WO2021166575A1 - Power adjustment system, electricity generation plant, power adjustment method, and power adjustment program - Google Patents

Power adjustment system, electricity generation plant, power adjustment method, and power adjustment program Download PDF

Info

Publication number
WO2021166575A1
WO2021166575A1 PCT/JP2021/002872 JP2021002872W WO2021166575A1 WO 2021166575 A1 WO2021166575 A1 WO 2021166575A1 JP 2021002872 W JP2021002872 W JP 2021002872W WO 2021166575 A1 WO2021166575 A1 WO 2021166575A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
amount
electric power
supply
fluctuation
Prior art date
Application number
PCT/JP2021/002872
Other languages
French (fr)
Japanese (ja)
Inventor
和宏 堂本
誠 當房
雄一朗 古川
和貴 小原
Original Assignee
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱パワー株式会社 filed Critical 三菱パワー株式会社
Publication of WO2021166575A1 publication Critical patent/WO2021166575A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Definitions

  • This disclosure relates to a power adjustment system and a power plant, a power adjustment method, and a power adjustment program.
  • a large boiler such as a thermal power plant has a hollow furnace that is installed in the vertical direction, and a plurality of combustion burners are arranged along the circumferential direction of the furnace on the furnace wall.
  • a flue is connected vertically above the furnace, and a heat exchanger for generating steam is placed in this flue.
  • the combustion burner injects a mixture of fuel and air (oxidizing gas) into the furnace to form a flame, and combustion gas is generated and flows into the flue.
  • a heat exchanger is installed in the area where the combustion gas flows, and superheated steam is generated by heating the water or steam flowing in the heat transfer tube constituting the heat exchanger.
  • the power plant uses a boiler or the like to generate power and output it to the power system.
  • the power system if an imbalance between power supply (supply) and power consumption (demand) occurs, frequency fluctuations occur. Therefore, in the power plant, the opening of the governor valve of the steam turbine is controlled to adjust the output. The frequency fluctuation of the electric power system is stabilized (for example, Patent Document 1, Patent Document 2, and Patent Document 3).
  • the present disclosure has been made in view of such circumstances, and includes a power adjustment system and a power plant capable of more effectively suppressing frequency fluctuations of a power system, a power adjustment method, and a power adjustment program.
  • the purpose is to provide.
  • the first aspect of the present disclosure is a determination unit for determining whether or not the load change amount required for the power plant is equal to or higher than a preset threshold value due to fluctuations in the supply and demand power amount of the power system, and the load change amount is described above.
  • a power adjustment system including a supply control unit that supplies at least one of the power generated by the power plant and the power from the power system to a device capable of consuming the power in the power plant when the value is equal to or higher than the threshold value. be.
  • the second aspect of the present disclosure is a step of determining whether or not the load change amount required for the power plant is equal to or more than a preset threshold value due to fluctuations in the supply and demand power amount of the power system, and the load change amount is the threshold value.
  • it is a power adjustment method including a step of supplying at least one of the power generated by the power plant and the power from the power system to a device capable of consuming the power in the power plant.
  • the third aspect of the present disclosure is a process of determining whether or not the load change amount required for the power plant is equal to or more than a preset threshold value due to fluctuations in the supply and demand power amount of the power system, and the load change amount is the threshold value.
  • the effect is that the frequency fluctuation of the electric power system can be suppressed more effectively.
  • This is a configuration example of a power plant according to an embodiment of the present disclosure. It is a figure which showed an example of the hardware composition of the control device which concerns on one Embodiment of this disclosure. It is a functional block diagram which showed the function which the control device which concerns on one Embodiment of this disclosure has.
  • FIG. 1 is a schematic configuration diagram showing a coal-fired boiler 10 of the present embodiment.
  • the coal-fired boiler 10 of the present embodiment uses pulverized coal obtained by crushing coal (carbon-containing solid fuel) as pulverized fuel, burns the pulverized fuel with a combustion burner, and uses the heat generated by this combustion as water supply or steam. It is a coal-fired (fine-powdered coal-fired) boiler 10 capable of generating superheated steam by exchanging heat.
  • the upper and upper directions indicate the upper side in the vertical direction
  • the lower and lower directions indicate the lower side in the vertical direction
  • the vertical direction is not strict and includes an error.
  • the coal-fired boiler 10 has a furnace 11, a combustion device 12, and a combustion gas passage 13.
  • the furnace 11 has a hollow shape of a square cylinder and is installed along the vertical direction.
  • the furnace wall 101 constituting the furnace 11 is composed of a plurality of heat transfer tubes and fins connecting them, and exchanges heat generated by combustion of pulverized fuel with water or steam flowing inside the heat transfer tubes and also in the furnace. The temperature rise of the wall 101 is suppressed.
  • the combustion device 12 is provided on the lower side of the furnace wall 101 constituting the furnace 11.
  • the combustion device 12 has a plurality of combustion burners (for example, 21, 22, 23, 24, 25) mounted on the furnace wall 101.
  • the combustion burners 21, 22, 23, 24, 25 are arranged in a plurality of stages along the vertical direction as one set arranged at equal intervals along the circumferential direction of the furnace 11.
  • the shape of the furnace 11, the number of combustion burners in one stage, the number of stages, the arrangement, and the like are not limited to this embodiment.
  • Each combustion burner 21, 22, 23, 24, 25 is connected to a plurality of crushers (mills) 31, 32, 33, 34, 35 via pulverized coal supply pipes 26, 27, 28, 29, 30.
  • the crushers 31, 32, 33, 34, and 35 are not shown, for example, a rotary table is driven and rotatably supported in the housing of the crusher, and a plurality of rollers are placed above the rotary table to rotate the rotary table. It is configured to be supported so that it can rotate in conjunction with it.
  • a transport gas primary air, oxidizing gas
  • the pulverized fuel conveyed to the classifier and classified within a predetermined particle size range can be supplied from the pulverized coal supply pipes 26, 27, 28, 29, 30 to the combustion burners 21, 22, 23, 24, 25. ..
  • the furnace 11 is provided with a wind box 36 at the mounting position of each combustion burner 21, 22, 23, 24, 25, and one end of an air duct (air duct) 37 is connected to the wind box 36.
  • the air duct 37 is provided with a forced draft fan (FDF) 38 at the other end.
  • FDF forced draft fan
  • the combustion gas passage 13 is connected to the upper part of the furnace 11 in the vertical direction.
  • the combustion gas passage 13 is provided with superheaters 102, 103, 104, reheaters 105, 106, and coal saver 107 as heat exchangers for recovering the heat of the combustion gas, and is burned in the combustion furnace 11. Heat exchange is performed between the combustion gas generated in the above and the water supply and steam flowing through each heat exchanger.
  • the combustion gas passage 13 is connected to the flue 14 on which the heat-exchanged combustion gas is discharged on the downstream side thereof.
  • An air heater (air preheater) 42 is provided between the flue 14 and the air duct 37 to exchange heat between the air flowing through the air duct 37 and the combustion gas flowing through the flue 14, and the combustion burner 21 , 22, 23, 24, 25 can be heated in temperature for combustion air.
  • the flue 14 is provided with a denitration device 43 at a position upstream of the air heater 42.
  • the denitration device 43 supplies a reducing agent having an action of reducing nitrogen oxides such as ammonia and urea water into the flue 14, and reacts the combustion gas to which the reducing agent is supplied with the nitrogen oxides and the reducing agent.
  • Nitrogen oxides in the combustion gas are removed and reduced by promoting by the catalytic action of the denitration catalyst installed in the denitration device 43.
  • the gas duct 41 connected to the flue 14 is provided with a dust collector 44 such as an electric dust collector, an induction ventilator (IDF: Induced Draft Fan) 45, a desulfurization device 46, and the like at a position downstream of the air heater 42.
  • a chimney 50 is provided at the downstream end.
  • the generated pulverized fuel is pulverized coal supply pipes 26, 27, 28, 29, 30 together with the transport gas (primary air, oxidizing gas). It is supplied to the combustion burners 21, 22, 23, 24, 25 through.
  • the heated combustion air secondary air, oxidizing gas
  • the air duct 37 through the air box 36 through the air box 36. It is supplied to each combustion burner 21, 22, 23, 24, 25.
  • the combustion burners 21, 22, 23, 24, 25 blow the pulverized fuel mixture, which is a mixture of the pulverized fuel and the transport gas, into the furnace 11 and the combustion air into the furnace 11, and at this time, the pulverized fuel is mixed.
  • a flame can be formed by igniting the qi.
  • a flame is generated in the lower part of the furnace 11, and the high-temperature combustion gas rises in the furnace 11 and is discharged to the combustion gas passage 13.
  • Air is used as the oxidizing gas in this embodiment. It may have a higher oxygen ratio than air or a lower oxygen ratio than air, and can be used by optimizing the fuel flow rate.
  • the furnace 11 is provided with an additional air port 39 above the mounting positions of the combustion burners 21, 22, 23, 24, and 25.
  • the end of the additional air duct 40 branched from the air duct 37 is connected to the additional air port 39. Therefore, the combustion air (secondary air, oxidizing gas) sent by the push-in ventilator 38 is supplied from the air duct 37 to the air box 36, and the combustion burners 21, 22, 23, 24, are supplied from the air box 36.
  • additional combustion air (additional air) sent by the push-in ventilator 38 can be supplied from the additional air duct 40 to the additional air port 39.
  • the pulverized fuel mixture and the combustion air burn to generate a flame.
  • the inside of the furnace 11 is maintained in a reducing atmosphere by setting the amount of air supplied to be less than the theoretical amount of air with respect to the amount of pulverized coal supplied. That is, the nitrogen oxides (NOx) generated by the combustion of the pulverized coal are reduced in the region B of the furnace 11, and then the additional air is additionally supplied from the additional air port 39 to complete the oxidative combustion of the pulverized coal. The amount of NOx generated by burning pulverized coal is reduced.
  • the combustion gas is a second superheater 103, a third superheater 104, a first superheater 102, which are arranged in the combustion gas passage 13 (hereinafter, may be simply referred to as a superheater). ),
  • the particulate matter is removed by the dust collector 44 and the sulfur oxide is removed by the desulfurization device 46, the gas is discharged from the chimney 50 into the atmosphere.
  • Each heat exchanger does not necessarily have to be arranged in the order described above with respect to the combustion gas flow.
  • FIG. 2 is a schematic view showing a heat exchanger provided in the coal-fired boiler 10.
  • FIG. 1 does not accurately show the positions of the heat exchangers (superheaters 102, 103, 104, reheaters 105, 106, economizer 107) in the combustion gas passage 13, and does not accurately show the positions of the heat exchangers.
  • the arrangement order of the above with respect to the combustion gas flow is not limited to the description in FIG.
  • FIG. 2 shows the heat exchanger of the coal-fired boiler 10 provided in the power plant 1 of the present embodiment, the steam turbine 110 rotationally driven by the steam generated by the coal-fired boiler 10, and the steam turbine 110. It is provided with a generator 115 that is connected and generates electricity according to the rotation of the steam turbine 110.
  • the steam turbine 110 operated by the steam generated by the coal-fired boiler 10 is composed of, for example, a high-pressure turbine 111, a medium-pressure turbine 112, and a low-pressure turbine 113, and the steam from the reheater described later is the medium-pressure turbine 112. After flowing into the low pressure turbine 113, it flows into the low pressure turbine 113.
  • a condenser 114 is connected to the low-pressure turbine 113, and the steam obtained by rotationally driving the low-pressure turbine 113 is cooled by the condenser 114 with cooling water (for example, seawater) to be condensed water.
  • the condenser 114 is connected to the economizer 107 via the water supply line L1.
  • the water supply line L1 is provided with, for example, a condensate pump (CP) 121, a low-pressure water supply heater 122, a boiler water supply pump (BFP) 123, and a high-pressure water supply heater 124.
  • CP condensate pump
  • BFP boiler water supply pump
  • a part of the steam driving the steam turbines (111, 112, 113) is extracted into the low-pressure water supply heater 122 and the high-pressure water supply heater 124, and the high-pressure water supply heater 124 and the low-pressure water supply heater 122 pass through an bleeding line (not shown).
  • the water supplied as a heat source and supplied to the economizer 107 is heated.
  • the economizer 107 is connected to each evaporation pipe of the furnace wall 101.
  • the economizer 107 passes through the evaporation pipe of the furnace wall 101, it receives radiation from the flame in the furnace 11 and is heated, and is guided to the brackish water separator 126 and the brackish water separator drain tank 127. Be radiated.
  • the steam separated by the brackish water separator 126 is supplied to the superheaters 102, 103, 104, and the drain water separated by the brackish water separator 126 is sent to the condenser 114 via the drain water line L2. Be guided.
  • the steam separator 126 It may be in an operating state (wet operating state) in which a water level exists. In this wet operation state, the drain water separated by the brackish water separator 126 is merged in the middle of the water supply line L1 by the circulation line L6 using the boiler circulation pump (BCP) 128 to save the economizer 107. May be circulated and supplied to each evaporation pipe of the furnace wall 101.
  • the combustion gas flows through the combustion gas passage 13
  • the combustion gas is recovered by the superheaters 102, 103, 104, the reheaters 105, 106, and the economizer 107.
  • the water supplied from the boiler water supply pump (BFP) 123 is preheated by the economizer 107 and then heated as it passes through each evaporation pipe of the furnace wall 101 to become steam, which is guided to the brackish water separator 126. Be taken.
  • the steam separated by the brackish water separator 126 is introduced into the superheaters 102, 103, 104 and superheated by the combustion gas.
  • the superheated steam generated by the superheaters 102, 103, 104 is supplied to the high-pressure turbine 111 via the steam line L3, and the high-pressure turbine 111 is rotationally driven.
  • the steam discharged from the high-pressure turbine 111 is introduced into the reheaters 105 and 106 via the steam line L4 and reheated.
  • the reheated steam is supplied to the low-pressure turbine 113 via the medium-pressure turbine 112 via the steam line L5, and rotationally drives the medium-pressure turbine 112 and the low-pressure turbine 113.
  • the rotating shafts of the steam turbines (111, 112, 113) rotationally drive the generator 115 to generate electricity.
  • the steam discharged from the low-pressure turbine 113 is cooled by the condenser 114 to be condensed, and is sent to the economizer 107 again via the water supply line L1.
  • a suit blower (not shown) is provided in the gap between the heat transfer tubes of each heat exchanger such as the superheaters 102, 103, 104, the reheaters 105, 106, and the economizer 107, or in the gap of each heat exchanger.
  • An economizer may be arranged.
  • the suit blower extends in a direction substantially perpendicular to the wall surface of the combustion gas passage 13.
  • the suit blower is an injection device capable of injecting steam (gas) in a direction orthogonal to the axial direction with the direction perpendicular to the wall surface of the combustion gas passage 13 as the axial direction, and the injection direction can also be changed.
  • the steam injected from the suit blower toward the heat exchangers such as the superheaters 102, 103, 104, the reheaters 105, 106, and the economizer 107 scavenges the combustion ash deposited on the surface of each heat transfer tube of the heat exchanger. It is removed to suppress a decrease in heat exchange efficiency in each heat transfer tube of the heat exchanger.
  • FIG. 3 shows a conceptual diagram of the power system 2 to which the power plant 1 is connected.
  • the power plant 1 is connected to the power system 2.
  • the electric power system 2 is connected to a regenerative energy power generation facility 3 and each power plant (not shown) in addition to the power plant 1, and supplies electric power to a factory, a household, or the like, which is an electric power consumer 4.
  • the power system 2 is also connected to a regenerative energy power generation facility 3 such as wind power generation and solar power generation, and power generated by the regenerative energy power generation facility 3 is also supplied. Since the output of power generated by wind power generation, solar power generation, etc.
  • the amount of power supply (supply) and power consumption in the power system 2 It may cause fluctuations in the balance of (demand).
  • the balance of supply and demand which is the relationship between the supply and demand of electric power
  • becomes unbalanced which causes the frequency fluctuation of the electric power system 2. That is, when the power supply amount becomes excessive due to the supply-demand balance of the power system 2, the frequency of the power system 2 rises, and conversely, when the power consumption increases due to the supply-supply balance of the power system 2 and the power amount becomes insufficient, the power system 2 The frequency drops.
  • the frequency (system frequency) in the power system 2 fluctuates, the quality of the power supplied to the power consumer 4 deteriorates. Therefore, it is preferable that the frequency fluctuation in the power system 2 is suppressed. Therefore, in the power plant 1, not only the amount of electric power supplied by power generation is adjusted, but also the amount of electric power supplied to the electric power system 2 is adjusted by using the electric power in the power plant 1 (consuming the electric power). Then, the fluctuation of the power supply and demand is flexibly dealt with and the fluctuation is suppressed so that the occurrence of the supply and demand balance in the power system 2 can be suppressed.
