JP2004361315A - レーダ装置 - Google Patents

レーダ装置 Download PDF

Info

Publication number
JP2004361315A
JP2004361315A JP2003162094A JP2003162094A JP2004361315A JP 2004361315 A JP2004361315 A JP 2004361315A JP 2003162094 A JP2003162094 A JP 2003162094A JP 2003162094 A JP2003162094 A JP 2003162094A JP 2004361315 A JP2004361315 A JP 2004361315A
Authority
JP
Japan
Prior art keywords
scanner
signal
mirror
wave signal
scanner mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003162094A
Other languages
English (en)
Inventor
Takahiko Oki
孝彦 沖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003162094A priority Critical patent/JP2004361315A/ja
Publication of JP2004361315A publication Critical patent/JP2004361315A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】2次元走査領域における観察ポイントの密度をより密にすることができるレーダ装置の提供。
【解決手段】スキャナ6に設けられたスキャナミラー11には、表裏両面の各々に反射面が形成されており、スキャナミラー11は縦振動および横振動する。互いに対向する一対のレーザダイオード7a,7bから出射されたレーザパルス光La,Lbはスキャナミラー11の表裏面にそれぞれ入射し、表裏面で反射されたレーザパルス光La,Lbは反射ミラー10a,10bで反射されて観測対象に向けて送出される。スキャナミラー11の振動角をθdegとしたとき、スキャナ6は水平面に対して傾斜角(45−θ/2)degに設定されている。その結果、レーザパルス光Laによる観測領域とレーザパルス光Lbによる観測領域とが上下に隣接することになり、水平中央付近の観察点の密度が向上する。
【選択図】 図3

