WO2021168850A1 - 电磁振镜的驱动装置、驱动方法和激光雷达 - Google Patents

电磁振镜的驱动装置、驱动方法和激光雷达 Download PDF

Info

Publication number
WO2021168850A1
WO2021168850A1 PCT/CN2020/077323 CN2020077323W WO2021168850A1 WO 2021168850 A1 WO2021168850 A1 WO 2021168850A1 CN 2020077323 W CN2020077323 W CN 2020077323W WO 2021168850 A1 WO2021168850 A1 WO 2021168850A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil winding
signal
driving
modulation
circuit
Prior art date
Application number
PCT/CN2020/077323
Other languages
English (en)
French (fr)
Inventor
周小军
马丁昽
Original Assignee
深圳市速腾聚创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市速腾聚创科技有限公司 filed Critical 深圳市速腾聚创科技有限公司
Priority to PCT/CN2020/077323 priority Critical patent/WO2021168850A1/zh
Priority to CN202080004925.7A priority patent/CN114341699B/zh
Publication of WO2021168850A1 publication Critical patent/WO2021168850A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems

Definitions

  • This application relates to the field of control, and in particular to a control method, control device and lidar of an electromagnetic galvanometer.
  • the key components of the lidar are the electromagnetic galvanometer (hereinafter referred to as the galvanometer) and the optical transceiver.
  • the control circuit in the lidar controls the optical transceiver in the lidar to emit the outgoing laser.
  • the outgoing laser hits the rotating galvanometer and passes through the galvanometer.
  • the mirror reflection covers a ring area around the lidar.
  • the outgoing laser light is reflected by objects in the ring area and then returns to the echo laser. After being reflected by the galvanometer mirror, it is sent to the optical transceiver to be received, thus forming around the lidar. Detect the field of view.
  • the galvanometer control circuit generates a drive signal to adjust the deflection angle, vibration frequency, etc. of the galvanometer, and the galvanometer is driven by the drive signal input by the galvanometer control circuit to deflect in a simple harmonic motion.
  • the inventor found that the circuit structure of the current lidar is relatively complicated and costly, and there is room for further simplification.
  • the driving method, the driving device and the laser radar of the electromagnetic galvanometer provided by the embodiments of the present application can solve the problems of complicated circuit structure and high cost of the laser radar in the related art.
  • the technical solution is as follows:
  • an embodiment of the present application provides a driving device for a galvanometer, and the driving device includes:
  • Control circuit, modulation circuit, transmitting coil winding, receiving coil winding, demodulation circuit and electromagnetic galvanometer, transmitting coil winding and receiving coil winding are coupled with each other; control circuit is connected with modulation circuit, modulation circuit is connected with transmitting coil winding, transmitting coil winding Coupled with the receiving coil winding, the receiving coil winding is connected with the demodulation circuit, and the demodulation circuit is connected with the electromagnetic galvanometer;
  • control circuit is used to generate the first drive signal
  • the modulation circuit is used to load the first drive signal onto the high-frequency carrier to generate the first modulation signal, and to transmit the first modulation signal through the transmitting coil winding;
  • the demodulation circuit is used to receive the second modulation signal through the receiving coil winding, and demodulate the second modulation signal to obtain the second drive signal; wherein the second modulation signal is induced by the first modulation signal;
  • the electromagnetic galvanometer is used for deflection according to the second driving signal.
  • it further includes: a motor and a mounting platform, the electromagnetic galvanometer is arranged on the mounting platform, the mounting platform is fixed on the rotation shaft of the motor, and the rotation direction of the motor is parallel to the mounting platform. Platform; the electromagnetic galvanometer rotates with the motor around the vertical direction. The electromagnetic galvanometer is used for deflection in the vertical direction according to the second driving signal, so that the electromagnetic galvanometer realizes two-dimensional scanning in the horizontal direction and the vertical direction.
  • the modulation circuit is used to generate the first modulation signal by applying the first drive signal to the high-frequency carrier by means of amplitude modulation, and to transmit the first modulation signal through the transmitting coil winding;
  • the demodulation circuit is used for receiving the second modulation signal through the receiving coil winding, and using the envelope detection mode to demodulate the second modulation signal to obtain the second driving signal.
  • the transmitting coil winding and the receiving coil winding include multiple turns of coils with an equal pitch, and the distance between the coils can be determined according to actual needs, which is not limited in the embodiment of the present application.
  • the first driving signal is a single-frequency signal, and the frequency of the first driving signal is equal to the resonance frequency of the transmitting coil winding and the receiving coil winding.
  • the shape of the transmitting coil winding and the receiving coil winding is a sheet shape, the transmitting coil winding and the receiving coil winding are parallel to each other, and the receiving coil winding is encapsulated in an electromagnetic galvanometer.
  • an embodiment of the present application provides a driving device for an electromagnetic galvanometer, including:
  • Control circuit transmitting coil winding, receiving coil winding, first magnetic conductive part, second magnetic conductive part and electromagnetic galvanometer; control circuit is connected with transmitting coil winding, receiving coil winding is connected with electromagnetic galvanometer, transmitting coil winding and receiving coil
  • the windings are coupled to each other, and the first magnetically conductive component and the second magnetically conductive component restrict the magnetic field generated by the coupling between the transmitting coil winding and the receiving coil winding;
  • a control circuit for generating a first driving signal, and transmitting the first driving signal through the transmitting coil winding
  • the electromagnetic galvanometer is used for receiving a second driving signal through the receiving coil winding, and performing deflection according to the second driving; wherein, the second driving signal is induced by the first driving signal.
  • an embodiment of the present application provides a driving method of an electromagnetic galvanometer, including:
  • the control circuit generates the first driving signal
  • the modulation circuit loads the first drive signal onto a high-frequency carrier to generate a first modulation signal, and transmits the first modulation signal through the transmitting coil winding;
  • the demodulation circuit receives the second modulation signal through the receiving coil winding, and demodulates the second modulation signal to obtain a second drive signal; wherein, the second modulation signal is induced by the first modulation signal;
  • the electromagnetic galvanometer is deflected according to the second driving signal.
  • an embodiment of the present application provides a driving method of an electromagnetic galvanometer, including:
  • the control circuit generates the first drive signal, and transmits the first drive signal through the transmitting coil winding;
  • the electromagnetic galvanometer receives the second drive signal through the receiving coil winding, and performs deflection according to the second determination signal; wherein, the transmitting coil winding and the receiving coil winding are coupled with each other, and the second drive signal is generated by the first A drive signal is coupled.
  • an embodiment of the present application provides a laser radar including the above-mentioned driving device of an electromagnetic galvanometer.