  • FIG. 4 is a configuration example of the power plant 1 in which the configuration of FIG. 2 is simplified.
  • the same reference numerals are given to the same configurations as those in FIGS. 1 and 2. That is, fuel is charged through the valve 201, and steam is generated in the boiler 10.
  • the flow rate of the steam generated by the boiler 10 is adjusted by the GV valve (governor valve) 202 to the steam turbine 110.
  • the steam supplied to the high-pressure turbine 111 via the GV valve 202 and discharged from the high-pressure turbine 111 is reheated by the reheaters 105 and 106 of the boiler 10 and supplied to the medium-pressure turbine 112.
  • the steam discharged from the medium pressure turbine 112 is supplied to the low pressure turbine 113.
  • the medium-pressure turbine 112 and the low-pressure turbine 113 steam performs the work of rotationally driving each turbine rotor, and rotationally drives the generator 115 to generate electricity.
  • the steam that has finished its work in the low-pressure turbine 113 is condensed and restored by the condenser 114, and is supplied to the low-pressure water heater 122 by the condenser pump 121.
  • the low pressure water supply heater 122 a part of the steam of the low pressure turbine 113 is extracted and the water supply is used for heating.
  • the water supply is pressurized by the boiler water supply pump 123 and supplied to the high pressure water supply heater 124.
  • the high-pressure water supply heater 124 a part of the steam of the medium-pressure turbine 112 and the high-pressure turbine 111 is extracted and the water supply is used for heating.
  • the heated water supply is supplied to the boiler 10.
  • the power plant 1 as shown in FIG. 4 is provided with a control device 60, which will be described later.
  • control device 60 adjusts the amount of power supplied by power generation in the power generation plant 1 and adjusts the power consumption by using power, and power is supplied. The amount of power supplied to the system 2 is adjusted.
  • FIG. 5 is a diagram showing an example of the hardware configuration of the control device 60 according to the present embodiment.
  • the control device 60 is a computer system (computer system), for example, a CPU 1100, a ROM (Read Only Memory) 1200 for storing a program or the like executed by the CPU 1100, and when each program is executed. It is provided with a RAM (Random Access Memory) 1300 that functions as a work area of the above, a hard disk drive (HDD) 1400 as a large-capacity storage device, and a communication unit 1500 for connecting to a network or the like. Each of these parts is connected via a bus 1800.
  • a semiconductor memory such as a solid state drive (SDD) may be used instead of the hard disk drive (HDD) 1400.
  • SDD solid state drive
  • the control device 60 may include an input unit including a keyboard, a mouse, and the like, a display unit including a liquid crystal display device for displaying data, and the like.
  • the storage medium for storing the program or the like executed by the CPU 1100 is not limited to the ROM 1200.
  • the storage medium may be, for example, another auxiliary storage device such as a magnetic disk, a magneto-optical disk, or a semiconductor memory.
  • a series of processing processes for realizing various functions described later is recorded in a hard disk drive 1400 or the like in the form of a program, and the CPU 1100 reads this program into the RAM 1300 or the like to execute information processing / arithmetic processing.
  • the program may be installed in ROM 1200 or other storage medium in advance, provided in a state of being stored in a computer-readable storage medium, or distributed via a wired or wireless communication means. May be applied.
  • Computer-readable storage media include magnetic disks, magneto-optical disks, CD-ROMs, DVD-ROMs, semiconductor memories, and the like.
  • FIG. 6 is a functional block diagram showing the functions included in the control device 60.
  • the control device 60 includes an output adjusting unit 61 and a consumption control unit 65.
  • the output adjusting unit 61 and the consumption control unit 65 are provided, but it is also possible to provide either the output adjusting unit 61 or the consumption control unit 65.
  • FIG. 7 is a diagram in which the required electric energy (demand) for the power plant 1 is divided according to the fluctuation cycle. As shown in FIG. 7, it is necessary to generate the required electric energy, which is the electric power required from the electric power system 2, in the power plant 1 to supply electric power.
  • the required electric energy is divided into a long-period electric power component, a short-period electric power component, and a minute electric power fluctuation component according to the fluctuation cycle.
  • output control is performed for each component that fluctuates as shown in FIG.
  • the output adjusting unit 61 adjusts the power supply amount (power generation amount) in the power generation plant 1.
  • the output adjusting unit 61 is, for example, an operation reference output control unit (hereinafter referred to as “DPC unit”) 62 and an automatic frequency control unit (hereinafter referred to as “AFC unit”). It has 63 and a governor-free section (hereinafter referred to as “GF section”) 64.
  • DPC unit operation reference output control unit
  • AFC unit automatic frequency control unit
  • GF section governor-free section
  • the DPC unit (operation reference output control unit) 62 mainly adjusts the output of the power supply corresponding to the long-period power component by the operation reference output control (DPC; Dispatching Power Control) (DPC control).
  • the long-period power component is a power fluctuation with a period larger than that of the short-period power component. For example, the period of the long-period power component is about several minutes or more and less than 10 minutes.
  • the DPC unit 62 follows the output command value (power generation load curve, load increase / decrease signal) of the power supply sent from the power company (middle supply command center) based on the power demand forecast in a long cycle such as one day.
  • the amount of heat input to the boiler 10 is controlled to control the power supply amount (power generation amount). That is, the DPC unit 62 controls the power supply amount according to a power supply amount (power generation amount) schedule set in advance based on the power demand forecast.
  • the AFC unit (automatic frequency control unit) 63 mainly adjusts the output of the power supply corresponding to the short-period power component by automatic frequency control (AFC; Automatic Frequency Control) (AFC control).
  • the short-period power component is a power fluctuation having a period smaller than the output fluctuation of the power supply due to the long-period power component and larger than the output fluctuation of the power supply due to the minute power fluctuation component. That is, the AFC unit 63 adjusts the output of the power supply in response to the power fluctuation having a period larger than the output fluctuation of the power supply by the GF unit 64, which will be described later.
  • the period of the short-period power component is several tens of seconds or more and less than several minutes.
  • the AFC unit 63 controls the amount of heat input to the boiler 10 (fuel supply amount) according to the control signal (load increase / decrease signal) transmitted from the electric power company (middle supply command) based on the frequency fluctuation in the power system 2, and is used in the power generation plant. Control the power supply amount (power generation amount) of 1. That is, the AFC unit 63 controls the output of the power supply according to the generated system frequency fluctuation (detected system frequency fluctuation (power fluctuation)).
  • the GF unit 64 mainly adjusts the output of the power supply for the power minute fluctuation component (GF control).
  • the power minute fluctuation component is a power fluctuation having a period smaller than the output fluctuation of the power supply by automatic frequency control (AFC). For example, the period of the power minute fluctuation component is less than several tens of seconds.
  • the GF unit 64 controls the output of the electric power supply by adjusting the opening degree of the GV valve 202 at the inlet of the steam turbine 110.
  • drop control for example, drop control (droop control) is performed as shown in FIG. In drop control, as shown in FIG.
  • the vertical axis is the opening degree of the GV valve 202 and the horizontal axis is the frequency (generator rotation speed), and the opening degree of the GV valve 202 with respect to the difference from the reference frequency (for example, 60 Hz) f0. Is preset. Therefore, the opening degree of the GV valve 202 corresponding to the current frequency is determined from FIG. 8, and the opening degree of the GV valve 202 is adjusted to the opening degree to control the output of the minute fluctuation component of the power supply. Is performed, and as a result, the frequency is controlled.
  • the output adjusting unit 61 controls the output of the power supply amount corresponding to each component of FIG. 7.
  • the control corresponding to each component is expressed as the relationship between the load change width (load change amount) and the load fluctuation cycle, the regions (inertia, DPC region, AFC region, and GF region) are divided as shown in FIG.
  • the load change width is the amount of change in the power supply required for the power plant 1 corresponding to the power fluctuation amount of the power system 2
  • the load fluctuation cycle is the change amount of the power supply required for the power plant 1 corresponding to the power fluctuation amount of the power system 2. This is the required power supply change cycle. That is, as shown in FIG.
  • the amount of steam supplied to the steam turbine 110 is controlled for fluctuations in a region where the load change width is small and the load fluctuation cycle is small (corresponding to the power minute fluctuation component in FIG. 7).
  • the load is controlled by the GF unit (governor-free unit) using the GV unit (governor valve unit) 64 (GF region). Since the control of the GV valve 202 has an upper limit on the load change width and the load fluctuation cycle, the fluctuation in the load change width and the load fluctuation cycle region larger than the upper limit (corresponding to the power short cycle component in FIG. 7)
  • the output is controlled by the AFC unit (automatic frequency control unit) 63 (AFC region).
  • the DPC unit Since there is also an upper limit to the control of the amount of heat input to the boiler 10, the DPC unit is used for fluctuations in the load change width and load fluctuation cycle region (corresponding to the power long cycle component in FIG. 7) larger than the upper limit.
  • the power supply amount is controlled by 62 (DPC area).
  • the output is controlled corresponding to each region as shown in FIG. 9, further fluctuations occur in the power system 2 due to fluctuations in the power supply amount of the regenerative energy power generation facility 3 connected to the power system 2. It can occur. In such a case, an imbalance occurs in the relationship between the amount of power demand and the amount of power supplied, a difference between the amount of power demand and the amount of power supplied (power supply / demand gap) occurs, and frequency fluctuation occurs in the power system 2. There is a possibility that it will end up. Therefore, especially when the amount of power supplied to the power system 2 exceeds the amount of required power, the consumption control unit 65, which will be described later, further controls the output. That is, when the power supplied in the power system 2 becomes larger than the power consumed, the power system 2 is stabilized by consuming the power in the power plant 1.
  • the consumption control unit 65 controls the power consumption (absorption control) so that the power is consumed in the power plant 1, reduces the imbalance between the demand and the supply of power, and suppresses the frequency fluctuation in the power system 2. Let me. Specifically, as shown in FIG. 6, the consumption control unit 65 includes a determination unit 66 and a supply control unit 67.
  • the electric power consumed in the power generation plant 1 may be the electric power generated in the power generation plant 1 or the electric power supplied from the electric power system 2.
  • the determination unit 66 determines whether or not the load change width (load change width corresponding to the load fluctuation cycle) of the power plant 1 corresponding to the power fluctuation amount of the power system 2 is equal to or greater than a preset threshold value.
  • the threshold value indicates the boundary at which the absorption control of the power consumption is started, and is set for the load change width and the load change cycle. Specifically, in the present embodiment, the power fluctuation amount that cannot be handled by the AFC is absorbed by the absorption control. Therefore, the threshold value is the upper limit value (load change width corresponding to the load fluctuation cycle) of the adjustment region (AFC region) in which the power supply amount can be controlled by controlling the amount of heat input to the boiler 10.
  • the threshold is set as a solid line at the upper limit of the AFC region, for example, as shown in FIG.
  • the threshold value is set in the AFC region, but the threshold value is set corresponding to the GF region and the DPC region to positively supply power to the equipment in the power generation plant 1. May be good.
  • the determination unit 66 determines whether or not the load change width is equal to or greater than the threshold value in the AFC region.
  • the lower limit boundary of the AFC region is the upper limit of the load change width and the load change cycle in which the output can be adjusted by the cooperation of the boiler 10 and the GV valve 202.
  • the boundary between the AFC region and the GF region is set based on the follow-up performance of the boiler 10 that generates the steam supplied to the turbine.
  • the upper limit boundary (AFC region and DPC) is the upper limit of the load change width and the load fluctuation cycle in which the output of the power supply amount can be adjusted by controlling the amount of heat input to the boiler 10 in response to the generated system frequency fluctuation.
  • the upper limit is set as the threshold value corresponding to the AFC region, but the upper limit of the AFC region and the DPC region (the upper limit of the load change width with respect to the corresponding load fluctuation cycle) may be set as the threshold value.
  • the region where the load change width is equal to or larger than the threshold value corresponds to the absorption control of the power consumption amount.
  • the absorption control region is shown extending in the direction in which the load change width and the load fluctuation cycle become higher, but the electric power is absorbed in the range of the load change width and the load fluctuation cycle that can be handled by the absorption control region.
  • the range of the absorption control region in FIG. 10 depends on the auxiliary equipment (consumed), and is an example. Therefore, as shown in FIG.
  • the determination result by the determination unit 66 is output to the supply control unit 67, which will be described later.
  • the supply control unit 67 performs absorption control of the electric energy when the load change width corresponding to the load fluctuation cycle is equal to or larger than the threshold value. That is, the supply control unit 67 supplies at least one of the electric power generated by the power generation plant 1 and the electric power from the electric power system 2 to the equipment capable of consuming the electric power in the power generation plant 1. Specifically, it is preferable that the supply control unit 67 supplies electric power to an auxiliary machine that is provided in the power plant 1 as an apparatus and performs an intermittent operation. More preferably, it is preferable that the electric power supplied to the auxiliary machine can be temporarily stored as some kind of energy. Auxiliary equipment that performs intermittent operation is equipment that is used only for a certain period of time (equipment that is not used regularly).
  • the device that supplies electric power by the supply control unit 67 is not particularly limited as long as it is a device that can consume electric power.
  • the electric pump (M-BFP) and the heat pump 203 will be described as an example of the electric power supply destination device that performs the intermittent operation.
  • a compressor (compressor) 71 and a water supply pump 92 will be described as an example.
  • the compressor 71 is used as an auxiliary machine. That is, the power consumption by the absorption control is generated by the compressor 71.
  • the compressor 71 is connected to the receiver tank 72.
  • the power plant 1 is provided with a large number of valves 73 that operate using compressed air. As shown in FIG. 11, for example, these valves 73 are opened / closed and controlled (opening adjustment) by the air pressure stored in the receiver tank 72.
  • the receiver tank 72 is connected to the compressor 71 to store compressed air. That is, when the pressure in the receiver tank 72 becomes less than the predetermined lower limit value, the compressor 71 is driven, and the compressed air is replenished to the predetermined upper limit value and stored in the receiver tank 72. Therefore, the compressor 71 is an auxiliary machine that can perform intermittent operation and temporarily store it as air pressure energy.
  • the compressor 71 By supplying power to the compressor 71 according to a command corresponding to the absorption control that consumes power from the supply control unit 67, by consuming a part of the power generated by the power plant 1, and / or by power.
  • the electric power fluctuation of the electric power system 2 can be absorbed by the power plant 1 and consumed by the compressor 71. That is, the electric power can be stored in the receiver tank 72 as air pressure, and the electric power due to the electric power fluctuation can be effectively utilized.
  • the stored pressure of the receiver tank 72 is used during the opening / closing operation and the control operation of the valve 73.
  • an electric pump (M-BFP) is used as an auxiliary machine. That is, the power consumption by the absorption control is generated by the electrically driven boiler water supply pump (M-BFP).
  • M-BFP electrically driven boiler water supply pump
  • a steam-driven boiler water supply pump (T-BFP) and an M-BFP may be connected in parallel.
  • the M-BFP is a pump that supplies water to the boiler 10.
  • the boiler water supply pump is configured as shown in FIG.
  • the steam inside the power plant 1 (for example, the exhaust of the medium pressure turbine) is supplied to the steam turbine 81 via the regulating valve 82, the energy of the steam is converted into rotational force, and the T-BFP is driven. ..
  • the motor 85 is driven by electric power, and the M-BFP is driven.
  • the amount of water supplied to the M-BFP side can be adjusted by the valve 84. In this way, the M-BFP becomes an electric pump.
  • the boiler water supply pump 123 for example, in a steady state, water is supplied to the boiler 10 by the T-BFP, and the M-BFP is also driven when the power plant 1 starts up or when the power generation load changes, so that the amount of water supplied to the boiler 10 is predetermined. Some are adjusted to be values. That is, when the power plant 1 is started up or when the power generation load changes, the T-BFP and the M-BFP are driven in parallel, so that the amount of water supplied to the boiler 10 is stabilized.
  • the supply control unit 67 supplies power to the M-BFP and consumes the power, so that the power fluctuation of the power system 2 is absorbed by the power plant 1 and consumed by the M-BFP (absorption control). Specifically, by starting the M-BFP and supplying water to the boiler 10, it is possible for the M-BFP to absorb power fluctuations. When the M-BFP is driven with the electric power corresponding to the electric power fluctuation, the water supply amount by the M-BFP may fluctuate. However, by adjusting the flow rate with the valve 84 provided for the M-BFP, it is possible to suppress fluctuations in the water supply flow rate in the M-BFP, for example, as shown in FIG. Further, the fluctuation of the water supply flow rate in the M-BFP may be adjusted by setting the motor 85 of the M-BFP to be controllable by the inverter and controlling the motor 85 in combination with the flow rate adjustment of the valve 84.
  • T-BFP and M-BFP may be operated in parallel.
  • the M-BFP is driven while absorbing the power fluctuation, and the T-BFP is also driven by steam.