Description

【0001】
【発明の属する技術分野】
本発明は、車両等に搭載されるレーダ装置において、2次元スキャナを用いて車両周囲に存在する障害物や先行車までの距離や形状を検出するレーダ装置に関する。
【0002】
【従来の技術】
障害物や先行車までの距離や形状を検出するレーダ装置において、マイクロスキャナを用いることによりレーザ光を2次元走査するものがある。そのようなマイクロスキャナとしてスキャナミラー面を縦横の2方向に振動させるものがあり、レーザダイオードからのパルス光を振動しているスキャナミラー面で反射して2次元走査するようにしている(例えば、特許文献1参照。)。従来、2次元走査の方式としては直線的な走査方式であるラスタースキャンがあるが、上述したマイクロスキャナを用いるものでは、正弦波信号によりミラーを駆動させて走査を行うリサージュスキャン方式が用いられている。
【0003】
【特許文献1】
特開平9−101474号公報
【0004】
【発明が解決しようとする課題】
しかしながら、リサージュスキャンを用いた場合には、スキャナミラーの振動は正弦波信号で駆動されているため、照射対象の上下左右周辺領域において照射する時間の割合が大きくなりやすい。その結果、走査領域の水平中央付近の観測ポイントが疎になる傾向があるという問題点があった。
【0005】
本発明は、2次元走査を行うレーダ装置において、2次元走査領域における観察ポイントの密度をより密にすることができるレーダ装置を提供するものである。
【0006】
【課題を解決するための手段】
本発明のレーダ装置では、スキャナに設けられたスキャナミラーは、板部材の表裏両面の各々に波動信号を反射する反射面を形成したものであり、板部材に沿った互いに直交する2つの軸に関してそれぞれ回転振動する。信号発生装置から出射された波動信号は、スキャナを挟んで互いに対向する一対の出射位置からスキャナミラーの各反射面に入射し、スキャナミラーで反射された波動信号は反射ミラーで反射されて観測対象に向けて送出され、観測対象で反射された波動信号は信号受信装置で受信される。そして、スキャナミラーの振動角をθdegとしたときに、信号発生装置による波動信号の出射方向と直交する平面に対する前記スキャナの傾斜角は(45−θ/2)degに設定されることを特徴とする。
【0007】
【発明の効果】
本発明によれば、スキャナに設けられたスキャナミラーの表裏両面に反射面を設け、信号発生装置により、スキャナを挟んで互いに対向する一対の出射位置からスキャナミラーの各反射面に向けて波動信号をそれぞれ出射し、かつ、波動信号の出射方向と直交する平面に対するスキャナの傾斜角を(45−θ/2)degに設定したので、レーダ装置の観測領域の水平中央付近で観測ポイントを増やすことができ、検知性能の向上を図ることができる。
【0008】
【発明の実施の形態】
以下、図を参照して本発明の実施の形態を説明する。図1は本発明によるレーダ装置1の一実施の形態を示すブロック図であり、レーダ装置1は、信号送出部2と、信号受信部3と、信号処理部4とから構成されている。図1に示すレーダ装置1は自動車等の車両に搭載されるものであり、本実施の形態ではパルス方式の赤外レーザと光学式スキャナとを用いた赤外レーザレーダ装置を例に説明する。図1に示すようにx、y、z軸を設定すると、x軸方向は水平方向に、z軸方向が鉛直方向に、y軸方向が車両の前後方向にそれぞれ対応している。
【0009】
なお、レーダ装置としては、本実施の形態のように赤外光を用いるレーザレーダの他に、電磁波を用いる電波レーダなどがある。また、レーダ方式としては、短時間のパルス信号を送信し、対象物で反射されて戻ってきたパルス信号を受信するまでの時間を測定して距離を算出するパルス方式や、三角波で周波数変調や振幅変調した連続波を送信し、反射信号の周波数変位や位相変位により距離を算出するCW方式などがある。
【0010】
信号送信部2には、赤外線レーザパルス光(以下、レーザパルス光と呼ぶ)を発生するレーザダイオード7a,7bと、レーザパルス光をスキャナ6で走査するビーム走査部19と、スキャナ6の駆動信号をビーム走査部19に出力するスキャナ駆動部5とを備えている。信号受信部3は対象物で反射されたレーザパルス光を検出するものであり、フォトダイオード8と光学レンズ9とから構成されている。
【0011】
信号処理部4は、CPU、ROM,RAMなどから構成され、機能的には第1送信パルス発生部41aと、第2送信パルス発生部41bと、送信方位検出部42と、スキャナ6を駆動する駆動信号の周波数や振幅を調整する駆動信号調整部43と、距離検出部44と、先行車認識ロジック部45とを有し、対象物までの距離や対象物の方位、形状などを算出する。第1送信パルス発生部41aはレーザダイオード7aの発光を指令する発光命令S1を信号送信部2に出力し、第2送信パルス発生部41bはレーザダイオード7bの発光を指令する発光命令S2を信号送信部2に出力する。
【0012】
図2は、レーザ発光のためのトリガ信号と、レーザダイオード7a,7bで発生する発光パルスと、信号受信部3のフォトダイオード8が反射光を受光したときの受光信号との時間関係を示すタイムチャートである。トリガ信号は上述した発光命令S1,S2に対応するものである。信号処理部4からパルス幅τのトリガ信号が信号送信部2に送られると、信号送信部2のレーザダイオード7a,7bはトリガ信号に同期して交互にパルス幅τのレーザパルス光La,Lbを発生する。
【0013】
例えば、最初のトリガ信号でレーザダイオード7aからレーザパルス光Laが出射され、2番目のトリガ信号でレーザダイオード7bからレーザパルス光Lbが出射され、3番目のトリガ信号で再びレーザパルス光Laが出射される。そのため、何番目の信号かというトリガ信号のタイミングから、レーザダイオード7a,7bのいずれが発光されたかを認識することができる。
【0014】
レーザダイオード7a,7bから出射されたレーザパルス光La,Lbはビーム走査部19から送出され、対象物で反射されたレーザパルス光が信号受信部3の光学レンズ9を通してフォトダイオード8で受光される。例えば、レーザパルス光を送出してから反射光が受光されるまでの時間をΔt、光速をCとすると、レーダ装置と対象物までの距離Dは次式(1)で算出される。
【数1】
D=C・Δt/2 … (1)
【0015】
対象物までの距離算出は図1の距離検出部44で行われるが、実際の距離算出に際しては、トリガ信号(発光命令S1,S2)が出力されてから、対象物からの反射光がフォトダイオード8で受光され、その受光情報が信号処理部4に送られてくるまでの時間差に基づいて算出される。その際、回路内の信号送受信の遅延時間などを考慮に入れた補正が行われる。
