多污渍清洁机器人,包括:
机械臂;以及
摄像装置,能够依次拍摄每一污渍点的图像;以及
伺服系统,能够驱动机械臂运动至相应的污渍点处,与所述机械臂相连接。
进一步地,所述摄像装置采用摄像头、电子照相机或数码摄影机。
进一步地,所述伺服系统采用上位机或手持移动设备。
多污渍清洁机器人的移动路径控制方法,包括以下步骤:
S1、通过所述摄像装置依次扫描各污渍点,并记录各污渍点的坐标至所述伺服系统中;
S2、计算各污渍点到所述摄像装置的初始位置之间的距离,将所述距离汇总记录到数组array1中,并采用冒泡排序算法对所述数组array1中的无序元素进行排序,从而将序号最小的元素array1[0]写入数组sport中,记为第一运动点;
S3、以所述第一运动点替换所述摄像装置的初始位置,再次执行步骤S2,从而将数组array2中的序号最小的元素array2[0]写入数组sport中,记为第二运动点,以此类推,最终将数组array(n)中的序号最小的元素array(n)[0]写入 数组sport中,记为第n运动点;
S4、按1到n的顺序使所述机械臂依次到达相应的污渍点进行清洁。
本发明实施例中提供的一个或多个技术方案,至少具有如下有益效果:基于机械臂、摄像装置和伺服系统的硬件支持,能够提供良好的机械干洗条件,相比于人工清洗,效率更加优化,尤其是,通过摄像装置按次序地扫描各个污渍点,并通过伺服系统对其相对距离进行排序,因此,能够将各污渍点的远近距离了解排列清楚,从而方便驱动机械臂能够按序地分别到达各污渍点处实现干洗清洁,既不会遗漏任一污渍点,也保证了路径有效性,防止机械臂产生多余路径。因此,本发明设计合理,控制智能化,能够同时针对多处污渍进行稳定、快速地干洗清洁,提高了干洗衣物的效能效率。
进一步地,所述摄像装置扫描各污渍的方式为从上至下。
进一步地,步骤S3中,采用冒泡排序算法对所述数组array1中的无序元素进行排序,包括:
扫描所述数组array1中的第一个元素到最后一个元素,依次使相邻两元素进行比较,每比较一次则使两者中更小的元素排在前一位,以此类推,最终将数组array1中所有元素排序完毕。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
下面结合附图给出本发明较佳实施例,以详细说明本发明的实施方案。
图1是本发明实施例的多污渍清洁机器人的结构示意框图;
图2是本发明实施例的多污渍清洁机器人的移动路径控制方法的控制流程示意图;
图3是本发明实施例的多污渍清洁机器人的移动路径控制方法所采用的冒泡排序算法的步骤流程示意图。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
需要说明的是,如果不冲突,本发明实施例中的各个特征可以相互结合,均在本发明的保护范围之内。另外,虽然在系统示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于系统中的模块划分,或流程图中的顺序执行所示出或描述的步骤。
下面结合附图,对本发明实施例作进一步阐述。
参照图1,多污渍清洁机器人,包括:
机械臂300;以及
摄像装置100,能够依次拍摄每一污渍点的图像;以及
伺服系统200,能够驱动机械臂300运动至相应的污渍点处,与所述机械臂300相连接。
多污渍清洁机器人的移动路径控制方法,包括以下步骤:
S1、通过所述摄像装置100依次扫描各污渍点,并记录各污渍点的坐标至所述伺服系统200中;
S2、计算各污渍点到所述摄像装置100的初始位置之间的距离,将所述距离汇总记录到数组array1中,并采用冒泡排序算法对所述数组array1中的无序元素进行排序,从而将序号最小的元素array1[0]写入数组sport中,记为第一运动点;
S3、以所述第一运动点替换所述摄像装置100的初始位置,再次执行步骤S2,从而将数组array2中的序号最小的元素array2[0]写入数组sport中,记为第二运动点,以此类推,最终将数组array(n)中的序号最小的元素array(n)[0]写入数组sport中,记为第n运动点;
S4、按1到n的顺序使所述机械臂300依次到达相应的污渍点进行清洁。
在本实施例中,基于机械臂300、摄像装置100和伺服系统200的硬件支持,能够提供良好的机械干洗条件,相比于人工清洗,效率更加优化,尤其是,通过摄像装置100按次序地扫描各个污渍点,并通过伺服系统200对其相对距离进行排序,因此,能够将各污渍点的远近距离了解排列清楚,从而方便驱动机械臂300能够按序地分别到达各污渍点处实现干洗清洁,既不会遗漏任一污渍点,也保证了路径有效性,防止机械臂300产生多余路径;并且,采用数组记录排序的方式,较为智能化,能够及时对污渍点距离数据进行响应处理,故控制机械臂 300更加智能有效。因此,本发明设计合理,控制智能化,能够同时针对多处污渍进行稳定、快速地干洗清洁,提高了干洗衣物的效能效率。
具体地,参照图2,该方法流程为:首先确定摄像装置100的初始位置,即原点(X0,Y0),通过摄像装置100依次扫描查看污渍,扫描到的污渍坐标依次记录为(X1,Y1)、(X2,Y2)…(Xn,Yn),在伺服系统200中依次计算出每个污渍点到原点的距离
的大小,通过冒泡排序的方法筛选出最小的Dmin确定为第一个运动点,标记为数字1,计算第一个运动点到其他污渍点的距离得出