  • Coupling coil windings are set on the side of the electromagnetic galvanometer and the optical transceiver, and then the control circuit of the optical transceiver generates a drive signal, and the drive signal is loaded on the electromagnetic galvanometer by means of coil coupling to drive the electromagnetic galvanometer Perform deflection to avoid setting two control circuits on the electromagnetic galvanometer side and the optical transceiver side in the related technology; because the electromagnetic galvanometer needs to rotate while deflection, and the optical transceiver device is stationary; if the electromagnetic vibration Setting a control circuit on the mirror side requires power supply and communication for the rotating device, and the difficulty and complexity of the system will be greatly increased.
  • Fig. 1 is a schematic diagram of the structure of lidar in related technologies
  • FIG. 2 is a block diagram of a driving device for an electromagnetic galvanometer provided by an embodiment of the present application
  • FIG. 3 is a block diagram of a control circuit provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a driving device for an electromagnetic galvanometer provided by an embodiment of the present application.
  • FIG. 5 is another block diagram of the driving device of the electromagnetic galvanometer provided by the present application.
  • FIG. 6 is another block diagram of the control circuit provided by the present application.
  • FIG. 7 is another schematic diagram of the structure of the driving device of the electromagnetic galvanometer provided by the embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a driving method of an electromagnetic galvanometer provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another flow chart of the driving method of the electromagnetic galvanometer provided by the embodiment of the present application.
  • FIG. 1 shows a schematic structural diagram of a laser radar in the related art.
  • the laser radar includes a light source control circuit 100, an optical transceiver 101, an electromagnetic galvanometer 102, and a galvanometer control circuit 103.
  • the light source control circuit 100 is used to control the optical transceiver 101, for example, to control parameters such as the irradiation angle, irradiation intensity, and irradiation time of the emitted laser generated by the optical transceiver 101.
  • the emitted laser light generated by the optical transceiver 101 is reflected by the electromagnetic galvanometer 102 to form a reflected laser light, and the electromagnetic galvanometer 102 transmits the reflected laser light to the optical transceiver 101 for processing.
  • the galvanometer control circuit 103 is used to send a driving signal to the electromagnetic galvanometer 102 to drive the deflection angle of the electromagnetic galvanometer 102, and the electromagnetic galvanometer 102 can scan in the horizontal direction and the vertical direction.
  • the light source control circuit 100 can be directly connected to the electromagnetic galvanometer 102 through a wired connection.
  • the lidar can realize the three-dimensional scanning function.
  • the electromagnetic galvanometer needs to rotate around the axis as a whole.
  • Both control circuits play a control role.
  • the circuit structure of the laser radar is redundant, and the structure of the laser radar is further simplified. space.
  • the other is: only the control circuit is provided on the side of the optical transceiver 101, and the components that rotate relative to the control circuit (such as the electromagnetic galvanometer 101) are powered and communicated through wireless coupling.
  • This structure does not require two separate installations.
  • a control circuit the complexity of the lidar will be greatly reduced. Therefore, when there is a relative rotation between the electromagnetic galvanometer 102 and the control circuit for wireless coupling control, how to improve the coupling efficiency between the electromagnetic galvanometer 102 and the control circuit is a problem to be solved urgently.
  • FIGS. 2 to 4 there are schematic structural diagrams of a driving device for an electromagnetic galvanometer provided in this embodiment of the present application.
  • the driving device for an electromagnetic galvanometer is hereinafter referred to as a driving device.
  • the driving device includes: a control circuit 200, a modulation circuit 201, a transmitting coil winding 202, a receiving coil winding 203, a demodulation circuit 204 and an electromagnetic galvanometer 205.
  • the connection relationship of each component or circuit in the driving device is: the control circuit 200 is connected to the modulation circuit 201, the modulation circuit 201 is connected to the transmitting coil winding 202, and the receiving coil winding 203 is connected to the electromagnetic galvanometer 205.
  • the transmitting coil winding 202 and the receiving coil winding 203 are coupled to each other.
  • the coupling coefficient between the transmitting coil winding 202 and the receiving coil winding 203 is known.
  • the coupling coefficient is determined by the distance between the transmitting coil winding 202 and the receiving coil winding 203 and the material of the coil. , The number of turns of the coil, the thickness of the coil, and other parameters.
  • the coupling coefficient between the transmitting coil winding 202 and the receiving coil winding 203 can be determined according to actual requirements, and is not limited in the embodiment of the present application.
  • the resonance frequency of the transmitting coil winding 202 and the receiving coil winding 203 may be the same, so that when a coupling effect occurs between the transmitting coil winding 202 and the receiving coil winding 203, the coupling efficiency between the two coil windings is increased.
  • the working principle of the driving device of the electromagnetic galvanometer includes:
  • the control circuit 200 is used to generate the first driving signal.
  • the first driving signal can be a single frequency signal.
  • the first driving signal is a sine signal or a cosine signal.
  • Array DSP (Digital Signal Processor, digital signal processor), or general-purpose processor is implemented, which is not limited in the embodiment of the present application.
  • the frequency of the first driving signal is equal to the resonance frequency of the receiving coil winding 203, so that the transmitting coil winding 202 and the receiving coil winding 203 reach a resonance state, which can increase the transmitting coil winding 202 and the receiving coil winding.
  • the first driving signal is a low-frequency signal, for example, the first driving signal is a sine signal with a frequency of 1.2 KHz.
  • the control circuit 200 includes a digital signal generation circuit 2001 and a digital-to-analog conversion circuit 2002.
  • the digital signal generation circuit 2001 is used to generate a digital first driving signal
  • the digital-to-analog conversion circuit 2002 is used to convert the digital The first driving signal undergoes digital-to-analog conversion to generate an analog first driving signal, so that the modulation circuit 201 modulates the analog first driving signal.
  • the digital signal generation circuit 2001 can be an FPGA, a DSP or a general-purpose processor.
  • the modulation circuit 201 is used to load the first drive signal onto the high-frequency carrier to obtain the first modulation signal, and transmit the first modulation signal through the transmitting coil winding 202.
  • Modulation methods include, but are not limited to: one or more of amplitude modulation, frequency modulation, and angle modulation.
  • the modulation circuit 201 uses amplitude modulation to load the first drive signal onto the high-frequency carrier to obtain the first modulation signal.
  • the modulation circuit 201 may include a high-frequency carrier wave generating unit and a loading unit.
  • the high-frequency carrier wave generating unit is used to generate a high-frequency carrier wave
  • the loading unit is used to load a first driving signal onto the high-frequency carrier wave to generate a first modulation signal.
  • the frequency of the modulated first modulation signal is relatively high, and when coupling is performed between the transmitting coil winding 202 and the receiving coil winding 203, the coupling efficiency between the two coil windings can be improved.