  • the amount of steam used to drive the T-BFP can be reduced, and the amount of steam (regulatory valve) that supplies the fluctuation of the water supply flow rate due to the fluctuation of the electric power of the M-BFP to the T-BFP.
  • FIG. 14 it is possible to stably supply water by reducing the error ⁇ F between the water supply flow rate supplied to the boiler 10 and the target flow rate. That is, the M-BFP can absorb the power fluctuation of the power system 2 while suppressing the fluctuation of the water supply flow rate to the boiler 10.
  • the heat pump 203 is a heater that heats water.
  • the heat pump 203 is a device that supplies hot water to a demand destination.
  • the heat pump 203 may heat the boiler feed water.
  • the heat pump 203 is provided, for example, on the upstream side of the boiler 10 and on the downstream side of the high-pressure water supply heater 124, or in parallel, as shown in FIG.
  • the heat pump 203 By driving the heat pump 203 by the supply control unit 67 to consume electric power, the electric power fluctuation of the electric power system 2 can be consumed in the power generation plant 1 (absorption control).
  • the heat pump 203 for example, an electric heater using an electric resistor may be used. By using the heat pump 203, it is possible to perform heating more efficiently than, for example, an electric heater.
  • the water supply pump 92 is a pump that sends water to the tank.
  • water that has been treated such as removing impurities to supply pure water (for example, factory water, city water, etc.) to pure water (for supply to the boiler 10 as make-up water), etc. ) Is generated.
  • the raw water stored in the raw water tank 91 is sent to the ion exchange unit 93 by the water supply pump 92 and stored as pure water in the pure water tank 94.
  • the water supply pump 92 is operated when pure water is generated and stored.
  • the water supply pump 92 By driving the water supply pump 92 by the supply control unit 67 to consume electric power, the electric power fluctuation of the electric power system 2 can be absorbed in the power generation plant 1. That is, by operating the water supply pump 92 when the power consumption is required, the water supply pump 92 can be used as an auxiliary machine capable of temporarily storing the power fluctuation portion of the power system 2 as energy for pure water production.
  • the compressor 71, the electric pump (M-BFP), the heat pump 203, and the water supply pump 92 have been illustrated as devices that consume electric power, but the absorption control that consumes electric power from the supply control unit 67 has been described.
  • the device is not limited to the above as long as it is a device capable of consuming electric power according to the corresponding command, and the supply control unit 67 can consume electric power due to the electric power fluctuation of the electric power system 2.
  • FIG. 17 is a flowchart showing an example of the procedure of the power adjustment process according to the present embodiment.
  • the flow shown in FIG. 17 is repeatedly executed at a predetermined control cycle, for example, when the power plant 1 is in operation.
  • the AFC control is executed to effectively execute the power supply amount output control corresponding to the fluctuation to suppress the frequency fluctuation of the power system 2 (NO determination in the power system 2). S102).
  • the power is absorbed by a device that can consume power in addition to the AFC control, and the frequency fluctuation of the power system 2 is suppressed (S103).
  • FIG. 18 shows a case where the power adjustment process is not performed as a reference example.
  • FIG. 19 shows a case where the power adjustment process is performed as in the present embodiment.
  • the figure shown in FIG. 19 is a diagram showing an image of the effect and is an example.
  • the value obtained by subtracting the power consumption (demand) in the power system 2 from the power system 2 is used as the power amount difference, and the fluctuation with time is shown. If the power adjustment process is not performed, a large difference in electric energy will occur. Therefore, as shown on the lower side of the paper in FIG. 18, frequency fluctuation occurs in the power system 2 due to the difference in electric energy. That is, when the difference in electric energy is positive (the amount of power transmitted is larger than the demand), the frequency in the electric power system 2 increases.
  • the frequency in the electric power system 2 decreases. As described above, when the power adjustment process is not performed, it is difficult to keep the difference in electric energy low, so that it is difficult to suppress the frequency fluctuation generated in the power system 2.
  • -Fluctuation with respect to time as the difference in electric energy which is the value obtained by subtracting the electric energy (demand) required for the power plant 1 from the electric energy system 2 from the electric energy consumed by supplying the electric power system 2 to the power plant 1.
  • the power fluctuation of the electric energy difference A1 shown in the upper view of the paper can be suppressed by GF control or AFC control.
  • the frequency fluctuates in the direction of decreasing frequency, but a storage battery or the like is provided in the power plant 1 to control the discharge to compensate for the insufficient power supply amount in the power plant 1. By discharging, it becomes possible to further suppress the frequency fluctuation in the direction in which the frequency decreases.
  • Response time is the time it takes for a device to start up and consume power.
  • Response time is the time it takes for a device to start up and consume power.
  • the relationship between the amount of power consumed and the response time is shown, for example, as shown in FIG.
  • the characteristics of FIG. 20 are an example, and such characteristics vary depending on the equipment available for power consumption.
  • the characteristics as shown in FIG. 20 may be estimated from the operation results of each device in the power plant 1 (for example, the record of fluctuations in the amount of power consumed in the power plant 1), or the specifications of each device may be used. It may be set as follows.
  • the electric energy in the operating state of the equipment at a certain time in the power plant 1 is shown by a solid line as L1
  • the electric power when the equipment that can be stopped is stopped is shown by a single point chain line as L2
  • the consumption of each equipment is shown.
  • ⁇ W2 (L1-L2).
  • the power system 2 It is possible to help suppress the frequency decrease of.
  • the amount of power that can be absorbed by starting the equipment and the amount of power that can be transmitted by stopping the equipment changes depending on the operating state of each equipment in the power plant 1. For example, assuming the operating state C1 and the operating state C2 in FIG. 20, when the device that can be started from the operating state C1 is started, the amount of electric power that can be absorbed is ⁇ W1, and the device that can be started from the operating state C2 is displayed. When started, the amount of power that can be absorbed is ⁇ W3. On the other hand, when the stoptable device is stopped, the amount of electric power that can be transmitted is ⁇ W2 and ⁇ W4, respectively, in the operating states C1 and C2.
  • FIG. 21 shows a case where stopped devices are started in sequence (one by one or a plurality of devices at the same time). That is, the amount that can be absorbed in the operating state C1 is larger than that in the operating state C2. Therefore, based on the operating status of each device in the power plant 1, for example, as shown in FIG. 22, the operating state C1 having a larger absorbable amount than the operating state C2 in the region above the threshold value has a wider range. Can be covered. By controlling the absorption of power consumption in a region exceeding the AFC region, it becomes possible to absorb power fluctuations more effectively.
  • the threshold value is set as the upper limit of the load change width that can be handled by AFC.
  • the threshold value is set as the upper limit of the load change width that can be dealt with by the amount of heat input (fuel supply amount) to the boiler 10 for the short-period electric power component.
  • the threshold values are set, for example, as a load change width of ⁇ 5%, a load change speed of 1% / min, and the like.
  • the threshold value may be appropriately set as the upper limit of the load change range that can be handled by AFC according to the operating conditions and weather conditions of the power plant 1. Specifically, it may be set according to the degree of change of the AFC directive, the change of the weather condition, and the like. In this case, the threshold value may be set based on a preset control rule (rule base), or the threshold value may be set using a trained model by AI or the like.
  • the threshold value By setting the threshold value to an appropriate value, the power fluctuation amount in the power system 2 is more effectively absorbed by the power generation plant 1 by the absorption control, and the output of the power supply amount corresponding to the fluctuation effectively. It is possible to execute control and suppress frequency fluctuations in the power system 2.
  • the power adjustment method, and the power adjustment program the load change required for the power plant 1 due to the fluctuation of the supply and demand power of the power system 2.
  • the amount (load change width) is less than the threshold value, the electric power in the power plant 1 is supplied to the equipment that can consume the electric power, so that the electric power fluctuation amount can be consumed by the electric power. Therefore, it is possible to suppress power fluctuations in the power system 2.
  • the power generation plant 1 When the power generation plant 1 is provided with a function for suppressing power fluctuations (for example, AFC), the power generation plant 1 can control the release of the power supply amount and absorb the power consumption amount by using the function in combination with the function. By using control, it is possible to expand the range of power fluctuations that can be handled.
  • a function for suppressing power fluctuations for example, AFC
  • the load fluctuation amount and the load fluctuation cycle It is set for the load fluctuation amount and the load fluctuation cycle, and the load fluctuation amount and the threshold value are compared for the AFC region. Therefore, in the AFC region, which is an adjustment region in which the amount of power supplied to the boiler 10 can be controlled by controlling the amount of heat input, if a load fluctuation exceeding that is required, absorption control that consumes power in the device is performed. It can be used to suppress power fluctuations. Therefore, a margin can be provided in the AFC region, and the AFC region can be expanded.
  • the power fluctuation of the power system 2 can be consumed and absorbed in the power plant 1, and further stored as another form of energy.
  • M-BFP electrically driven water supply pump
  • the electric power can be supplied to the water pump 92 that sends water to the tank, the electric power fluctuation of the electric power system 2 can be consumed and absorbed in the power plant 1. It is possible to effectively utilize surplus power, which is desirable to be consumed due to power fluctuations.
  • the water supply pump 92 By operating the water supply pump 92, it is possible to generate pure water and transport / store pure water, and it is possible to effectively utilize surplus electric power that is desirable to be consumed due to electric power fluctuation.
  • the electric power adjustment system and power plant (1) described in each of the above-described embodiments, the electric power adjustment method, and the electric power adjustment program are grasped as follows, for example.
  • the power adjustment system (60) determines whether or not the load change amount required for the power plant (1) due to the fluctuation of the supply and demand power amount of the power system (2) is equal to or more than a preset threshold value. When the load change amount is equal to or greater than the threshold value, the power generated by the power plant (1) and the power system (2) are generated by the determination unit (66) and the equipment capable of consuming the power in the power plant (1). ) Is provided with a supply control unit (67) that supplies at least one of the electric powers from the).
  • the load change amount (load change width) corresponding to the change amount of the power supply amount of the power plant (1) due to the power fluctuation of the power system (2) is set in advance. If it is above the threshold, the power is supplied to the equipment that can consume the power in the power plant (1), so that the equipment can effectively utilize and consume a part of the surplus power that is desirable to be consumed due to power fluctuations. can. Therefore, it is possible to suppress the power fluctuation in the power system (2), and it is possible to suppress the frequency fluctuation in the power system (2).
  • the power plant (1) is provided with a function for suppressing power fluctuations (for example, AFC), the fluctuation range of the power supply amount that can be handled by the power plant (1) by using the function in combination with the function can be determined. It is also possible to expand, and it is possible to effectively control the amount of change in the amount of power supply in response to fluctuations.
  • a function for suppressing power fluctuations for example, AFC
  • the threshold value is set to the adjustment area in which the power supply amount of the power plant (1) can be controlled by controlling the amount of heat input to the boiler (10). It may be set as an upper limit value of the load change amount corresponding to the load fluctuation cycle in.
  • the threshold value is the upper limit value of the load change amount corresponding to the load fluctuation cycle in the adjustment region where the power supply amount can be controlled by controlling the amount of heat input to the boiler (10). Therefore, even if the amount of heat input to the boiler is not sufficient, absorption control can be performed to suppress power fluctuations.
  • the supply control unit (67) may supply power to an auxiliary machine that performs intermittent operation provided in the power plant (1) as the equipment.
  • the power adjustment system (60) it is possible to effectively use a part of the surplus power that is desirable to be consumed by supplying power to the device that is operating intermittently. Therefore, the power system (2) It becomes possible to absorb the power fluctuation of the above in the power generation plant (1). By driving the intermittent operation device, it is possible to temporarily store electric power as another energy.
  • the device may be a compressor (71) connected to a receiver tank (72).
  • power can be supplied to the compressor (71) connected to the receiver tank (72), so that the power fluctuation of the power system (2) can be caused by the power generation plant (2).
  • the compressor (71) electric power can be stored in the receiver tank (72) as air pressure energy, and it is possible to effectively utilize a part of the surplus electric power that is desirable to be consumed due to electric power fluctuation. It becomes.
  • the device may be an electric drive pump (M-BFP) that supplies water to the boiler (10).
  • M-BFP electric drive pump
  • power can be supplied to the electric drive pump (M-BFP) that supplies water to the boiler (10), so that the power fluctuation of the power system (2) can be affected. It becomes possible to consume and absorb electric power in the power plant (1).
  • water can be supplied to the boiler (10), and it becomes possible to effectively utilize a part of the surplus electric power that is desirable to be consumed due to electric power fluctuation. ..
  • the device may be a heat pump (203) that heats at least a part of the water circulating in the power plant (1).
  • the electric power adjustment system (60) since electric power can be supplied to the heat pump (203) for heating water, the electric power fluctuation of the electric power system (2) is consumed in the power plant (1). Can be absorbed.
  • the heat pump (203) By operating the heat pump (203), it is possible to heat water such as water supplied to the boiler (10), and it is possible to effectively utilize a part of the surplus electric power that is desirable to be consumed due to electric power fluctuation. It becomes.
  • the device may be a pump (92) that sends water to the tank (94).
  • power can be supplied to the pump (92) that sends water to the tank (94), so that the power fluctuation of the power system (2) is caused by the power plant (1). It is possible to consume and absorb electric power in the system. It is possible to effectively utilize the electric power due to the electric power fluctuation.
  • water can be transported, and it becomes possible to effectively utilize a part of the surplus electric power that is desirable to be consumed due to electric power fluctuation.
  • the threshold value may be set based on at least one of the operating condition and the weather condition of the power plant (1).
  • the power adjustment system (60) it is possible to appropriately set the threshold value according to the situation by using at least one of the operating condition and the weather condition of the power plant (1). Become.
  • the power plant (1) includes a boiler (10), steam turbines (111, 112, 113), and the above-mentioned power adjustment system (60).
  • the power adjustment method includes a step of determining whether or not the load change amount required for the power plant (1) due to the fluctuation of the supply and demand power amount of the power system (2) is equal to or more than a preset threshold value.
  • the load change amount is equal to or greater than the threshold value, at least one of the electric power generated by the power plant (1) and the electric power from the electric power system (2) to the device capable of consuming the electric power in the power plant (1). It has a step of supplying one of them.
  • the power adjustment program includes a process of determining whether or not the load change amount required for the power plant (1) due to the fluctuation of the supply and demand power amount of the power system (2) is equal to or more than a preset threshold value.
  • the load change amount is equal to or greater than the threshold value, at least one of the electric power generated by the power plant (1) and the electric power from the electric power system (2) to the device capable of consuming the electric power in the power plant (1).
  • the computer execute the process of supplying one of them.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Eletrric Generators (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

The purpose of the present invention is to provide a power adjustment system, an electricity generation plant, a power adjustment method, and a power adjustment program with which frequency fluctuation in a power grid can be more effectively minimized. A power adjustment system (60) comprises a determination unit (66) that determines whether or not a load change amount requested of an electricity generation plant is equal to or greater than a preset threshold value due to fluctuation in the amount of power supply/demand in the power grid, and a supply control unit (67) that supplies power generated by the electricity generation plant and/or power from the power grid to equipment able to consume power in the electricity generation plant.

Description

電力調整システム及び発電プラント、並びに電力調整方法、並びに電力調整プログラムPower regulation system and power plant, power adjustment method, and power adjustment program
 本開示は、電力調整システム及び発電プラント、並びに電力調整方法、並びに電力調整プログラムに関するものである。 This disclosure relates to a power adjustment system and a power plant, a power adjustment method, and a power adjustment program.
 火力発電プラントなどの大型のボイラは、中空形状をなして鉛直方向に設置される火炉を有し、この火炉壁に複数の燃焼バーナが火炉の周方向に沿って配設されている。大型のボイラは、火炉の鉛直方向上方に煙道が連結されており、この煙道に蒸気を生成するための熱交換器が配置されている。そして、燃焼バーナが火炉内に燃料と空気(酸化性ガス)との混合気を噴射することで火炎が形成され、燃焼ガスが生成されて煙道に流れる。燃焼ガスが流れる領域に熱交換器が設置され、熱交換器を構成する伝熱管内を流れる水や蒸気を加熱して過熱蒸気が生成される。 A large boiler such as a thermal power plant has a hollow furnace that is installed in the vertical direction, and a plurality of combustion burners are arranged along the circumferential direction of the furnace on the furnace wall. In a large boiler, a flue is connected vertically above the furnace, and a heat exchanger for generating steam is placed in this flue. Then, the combustion burner injects a mixture of fuel and air (oxidizing gas) into the furnace to form a flame, and combustion gas is generated and flows into the flue. A heat exchanger is installed in the area where the combustion gas flows, and superheated steam is generated by heating the water or steam flowing in the heat transfer tube constituting the heat exchanger.