再通过排序筛选出最小的Dmin确定为第二个运动点,标记为数字2,以此类推标记剩下的污渍点,直至Dn。最终,按照上述1到n的运动点顺序依次让机械臂300到达不同的污渍点,即可分别实现这些污渍点的干洗清洁,非常方便可靠。
优选地,所述摄像装置100采用摄像头、电子照相机或数码摄影机,所述伺服系统200采用上位机或手持移动设备。在本实施例中,摄像装置100的选择不限定,只需将其与伺服系统200连接,保证能够稳定上传图像信息即可,伺服系统200采用上位机控制,响应较为及时,能够方便用户及时了解机械臂300的运动情况。
更进一步地,所述摄像装置100扫描各污渍的方式为从上至下。具体地,通过摄像装置100从上到下依次扫描查看污渍,能够对衣物所覆盖的全景范围进行按顺序地扫描,可防止出现污渍点的遗漏情况,扫描效果更加良好。
更进一步地,参照图3,步骤S3中,采用冒泡排序算法对所述数组array1中的无序元素进行排序,包括:
扫描所述数组array1中的第一个元素到最后一个元素,依次使相邻两元素进行比较,每比较一次则使两者中更小的元素排在前一位,以此类推,最终将数组array1中所有元素排序完毕。
具体地,冒泡排序算法能够将数组array1中的每一个元素进行合理比较排序,保证了能够从数组array1中稳定找出最小序号的元素,从而满足数据筛选要求。
以上内容对本发明的较佳实施例和基本原理作了详细论述,但本发明并不局限于上述实施方式,熟悉本领域的技术人员应该了解在不违背本发明精神的前提 下还会有各种等同变形和替换,这些等同变形和替换都落入要求保护的本发明范围内。
Claims (6)
- 多污渍清洁机器人,其特征在于,包括:机械臂;以及摄像装置,能够依次拍摄每一污渍点的图像;以及伺服系统,能够驱动机械臂运动至相应的污渍点处,与所述机械臂相连接。
- 根据权利要求1所述的多污渍清洁机器人,其特征在于,包括:所述摄像装置采用摄像头、电子照相机或数码摄影机。
- 根据权利要求1或2所述的多污渍清洁机器人,其特征在于,包括:所述伺服系统采用上位机或手持移动设备。
- 基于权利要求1至3任一所述的多污渍清洁机器人的移动路径控制方法,其特征在于,包括以下步骤:S1、通过所述摄像装置依次扫描各污渍点,并记录各污渍点的坐标至所述伺服系统中;S2、计算各污渍点到所述摄像装置的初始位置之间的距离,将所述距离汇总记录到数组array1中,并采用冒泡排序算法对所述数组array1中的无序元素进行排序,从而将序号最小的元素array1[0]写入数组sport中,记为第一运动点;S3、以所述第一运动点替换所述摄像装置的初始位置,再次执行步骤S2,从而将数组array2中的序号最小的元素array2[0]写入数组sport中,记为第二运动点,以此类推,最终将数组array(n)中的序号最小的元素array(n)[0]写入数组sport中,记为第n运动点;S4、按1到n的顺序使所述机械臂依次到达相应的污渍点进行清洁。
- 根据权利要求4所述的多污渍清洁机器人移动路径控制方法,其特征在于,所述摄像装置扫描各污渍的方式为从上至下。
- 根据权利要求4所述的多污渍清洁机器人移动路径控制方法,其特征在于,步骤S3中,采用冒泡排序算法对所述数组array1中的无序元素进行排序,包括:扫描所述数组array1中的第一个元素到最后一个元素,依次使相邻两元素进行比较,每比较一次则使两者中更小的元素排在前一位,以此类推,最终将数组array1中所有元素排序完毕。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ZA2022/03209A ZA202203209B (en) | 2020-02-28 | 2022-03-17 | Multi-stain cleaning robot and method for controlling motion path based on the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010131975.3 | 2020-02-28 | ||
CN202010131975.3A CN111319052A (zh) | 2020-02-28 | 2020-02-28 | 多污渍清洁机器人及基于其的移动路径控制方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021169221A1 true WO2021169221A1 (zh) | 2021-09-02 |
Family
ID=71165477
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/112545 WO2021169221A1 (zh) | 2020-02-28 | 2020-08-31 | 多污渍清洁机器人及基于其的移动路径控制方法 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN111319052A (zh) |
WO (1) | WO2021169221A1 (zh) |
ZA (1) | ZA202203209B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111319052A (zh) * | 2020-02-28 | 2020-06-23 | 五邑大学 | 多污渍清洁机器人及基于其的移动路径控制方法 |
CN112626800B (zh) * | 2020-12-11 | 2021-08-13 | 孟少凯 | 智能洗衣方法、装置及智能洗衣机 |
