WO2021169074A1 - 铁铝合金及其制备方法 - Google Patents
铁铝合金及其制备方法 Download PDFInfo
- Publication number
- WO2021169074A1 WO2021169074A1 PCT/CN2020/092958 CN2020092958W WO2021169074A1 WO 2021169074 A1 WO2021169074 A1 WO 2021169074A1 CN 2020092958 W CN2020092958 W CN 2020092958W WO 2021169074 A1 WO2021169074 A1 WO 2021169074A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- iron
- aluminum
- aluminum alloy
- molten
- furnace
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/04—Making ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
Definitions
- the invention relates to the technical field of iron-aluminum alloy and its preparation, in particular to an iron-aluminum alloy and a preparation method thereof.
- the first method is to add a calculated amount of iron additive to the aluminum melt.
- This iron additive is made of a certain mesh of iron powder and mechanically processed potassium fluoroaluminate (KAlF 4 , commonly known as PAF) through physical methods After being uniformly mixed, it is pressed into a cake by means of mechanical pressure (oil pressure, air pressure, etc.). The specific gravity of the cake is greater than that of the molten aluminum liquid. The cakes are put into the molten aluminum because of the help of PAF.
- the melting effect allows metal iron to melt into the aluminum liquid quickly and form an intermetallic compound (alloy) with aluminum.
- the main component of PAF contains fluorine (F), it is caused by fluorine (F) in the production process.
- the volatilization and cleanup (refining) of sulphate cause environmental pollution.
- the second method is to replace the fluxing agent potassium fluoroaluminate (KAlF 4 , commonly known as PAF) with aluminum powder.
- KAF potassium fluoroaluminate
- the aluminum powder will burn at 740°C to generate aluminum oxide and simultaneously generate a large amount of heat energy, this aluminum powder is produced when burned
- the heat can promote the iron powder to quickly melt into the aluminum melt, and make the metal iron and aluminum melted into the aluminum melt form an alloy (intermetallic compound), but due to the heat release of the aluminum powder during the whole process Completely oxidized into alumina, this alumina will partially enter the molten aluminum, which has a negative effect on the purification of the aluminum melt.
- the completely burned alumina can only become a smelting process Removal of the slag in the slag increases the production cost.
- iron agent iron element additives
- 70 iron agent iron content 70%, weight ratio
- 75 iron agent iron content 75%, weight ratio
- 80 iron agent iron content 80%, weight ratio
- 85 Iron agent iron content 85%, weight ratio
- a certain mesh of iron powder and a certain mesh of potassium fluoroaluminate (commonly known as PAF) powder are uniformly mixed and pressed into a cake shape by mechanical means through pressure and die combination.
- the specific gravity should be greater than that of the aluminum melt. Ensure that the cake can sink into the aluminum melt during the adding process, and try to avoid being oxidized by air.
- the production methods of these two iron agents are the physical mixture of iron and aluminum or iron and PAF.
- This physical mixture is added to the molten aluminum as an additive of iron, the strength of the aluminum produced must be increased. It takes two steps to completely form the intermetallic compound (aluminum-iron alloy).
- the first step is the dissolution process of elemental iron in molten aluminum; the second step is to dissolve the metallic iron and aluminum alloy after entering the molten aluminum (form intermetallic Compound) process; the completion of these two processes has the following defects:
- elemental iron may be oxidized by oxygen in the air to form iron oxide and float on the surface of molten aluminum, which affects the absorption rate of metallic iron in the smelting process;
- the main purpose of the present invention is to propose an iron-aluminum alloy and a preparation method thereof, aiming to realize the full alloying of iron and aluminum in the iron-aluminum alloy in advance, and then use it as an iron element additive to replace the currently popular iron agent.
- it is added as an iron element additive to the molten aluminum.
- this product has better absolute absorption rate and absorption speed of element iron, and can completely eliminate the environmental impact caused by fluorine. Pollution and can improve the physical properties of the processed aluminum.
- the present invention proposes an iron-aluminum alloy composed of metallic iron and aluminum, and the iron-aluminum alloy includes 50-80% iron by weight percentage, with the balance being aluminum.
- the iron-aluminum alloy is an intermetallic compound formed by metallic iron and metallic aluminum at a high temperature.
- the iron-aluminum alloy can be in the form of blocks, flakes, and powders with indefinite shapes. Regardless of whether it is a block, flake, or powder product, its specifications can be regulated by corresponding standards.
- the present invention also provides a method for preparing iron-aluminum alloy.
- the method includes the following steps:
- Step S1 adding metallic aluminum or molten aluminum into a container, wherein the temperature of the molten aluminum is 700-800°C;
- Step S2 adding metal iron raw materials (iron flakes, iron powder, iron nuggets, iron filings or one or more of them) into the molten aluminum, adding a furnace cover, vacuuming, argon gas, and temperature measurement , Measure the pressure, make the inside of the magnetic induction electric furnace in a positive pressure state, stir with a graphite stirring head;
- metal iron raw materials iron flakes, iron powder, iron nuggets, iron filings or one or more of them
- Step S3 heating and heating with electricity, so that the metal aluminum or aluminum liquid is heated to above 1000°C, melted, and maintained at a temperature between 1000 and 1500°C.
- the metal aluminum and iron form an intermetallic compound, and the alloying process takes time Between 30 minutes and 2 hours;
- Step S4 after the alloying is completed, cool to about 1000°C, open the furnace cover, and take out the iron-aluminum alloy.
- a further technical solution of the present invention is that the container is a crucible placed in a vacuum magnetic induction furnace, or a crucible placed in a vacuum resistance furnace, or a non-vacuum container with protective flux added.
- a further technical solution of the present invention is that the frequency of the induction electric furnace is 800-1200HZ.
- the metal iron raw material is iron flakes, iron powder, iron nuggets, iron filings, or a mixture of one or more of them.