【0016】
送信方位検出部42では、発光命令S1,S2のいずれの指令によりレーザダイオード7a,7bを発光させたかという情報と、その指令を出力した時点でのスキャナ6のミラー面の角度から算出されるレーザ光の送出方位とから、対象物の方位を算出する。先行車認識ロジック部45では、所定の観測時間内に2次元走査を行って得られた対象物の2次元情報から、車両認識ロジックなどを用いて先行車の同定を行う。得られた先行車情報や障害物情報などは車両側のCPUへ送信され、車両側のACCコントローラ(Adaptive Cruise Control)によって先行車までの距離が設定車間距離となるように先行車追従制御が行われる。
【0017】
《ビーム走査部19の詳細説明》
図3、4はビーム走査部19の概略構成を示す図であり、図3はビーム走査部19をレーザ光送出方向(図1のy軸正方向)から見た図であり、図4はレーザダイオード7a側(図1のz軸正方向)から見た平面図である。レーザダイオード7a,7bは、z軸方向にスキャナ6を挟んで対向配置されている。スキャナ6の中央部分にはレーザ光反射用のスキャナミラー11が設けられており、スキャナミラー11の表面(レーザダイオード7aに対向する面)および裏面(レーザダイオード7bに対向する面)は反射面になっている。
【0018】
スキャナミラー11の反射面はy軸に沿って設けられており、後述するようにスキャナ6に対して振動角θで振動する。スキャナ6はx軸(水平面)に対して傾斜角が(45−θ/2)degとなるように配置されている。10a,10bは、スキャナミラー11で反射されたレーザパルス光La,Lbを車両前方方向(y軸正方向)に反射する反射ミラーである。図4に示すように反射ミラー10a,10bはx軸方向にスキャナ6を挟んで対称に配置され、かつ、各反射面がy軸に対して傾斜角45degで配置されている。
【0019】
図5はスキャナ6の構成を示す図であり、スキャナミラー11の表面側から見た図である。スキャナ6はダブルジンバル型マイクロスキャナの構成を有している。スキャナ6の中央部に設けられたスキャナミラー11は、横梁12aを介して矩形枠状のミラーサポート13により支持されている。上述したように、スキャナミラー11は表裏両面が反射ミラーになっている。さらに、ミラーサポート13は縦梁12bを介してスキャナ基板14に支持されている。
【0020】
スキャナ基板14の外側には二対の永久磁石15a,15bが配置されており、永久磁石15aはスキャナ基板14に対して図示上下方向の磁界を印加し、永久磁石15bはスキャナ基板14に対して図示左右方向の磁界を印加する。図示していないが、スキャナミラー11の裏面外枠部分の反射面として使用していない部分、および、ミラーサポート13の裏面外枠部分にはコイル配線が形成されている。すなわち、各外枠に沿って矩形状に配線を設けることにより、コイルが形成されている。これらのコイルに不図示の電源により電流を流すと、永久磁石15a,15bの磁界の作用によってコイル配線にローレンツ力が発生する。
【0021】
例えば、永久磁石15aの磁界の作用によってスキャナミラー11が横梁12aを軸としてR1のように回転させられ、永久磁石15bの磁界の作用によってスキャナミラー11を支持するミラーサポート13が縦梁12bを軸としてR2のように回転させられる。そのため、各コイルに交流電流を流すと、スキャナミラー11が横梁12aを軸として縦振動し、ミラーサポート13が縦梁12bを軸として横振動する共振振動が発生する。その結果、スキャナミラー11で反射されたレーザパルス光La,Lbは2次元走査されることになる。スキャナミラー11が振動角θで振動する場合、スキャナミラー11が傾いていない状態を0degとし、その状態から−θ/2〜+θ/2の範囲で振動する。
【0022】
スキャナミラー11の振動駆動は、上述したスキャナ駆動部5(図1参照)の駆動信号により制御される。図6はスキャナ駆動部5の詳細を示すブロック図である。上述した縦振動および横振動に対応して、スキャナ駆動部5には縦振動駆動に関する信号系と横振動駆動に関する信号系とが設けられている。すなわち、縦振動に関する縦駆動信号発生器51aおよび利得可変増幅器52aと、横振動に関する横駆動信号発生器51bおよび利得可変増幅器52bとを備えている。なお、以下では縦駆動信号発生器51aにより発振される正弦波の縦振動信号を縦駆動信号、横駆動信号発生器51bにより発振される正弦波の横振動信号を横駆動信号と呼ぶ。
【0023】
縦駆動信号発生器51aと横駆動信号発生器51bで発振された正弦波の縦駆動信号と横駆動信号は、信号処理部4の駆動信号調整部43(図1参照)から入力される制御信号に応じて周波数が調整され、利得可変増幅器に出力される。利得可変増幅器52a,52bは、入力された駆動信号を信号処理部4からの調整値に基づき信号増幅を行った後に、縦駆動信号および横駆動信号をスキャナ6に送る。なお、縦駆動信号および横駆動信号は、スキャナ6の共振周波数付近の周波数に初期設定されている。この共振周波数は梁12a,12bの捻れに関する共振周波数であり、1次共振,2次共振などのいずれの共振周波数でもよい。
【0024】
図3に戻って、レーザダイオード7aから出射されたレーザパルス光Laは、スキャナミラー11の表面で反射されて反射ミラー10aの方向へと光路を変える。一方、レーザダイオード7bから出射されたレーザパルス光Lbは、スキャナミラー11の裏面で反射されて反射ミラー10bの方向へと光路を変える。図7は、スキャナミラー11が振動角θで振動したときのレーザパルス光La,Lbの走査範囲を説明する図である。スキャナミラー11がスキャナ6に対して傾いていない状態(0deg)では、スキャナミラー11の水平方向に対する傾斜角は(45−θ/2)degとなる。
【0025】
レーザパルス光Laはスキャナミラー11の表面で反射されて、反射ミラー10a(図3参照)が配置されている図示左方向に進行する。一方、レーザパルス光Lbはスキャナミラー11の裏面で反射されて、反射ミラー10bの配置されている図示右方向に進行する。上述したように、スキャナ6に対して傾いていない状態(0deg)では、スキャナミラー11は水平方向に対して(45−θ/2)degだけ傾いているので、レーザパルス光La,Lbは水平から角度θdegだけ傾いた方向に反射される。スキャナミラー11をスキャナ6に対して+θ/2degだけ傾けると、レーザパルス光La,Lbの入射角は45degとなるためそれぞれ水平方向に反射される。逆に、スキャナミラー11をスキャナ6に対して−θ/2degだけ傾けると、レーザパルス光La,Lbは水平から角度2θdegだけ傾いた方向に反射される。