  • the frequency of the first driving signal is a sine signal with a frequency of 1.2KHz
  • the 1.2KHz sine signal is loaded onto a 50MHz high-frequency carrier through amplitude modulation, and the envelope of the first modulation signal obtained after modulation is the 1.2KHz sine Signal.
  • the demodulation circuit 204 is used to detect the coupling of the first modulation signal through the receiving coil winding 203 to generate a second modulation signal, and demodulate the second modulation signal to obtain a second drive signal.
  • the first modulation signal exists in the transmitting coil winding 202. Due to the coupling effect between the transmitting coil winding 202 and the receiving coil winding 203, the second modulation signal induced by the first modulation signal will also be generated in the receiving coil winding 203.
  • the transmitting coil There is energy loss when the winding 202 and the receiving coil winding 203 are coupled, so the amplitude of the second modulation signal will be smaller than the amplitude of the first modulation signal.
  • the demodulation circuit 204 demodulates the second modulated signal in a demodulation manner corresponding to the modulation circuit 201.
  • the demodulation circuit 204 uses an envelope detection method to demodulate the second modulated signal; the envelope detection method is a passive demodulation method, that is, no active device is required.
  • the structure of the demodulation circuit 204 It is simple and can further reduce the cost; and the passive demodulation method only needs to use passive components, and there is no need to supply power and communication to the side of the rotating receiving coil winding 203, which simplifies the system and improves the reliability of the system.
  • the coupling coefficient between the transmitting coil winding 202 and the receiving coil winding 203 is K
  • the amplitude of the first modulation signal is Vin
  • the amplitude of the second modulation signal is Vout
  • Vout K ⁇ Vin.
  • the electromagnetic galvanometer 205 is used for deflection according to the second driving signal.
  • the deflection angle of the electromagnetic galvanometer 205 is proportional to the amplitude of the second driving signal, that is, the deflection angle of the electromagnetic galvanometer can be increased or decreased by adjusting the amplitude of the first driving signal.
  • the driving device further includes a motor 206 and a platform (not shown in the figure), the electromagnetic galvanometer 205 is arranged on the platform, the motor 206 drives the platform to rotate, and the direction of rotation of the motor 206 is parallel to the horizontal direction. That is, the motor 206 rotates around the vertical direction, that is, the electromagnetic galvanometer 205 rotates around the vertical direction.
  • the electromagnetic galvanometer 205 is controlled by the second driving signal to scan in the vertical direction, and the scanning angle in the vertical direction can be set as required; the electromagnetic galvanometer 205 is driven by the second driving signal to scan vertically, and is driven by the motor 206 Scanning in the horizontal direction is realized, so that the electromagnetic galvanometer can scan in the horizontal direction and the vertical direction at the same time, and the angular speed of the rotation of the motor 206 can be determined according to actual requirements, which is not limited in this application.
  • the driving device also includes a first magnetically permeable component (not shown in the figure) and a second magnetically permeable component (not shown in the figure).
  • the first and second magnetically permeable components are made of magnetically permeable material.
  • the magnetically conductive material is ferrite; the shape of the first magnetically conductive material and the second magnetically conductive member can be a flat sheet, and the first magnetically conductive member, the second magnetically conductive member, the transmitting coil winding 202 and the The receiving coil windings 203 are parallel to each other.
  • a confined space is formed between the first magnetically conductive component and the second magnetically conductive component.
  • the transmitting coil winding and the receiving coil winding are arranged in the confined space.
  • the first magnetically conductive component and the second magnetically conductive component are used to constrain the transmitting coil winding 202 and
  • the magnetic field generated by the coupling between the receiving coil windings 203 improves the coupling efficiency between the transmitting coil winding 202 and the receiving coil winding 203.
  • the transmitting coil winding 202 is arranged on the optical transceiver 207 side, for example: the transmitting coil winding 202 is fixed on the optical transceiver 207, or the transmitting coil winding 202 can also be separately arranged on the optical transceiver 207 On one side, it is not directly connected to the optical transceiver 207.
  • the electromagnetic galvanometer side and the optical transceiver side are respectively provided with mutually coupled coil windings, and then the control circuit of the optical transceiver device generates the driving signal
  • the modulated drive signal is loaded on the electromagnetic galvanometer by means of coil coupling to drive the electromagnetic galvanometer for deflection, avoiding two control circuits on the electromagnetic galvanometer side and the optical transceiver side in the related art; first, this application passes The drive signal generated by the control circuit is modulated.
  • the modulated drive signal is a high-frequency signal.
  • the high-frequency signal is coupled to the electromagnetic galvanometer through the coil to improve the coupling efficiency.
  • this application only needs to use the control circuit on the side of the multiplexed optical transceiver.
  • the control of the deflection of the electromagnetic galvanometer is realized, the circuit structure of the laser radar is simplified, and the cost of the laser radar is reduced.
  • FIGS. 5 to 7 are schematic diagrams of another structure of the driving device of the electromagnetic galvanometer provided by the embodiments of the application, the driving device of the electromagnetic galvanometer is referred to as the driving device hereinafter.
  • the driving device includes: a control circuit 300, a first magnetic conductive component 301, a transmitting coil winding 302, a receiving coil winding 303, a second magnetic conductive component 304 and an electromagnetic galvanometer 305.
  • the first magnetically conductive part 301 and the second magnetically conductive part 304 are made of magnetically conductive materials, for example: the magnetically conductive material is ferrite; the first magnetically conductive material 301, the transmitting coil winding 302, the receiving coil winding 303 and the second magnetic material
  • the shape of the two magnetic conductive parts 304 can be a flat sheet, and the first magnetic conductive part 301, the transmitting coil winding 302, the receiving coil winding 303, and the second magnetic conductive part 303 are parallel to each other to improve the coupling between the two coil windings.
  • a confined space is formed between the first magnetically conductive part 301 and the second magnetically conductive part 304, the transmitting coil winding 302 and the receiving coil winding 303 are arranged in the confined space, and the first magnetically conductive part 301 and the second magnetically conductive part 304 are used for
  • the magnetic field generated by the mutual coupling between the transmitting coil winding 302 and the receiving coil winding 303 is restricted, and the coupling efficiency between the transmitting coil winding 302 and the receiving coil winding 303 is improved.
  • the transmitting coil winding 302 is arranged on the inner surface of the first magnetic conductive component 301
  • the receiving coil winding 303 is arranged on the inner surface of the second magnetic conductive component 304
  • the first magnetic conductive component 301 the transmitting coil winding 302
  • Both the receiving coil winding 303 and the second magnetic conductive member 304 have a sheet shape.