- a further technical solution of the present invention is that in the step S3, the stirring time with a graphite stirring head is 0.5 to 2 hours.
- a further technical solution of the present invention is that the production method of the iron-aluminum alloy includes, but is not limited to, production in a vacuum magnetic induction furnace, or a vacuum resistance furnace lined with crucibles of different materials, or it can be selected in a non-vacuum manner.
- the protective flux and flux are produced by other heating methods that isolate the air.
- a further technical solution of the present invention is that after the step S4, the method further includes:
- the iron-aluminum alloy is poured into various types of blocks, flakes, or powders with different diameters as required by regulations, and added as an iron element additive to the aluminum alloy material smelting preparation process to change the physical properties of the processed aluminum material. performance.
- the iron-aluminum alloy prepared by the present invention is fully alloyed with iron and aluminum.
- This fully-alloyed iron-aluminum alloy is compared with the existing iron additives used to produce aluminum to increase the strength of aluminum It is no longer a physical mixture of aluminum powder and iron powder, nor is it a physical mixture of iron powder and potassium fluoroaluminate (commonly known as PAF).
- This iron-aluminum alloy is used as an elemental additive for metal iron in the aluminum production process to replace the current Popular iron additives (one type is a cake-like substance formed by physical and uniform mixing of metal iron powder and potassium fluoroaluminate powder in a certain proportion, and then pressed by pressure; the other type is metal iron powder and metal aluminum powder after physical mixing Compared with the cake-like substance formed by pressure, it has the following four major advantages:
- iron element additive that has basically formed an intermetallic compound, iron-aluminum alloy
- its role in the aluminum melt is a diffusion and dense network alloying intermetallic compound
- the formation process is not the first forming of intermetallic compounds and then the implementation of diffusion into a network. Therefore, this type of iron and aluminum alloy is used as an additive of iron elements within the same iron additive smelting time.
- the strength and quality of the aluminum produced and the purity of the aluminum are far Higher than the quality of aluminum produced by the first and second iron additives mentioned above;
- iron-aluminum alloy and iron additives a physical mixture of iron powder and PAF, iron powder and aluminum powder formed by pressure processing
- the absolute absorption rate of metal iron and the physical properties of processed aluminum during the aluminum smelting addition process Better performance.
- Figure 1 is a diffraction pattern of AlFe50
- Figure 2 is a diffraction pattern of AlFe55
- Figure 3 is a diffraction pattern of AlFe60
- Figure 4 is a diffraction pattern of AlFe70
- Figure 5 is a metallographic diagram of AlFe20
- Figure 6 is a metallographic diagram of AlFe50
- Figure 7 is a metallographic diagram of AlFe55
- Figure 8 is a metallographic diagram of AlFe60
- Figure 9 is a metallographic diagram of AlFe70
- Figure 10 is a metallographic diagram of AlFe80
- Figure 11 is a metallographic diagram of aluminum alloy 100 times, 200 times, and 500 times after 60 minutes of absorption in AlFe20, 750°C molten aluminum, controlled Fe1% content;
- Figure 12 is a metallographic diagram of aluminum alloy 100 times, 200 times, and 500 times after 60 minutes of absorption in AlFe50, 750°C molten aluminum, controlled Fe1% content;
- Figure 13 is a metallographic diagram of aluminum alloy 100 times, 200 times, and 500 times after 60 minutes of absorption in AlFe55, 750°C molten aluminum, controlled Fe1% content;
- Figure 14 is a metallographic diagram of AlFe60, 750°C aluminum liquid, controlled Fe1% content, and 100 times, 200 times, and 500 times of aluminum alloy after 60 minutes of absorption;
- Figure 15 is a metallographic diagram of aluminum alloy 100 times, 200 times, and 500 times after 60 minutes of absorption in AlFe70, 750°C aluminum liquid, controlled Fe1% content;
- Figure 16 is a metallographic diagram of 100 times, 200 times, and 500 times of aluminum alloy after iron agent (AlFe80), 750°C aluminum liquid, controlled Fe1% content, and 60 minutes of absorption;
- Fig. 17 is a schematic flow chart of a preferred embodiment of the method for preparing iron-aluminum alloy of the present invention.
- Figure 18 is a schematic diagram of the structure of a magnetic induction electric furnace.
- the present invention proposes an iron-aluminum alloy.
- the iron-aluminum alloy is composed of aluminum and iron, and the iron-aluminum alloy includes 50-80% iron by weight percentage, and the balance is aluminum.
- the weight percentage of the iron can be, for example, 50%, 55%, 60%, 70%, 80%, and the corresponding iron-aluminum alloy can be expressed as AlFe50, AlFe55, AlFe60, AlFe70, AlFe80.
- the iron-aluminum alloy proposed in the present invention is mainly used as an additive of elemental iron in the production process of aluminum alloy profiles. It should be pointed out that the impurities of this iron-aluminum alloy product should be limited, for example, the content of iron and silicon should not be more than 0.5%, and the combined content of alumina and iron oxide should not be more than 0.5%.
- the iron-aluminum alloy is an intermetallic compound formed by metallic iron and metallic aluminum at a high temperature.
- the iron-aluminum alloy can be in the form of blocks, flakes, and powders with indefinite shapes. Regardless of whether it is a block, flake, or powder product, its specifications can be regulated by corresponding standards.
- metallic iron and metallic aluminum generate intermetallic compounds AlFe3, Al5Fe2, AlFe, and Fe when they are melted at a high temperature. Please refer to FIGS. 1 to 4 for the phase diagram of iron and aluminum.
- Figure 1 is a diffraction pattern of AlFe50
- Figure 2 is a diffraction pattern of AlFe55
- Figure 3 is a diffraction pattern of AlFe60
- Figure 4 is a diffraction pattern of AlFe70.
- FIGS. 5 to 10 the metallographic diagrams of different types of AlFe alloys refer to FIGS. 5 to 10.