【0026】
このように、レーザパルス光Laは水平よりも上側に反射されるので、図3に示すように、反射ミラー10aはスキャナ6に対して水平方向よりも上側に偏って配置されている。逆に、レーザパルス光Lbは水平方向よりも下側に反射されるので、反射ミラー10bはスキャナ6に対して水平方向よりも下側に偏って配置されている。各反射ミラー10a,10bで反射されたレーザパルス光La,Lbは、それぞれy軸正方向(車両前方)に送出される。
【0027】
レーザパルス光La,Lbは、図7に示したようにスキャナミラー11の縦振動により上下方向(z軸方向)に走査される。さらに、図4,5に示したスキャナミラー11の横振動R2によって、レーザパルス光La,Lbは水平方向(x軸方向)に走査される。すなわち、レーザパルス光La,Lbは、それぞれリサージュスキャンにより2次元走査される。
【0028】
図8は本実施の形態のレーダ装置の走査結果を示す図である。図8において、黒丸Bはレーザパルス光Laによる観測ポイントを示しており、白丸Wはレーザパルス光Lbによる観測ポイントを示している。すなわち、全観測領域Aは上下2つの観測領域A1,A2からなり、観測領域A1はレーザパルス光Laによる観測領域であり、観測領域A2はレーザパルス光Lbによる観測領域である。このことは、図7においてレーザパルス光Laが水平より上側に反射され、レーザパルス光Lbが水平より下側に反射されることからも容易に理解できる。
【0029】
観測領域A1,A2におけるレーザパルス光La,Lbの2次元走査はリサージュスキャンで行われるため、レーザパルス光La,Lbの発光が各々一定時間間隔である場合、各観測領域A1,A2の上下左右端部付近の観測点数は領域中央部付近よりも多くなっている。その結果、全観測領域Aを考えた場合、観測領域A1,A2が隣接する領域Aの中央部付近で観測点が密になる。
【0030】
図9は比較例を示す図であり、一般的に行われているように1つのレーザダイオードと2次元スキャナを使って走査した場合の走査結果である。観測領域Cの範囲は図8の全観測領域Aの範囲と同一である。この場合、走査がリサージュスキャンであるため、観測領域Cの端部付近で観測点が密になっていて、観測領域Cの水平中央付近は端部付近に比べて疎になっている。
【0031】
図8に示す観測領域A1,A2は、図9に示す観測領域Cを観測ポイント数を変えずに上下方向に1/2に縮小して隣接配置したものであり、観測ポイント数の密度がより高くなっている。そのため、レーザダイオードの発光数が同じであっても図8の場合はより高密度の観測を行うことができる。また、レーザダイオードを1つしか用いない装置では、スキャナの縦方向振動角は本実施の形態の振動角θに対して2θ必要になる。すなわち、所定の必要上下検知角に対して、本実施の形態では、スキャナ6の縦方向走査の振動角は従来の半分でよいことになり、製品の信頼性を向上させることができる。
【0032】
また、図10に示すタイムチャートのD領域は、スキャナミラー11の水平に対する傾斜角が45degに近く、観察領域中央付近を走査するタイミングを示している。D領域のようにビーム照射角度が上下検知角度分解能(例えば0.5度)以下である状態で、破線P1,P2で示すようにレーザダイオード7a,7bを同時に発光すれば領域水平中央付近の検出感度が向上し、最大検知距離を約19%(=21/4)延長することができる。
【0033】
さらに、図8の領域A1の上端部付近および領域A2の下端部付近では観測点が不必要に密になっている。図10の領域Eは、領域A1の上端部付近および領域A2の下端部付近を走査するタイミング、すなわち、スキャナミラー11の水平に対する傾斜角が(45−θ)degに近いタイミングを示している。このD領域において、破線P3,P4で示すようにレーザダイオード7a,7bの発光を停止することで、不要なデータ数の増加を抑制して信号処理の軽減が図れるとともに、レーザダイオード7a,7bの耐久性向上を図ることができる。
【0034】
[第1変形例]
図11は本実施の形態の第1変形例を示す図である。図3に示した例では、スキャナ6の傾斜角を(45−θ/2)degに保持していたが、図11に示す第1変形例ではスキャナ6の傾斜角を変えることができる角度変更機構20を設けた。さらに、反射ミラー10aの下端部近傍に受光素子21aを、反射ミラー10bの上端部近傍に受光素子21bを配設した。なお、角度変更機構20には例えばモータ等が用いられ、角度変更機構20は角度コントローラ22によって制御される。受光素子21a,21bにはフォトダイオードなどが用いられる。
【0035】
ところで、温度変化や経時変化などによりスキャナミラー11の振動角θが変化した場合、図8に示した観測領域A1,A2の縦方向の幅が変化する。例えば、振動角θが大きくなると領域Aの水平中央付近で領域A1,A2が重なり合い、振動角θが小さくなると領域A1と領域A2との間に隙間ができてしまう。そこで、図11に示す第1変形例では、反射ミラー10a,10bを外れたレーザパルス光La,Lbを受光素子21a,21bで受光し、受光素子21a,21bの出力信号の変化を角度コントローラ22で検出し、その検出結果に基づいて角度変更機構20を駆動してスキャナ6の傾斜角が最適値となるように調整する。
【0036】
図12はスキャナ6の傾斜角と受光素子21a,21bの受信レベルとの関係を示す図である。例えば、スキャナ傾斜角が45degの場合には、レーザパルス光La,Lbは水平方向を中心としてその上下に反射されるので、受光素子21a,21bの受信レベルは傾斜角(45−θ/2)degの場合の信号レベル(図12の設定値)に比べて大きくなる。逆に、傾斜角が(45−θ/2)degよりも小さくなると、信号レベルは設定値よりも小さくなる。そこで、温度変化や経時変化等によって信号レベルが変化した場合は、図12に基づいて角度変更機構20によりスキャナ6の傾斜角を変更する。
【0037】
角度コントローラ22で行われる制御の一例を、図13の制御フローチャートを用いて説明する。この制御は、観測を開始してから適宜行われるものであって、所定の時間ごとに行ってもよいし、所定の制御前または制御後毎に行うようにしてもよい。
【0038】