  • the coupling system between the transmitting coil winding 302 and the receiving coil winding 303 depends on the distance between the transmitting coil winding 302 and the receiving coil winding 303, the material, the number of coil turns, and the difference between the first magnetic conductive part 301 and the second magnetic conductive part 304.
  • the working principle of the driving device includes:
  • the control circuit 300 is used for generating a first driving signal, and transmitting the first driving signal through the transmitting coil winding.
  • the first driving signal may be a single frequency signal, for example: the first driving signal is a sine signal or a cosine signal.
  • the control circuit 300 may be implemented by an FPGA, a DSP, or a general-purpose processor, which is not limited in the embodiment of the present application.
  • the first driving signal is a single-frequency signal
  • the frequency of the first driving signal is equal to the resonance frequency of the transmitting coil winding 302 and the receiving coil winding 304, so that the transmitting coil winding 302 and the receiving coil winding 304 reach a resonance state, which can increase the transmitting coil winding. Coupling efficiency between 302 and receiving coil winding 304.
  • the first driving signal is a low-frequency signal, for example, the first driving signal is a sine signal with a frequency of 1.2 KHz.
  • the electromagnetic galvanometer 305 is used for receiving the second driving signal through the receiving coil winding 303, and performing deflection according to the second driving signal.
  • the second driving signal is induced and generated according to the first driving signal. Due to the coupling effect between the transmitting coil winding 302 and the receiving coil winding 303, the second driving signal induced by the first driving signal will also be generated in the receiving coil winding 303.
  • the coupling between the transmitting coil winding 302 and the receiving coil winding 303 is There is energy loss at the time, so the amplitude of the second drive signal is smaller than the amplitude of the first drive signal, that is, the second drive signal is only reduced in amplitude compared with the first drive signal.
  • the frequency of the second drive signal and the first drive signal The characteristics remain consistent.
  • the electromagnetic galvanometer 305 is driven by the second driving signal to deflect.
  • the electromagnetic galvanometer 305 is driven in the vertical direction according to the second driving signal, that is, the electromagnetic galvanometer 305 performs vertical scanning according to the control of the second driving signal.
  • the range of the vertical scanning can be determined according to actual requirements. Application is not restricted.
  • the amplitude of the first driving signal is Vin
  • the coupling coefficient between the transmitting coil winding 302 and the receiving coil winding 303 is K
  • K is a positive integer less than 1
  • the control circuit 300 includes a digital signal generation circuit 3001, a digital-to-analog conversion circuit 3002, and an amplifying circuit 3003.
  • the digital signal generation circuit 3001 is used to generate a digital first driving signal
  • the digital-to-analog conversion circuit 3002 uses To convert the digital first driving signal into an analog first driving signal
  • the amplifying circuit 3003 is used to amplify the analog first driving signal to increase the amplitude of the first driving signal and improve the driving ability of the electromagnetic galvanometer.
  • the driving device of the electromagnetic galvanometer includes a motor 307 and a platform (not shown in the figure).
  • the electromagnetic galvanometer scans in the vertical direction, and the scanning angle in the vertical direction can be set as required. This application is not restricted.
  • the electromagnetic galvanometer 305 is set on the platform, and the motor 307 rotates with the vertical direction as the axis to realize the scanning of the electromagnetic galvanometer in the horizontal direction, so that the electromagnetic galvanometer can scan in two dimensions in the horizontal and vertical directions.
  • the motor 307 It can be rotated at a constant angular velocity, and the angular velocity of the motor rotation can be determined according to actual requirements, which is not limited in this application.
  • the transmitting coil winding 302 is arranged in the optical transceiver 306, for example, the transmitting coil winding 302 is encapsulated in the optical transmitter of the optical transceiver 306.
  • the electromagnetic galvanometer side and the optical transceiver side are respectively provided with mutually coupled coil windings, and then the control circuit of the optical transceiver device generates the driving signal,
  • the driving signal is directly loaded on the electromagnetic galvanometer through the method of coil coupling.
  • the magnetic component is used to improve the coupling efficiency between the two transmitting coil windings and the receiving coil winding, so as to improve the direct drive capability of the electromagnetic galvanometer.
  • Signal control drives the electromagnetic galvanometer for deflection, avoiding two control circuits on the electromagnetic galvanometer side and the optical transceiver side in the related art.
  • the present application restricts the magnetic field between the two coils through two magnetically conductive components. Therefore, the coupling efficiency of the driving signal coupled to the electromagnetic galvanometer through the coil is improved; in addition, this application only needs to realize the control of the light source and the deflection of the electromagnetic galvanometer through the control circuit on the optical transceiver side at the same time, which simplifies the circuit structure of the lidar and reduces The cost of lidar.
  • An embodiment of the present application also provides a laser radar, including the above-mentioned driving device of the electromagnetic galvanometer.
  • the above-mentioned laser emitting circuit can be applied to lidar.
  • the lidar may also include: power supply, processing equipment, optical receiving equipment, rotating body, base, housing, and human-computer interaction Specific structure of equipment. It is understandable that the lidar can be a single-channel lidar, including one of the above-mentioned laser emission circuits, and the lidar can also be a multi-channel lidar, including multiple channels of the above-mentioned laser emission circuit and the corresponding control system. The quantity can be determined according to actual needs.
  • FIG. 8 is a schematic flowchart of a driving method of an electromagnetic galvanometer provided by an embodiment of the present application.
  • the method includes:
  • the control circuit generates a first driving signal.
  • the modulation circuit loads the first drive signal on the high-frequency carrier to generate the first modulation signal, and transmits the first modulation signal through the transmitting coil winding.
  • the demodulation circuit receives the second modulation signal through the receiving coil winding, and demodulates the second modulation signal to obtain the second driving signal.
  • the electromagnetic galvanometer is deflected by the second driving signal.
  • FIG. 9 is a schematic flowchart of a method for driving an electromagnetic galvanometer provided by an embodiment of the present application.
  • the method includes:
  • the control circuit generates a first driving signal, and transmits the first driving signal through the transmitting coil winding.
  • the electromagnetic galvanometer receives the second driving signal through the receiving coil winding, and performs deflection according to the second driving signal.
  • the program can be stored in a computer readable storage medium. During execution, it may include the procedures of the above-mentioned method embodiments.
  • the storage medium can be a magnetic disk, an optical disk, a read-only storage memory or a random storage memory, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Signal Processing (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