- Figure 5 is a metallographic diagram of AlFe20
- Figure 6 is a metallographic diagram of AlFe50
- Figure 7 is a metallographic diagram of AlFe55
- Figure 8 is a metallographic diagram of AlFe60
- Figure 9 is a metallographic diagram of AlFe70
- Figure 10 is a metallographic diagram of AlFe80.
- the metallographic diagram of the processed aluminum alloy after absorption of different types of AlFe alloy gold and the corresponding physical property index refer to FIGS. 11-16.
- Figure 11 is a metallographic diagram of aluminum alloy 100 times, 200 times, and 500 times after 60 minutes of absorption in AlFe20, 750°C molten aluminum, controlled Fe1% content;
- Figure 12 is a metallographic diagram of aluminum alloy 100 times, 200 times, and 500 times after 60 minutes of absorption in AlFe50, 750°C molten aluminum, controlled Fe1% content;
- Figure 13 is a metallographic diagram of aluminum alloy 100 times, 200 times, and 500 times after 60 minutes of absorption in AlFe55, 750°C molten aluminum, controlled Fe1% content;
- Figure 14 is a metallographic diagram of AlFe60, 750°C aluminum liquid, controlled Fe1% content, and 100 times, 200 times, and 500 times of aluminum alloy after 60 minutes of absorption;
- Figure 15 is a metallographic diagram of aluminum alloy 100 times, 200 times, and 500 times after 60 minutes of absorption in AlFe70, 750°C aluminum liquid, controlled Fe1% content;
- Figure 16 is a metallurgical diagram of 100 times, 200 times, and 500 times of aluminum alloy after iron agent (AlFe80), 750°C aluminum liquid, controlled Fe1% content, and time 60 minutes to absorb.
- Figure 11 compares with Figures 12, 13, 14, 15, and it can be seen from the metallographic diagram that the arrangement of AlFe20 Al-Fe alloy compound phases is significantly worse than AlFe50, AlFe60, AlFe65, AlFe70, AlFe50, AlFe60, AlFe65, AlFe70 alloy phases More dense, the processed aluminum alloy material has better physical properties.
- the iron-aluminum alloy proposed in the present invention has significant changes in the absolute absorption rate and physical properties of iron during the melting and processing of aluminum alloy materials, especially AlFe60, which corresponds to the absorption of iron elements by the aluminum alloy.
- the physical performance of aluminum is particularly outstanding.
- the present invention also provides a method for preparing the iron-aluminum alloy as described above.
- FIG. 14 is a schematic flow diagram of a preferred embodiment of the method for preparing the iron-aluminum alloy of the present invention.
- the preparation method of the iron-aluminum alloy includes the following steps:
- Step S1 adding metallic aluminum or molten aluminum into a container, wherein the temperature of the molten aluminum is 700-800°C.
- the container can be a crucible 3 placed in a magnetic induction furnace as shown in FIG. 9.
- the magnetic induction furnace includes a furnace cover 1, a magnetic induction furnace shell 2, a vacuum port 5, a pressure measurement port 6, an argon gas port 7, and a temperature measurement port 8.
- the crucible 3 in the electric furnace is provided with a copper magnetic induction coil 4 (hollow, with cooling water inside).
- the crucible 3 can be a silicon carbide crucible, a graphite crucible, a clay crucible or other refractory materials, such as quartz sand, magnesium oxide
- the crucible for the metal furnace liquid formed by hammering the furnace materials such as, alumina, etc. for induction electric furnaces.
- the frequency of the magnetic induction electric furnace can be selected from 800 to 1200 Hz.
- the container can also be a vacuum resistance furnace lined with crucibles of different materials, or other heating methods that use non-vacuum to select a suitable protective flux to isolate the air.
- Step S2 adding the metal iron raw materials to the molten aluminum at 700°C, adding a furnace cover, vacuuming, argon gas, temperature measurement, and pressure measurement, so that the interior of the induction furnace is in a positive pressure state, and the graphite stirring head is used for stirring.
- Step S3 heating and heating with electricity, so that the metal aluminum or aluminum liquid is heated to above 1000°C, melted, and maintained at a temperature between 1000°C and 1500°C, such as 1000°C, or 1250°C, or 1500°C, during the process, the metal aluminum and iron An intermetallic compound is formed to obtain iron-aluminum alloy.
- the alloying process requires between 30 minutes and 2 hours.
- the metal iron raw material may be iron powder, iron filings, iron nuggets, iron flakes, or a mixture of one or more of them.
- the stirring time for stirring with the graphite stirring head can be set to 0.5-2 hours according to actual needs, such as 0.5 hours, or 1.25 hours, or 2 hours.
- the time required for the entire alloying process is generally controlled in the range of 30 minutes to 2 hours, which can ensure that metallic iron and aluminum form intermetallic compounds as much as possible, so as to obtain qualified fully alloyed iron and aluminum. Alloy, avoid the production of small amounts of metal oxides (iron oxide or aluminum oxide).
- Step S4 after the alloying is completed, cool to about 1000°C, open the furnace cover, and take out the iron-aluminum alloy.
- step S4 it may further include:
- the iron-aluminum alloy is poured into an indefinite block, or flake, or processed into a powder by a mechanical crushing method, and is accurately added as an iron element additive to the smelting and preparation process of the aluminum alloy material in a calculated amount.
- the iron-aluminum alloy can be in the form of blocks, flakes, and powders with indefinite shapes. Regardless of whether it is a block, flake, or powder product, its specifications can be regulated by corresponding standards.
- the beneficial effects of the iron-aluminum alloy and the preparation method of the present invention are: compared with the existing products, the iron-aluminum alloy prepared by the present invention is fully alloyed with iron and aluminum. Compared with the iron additives used in the production of aluminum to increase the strength of aluminum, it is no longer a physical mixture of aluminum powder and iron powder, nor is it a physical mixture of iron powder and potassium fluoroaluminate (commonly known as PAF).