ステップS10では、受信素子21a,21bの受信レベルの平均値が所定許容範囲以内であるかどうかを判定する。受信レベルの平均値が所定許容範囲以内であった場合には受信レベルは適正であると判定し、観測動作をそのまま継続する。受信レベルの平均値が所定許容範囲外である場合には受信レベルは適正でないと判定し、ステップS11に進む。ステップS11では受信レベルの平均が所定許容範囲より大きいか否かを判定し、所定許容範囲より大きいと判定するとステップS12に進み、そうでない場合にはテップS13に進む。ステップS12では、スキャナ6の傾斜角を一定角度だけ減少させてステップS10に戻る。一方、ステップS13では、スキャナ6の傾斜角を一定角度だけ増加させてステップS10に戻る。
【0039】
このように、受光素子2121a,21bの受信レベルに応じてスキャナ6の傾斜角を調整することにより、温度変化や経時変化により振動角θが変化した場合でも、全観測領域A(図8参照)の水平中央付近の観測点数を密に維持することができる。なお、レーザダイオード7a,7bからレーザパルス光La,Lbを送出して観測開始後に、スキャナ6の共振周波数が周辺温度の変化などの影響により遷移することがある。このような場合にも、所定の2次元走査領域内で観測を行うために、共振周波数の変化に応じてスキャナ6の傾斜角を変更するような制御を行う。
【0040】
上述したように、観測開始後にスキャナ6の振動角θや共振周波数が変動して走査領域が減少したり増加したりして、二つの観察領域A1,A2に隙間ができたり重なりができたりする状況になった場合でも、随時、スキャナ6の傾斜角を調整するので、二つの観察領域A1,A2が常に隣接する状況を作り出すことができ、水平中央付近の観測域が密な2次元走査を行うことができる。
【0041】
[第2変形例]
図14は上述した実施の形態の第2変形例を示す図である。図14は図8に対応する図であり、ビーム走査部19の概略構成を示している。第2変形例では、発光源であるレーザダイオード7が1つだけ設けられている。26は2分岐の光ファイバー線路などを用いた2分岐光伝送線路であり、2分岐光伝送線路26には入射部26cから入射した光を分岐した一方の伝送線路26aまたは他方の伝送線路26aのいずれかに切り換える伝送切換装置27が設けられている。各伝送線路26a,26bの終端には、スキャナ6を挟んで互いに対向する照射部26d,26eが設けられている。
【0042】
上述した実施の形態では、2つのレーザダイオード7a,7bを交互に発光させてレーザパルス光La,Lbをスキャナ6に設けられたスキャナミラー11の表裏面に入射させたが(図3参照)、第2変形例ではレーザダイオード7からのレーザパルス光Lを発光タイミング毎に伝送切換装置27で切り換えることにより、レーザパルス光Lをスキャナ6に設けられたスキャナミラー11の表裏面に交互に照射するようにした。そのため、1つのレーザダイオード7しか使用していないにもかかわらず、2つのレーザダイオード7a,7bを用いた図3の場合と同様の効果を得ることができる。
【0043】
図15は、図11のレーザダイオード7a,7bに代えて、図14で用いたレーザダイオード7,2分岐光伝送線路26および伝送切換装置27を用いたものであり、図11の場合と同様の効果を奏することができる。
【0044】
以上説明したように、本発明は、スキャン方式がリサージュスキャンとなる2次元スキャナを用いたレーダ装置において、スキャナ6のスキャナミラー11の表裏両面に反射面を設け、対向して配置した2つのレーザダイオード7a、7bや照射部26d,26eの間にスキャナ6の傾斜角(45−θ/2)degで配置するようにした。その結果、目的の観測領域の水平中央付近で観測ポイントを増やすことができ、検知性能の向上を図ることができる。
【0045】
以上説明した実施の形態と特許請求の範囲の要素との対応において、、および、レーザダイオード7と2分岐光伝送線路26との組み合わせおよびレーザダイオード7a,7bはそれぞれ信号発生装置を構成し、レーザダイオード7は信号発生源を、伝送切換装置27は切換手段をそれぞれ構成する。
【0046】
なお、本発明の特徴を損なわない限り、本発明は上記実施の形態に何ら限定されるものではない。例えば、上述した実施の形態では、スキャナ6の駆動方法として電磁方式を用いたものについて説明したが、静電方式、圧電方式、磁歪膜方式などの駆動方法を用いてもよい。また、赤外線を用いるレーザレーダ以外に、可視光を用いるレーザレーダ、電波を用いる電波レーダ、超音波を用いる超音波レーダ、その他のレーダ装置にも本発明を適用することができる。
【図面の簡単な説明】
【図1】本発明によるレーダ装置1の一実施の形態を示すブロック図である。
【図2】トリガ信号、発光パルスおよび受光信号の時間関係を示すタイムチャートである。
【図3】ビーム走査部19をレーザ光送出方向から見た図である。
【図4】ビーム走査部19をレーザダイオード7a側から見た平面図である。
【図5】スキャナ6の概略構成を示す図である。
【図6】スキャナ駆動部5の詳細を示すブロック図である。
【図7】スキャナミラー11が振動角θで振動したときのレーザパルス光La,Lbの走査範囲を説明する図である。
【図8】本実施の形態のレーダ装置の走査結果を示す図である。
【図9】比較例を示す図である。
【図10】レーザダイオード7a,7bの発光タイミングの変形例を示すタイムチャートである。
【図11】本実施の形態の第1変形例を示す図である。
【図12】スキャナ6の傾斜角と受光素子21a,21bの受信レベルとの関係を示す図である。
【図13】角度コントローラ22で行われる制御の一例を示すフローチャートである。
【図14】本実施の形態の第2変形例を示す図である。
【図15】第2変形例において、受光素子21a,21bを設けた場合を示す図である。
【符号の説明】
1 レーダ装置
2 信号送出部
3 信号受信部
4 信号処理部
6 スキャナ
7,7a,7b レーザダイオード
8 フォトダイオード
9 光学レンズ
10a,10b 反射ミラー
11 スキャナミラー
12a,12b 梁
13 ミラーサポート
14 スキャナ基板
15a,15b 永久磁石
19 ビーム走査部
20 角度変更機構
22 角度コントローラ
21a,21b 受光素子
26 2分岐光伝送線路
26a,26b 伝送線路
26c 入射部
26d,26e 照射部
27 伝送切換装置
41a 第1送信パルス発生部
41b 第1送信パルス発生部
42 送信方位検出部
43 駆動信号調整部
44 距離検出部
45 先行車認識ロジック部