CN113796787A (zh) * | 2021-09-26 | 2021-12-17 | 复旦大学 | 一种擦拭清洁机器人及其控制方法 |
CN117314142B (zh) * | 2023-09-15 | 2024-05-28 | 中国人民解放军海军工程大学 | 一种产品线工序次序优化方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06343581A (ja) * | 1993-06-10 | 1994-12-20 | Mitsubishi Heavy Ind Ltd | 高所清掃リモコンロボット |
CN202397386U (zh) * | 2011-08-26 | 2012-08-29 | 上海电机学院 | 智能吸盘式擦洗机 |
EP3015179A1 (en) * | 2013-06-26 | 2016-05-04 | Ecoteck Aplicaciones Ambientales, S.L. | Cleaning robot for refrigerated chambers and trailers |
CN106426198A (zh) * | 2016-10-10 | 2017-02-22 | 山东科技大学 | 清洁机器人 |
CN107021216A (zh) * | 2017-03-17 | 2017-08-08 | 西安旋飞电子科技有限公司 | 清洁高空玻璃的无人机 |
CN107126156A (zh) * | 2017-06-08 | 2017-09-05 | 唐建芳 | 一种智能家居清洁环保机器人及其工作方法 |
CN109334977A (zh) * | 2018-09-29 | 2019-02-15 | 吉林大学 | 一种高空玻璃幕墙清洁无人机 |
CN109594286A (zh) * | 2018-11-26 | 2019-04-09 | 歌尔股份有限公司 | 一种智能洗衣方法、装置、智能洗衣机 |
CN111319052A (zh) * | 2020-02-28 | 2020-06-23 | 五邑大学 | 多污渍清洁机器人及基于其的移动路径控制方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180238796A1 (en) * | 2015-08-24 | 2018-08-23 | Conopco, Inc., D/B/A Unilever | Method and apparatus for stain treatment |
US10575699B2 (en) * | 2018-01-05 | 2020-03-03 | Irobot Corporation | System for spot cleaning by a mobile robot |
CN108334095B (zh) * | 2018-03-06 | 2020-11-10 | 义乌市凡特塑料制品有限公司 | 一种基于自动驾驶的智能汽车清洗方法及其系统 |
CN109162069B (zh) * | 2018-09-14 | 2020-12-22 | 宁波慈溪小家电创新设计研究院有限公司 | 一种基于立式洗涤装置的污渍识别装置 |
CN108823901B (zh) * | 2018-09-14 | 2020-08-04 | 宁波慈溪小家电创新设计研究院有限公司 | 一种污渍自动识别清洗的洗衣装置及洗衣方法 |
CN210061144U (zh) * | 2019-02-01 | 2020-02-14 | 上海逍森自动化科技有限公司 | 一种多用途蒸汽清洗机器人 |
CN110480631A (zh) * | 2019-07-19 | 2019-11-22 | 五邑大学 | 一种应用于搬运机器人的目标搬运方法及其搬运机器人 |
CN110531759B (zh) * | 2019-08-02 | 2020-09-22 | 深圳大学 | 机器人探索路径生成方法、装置、计算机设备和存储介质 |
-
2020
- 2020-02-28 CN CN202010131975.3A patent/CN111319052A/zh active Pending
- 2020-08-31 WO PCT/CN2020/112545 patent/WO2021169221A1/zh active Application Filing
-
2022
- 2022-03-17 ZA ZA2022/03209A patent/ZA202203209B/en unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06343581A (ja) * | 1993-06-10 | 1994-12-20 | Mitsubishi Heavy Ind Ltd | 高所清掃リモコンロボット |
CN202397386U (zh) * | 2011-08-26 | 2012-08-29 | 上海电机学院 | 智能吸盘式擦洗机 |
EP3015179A1 (en) * | 2013-06-26 | 2016-05-04 | Ecoteck Aplicaciones Ambientales, S.L. | Cleaning robot for refrigerated chambers and trailers |