- PAF potassium fluoroaluminate
- This kind of iron-aluminum Alloys are used as elemental additives of metallic iron in the production process of aluminum materials to replace the currently popular iron additives (one type is a cake-like substance formed by a certain proportion of metal iron powder and potassium fluoroaluminate powder after being physically uniformly mixed by pressure, and the other The first type is a cake-like substance formed by physical mixing of metal iron powder and metal aluminum powder by pressure). Compared with it, it has the following four major advantages:
- iron element additive that has basically formed an intermetallic compound, iron-aluminum alloy
- its role in the aluminum melt is a diffusion and dense network alloying intermetallic compound
- the formation process is not the first forming of intermetallic compounds and then the implementation of diffusion into a network. Therefore, this type of iron and aluminum alloy is used as an additive of iron elements within the same iron additive smelting time.
- the strength and quality of the aluminum produced and the purity of the aluminum are far Higher than the quality of aluminum produced by the first and second iron additives mentioned above;
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
本发明公开一种铁铝合金及其制备方法,铁铝合金按重量百分比铁占50-80%,余量为铝。该方法包括:将金属铝或者铝液加入到容器中,其中,铝液的温度为700-800℃;将金属铁原材料加入到熔融的铝液中,加炉盖、测压、通氩气使得磁感应电炉内部处于正压状态,用石墨搅拌头搅拌;通电加热升温,使金属铝或铝液升温至1000℃以上,熔融,并保持温度在1000~1500℃之间;合金化完成后,冷却至1000℃左右,打开炉盖,取出铁铝合金。相对于现有产品,本发明制得的铁铝合金中铁与铝充分合金化,提升了铁元素添加剂在铝材加工熔炼过程中铁作为合金添加元素在熔融铝液中的吸收率和被加工铝材的物理性能,降低了生产过程的环境污染。
Description
本发明涉及铁铝合金及其制备技术领域,尤其涉及一种铁铝合金及其制备方法。
在铝合金材料(例如航空用铝板、罐料用铝板及PS版基用铝板等)的生产加工过程中,通常需要向熔融的铝熔体(温度一般控制在740-750℃之间)中加入金属铁元素,使得金属铁和铝形成密集链接状网状结构的铝铁合金金属间化合物,以显著改善铝材的物理性能。但是,由于金属铁的熔点为1538℃,而铝熔体的熔炼过程温度控制一般是740-750℃之间,为了将金属铁快速溶入到铝熔体中并使其和铝形成金属间化合物(铝铁金属间化合物),目前主要有如下几种方式:
第一种方式是向铝熔体中加入计算量的铁添加剂,这种铁添加剂是由一定目数的铁粉和经过机械加工方式破碎的氟铝酸钾(KAlF
4,俗称PAF)经物理方法均匀混合后通过机械压力(油压、气压等)方式压成饼状物,该饼状物的比重因大于熔融的金属铝液,将这些饼状物投入到金属铝液中,由于PAF的助熔作用,使得金属铁能够快速的熔解进入到铝液中并和铝形成金属间化合物(合金),但由于PAF的主要成分含氟元素(F),导致在生产过程中由于氟元素(F)的挥发和清理(精炼)造成环境污染。
第二种方式是将助熔剂氟铝酸钾(KAlF
4,俗称PAF)替换成铝粉,由于铝粉在740℃时会燃烧生成氧化铝并同步产生大量的热能,这种铝粉燃烧时产生的热量能够促使铁粉快速的熔入到铝熔体中,并使熔入铝熔体中的金属铁和铝形成合金(金属间化合物),但是由于在整个过程中铝粉的燃烧放热后完全氧化成为氧化铝,这种氧化铝会部分进入熔融的铝液中,对铝熔体的净化构成了负面作用,同时由于铝粉的成本较高,完全燃烧后的氧化铝只能成为熔炼过程中的渣加以清除增加了生产成本。
为了解决这些技术问题,目前在铝合金材料(各类型材、各类板材、各 类棒材等)的加工过程中通常在740-750℃的熔融铝液中加入计算量的铁元素添加剂,俗称铁剂,以提高所生产铝材的强度。目前流行使用的铁剂常用的规格有70铁剂(铁含量70%,重量比)、75铁剂(铁含量75%,重量比)、80铁剂(铁含量80%,重量比)、85铁剂(铁含量85%,重量比)等,目前通常采用以下两种方式生产铁剂:
1、将一定目数的铁粉和一定目数的氟铝酸钾(俗称PAF)粉末均匀混合后用机械方式通过压力和模具结合压成饼状,其比重应大于铝熔体的比重,以保证该饼状物添加过程中可以沉入铝熔体中,尽量避免被空气氧化。
2、将一定目数的铝粉和一定目数的铁粉混合均匀,然后用机械方式通过压力和模具结合压成饼状物,其比重应大于铝熔体的比重,以保证该饼状物添加过程中可以沉入铝熔体中,尽量避免被空气氧化,其中,铁粉按重量占比70%或者75%、80%、85%等,铝粉按重量占比30%、25%、20%、15%。在商业上也通称为70铁剂、75铁、80铁剂、85铁剂等。