Claims (6)

  1. 板部材の表裏両面の各々に波動信号を反射する反射面を形成したスキャナミラーを、前記板部材に沿った互いに直交する2つの軸に関してそれぞれ回転振動するスキャナと、
    前記スキャナを挟んで互いに対向する一対の出射位置から前記スキャナミラーの各反射面に向けて前記波動信号をそれぞれ出射する信号発生装置と、
    前記スキャナミラーで反射された前記波動信号を反射して観測対象に向けて送出する反射ミラーと、
    前記観測対象で反射された前記波動信号を受信する信号受信装置とを備え、
    前記スキャナミラーの振動角をθdegとしたときに、前記信号発生装置による波動信号の出射方向と直交する平面に対する前記スキャナの傾斜角を(45−θ/2)degに設定したことを特徴とするレーダ装置。
  2. 請求項1に記載のレーダ装置において、
    前記信号発生装置は、前記平面に対する前記スキャナミラーの傾斜角が45degの近傍領域である場合には、前記一対の出射位置から前記スキャナミラーの各反射面に前記波動信号を同時に出射し、前記傾斜角が前記近傍領域外である場合には、前記一対の出射位置から前記スキャナミラーの各反射面に前記波動信号を交互に出射することを特徴とするレーダ装置。
  3. 請求項1または2に記載のレーダ装置において、
    前記スキャナミラーで反射された波動信号であって前記反射ミラーに入射しない波動信号を検出する検出素子と、
    前記スキャナの傾斜角を変更する角度変更手段と、
    前記検出素子の検出レベルに基づいて角度変更手段を制御し、前記スキャナの傾斜角を最適値に調整する制御手段とを備えたことを特徴とするレーダ装置。
  4. 請求項1〜3のいずれかに記載のレーダ装置において、
    前記信号発生装置は、前記平面に対する前記スキャナミラーの傾斜角が(45−θ)degの近傍領域である場合には、前記波動信号の出射を停止することを特徴とするレーダ装置。
  5. 請求項1,3および4のいずれかに記載のレーダ装置において、
    前記信号発生装置は、
    波動信号を発生する1つの信号発生源と、
    前記信号発生源で発生した波動信号が入射する入射部、および、前記一対の出射位置のそれぞれに設けられて前記入射部から入射した波動信号を出射する2つの照射部を備える信号伝送路と、
    前記入射部に入射した波動信号を前記2つの照射部のいずれか一方から出射するように選択的に切り換える切換手段とを備えることを特徴とするレーダ装置。
  6. 請求項1〜5のいずれかに記載のレーダ装置において、
    前記波動信号は、赤外線パルス光であることを特徴とするレーダ装置。
JP2003162094A 2003-06-06 2003-06-06 レーダ装置 Pending JP2004361315A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003162094A JP2004361315A (ja) 2003-06-06 2003-06-06 レーダ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003162094A JP2004361315A (ja) 2003-06-06 2003-06-06 レーダ装置