CN106426198A (zh) * | 2016-10-10 | 2017-02-22 | 山东科技大学 | 清洁机器人 |
CN107021216A (zh) * | 2017-03-17 | 2017-08-08 | 西安旋飞电子科技有限公司 | 清洁高空玻璃的无人机 |
CN107126156A (zh) * | 2017-06-08 | 2017-09-05 | 唐建芳 | 一种智能家居清洁环保机器人及其工作方法 |
CN109334977A (zh) * | 2018-09-29 | 2019-02-15 | 吉林大学 | 一种高空玻璃幕墙清洁无人机 |
CN109594286A (zh) * | 2018-11-26 | 2019-04-09 | 歌尔股份有限公司 | 一种智能洗衣方法、装置、智能洗衣机 |
CN111319052A (zh) * | 2020-02-28 | 2020-06-23 | 五邑大学 | 多污渍清洁机器人及基于其的移动路径控制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111319052A (zh) | 2020-06-23 |
ZA202203209B (en) | 2024-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021169221A1 (zh) | 多污渍清洁机器人及基于其的移动路径控制方法 | |
US9690388B2 (en) | Identification of a gesture | |
CN100481938C (zh) | 活动对象跟踪系统、活动对象跟踪控制设备和方法 | |
KR101298024B1 (ko) | 사용자 동적 기관 제스처 인식 방법 및 인터페이스와, 이를 사용하는 전기 사용 장치 | |
CN111768365B (zh) | 基于卷积神经网络多特征融合的太阳能电池缺陷检测方法 | |
CN109313799B (zh) | 图像处理方法及设备 | |
JP2014511772A (ja) | ロボットシステムにおいてピッキング動作後にセンサ測定値を無効にする方法 | |
CN108416809A (zh) | 一种基于机器视觉的钢桶螺纹盖位姿识别方法 | |
Wang et al. | Do not lose the details: reinforced representation learning for high performance visual tracking | |
JPS6042990B2 (ja) | パタ−ン認識方法 | |
JPH0895551A (ja) | 画像表示装置 | |
US20150206002A1 (en) | Object tracking in a video stream | |
Zhang et al. | Ssp-pose: Symmetry-aware shape prior deformation for direct category-level object pose estimation | |
Li et al. | Contact points discovery for soft-body manipulations with differentiable physics | |
CN110555377A (zh) | 一种基于鱼眼相机俯视拍摄的行人检测与跟踪方法 | |
JP2005242759A (ja) | 行動・意図推定システム、行動・意図推定方法、行動・意図推定プログラムおよびそのプログラムを記録したコンピュータ読み取り可能な記録媒体 | |
CN111168676B (zh) | 机械臂手眼协作绘画方法、装置、绘画机器人及介质 | |
CN112364805A (zh) | 一种旋转手掌图像检测方法 | |
Zhou et al. | Video text processing method based on image stitching | |
JP4865653B2 (ja) | 画像処理装置 | |
TWI671684B (zh) | 影像監視方法及系統 | |
TWI240214B (en) | Optimized correlation matching method and system for determining track behavior | |
JP5438574B2 (ja) | 画像探索方法 | |
Li et al. | Progressive Complementary Knowledge Aggregation for CdZnTe Defect Segmentation | |
TWI234117B (en) | Dynamic searching method and device for motion vector of optical mouse |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20921934 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20921934 Country of ref document: EP Kind code of ref document: A1 |