这两种铁剂的生产方式,其产品是铁和铝或者铁和PAF的物理混合物,这种物理混合物作为铁元素的添加剂在加入到熔融的铝液中时,所生产铝材强度的增加必须经历两个步骤才能完全形成金属间化合物(铝铁合金),第一步是元素铁在熔融铝液中的溶解过程;第二步是溶解进入铝液后的金属铁和铝合金化(形成金属间化合物)的过程;这两个过程的完成存在有如下缺陷:
1.过程中元素铁可能被空气中的氧气氧化形成氧化铁而漂浮在铝液的表面影响金属铁在冶炼过程中的吸收率;
2.成功溶解进入铝液后的金属铁和铝形成金属间化合物并织构成密集网状强化相的过程需要时间,这个过程的完整性由于冶炼过程的时间控制不当或者不够会影响铝材的强度质量。
发明内容
本发明的主要目的在于提出一种铁铝合金及其制备方法,旨在实现铁铝合金中的铁和铝的先行充分合金化,然后将其作为铁元素的添加剂替代目前流行的铁剂,在冶炼过程中作为铁元素添加剂加入到融熔的铝液中,这种产品和目前流行的铁添加剂相比,其元素铁的绝对吸收率和吸收速度更优,并能完全消除氟对环境造成的污染并能提高被加工铝材的物理性能。
为实现上述目的,本发明提出一种铁铝合金,所述铁铝合金由金属铁和铝组成,所述铁铝合金按重量百分比包括铁50-80%,余量为铝。
该铁铝合金是由金属铁和金属铝在高温状态下形成的金属间化合物。
该铁铝合金可以是不定形状的块状的、片状的、粉状的,无论是块状的、片状的、粉状的产品,其规格都可以制定相应的标准加以限制。
为实现上述目的,本发明还提出一种铁铝合金的制备方法,所述方法包括以下步骤:
步骤S1,将金属铝或者铝液加入到容器中,其中,所述铝液的温度为700-800℃;
步骤S2,将金属铁原材料(铁片、铁粉、铁块、铁屑或者他们其中一种或多种混合物)加入到熔融的铝液中,加炉盖、抽真空、通氩气、测温、测压,使得磁感应电炉内部处于正压状态,用石墨搅拌头搅拌;
步骤S3,通电加热升温,使金属铝或铝液升温至1000℃以上,熔融,并保持温度在1000~1500℃之间,过程中金属铝和铁形成金属间的化合物,合金化过程所需时间为30分钟至2小时之间;
步骤S4,合金化完成后,冷却至1000℃左右,打开炉盖,取出铁铝合金。
本发明进一步的技术方案是,所述容器为置于真空磁感应电炉中的坩锅,或者置于真空电阻炉的坩锅,或者加入有保护熔剂的非真空容器。
本发明进一步的技术方案是,所述感应电炉的频率为800~1200HZ。
本发明进一步的技术方案是,所述金属铁原材料为铁片、铁粉、铁块、铁屑或者他们其中一种或多种混合物。
本发明进一步的技术方案是,所述步骤S3中,用石墨搅拌头搅拌时间为0.5~2小时。
本发明进一步的技术方案是,所述铁铝合金的生产方法包括但不限于用真空磁感应电炉的方式生产,亦可以用真空电阻炉内衬不同材料的坩埚,亦可以用非真空的方式选择合适的保护熔剂及助熔剂以隔绝空气的其它加热方式生产。
本发明进一步的技术方案是,所述步骤S4之后还包括:
将所述铁铝合金浇筑成各种类型的块状、片状、或者按规定要求不同直 径的粉状,作为铁元素添加剂添加到铝合金材料熔炼制备过程中,以改变被加工铝材的物理性能。
本发明铁铝合金及其制备方法的有益效果是:
相对于现有产品,采用本发明制备得到的铁铝合金中铁与铝充分完全合金化,这种完全合金化的铁铝合金与现有的用作生产铝材以增加铝材强度的铁添加剂比较,不再是铝粉和铁粉的物理混合物,也不再是铁粉和氟铝酸钾(俗称PAF)的物理混合物,这种铁铝合金作为铝材生产过程中金属铁的元素添加剂替换目前流行的铁添加剂(一类是金属铁粉与氟铝酸钾粉末按一定比例经物理均匀混合后通过压力方式压成的饼状物质,另一类是金属铁粉和金属铝粉经物理混合后通过压力方式压成的饼状物质)相比较具备以下四个重大优点:
1.解决了氟铝酸钾作为金属铁进入铝熔体与金属铝形成金属间化合物的助熔剂,在熔炼溶解过程完成后对环境造成的污染问题(氟的污染);
2.解决了铝粉作为金属铁进入铝熔体与金属铝形成金属间化合物的发热剂(铝粉氧化过程产生的高热作用助熔铁的合金化),在熔炼溶解完成后对铝合金熔体的污染问题(氧化铝夹杂);
3.铁铝合金作为一种已经基本形成金属间化合物的铁元素添加剂,当其加入到铝熔体中后其在铝熔体中的作用是一种扩散和密集网状合金化金属间化合物的形成过程而不是先形成金属间化合物再实施扩散成网,所以在同等的铁剂添加冶炼时间内这一类铁铝合金作为铁元素的添加剂其生产的铝材强度质量和铝材的纯净度远高于上述第一种和第二种铁添加剂所生产的铝材质量;
4.铁铝合金与铁添加剂(铁粉与PAF、铁粉与铝粉所形成的经压力加工的物理混合物)比较,其在铝冶炼添加过程中金属铁的绝对吸收率和被加工铝材物理性能更优。
图1是AlFe50的衍射图;
图2是AlFe55的衍射图;
图3是AlFe60的衍射图;
图4是AlFe70的衍射图;
图5是AlFe20金相图;
图6是AlFe50金相图;
图7是AlFe55金相图;
图8是AlFe60金相图;
图9是AlFe70金相图;
图10是AlFe80金相图;
图11是AlFe20,750℃铝液,控制Fe1%含量,时间60分钟吸收后铝合金100倍、200倍、500倍金相图;
图12是AlFe50,750℃铝液,控制Fe1%含量,时间60分钟吸收后铝合金100倍、200倍、500倍金相图;
图13是AlFe55,750℃铝液,控制Fe1%含量,时间60分钟吸收后铝合金100倍、200倍、500倍金相图;
图14是AlFe60,750℃铝液,控制Fe1%含量,时间60分钟吸收后铝合金100倍、200倍、500倍金相图;
图15是AlFe70,750℃铝液,控制Fe1%含量,时间60分钟吸收后铝合金100倍、200倍、500倍金相图;
图16是铁剂(AlFe80),750℃铝液,控制Fe1%含量,时间60分钟吸收后铝合金100倍、200倍、500倍金相图;
图17是本发明铁铝合金的制备方法较佳实施例的流程示意图;
图18是磁感应电炉的结构示意图。
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
为实现铁铝合金中的铁和铝充分合金化,提升铁铝合金添加剂在铁铝合金型材加工过程中铁的吸收率和吸收速度,并降低环境污染,本发明提出一种铁铝合金,所述铁铝合金由铝、铁组成,所述铁铝合金按重量百分比包括铁50-80%,余量为铝。