一种电磁振镜(205)的驱动装置、驱动方法和激光雷达,属于激光雷达领域。驱动方法包括:控制电路(200)生成第一驱动信号;调制电路(201)将第一驱动信号加载到高频载波上生成第一调制信号,以及通过发射线圈绕组(202)发射第一调制信号;解调电路(204)通过接收线圈绕组(203)接收第二调制信号,对第二调制信号进行解调得到第二驱动信号;其中,第二调制信号由第一调制信号感应得到;电磁振镜(205)根据第二驱动信号进行偏转。在电磁振镜(205)和控制电路(200)之间存在相对旋转时,通过线圈耦合的方式利用控制电路(200)生成的驱动信号驱动电磁振镜(205)转动,既可以提高电磁振镜(205)和控制电路(200)之间的耦合效率,又无需单独为电磁振镜(205)设置控制电路,从而简化电路结构和降低硬件成本。

Description

电磁振镜的驱动装置、驱动方法和激光雷达 技术领域
本申请涉及控制领域,尤其涉及一种电磁振镜的控制方法、控制装置和激光雷达。
背景技术
激光雷达的关键器件是电磁振镜(以下简称振镜)和光收发装置,激光雷达中的控制电路控制激光雷达中的光收发装置发射出射激光,出射激光打在旋转的振镜上,通过振镜的镜面反射在激光雷达周围覆盖一环形区域,出射激光被该环形区域内的物体反射后返回回波激光,通过振镜的镜面反射后射向光收发装置被接收,从而在激光雷达的周围形成探测视场。振镜控制电路生成驱动信号调节振镜的偏转角度、振动频率等,振镜受振镜控制电路输入的驱动信号驱动以简谐运动的方式进行偏转。发明人发现,目前的激光雷达的电路结构较为复杂,成本较高,有进一步简化的空间。
发明内容
本申请实施例提供了的电磁振镜的驱动方法、驱动装置及激光雷达,可以解决相关技术中激光雷达的电路结构复杂和成本高的问题。所述技术方案如下:
第一方面,本申请实施例提供了一种振镜的驱动装置,所述驱动装置包括:
控制电路,调制电路、发射线圈绕组、接收线圈绕组、解调电路和电磁振镜,发射线圈绕组和接收线圈绕组相互耦合;控制电路与调制电路相连,调制电路与发射线圈绕组相连,发射线圈绕组和接收线圈绕组耦合,接收线圈绕组与解调电路相连,解调电路与电磁振镜相连;
其中,控制电路,用于生成第一驱动信号,
调制电路,用于将第一驱动信号加载到高频载波上生成第一调制信号,以及通过发送线圈绕组发射第一调制信号;
解调电路,用于通过接收线圈绕组接收第二调制信号,对第二调制信号进 行解调得到第二驱动信号;其中,第二调制信号由第一调制信号感应得到;
电磁振镜,用于根据第二驱动信号进行偏转。
在一种可能的设计中,还包括:电机和安装平台,电磁振镜设置在安装平台上,所述安装平台固定在所述电机的转动轴上,所述电机的转动方向平行于所述安装平台;电磁振镜随着电机绕着垂直方向进行转动。电磁振镜,用于根据第二驱动信号在垂直方向上进行偏转,这样电磁振镜实现在水平方向和垂直方向上的二维扫描。
在一种可能的设计中,调制电路,用于采用幅度调制方式将第一驱动信号加载到高频载波上生成第一调制信号,以及通过发射线圈绕组发射第一调制信号;
解调电路,用于通过接收线圈绕组接收第二调制信号,以及使用包络检波方式对第二调制信号进行解调得到第二驱动信号。
在一种可能的设计中,发射线圈绕组和接收线圈绕组包括多匝间距相等的线圈,线圈之间的距离可以根据实际需要来定,本申请实施例不作限制。
在一种可能的设计中,第一驱动信号为单频信号,第一驱动信号的频率等于发射线圈绕组和接收线圈绕组的谐振频率。
在一种可能的设计中,发射线圈绕组和接收线圈绕组的形状为片状,发射线圈绕组和接收线圈绕组相互平行,接收线圈绕组封装于电磁振镜中。
第二方面,本申请实施例提供了一种电磁振镜的驱动装置,包括:
控制电路、发射线圈绕组、接收线圈绕组、第一导磁部件、第二导磁部件和电磁振镜;控制电路和发射线圈绕组相连,接收线圈绕组与电磁振镜相连,发射线圈绕组和接收线圈绕组之间相互耦合,第一导磁部件和第二导磁部件对发射线圈绕组和接收线圈绕组之间耦合产生的磁场进行约束;
控制电路,用于生成第一驱动信号,以及通过所述发射线圈绕组发射第一驱动信号;
所述电磁振镜,用于通过接收线圈绕组接收第二驱动信号,根据第二驱动进行偏转;其中,第二驱动信号由第一驱动信号感应生成的。
第三方面,本申请实施例提供了一种电磁振镜的驱动方法,包括:
控制电路生成第一驱动信号;
调制电路将所述第一驱动信号加载到高频载波上生成第一调制信号,以及通过发射线圈绕组发射所述第一调制信号;
解调电路通过接收线圈绕组接收第二调制信号,对所述第二调制信号进行解调得到第二驱动信号;其中,所述第二调制信号由所述第一调制信号感应得到的;
电磁振镜根据第二驱动信号进行偏转。
第四方面,本申请实施例提供了一种电磁振镜的驱动方法,包括:
控制电路生成第一驱动信号,以及通过发射线圈绕组发射第一驱动信号;
电磁振镜通过接收线圈绕组接收第二驱动信号,以及根据所述第二确定信号进行偏转;其中,所述发射线圈绕组和所述接收线圈绕组相互耦合,所述第二驱动信号由所述第一驱动信号耦合得到的。
第五方面,本申请实施例提供了一种激光雷达,包括上述的电磁振镜的驱动装置。
本申请一些实施例提供的技术方案带来的有益效果至少包括:
在电磁振镜侧和光收发装置侧分别设置相互耦合的线圈绕组,然后设置在光收发装置的控制电路生成驱动信号,通过线圈耦合的方式将驱动信号加载到电磁振镜上,以驱动电磁振镜进行偏转,避免相关技术中分别在电磁振镜侧和光收发装置侧设置两个控制电路;由于电磁振镜进行偏转的同时需做旋转运动,而光收发装置是静止不动的;若在电磁振镜侧设置控制电路,则需要对旋转的器件进行供电和通信,系统难度和复杂度将大大增加,而本申请只需要通过光收发装置侧的控制电路同时实现光源的控制和电磁振镜偏转的控制,将静止的光收发装置侧的控制电路产生的驱动信号通过无线传递给电磁振镜侧,简化了激光雷达的电路结构,降低了激光雷达的成本。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付 出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是相关技术中激光雷达的结构示意图;
图2是本申请实施例提供的电磁振镜的驱动装置的框图;
图3是本申请实施例提供的控制电路的框图;
图4是本申请实施例提供的电磁振镜的驱动装置的结构示意图;
图5是本申请提供的电磁振镜的驱动装置的另一框图;
图6是本申请提供的控制电路的另一框图
图7是本申请实施例提供的电磁振镜的驱动装置的另一结构示意图;
图8是本申请实施例提供的电磁振镜的驱动方法的流程示意图;
图9是本申请实施例提供的电磁振镜的驱动方法的另一流程示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例方式作进一步地详细描述。
图1示出了相关技术中激光雷达的结构示意图,激光雷达包括光源控制电路100、光收发装置101、电磁振镜102和振镜控制电路103。
其中,光源控制电路100用于控制光收发装置101,例如:控制光收发装置101生成的发射激光的照射角度、照射强度和照射时间等参数。光收发装置101生成的发射激光经过电磁振镜102的反射照射到目标物体上,形成反射激光,电磁振镜102接收到反射激光后传输给光收发装置101进行处理。振镜控制电路103用于向电磁振镜102发出驱动信号,以驱动电磁振镜102的偏转角度,电磁振镜102可以在水平方向和垂直方向上进行扫描。