 このように、発電プラントではボイラ等を用いて発電を行い、電力系統へ出力している。電力系統では電力供給量(供給)と電力消費量(需要)のアンバランスが発生すると周波数変動が生じるため、発電プラントでは蒸気タービンのガバナ弁の開度制御などを行って出力調整をして、電力系統の周波数変動の安定化を図っている(例えば特許文献1、特許文献2、特許文献3)。 In this way, the power plant uses a boiler or the like to generate power and output it to the power system. In the power system, if an imbalance between power supply (supply) and power consumption (demand) occurs, frequency fluctuations occur. Therefore, in the power plant, the opening of the governor valve of the steam turbine is controlled to adjust the output. The frequency fluctuation of the electric power system is stabilized (for example, Patent Document 1, Patent Document 2, and Patent Document 3).
特許第5550746号公報Japanese Patent No. 5550746 特開2001-286062号公報Japanese Unexamined Patent Publication No. 2001-286602 特許第4453858号公報Japanese Patent No. 4453858
 近年、風力発電や太陽光発電といった再生エネルギを利用した発電設備が増加している一方で、これら設備は時々刻々と電力供給量が変動しやすく、電力の安定供給に課題がある。再生エネルギを利用した発電設備と火力発電プラントなどが電力系統内で連系して電力を供給する場合においても、再生エネルギによる電力供給量の比率が増加して再生エネルギによる電力供給量の変動分が電力系統内の許容を超えてしまうと、電力系統の周波数変動が生じて電力需要先へ品質を確保した電力を安定して供給できなくなる恐れがある。電力系統の周波数変動が更に大きくなると、発電プラントが電力系統から脱落し大規模停電(ブラックアウト)が発生する可能性もあることから、電力系統における周波数の安定化は重要な課題である。このため、より柔軟に電力供給量変動(電力系統の周波数変動)を調整する運用や機構が必要とされている。 In recent years, while the number of power generation facilities that use regenerated energy such as wind power generation and solar power generation has increased, the amount of power supply to these facilities tends to fluctuate from moment to moment, and there is a problem in the stable supply of power. Even when power generation equipment using regenerated energy and a thermal power plant are interconnected in the power system to supply power, the ratio of the power supply amount by the regenerated energy increases and the fluctuation of the power supply amount by the regenerated energy If the power exceeds the permissible value in the power system, the frequency of the power system may fluctuate and it may not be possible to stably supply the power with ensured quality to the power demand destination. If the frequency fluctuation of the power system becomes larger, the power plant may drop out from the power system and a large-scale power outage (blackout) may occur. Therefore, stabilizing the frequency in the power system is an important issue. For this reason, there is a need for an operation or mechanism that more flexibly adjusts fluctuations in the amount of power supply (frequency fluctuations in the power system).
 本開示は、このような事情に鑑みてなされたものであって、電力系統の周波数変動をより効果的に抑制することのできる電力調整システム及び発電プラント、並びに電力調整方法、並びに電力調整プログラムを提供することを目的とする。 The present disclosure has been made in view of such circumstances, and includes a power adjustment system and a power plant capable of more effectively suppressing frequency fluctuations of a power system, a power adjustment method, and a power adjustment program. The purpose is to provide.
 本開示の第1態様は、電力系統の需給電力量の変動により発電プラントへ要求される負荷変化量が予め設定した閾値以上であるか否かを判定する判定部と、前記負荷変化量が前記閾値以上である場合に、前記発電プラントにおける電力を消費可能な機器へ前記発電プラントで発電した電力及び前記電力系統からの電力の少なくともいずれか一方を供給する供給制御部とを備える電力調整システムである。 The first aspect of the present disclosure is a determination unit for determining whether or not the load change amount required for the power plant is equal to or higher than a preset threshold value due to fluctuations in the supply and demand power amount of the power system, and the load change amount is described above. A power adjustment system including a supply control unit that supplies at least one of the power generated by the power plant and the power from the power system to a device capable of consuming the power in the power plant when the value is equal to or higher than the threshold value. be.
 本開示の第2態様は、電力系統の需給電力量の変動により発電プラントへ要求される負荷変化量が予め設定した閾値以上であるか否かを判定する工程と、前記負荷変化量が前記閾値以上である場合に、前記発電プラントにおける電力を消費可能な機器へ前記発電プラントで発電した電力及び前記電力系統からの電力の少なくともいずれか一方を供給する工程とを有する電力調整方法である。 The second aspect of the present disclosure is a step of determining whether or not the load change amount required for the power plant is equal to or more than a preset threshold value due to fluctuations in the supply and demand power amount of the power system, and the load change amount is the threshold value. In the above case, it is a power adjustment method including a step of supplying at least one of the power generated by the power plant and the power from the power system to a device capable of consuming the power in the power plant.
 本開示の第3態様は、電力系統の需給電力量の変動により発電プラントへ要求される負荷変化量が予め設定した閾値以上であるか否かを判定する処理と、前記負荷変化量が前記閾値以上である場合に、前記発電プラントにおける電力を消費可能な機器へ前記発電プラントで発電した電力及び前記電力系統からの電力の少なくともいずれか一方を供給する処理とをコンピュータに実行させるための電力調整プログラムである。 The third aspect of the present disclosure is a process of determining whether or not the load change amount required for the power plant is equal to or more than a preset threshold value due to fluctuations in the supply and demand power amount of the power system, and the load change amount is the threshold value. In the above case, the power adjustment for causing the computer to execute the process of supplying at least one of the power generated by the power plant and the power from the power system to the equipment capable of consuming the power in the power plant. It is a program.
 本開示によれば、電力系統の周波数変動をより効果的に抑制することができるという効果を奏する。 According to the present disclosure, the effect is that the frequency fluctuation of the electric power system can be suppressed more effectively.
本開示の一実施形態に係る石炭焚きボイラを表す概略構成図である。It is a schematic block diagram which shows the coal-fired boiler which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係る石炭焚きボイラにおける蒸気、復水、給水系統を表す概略図である。It is the schematic which shows the steam, condensate, and water supply system in the coal-fired boiler which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係る電力系統の概念図である。It is a conceptual diagram of the electric power system which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係る発電プラントの構成例である。This is a configuration example of a power plant according to an embodiment of the present disclosure. 本開示の一実施形態に係る制御装置のハードウェア構成の一例を示した図である。It is a figure which showed an example of the hardware composition of the control device which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係る制御装置が備える機能を示した機能ブロック図である。It is a functional block diagram which showed the function which the control device which concerns on one Embodiment of this disclosure has. 本開示の一実施形態に係る要求電力供給量と各成分との対応を示す図である。It is a figure which shows the correspondence between the required power supply amount and each component which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係るdroop制御に関する図である。It is a figure concerning the drop control which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係る負荷変化幅と負荷変動周期との関係を示す図である。It is a figure which shows the relationship between the load change width and load change period which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係る負荷変化幅と負荷変動周期と閾値との関係を示す図である。It is a figure which shows the relationship between the load change width, the load change cycle, and the threshold value which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係る圧縮機及びレシーバに関する構成例を示す図である。It is a figure which shows the configuration example about the compressor and the receiver which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係るボイラ給水のポンプに関する構成例を示す図である。It is a figure which shows the structural example about the boiler water supply pump which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係る給水流量の時間変動を示す図である。It is a figure which shows the time variation of the water supply flow rate which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係るT-BFPとM-BFPとを並列して運用した場合の給水流量を示した図である。It is a figure which showed the water supply flow rate when the T-BFP and M-BFP which concerns on one Embodiment of this disclosure are operated in parallel. 本開示の一実施形態に係るヒートポンプの設置例を示す図である。It is a figure which shows the installation example of the heat pump which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係る送水ポンプの設定例を示す図である。It is a figure which shows the setting example of the water feed pump which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係る電力調整処理のフローチャートを示した図である。It is a figure which showed the flowchart of the electric power adjustment processing which concerns on one Embodiment of this disclosure. 参考例における電力量差の時間変動の例を示す図である。It is a figure which shows the example of the time variation of the electric energy difference in a reference example. 本開示の一実施形態に係る電力量差の時間変動の例を示す図である。It is a figure which shows the example of the time variation of the electric energy difference which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係る機器の電力量と応答時間との関係の例を示す図である。It is a figure which shows the example of the relationship between the electric energy and the response time of the apparatus which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係る吸収可能量と応答可能時間との関係の例を示す図である。It is a figure which shows the example of the relationship between the absorbable amount and the responsive time which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係る発電プラントの運転状態に応じた閾値設定の例を示す図である。It is a figure which shows the example of the threshold value setting according to the operating state of the power plant which concerns on one Embodiment of this disclosure.
 以下に、本開示に係る電力調整システム及び発電プラント、並びに電力調整方法、並びに電力調整プログラムの一実施形態について、図面を参照して説明する。この実施形態により本開示が限定されるものではない。本実施形態では、電力調整システムが石炭焚きのボイラ10を有する発電プラント1に適用される場合を例示して説明するが、他の構成の発電プラントに適用されることとしてもよい。 The power adjustment system and power plant, the power adjustment method, and one embodiment of the power adjustment program according to the present disclosure will be described below with reference to the drawings. This embodiment does not limit the disclosure. In the present embodiment, the case where the power adjustment system is applied to the power plant 1 having the coal-fired boiler 10 will be described as an example, but it may be applied to a power plant having another configuration.
 図1は、本実施形態の石炭焚きのボイラ10を表す概略構成図である。 FIG. 1 is a schematic configuration diagram showing a coal-fired boiler 10 of the present embodiment.
 本実施形態の石炭焚きのボイラ10は、石炭(炭素含有固体燃料)を粉砕した微粉炭を微粉燃料として用い、この微粉燃料を燃焼バーナにより燃焼させ、この燃焼により発生した熱を給水や蒸気と熱交換して過熱蒸気を生成することが可能な石炭焚き(微粉炭焚き)ボイラ10である。以降の説明で、上や上方とは鉛直方向上側を示し、下や下方とは鉛直方向下側を示すものであり、鉛直方向は厳密ではなく誤差を含むものである。 The coal-fired boiler 10 of the present embodiment uses pulverized coal obtained by crushing coal (carbon-containing solid fuel) as pulverized fuel, burns the pulverized fuel with a combustion burner, and uses the heat generated by this combustion as water supply or steam. It is a coal-fired (fine-powdered coal-fired) boiler 10 capable of generating superheated steam by exchanging heat. In the following description, the upper and upper directions indicate the upper side in the vertical direction, and the lower and lower directions indicate the lower side in the vertical direction, and the vertical direction is not strict and includes an error.
 本実施形態において、図1に示すように、石炭焚きのボイラ10は、火炉11と燃焼装置12と燃焼ガス通路13とを有している。火炉11は、四角筒の中空形状をなして鉛直方向に沿って設置されている。火炉11を構成する火炉壁101は、複数の伝熱管とこれらを接続するフィンとで構成され、微粉燃料の燃焼により発生した熱を伝熱管の内部を流通する水や蒸気と熱交換するとともに火炉壁101の温度上昇を抑制している。 In the present embodiment, as shown in FIG. 1, the coal-fired boiler 10 has a furnace 11, a combustion device 12, and a combustion gas passage 13. The furnace 11 has a hollow shape of a square cylinder and is installed along the vertical direction. The furnace wall 101 constituting the furnace 11 is composed of a plurality of heat transfer tubes and fins connecting them, and exchanges heat generated by combustion of pulverized fuel with water or steam flowing inside the heat transfer tubes and also in the furnace. The temperature rise of the wall 101 is suppressed.
 燃焼装置12は、火炉11を構成する火炉壁101の下部側に設けられている。本実施形態では、燃焼装置12は、火炉壁101に装着された複数の燃焼バーナ(例えば21,22,23,24,25)を有している。例えば燃焼バーナ21,22,23,24,25は、火炉11の周方向に沿って均等間隔で配設されたものが1セットとして、鉛直方向に沿って複数段配置されている。但し、火炉11の形状や一つの段における燃焼バーナの数、段数、配置などはこの実施形態に限定されるものではない。 The combustion device 12 is provided on the lower side of the furnace wall 101 constituting the furnace 11. In the present embodiment, the combustion device 12 has a plurality of combustion burners (for example, 21, 22, 23, 24, 25) mounted on the furnace wall 101. For example, the combustion burners 21, 22, 23, 24, 25 are arranged in a plurality of stages along the vertical direction as one set arranged at equal intervals along the circumferential direction of the furnace 11. However, the shape of the furnace 11, the number of combustion burners in one stage, the number of stages, the arrangement, and the like are not limited to this embodiment.
 各燃焼バーナ21,22,23,24,25は、微粉炭供給管26,27,28,29,30を介して複数の粉砕機(ミル)31,32,33,34,35に連結されている。この粉砕機31,32,33,34,35は、図示しないが、例えば粉砕機のハウジング内に回転テーブルが駆動回転可能に支持され、この回転テーブルの上方に複数のローラが回転テーブルの回転に連動して回転可能に支持されて構成されている。石炭が複数のローラと回転テーブルとの間に投入されると、ここで所定の微粉炭の大きさに粉砕され、搬送用ガス(一次空気、酸化性ガス)により図示しない粉砕機のハウジング内の分級機に搬送されて所定の粒径範囲内に分級された微粉燃料を微粉炭供給管26,27,28,29,30から燃焼バーナ21,22,23,24,25に供給することができる。 Each combustion burner 21, 22, 23, 24, 25 is connected to a plurality of crushers (mills) 31, 32, 33, 34, 35 via pulverized coal supply pipes 26, 27, 28, 29, 30. There is. Although the crushers 31, 32, 33, 34, and 35 are not shown, for example, a rotary table is driven and rotatably supported in the housing of the crusher, and a plurality of rollers are placed above the rotary table to rotate the rotary table. It is configured to be supported so that it can rotate in conjunction with it. When coal is thrown between a plurality of rollers and a rotary table, it is crushed to a predetermined size of pulverized coal, and is crushed by a transport gas (primary air, oxidizing gas) in a crusher housing (not shown). The pulverized fuel conveyed to the classifier and classified within a predetermined particle size range can be supplied from the pulverized coal supply pipes 26, 27, 28, 29, 30 to the combustion burners 21, 22, 23, 24, 25. ..
 火炉11は、各燃焼バーナ21,22,23,24,25の装着位置に風箱36が設けられており、この風箱36に空気ダクト(風道)37の一端部が連結されている。空気ダクト37は、他端部に押込通風機(FDF:Forced Draft Fan)38が設けられている。 The furnace 11 is provided with a wind box 36 at the mounting position of each combustion burner 21, 22, 23, 24, 25, and one end of an air duct (air duct) 37 is connected to the wind box 36. The air duct 37 is provided with a forced draft fan (FDF) 38 at the other end.
 燃焼ガス通路13は、図1に示すように、火炉11の鉛直方向上部に連結されている。燃焼ガス通路13は、燃焼ガスの熱を回収するための熱交換器として、過熱器102、103、104、再熱器105、106、節炭器107が設けられており、火炉11での燃焼で発生した燃焼ガスと各熱交換器を流通する給水や蒸気との間で熱交換が行われる。 As shown in FIG. 1, the combustion gas passage 13 is connected to the upper part of the furnace 11 in the vertical direction. The combustion gas passage 13 is provided with superheaters 102, 103, 104, reheaters 105, 106, and coal saver 107 as heat exchangers for recovering the heat of the combustion gas, and is burned in the combustion furnace 11. Heat exchange is performed between the combustion gas generated in the above and the water supply and steam flowing through each heat exchanger.
 燃焼ガス通路13は、図1に示すように、その下流側に熱交換を行った燃焼ガスが排出される煙道14が連結されている。煙道14は、空気ダクト37との間にエアヒータ(空気予熱器)42が設けられ、空気ダクト37を流れる空気と、煙道14を流れる燃焼ガスとの間で熱交換を行い、燃焼バーナ21,22,23,24,25に供給する燃焼用空気を昇温することができる。 As shown in FIG. 1, the combustion gas passage 13 is connected to the flue 14 on which the heat-exchanged combustion gas is discharged on the downstream side thereof. An air heater (air preheater) 42 is provided between the flue 14 and the air duct 37 to exchange heat between the air flowing through the air duct 37 and the combustion gas flowing through the flue 14, and the combustion burner 21 , 22, 23, 24, 25 can be heated in temperature for combustion air.