Publications (1)

Publication Number Publication Date
JP2004361315A true JP2004361315A (ja) 2004-12-24

Family

ID=34054334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003162094A Pending JP2004361315A (ja) 2003-06-06 2003-06-06 レーダ装置

Country Status (1)

Country Link
JP (1) JP2004361315A (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012117996A (ja) * 2010-12-03 2012-06-21 Fujitsu Ltd 距離測定装置および距離測定方法
US8218131B2 (en) 2006-09-22 2012-07-10 Kabushiki Kaisha Topcon Position measuring system, position measuring method and position measuring program
US8310653B2 (en) 2008-12-25 2012-11-13 Kabushiki Kaisha Topcon Laser scanner, laser scanner measuring system, calibration method for laser scanner measuring system and target for calibration
JPWO2010137596A1 (ja) * 2009-05-26 2012-11-15 国立大学法人 千葉大学 移動体制御装置及び移動体制御装置を搭載した移動体
US8638449B2 (en) 2010-07-16 2014-01-28 Kabushiki Kaisha Topcon Measuring device having multiple light emitting sources
US8643828B2 (en) 2010-10-27 2014-02-04 Kabushiki Kaisha Topcon Laser surveying instrument
JP2015197402A (ja) * 2014-04-03 2015-11-09 三菱電機株式会社 レーザ画像計測装置
KR20170007031A (ko) * 2015-07-10 2017-01-18 엘지이노텍 주식회사 광파 탐지 및 거리 측정 장치
JP2019516101A (ja) * 2016-04-22 2019-06-13 オプシス テック リミテッド 多波長lidarシステム
JP2019113457A (ja) * 2017-12-25 2019-07-11 パイオニア株式会社 走査装置及び測距装置
WO2020119751A1 (zh) * 2018-12-12 2020-06-18 华为技术有限公司 激光雷达
CN112180584A (zh) * 2019-07-01 2021-01-05 三美电机株式会社 光扫描装置及其控制方法
CN113932908A (zh) * 2021-09-29 2022-01-14 北京理工大学 Mems扫描振镜振动参数的测量系统和测量方法
US11513195B2 (en) 2019-06-10 2022-11-29 OPSYS Tech Ltd. Eye-safe long-range solid-state LIDAR system
US11740331B2 (en) 2017-07-28 2023-08-29 OPSYS Tech Ltd. VCSEL array LIDAR transmitter with small angular divergence
US11802943B2 (en) 2017-11-15 2023-10-31 OPSYS Tech Ltd. Noise adaptive solid-state LIDAR system
US11846728B2 (en) 2019-05-30 2023-12-19 OPSYS Tech Ltd. Eye-safe long-range LIDAR system using actuator
US11906663B2 (en) 2018-04-01 2024-02-20 OPSYS Tech Ltd. Noise adaptive solid-state LIDAR system
US11927694B2 (en) 2017-03-13 2024-03-12 OPSYS Tech Ltd. Eye-safe scanning LIDAR system
US11965964B2 (en) 2019-04-09 2024-04-23 OPSYS Tech Ltd. Solid-state LIDAR transmitter with laser control