根据图1中的激光雷达的结构可以看出:在电磁振镜102和光源控制电路100之间不存在相对旋转时,光源控制电路100可以直接通过有线连接的方式与电磁振镜102进行连接,以控制电磁振镜102进行偏转。在电磁振镜102和光源控制电路100之间存在相对旋转时,激光雷达能够实现三维扫描功能,电磁振镜需整体绕轴旋转,存在两种电路结构:一种是:在光收发装置101侧设置有光源控制电路100,以及在电磁振镜102侧设置有振镜控制电路103,两个控制电路都是起控制作用的,激光雷达的电路结构存在冗余,激光雷达的 结构有进一步简化的空间。另一种是:仅在光收发装置101一侧设置控制电路,通过无线耦合的方式对相对于控制电路旋转的部件(如电磁振镜101)进行供电和通信,这种结构不需要分别设置两个控制电路,激光雷达的复杂度会大大降低。因此,在电磁振镜102和控制电路之间存在相对旋转进行无线耦合方式进行控制时,如何提高电磁振镜102和控制电路之间的耦合效率是目前亟待解决的问题。
如图2至图4所示,为本申请实施例提供了一种电磁振镜的驱动装置的结构示意图,电磁振镜的驱动装置以下简称驱动装置。
其中,如图2所示,驱动装置包括:控制电路200、调制电路201、发射线圈绕组202、接收线圈绕组203、解调电路204和电磁振镜205。
其中,驱动装置中各个部件或电路的连接关系为:控制电路200与调制电路201相连,调制电路201与发射线圈绕组202相连,接收线圈绕组203与电磁振镜205相连。发射线圈绕组202和接收线圈绕组203相互耦合,发射线圈绕组202和接收线圈绕组203之间的耦合系数是已知的,耦合系数由发射线圈绕组202和接收线圈绕组203之间的距离、线圈材质、线圈匝数和线圈粗细等参数来决定,发射线圈绕组202和接收线圈绕组203之间的耦合系数可以根据实际需求来定,本申请实施例不作限制。可选的,发射线圈绕组202和接收线圈绕组203的谐振频率可以相同,这样在发射线圈绕组202和接收线圈绕组203之间发生耦合效应时,增加两个线圈绕组之间的耦合效率。
其中,电磁振镜的驱动装置的工作原理包括:
控制电路200用于生成第一驱动信号,第一驱动信号可以为单频信号,例如:第一驱动信号为正弦信号或余弦信号,控制电路200的可以由FPGA(Field Programmable Gate Array,现场可编程阵列)、DSP(Digital Signal Processor,数字信号处理器)或通用处理器来实现,本申请实施例不作限制。在第一驱动信号为单频信号时,第一驱动信号的频率等于接收线圈绕组203的谐振频率,使发射线圈绕组202和接收线圈绕组203达到谐振状态,能增加发射线圈绕组202和接收线圈绕组203之间的耦合效率。一般的,第一驱动信号为低频信号,例如:第一驱动信号是频率为1.2KHz的正弦信号。
进一步的,参见图3所示,控制电路200包括数字信号生成电路2001和数模转换电路2002,数字信号生成电路2001用于生成数字的第一驱动信号,数模转换电路2002用于将数字的第一驱动信号进行数模转换生成模拟的第一驱动信号,以便调制电路201对模拟的第一驱动信号进行调制。数字信号生成电路2001可以是FPGA、DSP或通用处理器,。
其中,调制电路201用于将第一驱动信号加载到高频载波上得到第一调制信号,通过发射线圈绕组202将第一调制信号发射出去。调制的方式包括但不限于:幅度调制、频率调制和角度调制中的一种或多种。可选的,调制电路201采用幅度调制的方式将第一驱动信号加载到高频载波上得到第一调制信号。调制电路201可以包括高频载波生成单元和加载单元,高频载波生成单元用于生成高频载波,加载单元用于将第一驱动信号加载到高频载波上生成第一调制信号。其中,调制后的第一调制信号的频率较高,在通过发射线圈绕组202和接收线圈绕组203之间进行耦合时,能提高两个线圈绕组之间的耦合效率。
例如:第一驱动信号的频率为1.2KHz的正弦信号,通过幅度调制方式将1.2KHz的正弦信号加载到50MHz的高频载波上,调制后得到的第一调制信号的包络即1.2KHz的正弦信号。
其中,解调电路204用于通过接收线圈绕组203检测第一调制信号耦合生成第二调制信号,对第二调制信号进行解调得到第二驱动信号。发射线圈绕组202中存在第一调制信号,发射线圈绕组202和接收线圈绕组203之间由于存在耦合效应,接收线圈绕组203中也会产生由第一调制信号感应得到的第二调制信号,发射线圈绕组202和接收线圈绕组203在耦合时存在能量损失,因此第二调制信号的幅度会小于第一调制信号的幅度。解调电路204采用和调制电路201相应的解调方式对第二调制信号进行解调。可选的,解调电路204采用包络检波方式对第二调制信号进行解调;包络检波方法是一种无源的解调方式,即不需要使用有源器件,解调电路204的结构简单,能进一步的降低成本;且无源的解调方式,仅需使用无源器件,无需对旋转的接收线圈绕组203一侧进行供电和通信,简化系统,提高系统的可靠性。
例如:假设发射线圈绕组202和接收线圈绕组203之间的耦合系数为K, 第一调制信号的的幅度为Vin,那么第二调制信号的幅度为Vout,那么Vout=K×Vin。
其中,电磁振镜205用于根据第二驱动信号进行偏转。电磁振镜205的偏转角度和第二驱动信号的幅度成正比,即可以通过调节第一驱动信号的幅度来增加或减小电磁振镜的偏转角度。
在一种可能的实施方式中,驱动装置还包括电机206和平台(图中未画出),电磁振镜205设置在平台上,电机206带动平台转动,电机206转动的方向平行于水平方向,即电机206绕垂直方向进行转动,即电磁振镜205绕垂直方向进行偏转。电磁振镜205受第二驱动信号的控制在垂直方向上进行扫描,垂直方向的扫描角度可以根据需要而设定;电磁振镜205受第二驱动信号的驱动进行垂直扫描,受电机206的带动实现水平方向上的扫描,这样电磁振镜可以同时水平方向和垂直方向上进行扫描,电机206转动的角速度可以根据实际需求而定,本申请不作限制。
进一步的,驱动装置还包括第一导磁部件(图中未画出)和第二导磁部件(图中未画出),第一导磁部件和第二导磁部件是使用导磁材料制成的,例如:导磁材料为铁氧体;第一导磁材料和第二导磁部件的形状可以是平面的薄片,且第一导磁部件、第二导磁部件、发射线圈绕组202和接收线圈绕组203相互平行。第一导磁部件和第二导磁部件之间形成约束空间,发射线圈绕组和接收线圈绕组设置在该约束空间中,第一导磁部件和第二导磁部件用于约束发射线圈绕组202和接收线圈绕组203之间耦合产生的磁场,提高发射线圈绕组202和接收线圈绕组203之间的耦合效率。
进一步的,参见图4所示,发射线圈绕组202设置在光收发装置207侧,例如:发射线圈绕组202固定于光收发装置207上,或者,发射线圈绕组202也可单独设置于光收发装置207一侧,不与光收发装置207直接连接。