 煙道14は、エアヒータ42より上流側の位置に脱硝装置43が設けられている。脱硝装置43は、アンモニア、尿素水等の窒素酸化物を還元する作用を有する還元剤を煙道14内に供給し、還元剤が供給された燃焼ガスを窒素酸化物と還元剤との反応を、脱硝装置43内に設置された脱硝触媒の触媒作用により促進させることで、燃焼ガス中の窒素酸化物を除去、低減するものである。そして、煙道14に連結されるガスダクト41は、エアヒータ42より下流側の位置に電気集塵機などの集塵装置44、誘引通風機(IDF:Induced Draft Fan)45、脱硫装置46などが設けられ、下流端部に煙突50が設けられている。 The flue 14 is provided with a denitration device 43 at a position upstream of the air heater 42. The denitration device 43 supplies a reducing agent having an action of reducing nitrogen oxides such as ammonia and urea water into the flue 14, and reacts the combustion gas to which the reducing agent is supplied with the nitrogen oxides and the reducing agent. , Nitrogen oxides in the combustion gas are removed and reduced by promoting by the catalytic action of the denitration catalyst installed in the denitration device 43. The gas duct 41 connected to the flue 14 is provided with a dust collector 44 such as an electric dust collector, an induction ventilator (IDF: Induced Draft Fan) 45, a desulfurization device 46, and the like at a position downstream of the air heater 42. A chimney 50 is provided at the downstream end.
 一方、複数の粉砕機31,32,33,34,35が駆動すると、生成された微粉燃料が搬送用ガス(一次空気、酸化性ガス)と共に微粉炭供給管26,27,28,29,30を通して燃焼バーナ21,22,23,24,25に供給される。石炭焚きのボイラ10の煙道14から排出された排ガスとエアヒータ42で熱交換することで、加熱された燃焼用空気(二次空気、酸化性ガス)が空気ダクト37から風箱36を介して各燃焼バーナ21,22,23,24,25に供給される。すると、燃焼バーナ21,22,23,24,25は、微粉燃料と搬送用ガスとが混合した微粉燃料混合気を火炉11に吹き込むと共に燃焼用空気を火炉11に吹き込み、このときに微粉燃料混合気が着火することで火炎を形成することができる。火炉11内の下部で火炎が生じ、高温の燃焼ガスがこの火炉11内を上昇し、燃焼ガス通路13に排出される。酸化性ガスとして、本実施形態では空気を用いる。空気よりも酸素割合が多いものや逆に少ないものであってもよく、燃料流量との適正化を図ることで使用可能になる。 On the other hand, when a plurality of crushers 31, 32, 33, 34, 35 are driven, the generated pulverized fuel is pulverized coal supply pipes 26, 27, 28, 29, 30 together with the transport gas (primary air, oxidizing gas). It is supplied to the combustion burners 21, 22, 23, 24, 25 through. By exchanging heat with the exhaust gas discharged from the flue 14 of the coal-fired boiler 10 by the air heater 42, the heated combustion air (secondary air, oxidizing gas) is sent from the air duct 37 through the air box 36 through the air box 36. It is supplied to each combustion burner 21, 22, 23, 24, 25. Then, the combustion burners 21, 22, 23, 24, 25 blow the pulverized fuel mixture, which is a mixture of the pulverized fuel and the transport gas, into the furnace 11 and the combustion air into the furnace 11, and at this time, the pulverized fuel is mixed. A flame can be formed by igniting the qi. A flame is generated in the lower part of the furnace 11, and the high-temperature combustion gas rises in the furnace 11 and is discharged to the combustion gas passage 13. Air is used as the oxidizing gas in this embodiment. It may have a higher oxygen ratio than air or a lower oxygen ratio than air, and can be used by optimizing the fuel flow rate.
 火炉11は、各燃焼バーナ21,22,23,24,25の装着位置より上方にアディショナル空気ポート39が設けられている。アディショナル空気ポート39に空気ダクト37から分岐したアディショナル空気ダクト40の端部が連結されている。従って、押込通風機38により送られた燃焼用空気(二次空気、酸化性ガス)を空気ダクト37から風箱36に供給し、この風箱36から各燃焼バーナ21,22,23,24,25に供給することができると共に、押込通風機38により送られた燃焼用追加空気(アディショナル空気)をアディショナル空気ダクト40からアディショナル空気ポート39に供給することができる。 The furnace 11 is provided with an additional air port 39 above the mounting positions of the combustion burners 21, 22, 23, 24, and 25. The end of the additional air duct 40 branched from the air duct 37 is connected to the additional air port 39. Therefore, the combustion air (secondary air, oxidizing gas) sent by the push-in ventilator 38 is supplied from the air duct 37 to the air box 36, and the combustion burners 21, 22, 23, 24, are supplied from the air box 36. In addition to being able to be supplied to 25, additional combustion air (additional air) sent by the push-in ventilator 38 can be supplied from the additional air duct 40 to the additional air port 39.
 火炉11は、下部の領域Aにて、微粉燃料混合気と燃焼用空気(二次空気、酸化性ガス)とが燃焼して火炎が生じる。ここで火炉11は、空気の供給量が微粉炭の供給量に対して理論空気量未満となるように設定されることで、内部が還元雰囲気に保持される。即ち、微粉炭の燃焼により発生した窒素酸化物(NOx)が火炉11の領域Bで還元され、その後、アディショナル空気ポート39からアディショナル空気が追加供給されることで微粉炭の酸化燃焼が完結され、微粉炭の燃焼によるNOxの発生量が低減される。 In the furnace 11, in the lower region A, the pulverized fuel mixture and the combustion air (secondary air, oxidizing gas) burn to generate a flame. Here, the inside of the furnace 11 is maintained in a reducing atmosphere by setting the amount of air supplied to be less than the theoretical amount of air with respect to the amount of pulverized coal supplied. That is, the nitrogen oxides (NOx) generated by the combustion of the pulverized coal are reduced in the region B of the furnace 11, and then the additional air is additionally supplied from the additional air port 39 to complete the oxidative combustion of the pulverized coal. The amount of NOx generated by burning pulverized coal is reduced.
 その後、燃焼ガスは、図1に示すように、燃焼ガス通路13に配置される第2過熱器103、第3過熱器104、第1過熱器102、(以下単に過熱器と記載する場合もある)、第2再熱器106、第1再熱器105(以下単に再熱器と記載する場合もある)、節炭器107で熱交換した後、脱硝装置43により窒素酸化物が還元除去され、集塵装置44で粒子状物質が除去され、脱硫装置46にて硫黄酸化物が除去された後、煙突50から大気中に排出される。各熱交換器は燃焼ガス流れに対して、必ずしも前記記載順に配置されなくともよい。 After that, as shown in FIG. 1, the combustion gas is a second superheater 103, a third superheater 104, a first superheater 102, which are arranged in the combustion gas passage 13 (hereinafter, may be simply referred to as a superheater). ), The second reheater 106, the first reheater 105 (hereinafter, may be simply referred to as a reheater), and the economizer 107, after heat exchange, the nitrogen oxide is reduced and removed by the denitration device 43. After the particulate matter is removed by the dust collector 44 and the sulfur oxide is removed by the desulfurization device 46, the gas is discharged from the chimney 50 into the atmosphere. Each heat exchanger does not necessarily have to be arranged in the order described above with respect to the combustion gas flow.
 次に、熱交換器として、燃焼ガス通路13に設けられた過熱器102,103,104、再熱器105,106、節炭器107について詳細に説明する。図2は、石炭焚きのボイラ10に設けられた熱交換器を表す概略図である。図1では燃焼ガス通路13内の各熱交換器(過熱器102,103,104、再熱器105,106、節炭器107)の位置を正確に示しているものではなく、各熱交換器の燃焼ガス流れに対する配置順も図1の記載に限定されるものではない。 Next, as the heat exchanger, the superheaters 102, 103, 104, the reheaters 105, 106, and the economizer 107 provided in the combustion gas passage 13 will be described in detail. FIG. 2 is a schematic view showing a heat exchanger provided in the coal-fired boiler 10. FIG. 1 does not accurately show the positions of the heat exchangers ( superheaters 102, 103, 104, reheaters 105, 106, economizer 107) in the combustion gas passage 13, and does not accurately show the positions of the heat exchangers. The arrangement order of the above with respect to the combustion gas flow is not limited to the description in FIG.
 図2には、本実施形態の発電プラント1に設けられた石炭焚きのボイラ10の熱交換器と、石炭焚きのボイラ10が生成した蒸気によって回転駆動される蒸気タービン110と、蒸気タービン110に連結され、蒸気タービン110の回転に応じて発電を行う発電機115とを備える。 FIG. 2 shows the heat exchanger of the coal-fired boiler 10 provided in the power plant 1 of the present embodiment, the steam turbine 110 rotationally driven by the steam generated by the coal-fired boiler 10, and the steam turbine 110. It is provided with a generator 115 that is connected and generates electricity according to the rotation of the steam turbine 110.
 石炭焚きのボイラ10で生成した蒸気により運転される蒸気タービン110は、例えば、高圧タービン111と中圧タービン112と低圧タービン113とから構成され、後述する再熱器からの蒸気が中圧タービン112に流入したのちに低圧タービン113に流入する。低圧タービン113には、復水器114が連結されており、低圧タービン113を回転駆動した蒸気がこの復水器114で冷却水(例えば、海水)により冷却されて復水となる。復水器114は、給水ラインL1を介して節炭器107に連結されている。給水ラインL1には、例えば、復水ポンプ(CP)121、低圧給水ヒータ122、ボイラ給水ポンプ(BFP)123、高圧給水ヒータ124が設けられている。低圧給水ヒータ122と高圧給水ヒータ124には、蒸気タービン(111,112,113)を駆動する蒸気の一部が抽気されて、図示しない抽気ラインを介して高圧給水ヒータ124と低圧給水ヒータ122に熱源として供給され、節炭器107へ供給される給水が加熱される。 The steam turbine 110 operated by the steam generated by the coal-fired boiler 10 is composed of, for example, a high-pressure turbine 111, a medium-pressure turbine 112, and a low-pressure turbine 113, and the steam from the reheater described later is the medium-pressure turbine 112. After flowing into the low pressure turbine 113, it flows into the low pressure turbine 113. A condenser 114 is connected to the low-pressure turbine 113, and the steam obtained by rotationally driving the low-pressure turbine 113 is cooled by the condenser 114 with cooling water (for example, seawater) to be condensed water. The condenser 114 is connected to the economizer 107 via the water supply line L1. The water supply line L1 is provided with, for example, a condensate pump (CP) 121, a low-pressure water supply heater 122, a boiler water supply pump (BFP) 123, and a high-pressure water supply heater 124. A part of the steam driving the steam turbines (111, 112, 113) is extracted into the low-pressure water supply heater 122 and the high-pressure water supply heater 124, and the high-pressure water supply heater 124 and the low-pressure water supply heater 122 pass through an bleeding line (not shown). The water supplied as a heat source and supplied to the economizer 107 is heated.
 例えば、石炭焚きのボイラ10が貫流ボイラの場合につき、説明をする。節炭器107は、火炉壁101の各蒸発管に連結されている。節炭器107で加熱された給水は、火炉壁101の蒸発管を通過する際に、火炉11内の火炎から輻射を受けて加熱され、汽水分離器126及び汽水分離器ドレンタンク127へと導かれる。汽水分離器126にて分離された蒸気は、過熱器102,103,104へと供給され、汽水分離器126にて分離されたドレン水は、ドレン水ラインL2を介して復水器114へと導かれる。 For example, the case where the coal-fired boiler 10 is a once-through boiler will be described. The economizer 107 is connected to each evaporation pipe of the furnace wall 101. When the water supplied by the economizer 107 passes through the evaporation pipe of the furnace wall 101, it receives radiation from the flame in the furnace 11 and is heated, and is guided to the brackish water separator 126 and the brackish water separator drain tank 127. Be radiated. The steam separated by the brackish water separator 126 is supplied to the superheaters 102, 103, 104, and the drain water separated by the brackish water separator 126 is sent to the condenser 114 via the drain water line L2. Be guided.
 貫流ボイラの起動時や低負荷運転時等においては、節炭器107から供給される給水が火炉壁101の各蒸発管を通過する際に全量が蒸発せず、その結果、汽水分離器126に水位が存在する運転状態(ウエット運転状態)となることがある。このウエット運転状態においては、汽水分離器126にて分離されたドレン水は、ボイラ循環ポンプ(BCP)128を用いて循環ラインL6により、給水ラインL1の途中に合流させることで、節炭器107から火炉壁101の各蒸発管へと循環して供給してもよい。 When the once-through boiler is started or when the load is low, the entire amount of water supplied from the economizer 107 does not evaporate when passing through each evaporation pipe of the furnace wall 101, and as a result, the steam separator 126 It may be in an operating state (wet operating state) in which a water level exists. In this wet operation state, the drain water separated by the brackish water separator 126 is merged in the middle of the water supply line L1 by the circulation line L6 using the boiler circulation pump (BCP) 128 to save the economizer 107. May be circulated and supplied to each evaporation pipe of the furnace wall 101.
 燃焼ガスが燃焼ガス通路13を流れるとき、この燃焼ガスは、過熱器102,103,104、再熱器105,106、節炭器107で熱回収される。一方、ボイラ給水ポンプ(BFP)123から供給された給水は、節炭器107によって予熱された後、火炉壁101の各蒸発管を通過する際に加熱されて蒸気となり、汽水分離器126に導かれる。汽水分離器126で分離された蒸気は、過熱器102,103,104に導入され、燃焼ガスによって過熱される。過熱器102,103,104で生成された過熱蒸気は、蒸気ラインL3を介して高圧タービン111に供給され、この高圧タービン111を回転駆動する。高圧タービン111から排出された蒸気は、蒸気ラインL4を介して再熱器105,106に導入されて再度過熱される。再度過熱された蒸気は、蒸気ラインL5を介して、中圧タービン112を経て低圧タービン113に供給され、この中圧タービン112および低圧タービン113を回転駆動する。各蒸気タービン(111,112,113)の回転軸は、発電機115を回転駆動して、発電が行われる。低圧タービン113から排出された蒸気は、復水器114で冷却されることで復水となり、給水ラインL1を介して、再び、節炭器107に送られる。 When the combustion gas flows through the combustion gas passage 13, the combustion gas is recovered by the superheaters 102, 103, 104, the reheaters 105, 106, and the economizer 107. On the other hand, the water supplied from the boiler water supply pump (BFP) 123 is preheated by the economizer 107 and then heated as it passes through each evaporation pipe of the furnace wall 101 to become steam, which is guided to the brackish water separator 126. Be taken. The steam separated by the brackish water separator 126 is introduced into the superheaters 102, 103, 104 and superheated by the combustion gas. The superheated steam generated by the superheaters 102, 103, 104 is supplied to the high-pressure turbine 111 via the steam line L3, and the high-pressure turbine 111 is rotationally driven. The steam discharged from the high-pressure turbine 111 is introduced into the reheaters 105 and 106 via the steam line L4 and reheated. The reheated steam is supplied to the low-pressure turbine 113 via the medium-pressure turbine 112 via the steam line L5, and rotationally drives the medium-pressure turbine 112 and the low-pressure turbine 113. The rotating shafts of the steam turbines (111, 112, 113) rotationally drive the generator 115 to generate electricity. The steam discharged from the low-pressure turbine 113 is cooled by the condenser 114 to be condensed, and is sent to the economizer 107 again via the water supply line L1.
 燃焼ガス通路13には、過熱器102,103,104、再熱器105,106、節炭器107など各熱交換器の伝熱管の間隙、または各熱交換器の間隙に図示しないスーツブロワ(除灰装置)が配置されていてもよい。スーツブロワは、燃焼ガス通路13の壁面に対して略垂直な方向に延在して配置される。スーツブロワは、燃焼ガス通路13の壁面に対して垂直方向を軸方向として、軸方向に直交する方向に蒸気(気体)を噴射し、また噴射方向も変動することができる噴射装置である。スーツブロワから過熱器102,103,104、再熱器105,106、節炭器107など熱交換器に向けて噴射された蒸気は、熱交換器の各伝熱管の表面に堆積した燃焼灰を除去し、熱交換器の各伝熱管における熱交換効率の低下を抑制する。 In the combustion gas passage 13, a suit blower (not shown) is provided in the gap between the heat transfer tubes of each heat exchanger such as the superheaters 102, 103, 104, the reheaters 105, 106, and the economizer 107, or in the gap of each heat exchanger. An economizer) may be arranged. The suit blower extends in a direction substantially perpendicular to the wall surface of the combustion gas passage 13. The suit blower is an injection device capable of injecting steam (gas) in a direction orthogonal to the axial direction with the direction perpendicular to the wall surface of the combustion gas passage 13 as the axial direction, and the injection direction can also be changed. The steam injected from the suit blower toward the heat exchangers such as the superheaters 102, 103, 104, the reheaters 105, 106, and the economizer 107 scavenges the combustion ash deposited on the surface of each heat transfer tube of the heat exchanger. It is removed to suppress a decrease in heat exchange efficiency in each heat transfer tube of the heat exchanger.