其中,所述铁所占重量百分比例如可以为50%、55%、60%、70%、80%,对应的铁铝合金可以表示为AlFe50、AlFe55、AlFe60、AlFe70、AlFe80。
可以理解的是,本发明所提出的铁铝合金主要用于铝合金型材生产过程中的元素铁的添加剂使用。需要特别指出的是,这种铁铝合金产品其杂质应该有所限制,比如铁和硅含量不应该大于0.5%,并且氧化铝和氧化铁的合量不应该大于0.5%。
该铁铝合金是由金属铁和金属铝在高温状态下形成的金属间化合物。
该铁铝合金可以是不定形状的块状的、片状的、粉状的,无论是块状的、片状的、粉状的产品,其规格都可以制定相应的标准加以限制。
本实施例中,金属铁和金属铝在高温熔融时生成金属间化合物AlFe3、Al5Fe2、AlFe和Fe单质,其中,铁铝物相图请参照图1至4。
图1是AlFe50的衍射图;
图2是AlFe55的衍射图;
图3是AlFe60的衍射图;
图4是AlFe70的衍射图。
本实施例中,不同种类AlFe合金金相图参照图5至10。
图5是AlFe20金相图;
图6是AlFe50金相图;
图7是AlFe55金相图;
图8是AlFe60金相图;
图9是AlFe70金相图;
图10是AlFe80金相图。
本实施例中,不同种类AlFe合金金吸收后被加工铝合金金相图以及相对应的物理性能指数参照图11至16。
图11是AlFe20,750℃铝液,控制Fe1%含量,时间60分钟吸收后铝合金100倍、200倍、500倍金相图;
图12是AlFe50,750℃铝液,控制Fe1%含量,时间60分钟吸收后铝合金100倍、200倍、500倍金相图;
图13是AlFe55,750℃铝液,控制Fe1%含量,时间60分钟吸收后铝合金100倍、200倍、500倍金相图;
图14是AlFe60,750℃铝液,控制Fe1%含量,时间60分钟吸收后铝合金100倍、200倍、500倍金相图;
图15是AlFe70,750℃铝液,控制Fe1%含量,时间60分钟吸收后铝合金100倍、200倍、500倍金相图;
图16是铁剂(AlFe80),750℃铝液,控制Fe1%含量,时间60分钟吸收后铝合金100倍、200倍、500倍金相图。
结合图11至图16,80铁剂在750℃铝液中溶解1小时后形成的铝合金材料从金相图上可以看出:
1、存在有少量的未完全合金化的单质铁颗粒;
2、80铁剂与各类铝铁合金(20,50,55,60,70,80)比较在500倍的显微镜下观察他铝铁化合物相的分布和排列及形状都存在明显的差异。
80铁剂与各类铝铁合金(20,50,55,60,70,80)的使用性能请参照表1所示。
表1
由表1可以看出,铝铁20的使用性能(对被加工铝材的物理性能影响)与80铁剂基本相同,而铝铁60的各项物理性能指标都发生了显著的变化。
图11与图12、13、14、15相比,从金相图中可以看出AlFe20的铝铁合金化合物相的排列明显差于AlFe50、AlFe60、AlFe65、AlFe70,AlFe50、AlFe60、AlFe65、AlFe70合金相更加致密,被加工铝合金材物理性能更好。
图16与图12、13、14、15相比可以看出:1、图16中存在有少量的未完全合金化的单质铁颗粒;2、图16中80铁剂与各类铝铁合金(20、50、55、60、70、80)比较,在500倍显微镜下观察铝铁化合物相的分布和排列及形状都存在明显的差异。
本发明提出的铁铝合金与目前流行的铁元素添加剂相比较,其在铝合金材熔炼加工过程中铁的绝对吸收率和物理性能发生显著变化,尤其是AlFe60, 其铁元素被铝合金吸收后相应的铝材的物理性能表现尤为突出。
为实现上述目的,本发明还提出一种如上所述的铁铝合金的制备方法。
请参照图14,图14是本发明铁铝合金的制备方法较佳实施例的流程示意图。
如图14所示,本实施例中,该铁铝合金的制备方法包括以下步骤:
步骤S1,将金属铝或者铝液加入到容器中,其中,所述铝液的温度为700-800℃。
其中,该容器可以采用如图9所示的置于磁感应电炉内的坩埚3。该磁感应电炉包括有炉盖1、磁感应电炉外壳2、抽真空口5、测压力口6、通氩气口7、测温度口8,其中所述磁感应电炉外壳2为铝材料,置于所述磁感应电炉内的坩锅3的外周设置有铜磁感应线圈4(空心,内部通冷却水),该坩锅3可以是碳化硅坩埚、石墨坩埚、粘土坩埚或者其它耐火材料,比如:石英砂、氧化镁、氧化铝等捣炉料锤打而形成的感应电炉用的盛取金属炉液的坩埚。
其中,该磁感应电炉的频率可以选用800~1200Hz。
在其他实施方式中,该容器也可以用真空电阻炉内衬不同材料的坩埚,亦可以用非真空的选择合适保护熔剂以隔绝空气的其它加热方式。
步骤S2,将金属铁原材料加入到700℃的熔融的铝液中,加炉盖、抽真空、通氩气、测温、测压,使感应电炉内部处于正压状态,用石墨搅拌头搅拌。
步骤S3,通电加热升温,使金属铝或铝液升温至1000℃以上,熔融,并保持温度在1000~1500℃之间,例如1000℃、或者1250℃、或者1500℃,过程中金属铝和铁形成金属间的化合物,得到铁铝合金,合金化过程所需时间为30分钟至2小时之间。
其中,所述金属铁原材料可以为铁粉、铁屑、铁块、铁片或者他们中一种或多种的混合物。
本实施例中,用石墨搅拌头搅拌的搅拌时间可以根据实际需求进行设定为0.5~2小时,例如0.5小时、或者1.25小时、或者2小时。
可以理解的是,整个合金化过程时间需求一般性的控制在30分钟至2小时的范围,可以保证尽可能的使金属铁和铝形成金属间的化合物,从而得到 合格的完全合金化的铁铝合金,避免少量的金属氧化物(氧化铁或氧化铝)产生。
步骤S4,合金化完成后,冷却至1000℃左右,打开炉盖,取出铁铝合金。
此外,作为一种实施方式,所述步骤S4之后还可以包括:
将所述铁铝合金浇筑成不定形的块状、或者片状、或者以机械破碎方式加工成粉状,作为铁元素添加剂以计算量方式精确添加到铝合金材料的冶炼制备过程中。该铁铝合金可以是不定形状的块状的、片状的、粉状的,无论是块状的、片状的、粉状的产品,其规格都可以制定相应的标准加以限制。
本发明铁铝合金及其制备方法的有益效果是:相对于现有产品,采用本发明制备得到的铁铝合金中铁与铝充分完全合金化,这种完全合金化的铁铝合金与现有的用作生产铝材以增加铝材强度的铁添加剂比较,不再是铝粉和铁粉的物理混合物,也不再是铁粉和氟铝酸钾(俗称PAF)的物理混合物,这种铁铝合金作为铝材生产过程中金属铁的元素添加剂替换目前流行的铁添加剂(一类是金属铁粉与氟铝酸钾粉末按一定比例经物理均匀混合后通过压力方式压成的饼状物质,另一类是金属铁粉和金属铝粉经物理混合后通过压力方式压成的饼状物质)相比较具备以下四个重大优点:
1.解决了氟铝酸钾作为金属铁进入铝熔体与金属铝形成金属间化合物的助熔剂,在熔炼溶解过程完成后对环境造成的污染问题(氟的污染);
2.解决了铝粉作为金属铁进入铝熔体与金属铝形成金属间化合物的发热剂(铝粉氧化过程产生的高热作用助熔铁的合金化),在熔炼溶解完成后对铝合金熔体的污染问题(氧化铝夹杂);
3.铁铝合金作为一种已经基本形成金属间化合物的铁元素添加剂,当其加入到铝熔体中后其在铝熔体中的作用是一种扩散和密集网状合金化金属间化合物的形成过程而不是先形成金属间化合物再实施扩散成网,所以在同等的铁剂添加冶炼时间内这一类铁铝合金作为铁元素的添加剂其生产的铝材强度质量和铝材的纯净度远高于上述第一种和第二种铁添加剂所生产的铝材质量;
4.铁铝合金与铁添加剂(铁粉与PAF、铁粉与铝粉所形成的经压力加工的物理混合物)比较,其在铝冶炼添加过程中金属铁的绝对吸收率和吸收速度更优。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
Claims (7)
- 一种铁铝合金,其特征在于,所述铁铝合金由金属铝和铁组成,所述铁铝合金按重量百分比包括铁占比50-80%,余量为铝。
- 如权利要求1所述的铁铝合金的制备方法,其特征在于,所述方法包括以下步骤:步骤S1,将金属铝或者铝液加入到容器中,其中,所述铝液的温度为700-800℃;步骤S2,将金属铁原材料加入到熔融的铝液中,加炉盖、抽真空、通氩气、测温、测压,使得磁感应电炉内部处于正压状态,用石墨搅拌头搅拌;步骤S3,通电加热升温,使金属铝或铝液升温至1000℃以上,熔融,并保持温度在1000~1500℃之间,过程中金属铝和铁形成金属间的化合物,合金化过程所需时间为30分钟至2小时之间;步骤S4,合金化完成后,冷却至1000℃左右,打开炉盖,取出铁铝合金。
- 根据权利要求2所述的铁铝合金的制备方法,其特征在于,所述容器为置于磁感应电炉中的坩锅,或者置于真空电阻炉中的坩锅,或者加入有保护熔剂和助熔剂的非真空可加热容器。
- 根据权利要求3所述的铁铝合金的制备方法,其特征在于,所述感应电炉的频率为800~1200HZ。
- 根据权利要求2所述的铁铝合金的制备方法,其特征在于,所述金属铁原材料可以是铁粉、铁片、铁屑或者铁块,也可以是他们之间的一个或多个类型的混合物。
- 根据权利要求2所述的制备方法,其特征在于,所述步骤S3中,用石墨搅拌头搅拌时间为0.5~2小时。
- 根据权利要求2-7任意一项所述的制备方法,其特征在于,所述步骤S4之后还包括:将所述铁铝合金浇筑成各种类型的块状、片状、或者按规定要求破碎成不同直径的颗粒状(包括粉体),作为铁元素添加剂添加到铝合金材料熔炼制备过程中,以改变所制造铝材的物理性能。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/802,967 US20230100820A1 (en) | 2020-02-28 | 2020-05-28 | Iron-aluminum alloy and preparation method therefor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010131434.0A CN111455279A (zh) | 2020-02-28 | 2020-02-28 | 铁铝合金及其制备方法 |
CN202010131434.0 | 2020-02-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021169074A1 true WO2021169074A1 (zh) | 2021-09-02 |
Family
ID=71679178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/092958 WO2021169074A1 (zh) | 2020-02-28 | 2020-05-28 | 铁铝合金及其制备方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230100820A1 (zh) |
CN (1) | CN111455279A (zh) |
WO (1) | WO2021169074A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115261739A (zh) * | 2022-08-03 | 2022-11-01 | 海宁瑞奥金属科技有限公司 | 一种搅拌头材料 |
CN115927892A (zh) * | 2022-11-16 | 2023-04-07 | 西安聚能高温合金材料科技有限公司 | 一种高熔点元素的多元合金真空感应熔炼方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115536211A (zh) * | 2022-09-14 | 2022-12-30 | 湖南省煜城环保科技有限公司 | 一种餐厨废水的处理方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5140853B2 (zh) * | 1972-06-10 | 1976-11-06 | ||
HUT49654A (en) * | 1988-04-07 | 1989-10-30 | Lenin Kohaszati Muvek | Process for producing liquide deoxidated steel |
JP2004011006A (ja) * | 2002-06-11 | 2004-01-15 | Mitsubishi Materials Corp | 耐摩耗性を有するとともに相手攻撃性が小さい鉄基燒結合金及びその製造方法 |
CN110241342A (zh) * | 2019-07-23 | 2019-09-17 | 四川兰德高科技产业有限公司 | 一种高锰含量铝锰中间合金及其制备方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL289214A (zh) * | 1962-03-02 | |||