实施本申请的实施例,在电磁振镜和控制电路之间存在相对旋转时,电磁振镜侧和光收发装置侧分别设置相互耦合的线圈绕组,然后设置在光收发装置的控制电路生成驱动信号,通过线圈耦合的方式将调制的驱动信号加载到电磁振镜上,以驱动电磁振镜进行偏转,避免相关技术中分别在电磁振镜侧和光收发装置侧设置两个控制电路;首先,本申请通过对控制电路生成的驱动信号进 行调制,调制后的驱动信号为高频信号,高频信号通过线圈耦合给电磁振镜可以提高耦合效率,另外本申请只需要通过复用光收发装置侧的控制电路实现对电磁振镜偏转的控制,简化了激光雷达的电路结构,降低了激光雷达的成本。
参见图5至图7,为本申请实施例提供的电磁振镜的驱动装置的另一结构示意图,电磁振镜的驱动装置以下简称驱动装置。
参见图5所示,驱动装置包括:控制电路300、第一导磁部件301、发射线圈绕组302、接收线圈绕组303、第二导磁部件304和电磁振镜305。第一导磁部件301和第二导磁部件304是使用导磁材料制成的,例如:导磁材料为铁氧体;第一导磁材料301、发射线圈绕组302、接收线圈绕组303和第二导磁部件304的形状可以是平面的薄片,且第一导磁部件301、发射线圈绕组302、接收线圈绕组303和第二导磁部件303相互平行,以提高两个线圈绕组之间的耦合效率。第一导磁部件301和第二导磁部件304之间形成约束空间,发射线圈绕组302和接收线圈绕组303设置在该约束空间中,第一导磁部件301和第二导磁部件304用于约束发射线圈绕组302和接收线圈绕组303相互耦合产生的磁场,提高发射线圈绕组302和接收线圈绕组303之间的耦合效率。
可选的,发射线圈绕组302设置于第一导磁部件301的内表面上,接收线圈绕组303设置于第二导磁部件304的内表面上,第一导磁部件301、发射线圈绕组302、接收线圈绕组303和第二导磁部件304均的形状均为片状。发射线圈绕组302和接收线圈绕组303之间的耦合系统取决于发射线圈绕组302和接收线圈绕组303之间的距离、材质、线圈匝数、第一导磁部件301和第二导磁部件304之间产生的磁场强度和加载到发射线圈绕组302上的信号的频率。
在本申请实施例中,驱动装置的工作原理包括:
控制电路300用于生成第一驱动信号,通过发射线圈绕组将第一驱动信号发射出去。第一驱动信号可以为单频信号,例如:第一驱动信号为正弦信号或余弦信号。控制电路300可以由FPGA、DSP或通用处理器来实现,本申请实施例不作限制。在第一驱动信号为单频信号时,第一驱动信号的频率等于发射线圈绕组302和接收线圈绕组304的谐振频率,使发射线圈绕组302和接收线 圈绕组304达到谐振状态,能增加发射线圈绕组302和接收线圈绕组304之间的耦合效率。一般的,第一驱动信号为低频信号,例如:第一驱动信号为频率为1.2KHz的正弦信号。
电磁振镜305用于通过接收线圈绕组303接收根据第二驱动信号,根据第二驱动信号进行偏转,第二驱动信号是根据第一驱动信号感应生成的。由于发射线圈绕组302和接收线圈绕组303之间存在耦合效应,接收线圈绕组303中也会产生由第一驱动信号感应得到的第二驱动信号,发射线圈绕组302和接收线圈绕组303之间在耦合时存在能量损失,因此第二驱动信号的幅度小于第一驱动信号的幅度,即第二驱动信号和第一驱动信号相比,仅在于幅度减小,第二驱动信号和第一驱动信号的频率特性保持一致。电磁振镜305根据第二驱动信号的驱动进行偏转。可选的,电磁振镜305根据第二驱动信号的驱动在垂直方向上进行偏转,即电磁振镜305根据第二驱动信号的控制进行垂直扫描,垂直扫描的范围可以根据实际需求而定,本申请不作限制。
例如:第一驱动信号的幅度为Vin,发射线圈绕组302和接收线圈绕组303之间的耦合系数为K,K为小于1的正整数,接收线圈绕组303上感应到的第二驱动信号的幅度为Vout,Vout=K×Vin。
进一步的,参见图6所示,控制电路300包括数字信号生成电路3001、数模转换电路3002和放大电路3003,数字信号生成电路3001用于生成数字的第一驱动信号,数模转换电路3002用于将数字的第一驱动信号转换为模拟的第一驱动信号,放大电路3003用于将模拟的第一驱动信号进行放大,以增加第一驱动信号的幅度,提高对电磁振镜的驱动能力。
进一步的,参见图7所示,电磁振镜的驱动装置包括电机307和平台(图中未画出),电磁振镜在垂直方向上进行扫描,垂直方向的扫描角度可以根据需要而设定,本申请不作限制。电磁振镜305设置在平台上,电机307以垂直方向为轴进行转动,以实现电磁振镜在水平方向上的扫描,这样电磁振镜可以在水平方向和垂直方向上的二维扫描,电机307可以以恒定的角速度进行转动,电机转动的角速度可以根据实际需求而定,本申请不作限制。
进一步的,参见图7所示,发射线圈绕组302设置在光收发装置306中,例如:发射线圈绕组302封装于光收发装置306的光发射器中。
实施本申请的实施例,在电磁振镜和控制电路之间存在相对旋转时,电磁振镜侧和光收发装置侧分别设置相互耦合的线圈绕组,然后设置在光收发装置的控制电路生成驱动信号,通过线圈耦合的方式直接将驱动信号加载到电磁振镜上,同时利用导磁部件提高两个发射线圈绕组和接收线圈绕组之间的耦合效率,以提高对电磁振镜的直接驱动能力,根据驱动信号控制驱动电磁振镜进行偏转,避免相关技术中分别在电磁振镜侧和光收发装置侧设置两个控制电路,首先,本申请通过两个导磁部件对两个线圈之间的磁场进行约束,从而提高驱动信号通过线圈耦合给电磁振镜的耦合效率;另外本申请只需要通过光收发装置侧的控制电路同时实现光源的控制和电磁振镜偏转的控制,简化了激光雷达的电路结构,降低了激光雷达的成本。
本申请实施例还提供了一种激光雷达,包括上述的电磁振镜的驱动装置。
具体地,上述激光发射电路可以应用在激光雷达中,激光雷达中除了电磁振镜的驱动装置之外,还可以包括:电源、处理设备、光学接收设备、旋转体、底座、外壳以及人机交互设备等具体结构。可以理解的是,激光雷达可以为单路激光雷达,包括有一路上述激光发射电路,激光雷达也可以为多路激光雷达,包括多路上述激光发射电路以及相应的控制系统,其中多路的具体数量可以根据实际需求确定。
参见图8,为本申请实施例提供的一种电磁振镜的驱动方法的流程示意图,在本申请实施例中,所述方法包括:
S801、控制电路生成第一驱动信号。
S802、调制电路将第一驱动信号加载到高频载波上生成第一调制信号,以及通过发射线圈绕组发射第一调制信号。
S803、解调电路通过接收线圈绕组接收第二调制信号,对第二调制信号进行解调得到第二驱动信号。
S804、电磁振镜通过第二驱动信号进行偏转。
其中S801~S804的方法实施例和图2~图4的装置实施例属于相同的构思,其具体过程和带来的技术效果可以参照图2~图4的装置实施例的描述,此处不再赘述。
参见图9,为本申请实施例提供的一种电磁振镜的驱动方法的流程示意图,在本申请实施例中,所述方法包括:
S901、控制电路生成第一驱动信号,以及通过发射线圈绕组发射第一驱动信号。
S902、电磁振镜通过接收线圈绕组接收第二驱动信号,以及根据第二驱动信号进行偏转。
其中S901~S902的方法实施例和图5~图7的装置实施例属于相同的构思,其具体过程和带来的技术效果可以参照图5~图7的装置实施例的描述,此处不再赘述。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体或随机存储记忆体等。
以上所揭露的仅为本申请较佳实施例而已,当然不能以此来限定本申请之权利范围,因此依本申请权利要求所作的等同变化,仍属本申请所涵盖的范围。