 図3は、発電プラント1が接続される電力系統2の概念図を示している。図3に示すように、発電プラント1は、電力系統2と接続されている。電力系統2は、発電プラント1の以外にも再生エネルギ発電設備3や、図示しない各発電プラントとも接続されており、電力需要家4である工場や家庭等に電力を供給している。電力系統2は、風力発電や太陽光発電等の再生エネルギ発電設備3とも接続されており、再生エネルギ発電設備3によって発電される電力についても供給されている。風力発電や太陽光発電等によって発電される電力は、風力、風向、日射量、日射時間等の自然エネルギの状態によって出力が変動するため、電力系統2における電力供給量(供給)と電力消費量(需要)のバランスの変動を招く可能性がある。電力系統2において電力需給の変動が起こると、電力の需要と供給との関係である需給バランスにアンバランスが生じて、電力系統2の周波数変動の原因となる。すなわち、電力系統2の需給バランスで電力供給量が過剰になると電力系統2の周波数が上昇し、逆に電力系統2の需給バランスで電力消費量が増加して電力量が不足すると電力系統2の周波数が低下する。電力系統2における周波数(系統周波数)が変動すると、電力需要家4への供給する電力の品質が低下してしまうため、電力系統2における周波数変動は抑制されることが好ましい。このため、発電プラント1では、発電による電力供給量の調整を行うだけでなく、発電プラント1内で電力を利用すること(電力を消費すること)によって電力系統2に供給する電力量の調整を行い、電力系統2における需給バランスの発生を抑制できるよう電力需給の変動に柔軟に対応し、変動抑制を行う。 FIG. 3 shows a conceptual diagram of the power system 2 to which the power plant 1 is connected. As shown in FIG. 3, the power plant 1 is connected to the power system 2. The electric power system 2 is connected to a regenerative energy power generation facility 3 and each power plant (not shown) in addition to the power plant 1, and supplies electric power to a factory, a household, or the like, which is an electric power consumer 4. The power system 2 is also connected to a regenerative energy power generation facility 3 such as wind power generation and solar power generation, and power generated by the regenerative energy power generation facility 3 is also supplied. Since the output of power generated by wind power generation, solar power generation, etc. fluctuates depending on the state of natural energy such as wind power, wind direction, amount of solar radiation, and solar radiation time, the amount of power supply (supply) and power consumption in the power system 2 It may cause fluctuations in the balance of (demand). When the supply and demand of electric power fluctuates in the electric power system 2, the balance of supply and demand, which is the relationship between the supply and demand of electric power, becomes unbalanced, which causes the frequency fluctuation of the electric power system 2. That is, when the power supply amount becomes excessive due to the supply-demand balance of the power system 2, the frequency of the power system 2 rises, and conversely, when the power consumption increases due to the supply-supply balance of the power system 2 and the power amount becomes insufficient, the power system 2 The frequency drops. If the frequency (system frequency) in the power system 2 fluctuates, the quality of the power supplied to the power consumer 4 deteriorates. Therefore, it is preferable that the frequency fluctuation in the power system 2 is suppressed. Therefore, in the power plant 1, not only the amount of electric power supplied by power generation is adjusted, but also the amount of electric power supplied to the electric power system 2 is adjusted by using the electric power in the power plant 1 (consuming the electric power). Then, the fluctuation of the power supply and demand is flexibly dealt with and the fluctuation is suppressed so that the occurrence of the supply and demand balance in the power system 2 can be suppressed.
 図4は、図2の構成を簡略化して示した発電プラント1の構成例である。図4において、図1及び図2と同様の構成については同一の符号を付している。すなわち、弁201を介して燃料が投入され、ボイラ10にて蒸気が生成される。ボイラ10にて生成された蒸気はGV弁(ガバナ弁)202にて蒸気タービン110へ供給される流量が調整される。そして、GV弁202を介して高圧タービン111へ供給され、高圧タービン111から排出された蒸気は、ボイラ10の再熱器105、106で再度過熱されて中圧タービン112へ供給される。そして、中圧タービン112から排出された蒸気は低圧タービン113へ供給される。すなわち、高圧タービン111、中圧タービン112、及び低圧タービン113おいて蒸気が各々のタービンロータを回転駆動する仕事を行い、発電機115を回転駆動して発電を行う。低圧タービン113で仕事を終えた蒸気は復水器114で凝縮して復水され、復水ポンプ121で低圧給水ヒータ122へ供給される。低圧給水ヒータ122では低圧タービン113の蒸気の一部を抽気して給水を加熱に使用される。給水はボイラ給水ポンプ123で加圧されて高圧給水ヒータ124へ供給される。高圧給水ヒータ124では、中圧タービン112及び高圧タービン111の蒸気の一部をそれぞれ抽気して給水を加熱に使用する。加熱された給水はボイラ10へ供給される。 FIG. 4 is a configuration example of the power plant 1 in which the configuration of FIG. 2 is simplified. In FIG. 4, the same reference numerals are given to the same configurations as those in FIGS. 1 and 2. That is, fuel is charged through the valve 201, and steam is generated in the boiler 10. The flow rate of the steam generated by the boiler 10 is adjusted by the GV valve (governor valve) 202 to the steam turbine 110. Then, the steam supplied to the high-pressure turbine 111 via the GV valve 202 and discharged from the high-pressure turbine 111 is reheated by the reheaters 105 and 106 of the boiler 10 and supplied to the medium-pressure turbine 112. Then, the steam discharged from the medium pressure turbine 112 is supplied to the low pressure turbine 113. That is, in the high-pressure turbine 111, the medium-pressure turbine 112, and the low-pressure turbine 113, steam performs the work of rotationally driving each turbine rotor, and rotationally drives the generator 115 to generate electricity. The steam that has finished its work in the low-pressure turbine 113 is condensed and restored by the condenser 114, and is supplied to the low-pressure water heater 122 by the condenser pump 121. In the low pressure water supply heater 122, a part of the steam of the low pressure turbine 113 is extracted and the water supply is used for heating. The water supply is pressurized by the boiler water supply pump 123 and supplied to the high pressure water supply heater 124. In the high-pressure water supply heater 124, a part of the steam of the medium-pressure turbine 112 and the high-pressure turbine 111 is extracted and the water supply is used for heating. The heated water supply is supplied to the boiler 10.
 図4のような発電プラント1には、後述する制御装置60が設けられている。 The power plant 1 as shown in FIG. 4 is provided with a control device 60, which will be described later.
 制御装置(電力調整システム)60は、電力系統2における電力変動(系統周波数変動)を抑制するために、発電プラント1における発電による電力供給量の調整及び電力利用による電力消費の調整を行い、電力系統2内に供給する電力量の調整を行う。 In order to suppress power fluctuations (system frequency fluctuations) in the power system 2, the control device (power adjustment system) 60 adjusts the amount of power supplied by power generation in the power generation plant 1 and adjusts the power consumption by using power, and power is supplied. The amount of power supplied to the system 2 is adjusted.
 図5は、本実施形態に係る制御装置60のハードウェア構成の一例を示した図である。
 図5に示すように、制御装置60は、コンピュータシステム(計算機システム)であり、例えば、CPU1100と、CPU1100が実行するプログラム等を記憶するためのROM(Read Only Memory)1200と、各プログラム実行時のワーク領域として機能するRAM(Random Access Memory)1300と、大容量記憶装置としてのハードディスクドライブ(HDD)1400と、ネットワーク等に接続するための通信部1500とを備えている。これら各部は、バス1800を介して接続されている。大容量記憶装置としては、ハードディスクドライブ(HDD)1400に代わって、ソリッドステートドライブ(SDD)等の半導体メモリを使用してもよい。
FIG. 5 is a diagram showing an example of the hardware configuration of the control device 60 according to the present embodiment.
As shown in FIG. 5, the control device 60 is a computer system (computer system), for example, a CPU 1100, a ROM (Read Only Memory) 1200 for storing a program or the like executed by the CPU 1100, and when each program is executed. It is provided with a RAM (Random Access Memory) 1300 that functions as a work area of the above, a hard disk drive (HDD) 1400 as a large-capacity storage device, and a communication unit 1500 for connecting to a network or the like. Each of these parts is connected via a bus 1800. As the large-capacity storage device, a semiconductor memory such as a solid state drive (SDD) may be used instead of the hard disk drive (HDD) 1400.
 制御装置60は、キーボードやマウス等からなる入力部や、データを表示する液晶表示装置等からなる表示部などを備えていてもよい。 The control device 60 may include an input unit including a keyboard, a mouse, and the like, a display unit including a liquid crystal display device for displaying data, and the like.
 CPU1100が実行するプログラム等を記憶するための記憶媒体は、ROM1200に限られない。記憶媒体は、例えば、磁気ディスク、光磁気ディスク、半導体メモリ等の他の補助記憶装置であってもよい。 The storage medium for storing the program or the like executed by the CPU 1100 is not limited to the ROM 1200. The storage medium may be, for example, another auxiliary storage device such as a magnetic disk, a magneto-optical disk, or a semiconductor memory.
 後述の各種機能を実現するための一連の処理の過程は、プログラムの形式でハードディスクドライブ1400等に記録されており、このプログラムをCPU1100がRAM1300等に読み出して、情報の加工・演算処理を実行することにより、後述の各種機能が実現される。プログラムは、ROM1200やその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。 A series of processing processes for realizing various functions described later is recorded in a hard disk drive 1400 or the like in the form of a program, and the CPU 1100 reads this program into the RAM 1300 or the like to execute information processing / arithmetic processing. As a result, various functions described later are realized. The program may be installed in ROM 1200 or other storage medium in advance, provided in a state of being stored in a computer-readable storage medium, or distributed via a wired or wireless communication means. May be applied. Computer-readable storage media include magnetic disks, magneto-optical disks, CD-ROMs, DVD-ROMs, semiconductor memories, and the like.
 図6は、制御装置60が備える機能を示した機能ブロック図である。図6に示されるように、制御装置60は、出力調整部61と、消費制御部65とを備えている。本実施形態では、出力調整部61と消費制御部65とを設けることとしているが、出力調整部61及び消費制御部65のいずれか一方を設けることとすることも可能である。 FIG. 6 is a functional block diagram showing the functions included in the control device 60. As shown in FIG. 6, the control device 60 includes an output adjusting unit 61 and a consumption control unit 65. In the present embodiment, the output adjusting unit 61 and the consumption control unit 65 are provided, but it is also possible to provide either the output adjusting unit 61 or the consumption control unit 65.
 図7は、発電プラント1に対する要求電力量(デマンド)を変動周期に応じて分けた図である。図7のように、電力系統2側から要求される電力である要求電力量を発電プラント1において発電して電力供給をする必要がある。要求電力量は、変動周期に応じて、電力長周期成分と、電力短周期成分と、電力微小変動成分とに分けられる。制御装置60では、図7のように変動する各成分に対して出力制御を行っている。 FIG. 7 is a diagram in which the required electric energy (demand) for the power plant 1 is divided according to the fluctuation cycle. As shown in FIG. 7, it is necessary to generate the required electric energy, which is the electric power required from the electric power system 2, in the power plant 1 to supply electric power. The required electric energy is divided into a long-period electric power component, a short-period electric power component, and a minute electric power fluctuation component according to the fluctuation cycle. In the control device 60, output control is performed for each component that fluctuates as shown in FIG.
 出力調整部61は、発電プラント1における電力供給量(発電量)を調整する。具体的には、図6に示すように、出力調整部61は、例えば、運転基準出力制御部(以下、「DPC部」という。)62と、自動周波数制御部(以下、「AFC部」という。)63と、ガバナフリー部(以下、「GF部」という。)64とを有している。 The output adjusting unit 61 adjusts the power supply amount (power generation amount) in the power generation plant 1. Specifically, as shown in FIG. 6, the output adjusting unit 61 is, for example, an operation reference output control unit (hereinafter referred to as “DPC unit”) 62 and an automatic frequency control unit (hereinafter referred to as “AFC unit”). It has 63 and a governor-free section (hereinafter referred to as “GF section”) 64.
 DPC部(運転基準出力制御部)62は、主として電力長周期成分に対応して電力供給の出力調整を運転基準出力制御(DPC;Dispatching Power Control)で行う(DPC制御)。電力長周期成分とは、電力短周期成分よりも大きな周期の電力変動である。例えば、電力長周期成分の周期は、数分以上10分未満程度となる。DPC部62は、例えば1日単位等の長周期での電力需要予測を基に電力会社(中給指令所)から送られてくる電力供給の出力指令値(発電負荷カーブ、負荷増減信号)に従って、ボイラ10への入熱量(燃料供給量)を制御して電力供給量(発電量)を制御する。すなわち、DPC部62は、電力需要予測に基づいて予め設定された電力供給量(発電量)スケジュールに従って、電力供給量を制御している。 The DPC unit (operation reference output control unit) 62 mainly adjusts the output of the power supply corresponding to the long-period power component by the operation reference output control (DPC; Dispatching Power Control) (DPC control). The long-period power component is a power fluctuation with a period larger than that of the short-period power component. For example, the period of the long-period power component is about several minutes or more and less than 10 minutes. The DPC unit 62 follows the output command value (power generation load curve, load increase / decrease signal) of the power supply sent from the power company (middle supply command center) based on the power demand forecast in a long cycle such as one day. , The amount of heat input to the boiler 10 (fuel supply amount) is controlled to control the power supply amount (power generation amount). That is, the DPC unit 62 controls the power supply amount according to a power supply amount (power generation amount) schedule set in advance based on the power demand forecast.
 このようにDPC部62においてDPC制御がされることで、図7における電力長周期成分に対応した電力供給の出力制御が行われる。 By performing DPC control in the DPC unit 62 in this way, the output control of the power supply corresponding to the long-period power component in FIG. 7 is performed.
 AFC部(自動周波数制御部)63は、主として電力短周期成分に対応して電力供給の出力調整を自動周波数制御(AFC;Automatic Frequency Control)で行う(AFC制御)。電力短周期成分とは、電力長周期成分による電力供給の出力変動より小さく、電力微小変動成分による電力供給の出力変動よりも大きな周期の電力変動である。すなわち、AFC部63は、後述するGF部64による電力供給の出力変動より大きな周期の電力変動に対応して、電力供給の出力調整を行っている。例えば、電力短周期成分の周期は、数十秒以上数分未満程度となる。AFC部63は、電力系統2における周波数変動に基づく電力会社(中給指令)から送信される制御信号(負荷増減信号)に従い、ボイラ10への入熱量(燃料供給量)を制御して発電プラント1の電力供給量(発電量)を制御する。すなわち、AFC部63は、発生した系統周波数変動(検出された系統周波数変動(電力変動))に応じて、電力供給の出力を制御する。 The AFC unit (automatic frequency control unit) 63 mainly adjusts the output of the power supply corresponding to the short-period power component by automatic frequency control (AFC; Automatic Frequency Control) (AFC control). The short-period power component is a power fluctuation having a period smaller than the output fluctuation of the power supply due to the long-period power component and larger than the output fluctuation of the power supply due to the minute power fluctuation component. That is, the AFC unit 63 adjusts the output of the power supply in response to the power fluctuation having a period larger than the output fluctuation of the power supply by the GF unit 64, which will be described later. For example, the period of the short-period power component is several tens of seconds or more and less than several minutes. The AFC unit 63 controls the amount of heat input to the boiler 10 (fuel supply amount) according to the control signal (load increase / decrease signal) transmitted from the electric power company (middle supply command) based on the frequency fluctuation in the power system 2, and is used in the power generation plant. Control the power supply amount (power generation amount) of 1. That is, the AFC unit 63 controls the output of the power supply according to the generated system frequency fluctuation (detected system frequency fluctuation (power fluctuation)).
 このようにAFC部63においてAFC制御がされることで、図7における電力短周期成分に対応した電力供給の出力制御が行われる。 By performing AFC control in the AFC unit 63 in this way, the output control of the power supply corresponding to the short-period power component in FIG. 7 is performed.
 GF部(ガバナフリー部)64は、主として電力微小変動成分に対して電力供給の出力調整を行う(GF制御)。電力微小変動成分とは、自動周波数制御(AFC)による電力供給の出力変動より小さな周期の電力変動である。例えば、電力微小変動成分の周期は、数十秒未満程度となる。GF部64は、蒸気タービン110入口のGV弁202の開度調整によって、電力供給の出力制御をしている。GV弁202の制御は、例えば、図8に示すようにdroop制御(ドループ制御)が行われている。droop制御では、図8のように縦軸をGV弁202の開度、横軸を周波数(発電機回転数)として、基準周波数(例えば60Hz)f0からの差に対してGV弁202の開度が予め設定されている。このため、現在の周波数に対して図8より対応するGV弁202の開度が決定され、該開度にGV弁202の開度が調整されることによって、電力供給の微小変動成分の出力制御が行われ、結果として周波数の制御がなされる。 The GF unit (governor-free unit) 64 mainly adjusts the output of the power supply for the power minute fluctuation component (GF control). The power minute fluctuation component is a power fluctuation having a period smaller than the output fluctuation of the power supply by automatic frequency control (AFC). For example, the period of the power minute fluctuation component is less than several tens of seconds. The GF unit 64 controls the output of the electric power supply by adjusting the opening degree of the GV valve 202 at the inlet of the steam turbine 110. As for the control of the GV valve 202, for example, drop control (droop control) is performed as shown in FIG. In drop control, as shown in FIG. 8, the vertical axis is the opening degree of the GV valve 202 and the horizontal axis is the frequency (generator rotation speed), and the opening degree of the GV valve 202 with respect to the difference from the reference frequency (for example, 60 Hz) f0. Is preset. Therefore, the opening degree of the GV valve 202 corresponding to the current frequency is determined from FIG. 8, and the opening degree of the GV valve 202 is adjusted to the opening degree to control the output of the minute fluctuation component of the power supply. Is performed, and as a result, the frequency is controlled.