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8218131B2 (en) 2006-09-22 2012-07-10 Kabushiki Kaisha Topcon Position measuring system, position measuring method and position measuring program
US8310653B2 (en) 2008-12-25 2012-11-13 Kabushiki Kaisha Topcon Laser scanner, laser scanner measuring system, calibration method for laser scanner measuring system and target for calibration
US8355118B2 (en) 2008-12-25 2013-01-15 Kabushiki Kaisha Topcon Laser scanner, laser scanner measuring system, calibration method for laser scanner measuring system and target for calibration
JPWO2010137596A1 (ja) * 2009-05-26 2012-11-15 国立大学法人 千葉大学 移動体制御装置及び移動体制御装置を搭載した移動体
JP5688700B2 (ja) * 2009-05-26 2015-03-25 国立大学法人 千葉大学 移動体制御装置及び移動体制御装置を搭載した移動体
US8638449B2 (en) 2010-07-16 2014-01-28 Kabushiki Kaisha Topcon Measuring device having multiple light emitting sources
US8643828B2 (en) 2010-10-27 2014-02-04 Kabushiki Kaisha Topcon Laser surveying instrument
JP2012117996A (ja) * 2010-12-03 2012-06-21 Fujitsu Ltd 距離測定装置および距離測定方法
JP2015197402A (ja) * 2014-04-03 2015-11-09 三菱電機株式会社 レーザ画像計測装置
KR20170007031A (ko) * 2015-07-10 2017-01-18 엘지이노텍 주식회사 광파 탐지 및 거리 측정 장치
KR102417939B1 (ko) * 2015-07-10 2022-07-07 엘지이노텍 주식회사 광파 탐지 및 거리 측정 장치
JP2019516101A (ja) * 2016-04-22 2019-06-13 オプシス テック リミテッド 多波長lidarシステム
US11762068B2 (en) 2016-04-22 2023-09-19 OPSYS Tech Ltd. Multi-wavelength LIDAR system
JP7079986B2 (ja) 2016-04-22 2022-06-03 オプシス テック リミテッド 多波長lidarシステム
JP2021073462A (ja) * 2016-04-22 2021-05-13 オプシス テック リミテッド 多波長lidarシステム
US11927694B2 (en) 2017-03-13 2024-03-12 OPSYS Tech Ltd. Eye-safe scanning LIDAR system
US11740331B2 (en) 2017-07-28 2023-08-29 OPSYS Tech Ltd. VCSEL array LIDAR transmitter with small angular divergence
US11802943B2 (en) 2017-11-15 2023-10-31 OPSYS Tech Ltd. Noise adaptive solid-state LIDAR system
JP2019113457A (ja) * 2017-12-25 2019-07-11 パイオニア株式会社 走査装置及び測距装置
US11906663B2 (en) 2018-04-01 2024-02-20 OPSYS Tech Ltd. Noise adaptive solid-state LIDAR system
CN111308442A (zh) * 2018-12-12 2020-06-19 华为技术有限公司 激光雷达
WO2020119751A1 (zh) * 2018-12-12 2020-06-18 华为技术有限公司 激光雷达
US11965964B2 (en) 2019-04-09 2024-04-23 OPSYS Tech Ltd. Solid-state LIDAR transmitter with laser control
US11846728B2 (en) 2019-05-30 2023-12-19 OPSYS Tech Ltd. Eye-safe long-range LIDAR system using actuator
US11513195B2 (en) 2019-06-10 2022-11-29 OPSYS Tech Ltd. Eye-safe long-range solid-state LIDAR system
CN112180584A (zh) * 2019-07-01 2021-01-05 三美电机株式会社 光扫描装置及其控制方法
CN113932908A (zh) * 2021-09-29 2022-01-14 北京理工大学 Mems扫描振镜振动参数的测量系统和测量方法
CN113932908B (zh) * 2021-09-29 2023-02-28 北京理工大学 Mems扫描振镜振动参数的测量系统和测量方法

Similar Documents

Publication Publication Date Title
JP2004361315A (ja) レーダ装置
EP3821275B1 (en) Scanning lidar systems with moving lens assembly
CN113924510A (zh) 用于激光雷达系统的扫描器控制
JP4147947B2 (ja) 光走査装置及びこれを用いた物体検出装置、描画装置
US7227620B2 (en) Environment recognition system and mobile mechanism
JP2011053137A (ja) 光測距装置
EP3540497B1 (en) Optical scanning apparatus, image projecting apparatus, and mobile object
JP2024026611A (ja) 測距装置
JP2005077288A (ja) レーダ装置
CN110376567B (zh) 激光雷达及其发射装置
JP3656598B2 (ja) レーダ装置
JP2022165971A (ja) 走査装置及び測距装置
CN112859048A (zh) 光束扫描装置、包括其的激光雷达和控制方法
JP3169074B2 (ja) レーザレーダ装置
JP3659239B2 (ja) レーダ装置
JP4517744B2 (ja) 光スキャナ
JP3656579B2 (ja) レーダ装置
JP2012118125A (ja) 光走査装置及びその駆動方法。
JP2004157065A (ja) レーダ装置
CN112394336A (zh) 摆镜组件、摆镜组件、发射系统和激光雷达
US20210382151A1 (en) Scanning lidar systems with scanning fiber
JP2013037324A (ja) 光走査装置
JP2022022390A (ja) 測距装置
JP2002098765A (ja) 車両用レーダ装置
US6480160B1 (en) Radar apparatus including a wave guide array and a dielectric lens