Claims (10)

  1. 一种电磁振镜的驱动装置,其特征在于,包括:
    控制电路、调制电路、发射线圈绕组、接收线圈绕组、解调电路和电磁振镜,所述控制电路与所述调制电路相连,所述调制电路与所述发射线圈绕组相连;所述发射线圈绕组和接收线圈绕组相互耦合;所述接收线圈绕组与所述解调电路相连,所述解调电路与所述电磁振镜相连;
    其中,所述控制电路,用于生成第一驱动信号;
    所述调制电路,用于将所述第一驱动信号加载到高频载波上生成第一调制信号,以及通过所述发射线圈绕组发射所述第一调制信号;
    所述解调电路,用于通过所述接收线圈绕组接收第二调制信号,对所述第二调制信号进行解调得到第二驱动信号;其中,所述第二调制信号由所述第一调制信号感应得到的;
    所述电磁振镜,用于根据所述第二驱动信号进行偏转。
  2. 根据权利要求1所述的驱动电路,其特征在于,还包括:电机和安装平台,所述电磁振镜设置在所述安装平台上,所述安装平台固定在所述电机的转动轴上,所述电机的转动方向平行于所述安装平台;
    所述电磁振镜,用于根据所述第二驱动信号在垂直方式上进行偏转。
  3. 根据权利要求1所述的驱动电路,其特征在于,所述调制电路,用于采用幅度调制方式将第一驱动信号加载到高频载波上生成第一调制信号,以及通过所述发射线圈绕组发射所述第一调制信号;
    所述解调电路,用于通过接收线圈绕组接收第二调制信号,以及使用包络检波方式对所述第二调制信号进行解调得到第二驱动信号。
  4. 根据权利要求1所述的驱动电路,其特征在于,所述发射线圈绕组和所述接收线圈绕组包括多匝间距相等的线圈。
  5. 根据权利要求1所述的驱动电路,其特征在于,所述第一驱动信号为单频信号,所述第一驱动信号的频率等于所述发射线圈绕组的谐振频率和接收线圈绕组的谐振频率。
  6. 根据权利要求1所述的驱动电路,其特征在于,所述发射线圈绕组和所述接收线圈绕组的形状为片状,发射线圈绕组和接收线圈绕组相互平行,所述接收线圈绕组封装于所述电磁振镜内。
  7. 一种电磁振镜的驱动装置,其特征在于,包括:控制电路、发射线圈绕组、接收线圈绕组、第一导磁部件、第二导磁部件和电磁振镜;所述控制电路与所述发射线圈绕组相连,所述接收线圈绕组与所述电磁振镜相连;所述发射线圈绕组和所述接收线圈绕组之间相互耦合,所述第一导磁部件和所述第二导磁部件对所述发射线圈绕组和所述接收线圈绕组之间耦合产生的磁场进行约束;
    所述控制电路,用于生成第一驱动信号,以及通过所述发射线圈绕组发射所述第一驱动信号;
    所述电磁振镜,用于通过所述接收线圈绕组接收第二驱动信号,根据所述第二驱动信号进行偏转。
  8. 一种电磁振镜的驱动方法,其特征在于,包括:
    控制电路生成第一驱动信号;
    调制电路将所述第一驱动信号加载到高频载波上生成第一调制信号,以及通过发射线圈绕组发射所述第一调制信号;
    解调电路通过接收线圈绕组接收第二调制信号,对所述第二调制信号进行解调得到第二驱动信号;其中,所述第二调制信号由所述第一调制信号感应得到的;
    电磁振镜根据第二驱动信号进行偏转。
  9. 一种电磁振镜的驱动方法,其特征在于,包括:
    控制电路生成第一驱动信号,以及通过发射线圈绕组发射第一驱动信号;
    电磁振镜通过接收线圈绕组接收第二驱动信号,以及根据所述第二驱动信号进行偏转;其中,所述发射线圈绕组和所述接收线圈绕组相互耦合,所述第二驱动信号由所述第一驱动信号耦合得到的。
  10. 一种激光雷达,其特征在于,包括如权利要求1至7任意一项所述的电磁振镜的驱动装置。
PCT/CN2020/077323 2020-02-29 2020-02-29 电磁振镜的驱动装置、驱动方法和激光雷达 WO2021168850A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/077323 WO2021168850A1 (zh) 2020-02-29 2020-02-29 电磁振镜的驱动装置、驱动方法和激光雷达
CN202080004925.7A CN114341699B (zh) 2020-02-29 2020-02-29 电磁振镜的驱动装置、驱动方法和激光雷达

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/077323 WO2021168850A1 (zh) 2020-02-29 2020-02-29 电磁振镜的驱动装置、驱动方法和激光雷达

Publications (1)

Publication Number Publication Date
WO2021168850A1 true WO2021168850A1 (zh) 2021-09-02

Family

ID=77492054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077323 WO2021168850A1 (zh) 2020-02-29 2020-02-29 电磁振镜的驱动装置、驱动方法和激光雷达

Country Status (2)

Country Link
CN (1) CN114341699B (zh)
WO (1) WO2021168850A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004029064A (ja) * 2002-06-21 2004-01-29 Canon Inc 電磁アクチュエータ、その駆動並びに駆動状態検出方法、制御方法、光偏向器、及びそれを用いた画像形成装置
CN205861895U (zh) * 2016-06-20 2017-01-04 上海擎朗智能科技有限公司 旋转式激光测距雷达
CN205986584U (zh) * 2016-09-06 2017-02-22 武汉万集信息技术有限公司 一种基于无线电力通信的激光扫描装置
CN108828610A (zh) * 2017-03-16 2018-11-16 日立-Lg数据存储韩国公司 旋转距离测量设备
CN109932728A (zh) * 2017-12-18 2019-06-25 保定市天河电子技术有限公司 一种微型化激光脉冲测距扫描装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109633893B (zh) * 2019-02-01 2024-05-14 西安知微传感技术有限公司 一种电磁驱动振镜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004029064A (ja) * 2002-06-21 2004-01-29 Canon Inc 電磁アクチュエータ、その駆動並びに駆動状態検出方法、制御方法、光偏向器、及びそれを用いた画像形成装置
CN205861895U (zh) * 2016-06-20 2017-01-04 上海擎朗智能科技有限公司 旋转式激光测距雷达
CN205986584U (zh) * 2016-09-06 2017-02-22 武汉万集信息技术有限公司 一种基于无线电力通信的激光扫描装置
CN108828610A (zh) * 2017-03-16 2018-11-16 日立-Lg数据存储韩国公司 旋转距离测量设备
CN109932728A (zh) * 2017-12-18 2019-06-25 保定市天河电子技术有限公司 一种微型化激光脉冲测距扫描装置

Also Published As

Publication number Publication date
CN114341699B (zh) 2023-10-31
CN114341699A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
CN108828610A (zh) 旋转距离测量设备
WO2019109993A1 (zh) 激光雷达系统及其控制方法、扫描角度的获取方法及车辆
JP2004361315A (ja) レーダ装置
CN105277944A (zh) 一种激光测距雷达及其供电控制方法
JP2016522400A (ja) ミリ波スキャンイメージングシステム
WO2021168850A1 (zh) 电磁振镜的驱动装置、驱动方法和激光雷达
KR20150039483A (ko) 스캔 레이다
WO2023077808A1 (zh) 用于激光雷达的扫描装置及其控制方法、激光雷达
CN209264947U (zh) 具有无线数传和无线供电功能的装置及360°激光扫描雷达
WO2021062735A1 (zh) 驱动电机、扫描模组及激光雷达
CN113176454B (zh) 一种反射式太赫兹液晶相控阵面测试系统及方法
Cao et al. Low frequency mechanical antenna for underwater communication
CN109932728A (zh) 一种微型化激光脉冲测距扫描装置
JPH10332824A (ja) 2dイメージを生成するアンテナ装置
WO2024007540A1 (zh) 一种3d激光雷达及应用其的足式机器人和清洁机器人
US8260194B2 (en) Information communication method, information communication system, information reception apparatus, and information transmission apparatus
CN109216887A (zh) 液晶天线装置
CN112879717A (zh) 一种用于管道机器人内外通讯的极低频发射装置
CN109324319A (zh) 具有无线数传和无线供电功能的装置及360°激光扫描雷达
CN112310640B (zh) 一种高q天线组件及信号调制方法
JP4771575B2 (ja) 水中探知装置
KR20210011329A (ko) 유도 전력 및 무선 데이터 전송을 이용하는 회전형 라이다 센서
CN218995672U (zh) 一种水下探测装置
CN218037314U (zh) 激光振镜及激光雷达系统
CN216209896U (zh) 用于激光雷达的扫描装置、激光雷达

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922217

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/01/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20922217

Country of ref document: EP

Kind code of ref document: A1