 このようにGF部64においてGF制御がされることで、図7における電力微小変動成分に対応した出力制御が行われる。 By performing GF control in the GF unit 64 in this way, output control corresponding to the power minute fluctuation component in FIG. 7 is performed.
 実際には電力微小変動成分に満たない僅かな負荷変動も生じているが、発電プラント1の各構成機器が有している慣性によって周波数は維持される。すなわち、ボイラ10の熱容量や発電機115の回転慣性などによって、周波数変化が抑制される。 Actually, there is a slight load fluctuation that is less than the power minute fluctuation component, but the frequency is maintained by the inertia of each component of the power plant 1. That is, the frequency change is suppressed by the heat capacity of the boiler 10 and the rotational inertia of the generator 115.
 出力調整部61によって、図7の各成分に対応した電力供給量の出力制御が行われる。各成分に対応した制御を負荷変化幅(負荷変化量)と負荷変動周期との関係として表すと、図9のように領域(慣性、DPC領域、AFC領域、及びGF領域)が分けられる。負荷変化幅は、電力系統2の電力変動量に対応した発電プラント1に要求される電力供給の変化量であり、負荷変動周期は、電力系統2の電力変動周期に対応して発電プラント1に要求される電力供給の変化周期である。すなわち、図9に示すように、負荷変化幅が小さく、負荷変動周期が小さい領域の変動(図7の電力微小変動成分に相当)に対しては、蒸気タービン110への蒸気供給量を制御するGV部(ガバナ弁部)64を用いたGF部(ガバナフリー部)によって負荷制御がされる(GF領域)。そして、GV弁202の制御には負荷変化幅及び負荷変動周期に上限があるため、該上限より大きな負荷変化幅及び負荷変動周期の領域の変動(図7の電力短周期成分に相当)に対しては、AFC部(自動周波数制御部)63によって出力制御がされる(AFC領域)。そして、ボイラ10への入熱量の制御にも上限があるため、該上限より大きな負荷変化幅及び負荷変動周期の領域の変動(図7の電力長周期成分に相当)に対しては、DPC部62によって電力供給量の制御がされる(DPC領域)。 The output adjusting unit 61 controls the output of the power supply amount corresponding to each component of FIG. 7. When the control corresponding to each component is expressed as the relationship between the load change width (load change amount) and the load fluctuation cycle, the regions (inertia, DPC region, AFC region, and GF region) are divided as shown in FIG. The load change width is the amount of change in the power supply required for the power plant 1 corresponding to the power fluctuation amount of the power system 2, and the load fluctuation cycle is the change amount of the power supply required for the power plant 1 corresponding to the power fluctuation amount of the power system 2. This is the required power supply change cycle. That is, as shown in FIG. 9, the amount of steam supplied to the steam turbine 110 is controlled for fluctuations in a region where the load change width is small and the load fluctuation cycle is small (corresponding to the power minute fluctuation component in FIG. 7). The load is controlled by the GF unit (governor-free unit) using the GV unit (governor valve unit) 64 (GF region). Since the control of the GV valve 202 has an upper limit on the load change width and the load fluctuation cycle, the fluctuation in the load change width and the load fluctuation cycle region larger than the upper limit (corresponding to the power short cycle component in FIG. 7) The output is controlled by the AFC unit (automatic frequency control unit) 63 (AFC region). Since there is also an upper limit to the control of the amount of heat input to the boiler 10, the DPC unit is used for fluctuations in the load change width and load fluctuation cycle region (corresponding to the power long cycle component in FIG. 7) larger than the upper limit. The power supply amount is controlled by 62 (DPC area).
 図9のように各領域に対応して出力制御がされているが、電力系統2に接続された再生エネルギ発電設備3の電力供給量の変動に起因して、電力系統2に更なる変動が生じる可能性がある。このような場合には、需要電力量と供給電力量の関係にアンバランスが生じて、需要電力量と供給電力量の差(電力需給ギャップ)が発生し、電力系統2に周波数変動が生じてしまう可能性がある。そこで、特に電力系統2に対する供給電力量が需要電力量を上回る場合においては、後述する消費制御部65において、更なる出力制御を行う。すなわち、電力系統2において、消費される電力よりも供給される電力の方が大きくなってしまう場合には、電力を発電プラント1で消費することによって電力系統2の安定化を図る。 Although the output is controlled corresponding to each region as shown in FIG. 9, further fluctuations occur in the power system 2 due to fluctuations in the power supply amount of the regenerative energy power generation facility 3 connected to the power system 2. It can occur. In such a case, an imbalance occurs in the relationship between the amount of power demand and the amount of power supplied, a difference between the amount of power demand and the amount of power supplied (power supply / demand gap) occurs, and frequency fluctuation occurs in the power system 2. There is a possibility that it will end up. Therefore, especially when the amount of power supplied to the power system 2 exceeds the amount of required power, the consumption control unit 65, which will be described later, further controls the output. That is, when the power supplied in the power system 2 becomes larger than the power consumed, the power system 2 is stabilized by consuming the power in the power plant 1.
 消費制御部65は、電力を発電プラント1内で消費するように電力消費量の制御(吸収制御)を行い、電力の需要と供給とのアンバランスを少なくして電力系統2における周波数変動を抑制させる。具体的には、図6に示すように、消費制御部65は、判定部66と、供給制御部67とを備えている。この発電プラント1内で消費する電力は、発電プラント1内で発電した電力でもよいし、電力系統2から供給を受けた電力としてもよい。 The consumption control unit 65 controls the power consumption (absorption control) so that the power is consumed in the power plant 1, reduces the imbalance between the demand and the supply of power, and suppresses the frequency fluctuation in the power system 2. Let me. Specifically, as shown in FIG. 6, the consumption control unit 65 includes a determination unit 66 and a supply control unit 67. The electric power consumed in the power generation plant 1 may be the electric power generated in the power generation plant 1 or the electric power supplied from the electric power system 2.
 判定部66は、電力系統2の電力変動量に対応する発電プラント1の負荷変化幅(負荷変動周期に対応する負荷変化幅)が予め設定した閾値以上か否かを判定する。閾値は、電力消費量の吸収制御を開始する境界を示しており、負荷変化幅及び負荷変動周期に対して設定される。具体的には、本実施形態では、AFCで対応できない電力変動分を吸収制御によって吸収する。このため、閾値は、ボイラ10への入熱量の制御により電力供給量を制御可能な調整領域(AFC領域)の上限値(負荷変動周期に対応する負荷変化幅)となる。閾値は、例えば図10に示すように、AFCの領域の上限の実線として設定される。本実施形態では、AFC領域において閾値が設定されている場合について説明するが、GF領域やDPC領域に対応して閾値を設定して積極的に発電プラント1内の機器へ電力供給を行うこととしてもよい。 The determination unit 66 determines whether or not the load change width (load change width corresponding to the load fluctuation cycle) of the power plant 1 corresponding to the power fluctuation amount of the power system 2 is equal to or greater than a preset threshold value. The threshold value indicates the boundary at which the absorption control of the power consumption is started, and is set for the load change width and the load change cycle. Specifically, in the present embodiment, the power fluctuation amount that cannot be handled by the AFC is absorbed by the absorption control. Therefore, the threshold value is the upper limit value (load change width corresponding to the load fluctuation cycle) of the adjustment region (AFC region) in which the power supply amount can be controlled by controlling the amount of heat input to the boiler 10. The threshold is set as a solid line at the upper limit of the AFC region, for example, as shown in FIG. In the present embodiment, the case where the threshold value is set in the AFC region will be described, but the threshold value is set corresponding to the GF region and the DPC region to positively supply power to the equipment in the power generation plant 1. May be good.
 すなわち、判定部66は、AFC領域において、負荷変化幅が閾値以上であるか否かを判定している。AFC領域とは、ボイラ10およびGV弁202の協調による出力調整が可能な負荷変化幅及び負荷変動周期の上限を下限境界としている。換言すると、AFC領域とGF領域と境界は、タービンへ供給する蒸気を発生させるボイラ10の追従性能に基づいて設定されている。そして、AFC領域は、発生した系統周波数変動に対応してボイラ10への入熱量の制御によって電力供給量の出力調整が可能な負荷変化幅及び負荷変動周期の上限を上限境界(AFC領域とDPC領域との境界)としている。本実施形態ではAFC領域に対応して上限を閾値と設定しているが、AFC領域及びDPC領域の上限(対応可能な負荷変動周期に対する負荷変化幅の上限)を閾値とすることとしてもよい。 That is, the determination unit 66 determines whether or not the load change width is equal to or greater than the threshold value in the AFC region. The lower limit boundary of the AFC region is the upper limit of the load change width and the load change cycle in which the output can be adjusted by the cooperation of the boiler 10 and the GV valve 202. In other words, the boundary between the AFC region and the GF region is set based on the follow-up performance of the boiler 10 that generates the steam supplied to the turbine. Then, in the AFC region, the upper limit boundary (AFC region and DPC) is the upper limit of the load change width and the load fluctuation cycle in which the output of the power supply amount can be adjusted by controlling the amount of heat input to the boiler 10 in response to the generated system frequency fluctuation. Boundary with the area). In the present embodiment, the upper limit is set as the threshold value corresponding to the AFC region, but the upper limit of the AFC region and the DPC region (the upper limit of the load change width with respect to the corresponding load fluctuation cycle) may be set as the threshold value.
 図10の例のように、吸収制御が行われる閾値が設定されることによって、負荷変化幅が閾値以上である領域(図10の吸収制御領域)が消費電力量の吸収制御で対応することになる。図10では、吸収制御領域は、負荷変化幅及び負荷変動周期が高くなる方向に延びて示しているが、吸収制御領域で対応可能な負荷変化幅及び負荷変動周期の範囲については、電力を吸収(消費)する補機に依存し、図10の吸収制御領域の範囲は一例である。このため、図10のように、AFC制御によって調整可能な領域(AFC領域)とあわせて吸収制御を行うことで電力変動に対応可能な領域を拡大することが可能となる。このため、発生した負荷変動周期に対してより広い範囲に柔軟に対応し、より効果的に変動を抑制することが可能となる。 As in the example of FIG. 10, by setting the threshold value at which the absorption control is performed, the region where the load change width is equal to or larger than the threshold value (absorption control region of FIG. 10) corresponds to the absorption control of the power consumption amount. Become. In FIG. 10, the absorption control region is shown extending in the direction in which the load change width and the load fluctuation cycle become higher, but the electric power is absorbed in the range of the load change width and the load fluctuation cycle that can be handled by the absorption control region. The range of the absorption control region in FIG. 10 depends on the auxiliary equipment (consumed), and is an example. Therefore, as shown in FIG. 10, it is possible to expand the region capable of responding to power fluctuations by performing absorption control together with the region (AFC region) that can be adjusted by AFC control. Therefore, it is possible to flexibly respond to the generated load fluctuation cycle in a wider range and suppress the fluctuation more effectively.
 判定部66による判定結果は、後述する供給制御部67へ出力される。 The determination result by the determination unit 66 is output to the supply control unit 67, which will be described later.
 供給制御部67は、負荷変動周期に対応する負荷変化幅が閾値以上である場合に、消費電力量の吸収制御を行う。すなわち、供給制御部67は、発電プラント1における電力を消費可能な機器へ、発電プラント1で発電した電力及び電力系統2からの電力の少なくともいずれか一方を供給する。具体的には、供給制御部67は、機器として発電プラント1において設けられた間欠動作を行う補機へ電力を供給することが好ましい。さらに好ましくは、補機へ供給した電力により一時的に何らかのエネルギとして貯蔵できることがよい。間欠動作を行う補機とは、一定時間のみ使用される機器(定常的に使用されない機器)である。供給制御部67によって電力を供給する機器は、電力を消費可能な機器であれば特に限定されない。本実施形態では、間欠動作を行う電力供給先の機器として、電動ポンプ(M-BFP)、及びヒートポンプ203を例として説明する。一時的にエネルギ貯蓄が可能な補機として、圧縮機(コンプレッサ)71、及び送水ポンプ92を例として説明する。 The supply control unit 67 performs absorption control of the electric energy when the load change width corresponding to the load fluctuation cycle is equal to or larger than the threshold value. That is, the supply control unit 67 supplies at least one of the electric power generated by the power generation plant 1 and the electric power from the electric power system 2 to the equipment capable of consuming the electric power in the power generation plant 1. Specifically, it is preferable that the supply control unit 67 supplies electric power to an auxiliary machine that is provided in the power plant 1 as an apparatus and performs an intermittent operation. More preferably, it is preferable that the electric power supplied to the auxiliary machine can be temporarily stored as some kind of energy. Auxiliary equipment that performs intermittent operation is equipment that is used only for a certain period of time (equipment that is not used regularly). The device that supplies electric power by the supply control unit 67 is not particularly limited as long as it is a device that can consume electric power. In the present embodiment, the electric pump (M-BFP) and the heat pump 203 will be described as an example of the electric power supply destination device that performs the intermittent operation. As an auxiliary machine capable of temporarily storing energy, a compressor (compressor) 71 and a water supply pump 92 will be described as an example.
 まず、補機として圧縮機71を用いる場合について説明する。すなわち、吸収制御による消費電力量を圧縮機71により発生させる。圧縮機71は、レシーバタンク72へ接続されている。発電プラント1には、圧縮空気を用いて動作する弁73が多数設けられている。これらの弁73は、例えば図11に示すように、レシーバタンク72に貯蓄された空気圧力によって、開閉動作や制御動作(開度調整)がされている。レシーバタンク72は、圧縮空気を貯蓄するため、圧縮機71に接続されている。すなわち、レシーバタンク72における圧力が所定下限値未満となると圧縮機71を駆動して、レシーバタンク72に圧縮空気が圧力が所定上限値まで補填され貯蔵される。このため、圧縮機71は、間欠動作を行うとともに、一時的に空気圧力エネルギとして貯蓄できる補機となる。 First, a case where the compressor 71 is used as an auxiliary machine will be described. That is, the power consumption by the absorption control is generated by the compressor 71. The compressor 71 is connected to the receiver tank 72. The power plant 1 is provided with a large number of valves 73 that operate using compressed air. As shown in FIG. 11, for example, these valves 73 are opened / closed and controlled (opening adjustment) by the air pressure stored in the receiver tank 72. The receiver tank 72 is connected to the compressor 71 to store compressed air. That is, when the pressure in the receiver tank 72 becomes less than the predetermined lower limit value, the compressor 71 is driven, and the compressed air is replenished to the predetermined upper limit value and stored in the receiver tank 72. Therefore, the compressor 71 is an auxiliary machine that can perform intermittent operation and temporarily store it as air pressure energy.
 供給制御部67からの電力消費をする吸収制御に対応する指令によって圧縮機71へ電力を供給することによって、発電プラント1で発電された電力の一部を消費することにより、及び/または、電力系統2から供給される電力を消費することにより、電力系統2の電力変動を発電プラント1において吸収して圧縮機71で消費することができる。すなわち、電力を空気圧力としてレシーバタンク72へ貯蓄することができ、電力変動による電力を有効活用することが可能となる。貯蓄されたレシーバタンク72の圧力は、弁73の開閉動作や制御動作時に用いられる。 By supplying power to the compressor 71 according to a command corresponding to the absorption control that consumes power from the supply control unit 67, by consuming a part of the power generated by the power plant 1, and / or by power. By consuming the electric power supplied from the system 2, the electric power fluctuation of the electric power system 2 can be absorbed by the power plant 1 and consumed by the compressor 71. That is, the electric power can be stored in the receiver tank 72 as air pressure, and the electric power due to the electric power fluctuation can be effectively utilized. The stored pressure of the receiver tank 72 is used during the opening / closing operation and the control operation of the valve 73.