CN1389577A (zh) * | 2002-06-07 | 2003-01-08 | 江苏江南铁合金有限公司 | 低磷低硫铝铁合金 |
KR20050064743A (ko) * | 2003-12-24 | 2005-06-29 | 재단법인 포항산업과학연구원 | 용강의 탈산공정에 사용되는 알루미늄-스틸계 탈산제제조방법 |
CN100381585C (zh) * | 2005-07-22 | 2008-04-16 | 昆明钢铁集团有限责任公司 | 铁芯铝铁复合脱氧剂 |
CN101509086A (zh) * | 2008-12-30 | 2009-08-19 | 毕祥玉 | 一种铝铁中间合金及其制备方法 |
CN106076613B (zh) * | 2016-07-06 | 2018-08-17 | 哈尔滨理工大学 | 一种回收利用铁屑的方法及制得的Al-Fe中间合金 |
-
2020
- 2020-02-28 CN CN202010131434.0A patent/CN111455279A/zh active Pending
- 2020-05-28 US US17/802,967 patent/US20230100820A1/en active Pending
- 2020-05-28 WO PCT/CN2020/092958 patent/WO2021169074A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5140853B2 (zh) * | 1972-06-10 | 1976-11-06 | ||
HUT49654A (en) * | 1988-04-07 | 1989-10-30 | Lenin Kohaszati Muvek | Process for producing liquide deoxidated steel |
JP2004011006A (ja) * | 2002-06-11 | 2004-01-15 | Mitsubishi Materials Corp | 耐摩耗性を有するとともに相手攻撃性が小さい鉄基燒結合金及びその製造方法 |
CN110241342A (zh) * | 2019-07-23 | 2019-09-17 | 四川兰德高科技产业有限公司 | 一种高锰含量铝锰中间合金及其制备方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115261739A (zh) * | 2022-08-03 | 2022-11-01 | 海宁瑞奥金属科技有限公司 | 一种搅拌头材料 |
CN115927892A (zh) * | 2022-11-16 | 2023-04-07 | 西安聚能高温合金材料科技有限公司 | 一种高熔点元素的多元合金真空感应熔炼方法 |
Also Published As
Publication number | Publication date |
---|---|
US20230100820A1 (en) | 2023-03-30 |
CN111455279A (zh) | 2020-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021169074A1 (zh) | 铁铝合金及其制备方法 | |
CN110714156B (zh) | 一种轻质高强耐蚀高熵合金及其制备方法 | |
CN109913702A (zh) | 一种具有高含量难熔元素的镍基高温合金的制备工艺 | |
CN103170600A (zh) | 一种铝硅合金分闸件半固态流变压铸成形工艺 | |
CN109825727A (zh) | 一种基于铝热反应的Al-Si-Fe中间合金制备方法 | |
CN106755724B (zh) | 一种适用于3吨中频炉生产球化剂的熔炼工艺 | |
WO2021143013A1 (zh) | 锰铝合金及其制备方法 | |
CN104831097A (zh) | 一种可焊接性好的缸盖用铝合金材料及其制备方法 | |
CN110564997B (zh) | 一种铝钛钼中间合金及其制备方法 | |
CN113528924B (zh) | 一种镍铌铬中间合金及其制备方法 | |
WO2021169073A1 (zh) | 硅铝合金及其制备方法 | |
CN110947909A (zh) | 一种发电机用铬青铜接头铸件制造方法 | |
CN110144501A (zh) | 一种长效变质的高硅铝合金及其变质工艺 | |
CN110592455A (zh) | 铜钨合金的制备方法及由该方法制得的铜钨合金 | |
CN101338381A (zh) | 一种铝钛碳锶合金细化剂的制备方法 | |
CN112481526A (zh) | 铝硅合金棒的生产方法 | |
CN105986136A (zh) | 一种添加稀土元素的高性能铝合金及其制备方法 | |
CN105344949A (zh) | 一种钢铁熔炼-模铸新工艺 | |
CN111118327A (zh) | 一种K3Mg2Cl7的制备方法 | |
CN104862547A (zh) | 一种发动机缸盖用高强度铝合金材料及其制备方法 | |
CN118639055A (zh) | 一种高温合金用镍硼铝中间合金及其制备方法 | |
CN116179905B (zh) | 一种大规格高性能的Al-Mg-Zn铝合金圆铸锭及其铸造方法 | |
CN117867336B (zh) | 一种铝硅铜合金的变质处理方法 | |
CN115094272B (zh) | 一种锆镍铜铝钽中间合金及其制备方法 | |
CN113293322B (zh) | 一种基于单晶硅冶炼的水冷交换器用新型铜合金制造工艺 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20922029 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20922029 Country of ref document: EP Kind code of ref document: A1 |