 次に、補機として電動ポンプ(M-BFP)を用いる場合について説明する。すなわち、吸収制御による消費電力量を、電気駆動のボイラ給水ポンプ(M-BFP)により発生させる。図4に示したボイラ給水ポンプ123は、例えば図12のように蒸気駆動のボイラ給水ポンプ(T-BFP)と、M-BFPとが並列に接続されていてもよい。M-BFPは、ボイラ10へ給水を供給するポンプである。例えばボイラ給水のポンプは図12のように構成されている。T-BFPは、発電プラント1の所内蒸気(例えば中圧タービン排気)が調整弁82を介して蒸気タービン81へ供給され、該蒸気のエネルギが回転力に変換され、T-BFPが駆動される。M-BFPは、電力を用いてモータ85が駆動され、そしてM-BFPが駆動される。なおM-BFP側を流通する給水の量は弁84で調整可能とされる。このように、M-BFPは電動ポンプとなる。 Next, a case where an electric pump (M-BFP) is used as an auxiliary machine will be described. That is, the power consumption by the absorption control is generated by the electrically driven boiler water supply pump (M-BFP). In the boiler water supply pump 123 shown in FIG. 4, for example, as shown in FIG. 12, a steam-driven boiler water supply pump (T-BFP) and an M-BFP may be connected in parallel. The M-BFP is a pump that supplies water to the boiler 10. For example, the boiler water supply pump is configured as shown in FIG. In the T-BFP, the steam inside the power plant 1 (for example, the exhaust of the medium pressure turbine) is supplied to the steam turbine 81 via the regulating valve 82, the energy of the steam is converted into rotational force, and the T-BFP is driven. .. In the M-BFP, the motor 85 is driven by electric power, and the M-BFP is driven. The amount of water supplied to the M-BFP side can be adjusted by the valve 84. In this way, the M-BFP becomes an electric pump.
 ボイラ給水ポンプ123は、例えば、定常状態においてはT-BFPによって給水がボイラ10へ供給され、発電プラント1の起動時や発電負荷変化時にM-BFPも駆動され、ボイラ10への給水量が所定値となるように調整されるものがある。すなわち、発電プラント1の起動時や発電負荷変化時には、T-BFPとM-BFPが並列して駆動されることによって、ボイラ10への給水量が安定化される。 In the boiler water supply pump 123, for example, in a steady state, water is supplied to the boiler 10 by the T-BFP, and the M-BFP is also driven when the power plant 1 starts up or when the power generation load changes, so that the amount of water supplied to the boiler 10 is predetermined. Some are adjusted to be values. That is, when the power plant 1 is started up or when the power generation load changes, the T-BFP and the M-BFP are driven in parallel, so that the amount of water supplied to the boiler 10 is stabilized.
 供給制御部67は、M-BFPへ電力を供給して電力を消費することにより、電力系統2の電力変動を発電プラント1において吸収してM-BFPで消費させる(吸収制御)。具体的には、M-BFPを起動してボイラ10への給水を行うこととすることで、電力変動をM-BFPで吸収することが可能となる。電力変動に対応した電力のままでM-BFPを駆動した場合、M-BFPによる給水供給量が変動する可能性がある。しかしながら、M-BFPに対して設けた弁84で流量調整を行うことによって、例えば図13のように、M-BFPにおける給水流量の変動を抑制することができる。またM-BFPのモータ85をインバータ制御可能としておき、弁84の流量調整と合わせて制御することで、M-BFPにおける給水流量の変動を調整してもよい。 The supply control unit 67 supplies power to the M-BFP and consumes the power, so that the power fluctuation of the power system 2 is absorbed by the power plant 1 and consumed by the M-BFP (absorption control). Specifically, by starting the M-BFP and supplying water to the boiler 10, it is possible for the M-BFP to absorb power fluctuations. When the M-BFP is driven with the electric power corresponding to the electric power fluctuation, the water supply amount by the M-BFP may fluctuate. However, by adjusting the flow rate with the valve 84 provided for the M-BFP, it is possible to suppress fluctuations in the water supply flow rate in the M-BFP, for example, as shown in FIG. Further, the fluctuation of the water supply flow rate in the M-BFP may be adjusted by setting the motor 85 of the M-BFP to be controllable by the inverter and controlling the motor 85 in combination with the flow rate adjustment of the valve 84.
 T-BFPとM-BFPとを並列して運用することとしてもよい。この場合には、例えば図14のように、M-BFPで電力変動を吸収しながら駆動し、T-BFPについても蒸気によって駆動する。このようにすることで、T-BFPを駆動するための蒸気使用量を低減することができ、M-BFPの電力変動等による給水流量の変動を、T-BFPに供給する蒸気量(調整弁82による流量調整)の制御によって吸収して、ボイラ10への給水流量の変動を抑制することができる。図14のように、ボイラ10へ供給される給水流量と、目標流量との誤差ΔFを小さくして、安定的に給水供給をすることができる。すなわち、ボイラ10への給水流量の変動を抑制しつつ、M-BFPで電力系統2の電力変動を吸収することができる。 T-BFP and M-BFP may be operated in parallel. In this case, for example, as shown in FIG. 14, the M-BFP is driven while absorbing the power fluctuation, and the T-BFP is also driven by steam. By doing so, the amount of steam used to drive the T-BFP can be reduced, and the amount of steam (regulatory valve) that supplies the fluctuation of the water supply flow rate due to the fluctuation of the electric power of the M-BFP to the T-BFP. It is possible to suppress fluctuations in the flow rate of water supplied to the boiler 10 by absorbing it by controlling the flow rate adjustment by 82). As shown in FIG. 14, it is possible to stably supply water by reducing the error ΔF between the water supply flow rate supplied to the boiler 10 and the target flow rate. That is, the M-BFP can absorb the power fluctuation of the power system 2 while suppressing the fluctuation of the water supply flow rate to the boiler 10.
 次に、補機としてヒートポンプ203を用いる場合について説明する。すなわち、吸収制御による消費電力量を、ヒートポンプ203により発生させる。ヒートポンプ203は、水を加熱する加熱器である。ヒートポンプ203は温水を需要先へ供給する装置である。例えば、ヒートポンプ203はボイラ給水を加熱することとしてもよい。ヒートポンプ203は、例えば、図15のように、ボイラ10の上流側であって、高圧給水ヒータ124の下流側、あるいは並列に設けられる。 Next, a case where the heat pump 203 is used as an auxiliary machine will be described. That is, the power consumption by the absorption control is generated by the heat pump 203. The heat pump 203 is a heater that heats water. The heat pump 203 is a device that supplies hot water to a demand destination. For example, the heat pump 203 may heat the boiler feed water. The heat pump 203 is provided, for example, on the upstream side of the boiler 10 and on the downstream side of the high-pressure water supply heater 124, or in parallel, as shown in FIG.
 供給制御部67によってヒートポンプ203を駆動して電力を消費することにより、電力系統2の電力変動を発電プラント1において消費することができる(吸収制御)。ヒートポンプ203は、例えば電気抵抗体を用いた電気ヒータなどを使用してもよい。ヒートポンプ203を使用することによって、例えば電気ヒータと比較して効率よく加熱を行うことが可能となる。 By driving the heat pump 203 by the supply control unit 67 to consume electric power, the electric power fluctuation of the electric power system 2 can be consumed in the power generation plant 1 (absorption control). As the heat pump 203, for example, an electric heater using an electric resistor may be used. By using the heat pump 203, it is possible to perform heating more efficiently than, for example, an electric heater.
 次に、補機として送水ポンプ92を用いる場合について説明する。すなわち、吸収制御による消費電力量を、純水生成の送水ポンプ92により発生させる。送水ポンプ92は、タンクへ水を送るポンプである。例えば発電プラント1においては、図16に示すように、原水(例えば、工場用水や市水など)から純水(ボイラ10へ補給水として供給するために不純物の除去などの処理がされた水など)を生成している。具体的には、図16に示すように、原水タンク91に貯められている原水を、送水ポンプ92によってイオン交換部93へ送り、純水として純水タンク94へ貯める。送水ポンプ92は、純水生成をして貯蓄する時に稼働される。 Next, a case where the water supply pump 92 is used as an auxiliary machine will be described. That is, the power consumption by the absorption control is generated by the water supply pump 92 for producing pure water. The water supply pump 92 is a pump that sends water to the tank. For example, in the power plant 1, as shown in FIG. 16, water that has been treated such as removing impurities to supply pure water (for example, factory water, city water, etc.) to pure water (for supply to the boiler 10 as make-up water), etc. ) Is generated. Specifically, as shown in FIG. 16, the raw water stored in the raw water tank 91 is sent to the ion exchange unit 93 by the water supply pump 92 and stored as pure water in the pure water tank 94. The water supply pump 92 is operated when pure water is generated and stored.
 供給制御部67によって送水ポンプ92を駆動して電力を消費することにより、電力系統2の電力変動を発電プラント1において吸収することができる。すなわち、消費電力量が必要な時に稼働されることで、送水ポンプ92を、電力系統2の電力変動分を一時的に純水製造用エネルギとして貯蓄できる補機とすることが可能となる。 By driving the water supply pump 92 by the supply control unit 67 to consume electric power, the electric power fluctuation of the electric power system 2 can be absorbed in the power generation plant 1. That is, by operating the water supply pump 92 when the power consumption is required, the water supply pump 92 can be used as an auxiliary machine capable of temporarily storing the power fluctuation portion of the power system 2 as energy for pure water production.
 本実施形態では、電力を消費する機器として圧縮機71、電動ポンプ(M-BFP)、ヒートポンプ203、送水ポンプ92を例示して説明したが、供給制御部67からの電力消費をする吸収制御に対応する指令によって電力を消費することが可能な機器であれば上記に限定されず、供給制御部67によって電力系統2の電力変動に伴う電力を消費することができる。 In the present embodiment, the compressor 71, the electric pump (M-BFP), the heat pump 203, and the water supply pump 92 have been illustrated as devices that consume electric power, but the absorption control that consumes electric power from the supply control unit 67 has been described. The device is not limited to the above as long as it is a device capable of consuming electric power according to the corresponding command, and the supply control unit 67 can consume electric power due to the electric power fluctuation of the electric power system 2.
 次に、上述の制御装置60による電力調整の処理の一例について図17を参照して説明する。
 図17は、本実施形態に係る電力調整の処理の手順の一例を示すフローチャートである。図17に示すフローは、例えば、発電プラント1が稼働している場合において所定の制御周期で繰り返し実行される。
Next, an example of the power adjustment process by the control device 60 described above will be described with reference to FIG.
FIG. 17 is a flowchart showing an example of the procedure of the power adjustment process according to the present embodiment. The flow shown in FIG. 17 is repeatedly executed at a predetermined control cycle, for example, when the power plant 1 is in operation.
 まず、電力会社(中給指令)から送信される制御信号(負荷増減信号)に基づき、負荷変動周期に対応する負荷変化幅が閾値以上であるか否かを判定する(S101)。 First, based on the control signal (load increase / decrease signal) transmitted from the electric power company (middle supply command), it is determined whether or not the load change width corresponding to the load fluctuation cycle is equal to or greater than the threshold value (S101).
 負荷変化幅が閾値以上でない場合(S101のNO判定)には、AFC制御を実行して効果的に変動に対応した電力供給量出力制御を実行して、電力系統2の周波数変動を抑制する(S102)。 When the load change width is not equal to or greater than the threshold value (NO determination in S101), the AFC control is executed to effectively execute the power supply amount output control corresponding to the fluctuation to suppress the frequency fluctuation of the power system 2 (NO determination in the power system 2). S102).
 負荷変化幅が閾値以上である場合(S101のYES判定)には、AFC制御に加えて電力を消費可能な機器にて吸収し、電力系統2の周波数変動を抑制する(S103)。 When the load change width is equal to or greater than the threshold value (YES determination in S101), the power is absorbed by a device that can consume power in addition to the AFC control, and the frequency fluctuation of the power system 2 is suppressed (S103).
 次に、上述の電力調整の処理による効果について図18及び図19を参照して説明する。
 図18は、参考例として、電力調整の処理を行わない場合を示している。図19は、本実施形態のように電力調整の処理を行う場合を示している。図19に示す図は、効果のイメージを示した図であり一例である。
Next, the effect of the above-mentioned power adjustment process will be described with reference to FIGS. 18 and 19.
FIG. 18 shows a case where the power adjustment process is not performed as a reference example. FIG. 19 shows a case where the power adjustment process is performed as in the present embodiment. The figure shown in FIG. 19 is a diagram showing an image of the effect and is an example.
 図18(紙面上側)では、参考例において、発電プラント1から電力系統2への供給電力量(送電量=発電プラント1の発電による電力供給量-発電プラント1内で消費される電力消費量)から電力系統2における電力消費量(デマンド)を引いた値を電力量差として、時間に対する変動を示している。電力調整の処理を行わない場合には、電力量差が大きく生じてしまう。このため、図18の紙面下側に示すように、該電力量差に伴って、電力系統2において周波数変動が発生する。すなわち、電力量差が正(送電量がデマンドより大きい)の場合には、電力系統2における周波数は上昇する。電力量差が負(送電量の方がデマンドより小さい)の場合には、電力系統2における周波数は低下する。このように、電力調整の処理を行わない場合には電力量差を低く保つことが困難のため、電力系統2において発生した周波数変動を抑制することは困難となる。 In FIG. 18 (upper side of the paper), in the reference example, the amount of power supplied from the power plant 1 to the power system 2 (transmission amount = power supply amount by power generation of the power plant 1-power consumption amount consumed in the power plant 1). The value obtained by subtracting the power consumption (demand) in the power system 2 from the power system 2 is used as the power amount difference, and the fluctuation with time is shown. If the power adjustment process is not performed, a large difference in electric energy will occur. Therefore, as shown on the lower side of the paper in FIG. 18, frequency fluctuation occurs in the power system 2 due to the difference in electric energy. That is, when the difference in electric energy is positive (the amount of power transmitted is larger than the demand), the frequency in the electric power system 2 increases. When the difference in electric energy is negative (the electric energy is smaller than the demand), the frequency in the electric power system 2 decreases. As described above, when the power adjustment process is not performed, it is difficult to keep the difference in electric energy low, so that it is difficult to suppress the frequency fluctuation generated in the power system 2.
 これに対して、図19(紙面上側)では、発電プラント1から電力系統2へ供給される電力量(送電量=発電プラント1の発電による電力供給量-発電プラント1内で消費される電力量-電力系統2から発電プラント1に供給して消費される電力消費量)から、電力系統2から発電プラント1に要求される電力量(デマンド)を引いた値を電力量差として、時間に対する変動を示している。図19において、例えば、紙面上側図に示した電力量差A1の電力変動は、GF制御やAFC制御によって抑制をすることが可能である。一方、GF制御やAFC制御では変動抑制可能な電力量差に上限があるが、さらに発電プラント1内の機器で電力を消費する吸収制御も行うことによって、例えば電力量差A2の電力変動も抑制することが可能となる。このため、電力系統2における周波数変動は例えば図19の紙面下側に示すように、周波数が増加する方向の変動がほとんど発生しなくなり、また周波数が減少する方向の変動も小さくなる。このため、周波数変動の発生は少なくなる。 On the other hand, in FIG. 19 (upper side of the paper), the amount of power supplied from the power plant 1 to the power system 2 (transmission amount = power supply amount by power generation of the power plant 1-power consumption in the power plant 1). -Fluctuation with respect to time as the difference in electric energy, which is the value obtained by subtracting the electric energy (demand) required for the power plant 1 from the electric energy system 2 from the electric energy consumed by supplying the electric power system 2 to the power plant 1. Is shown. In FIG. 19, for example, the power fluctuation of the electric energy difference A1 shown in the upper view of the paper can be suppressed by GF control or AFC control. On the other hand, in GF control and AFC control, there is an upper limit to the difference in electric energy that can be suppressed, but by also performing absorption control that consumes electric power in the equipment in the power plant 1, for example, the electric energy fluctuation in the electric energy difference A2 is also suppressed. It becomes possible to do. Therefore, as shown on the lower side of the paper in FIG. 19, for example, the frequency fluctuation in the power system 2 hardly occurs in the direction in which the frequency increases, and the fluctuation in the direction in which the frequency decreases also becomes small. Therefore, the occurrence of frequency fluctuation is reduced.
 図19の例では、周波数が低下する方向の周波数変動が発生しているが、発電プラント1において蓄電池等を設け、放電を制御して発電プラント1内での不足する電力供給量を補うように放電することによって、該周波数が低下する方向の周波数変動についてもさらに抑制することが可能となる。 In the example of FIG. 19, the frequency fluctuates in the direction of decreasing frequency, but a storage battery or the like is provided in the power plant 1 to control the discharge to compensate for the insufficient power supply amount in the power plant 1. By discharging, it becomes possible to further suppress the frequency fluctuation in the direction in which the frequency decreases.
 次に、吸収制御を行った場合の吸収量について説明する。 Next, the amount of absorption when absorption control is performed will be described.
 電力を消費可能な機器には、機器ごとに応答時間が存在する。応答時間とは、機器が起動して電力が消費できるようになるまでの時間である。発電プラント1における電力消費に使用可能な機器により、電力を消費する電力量と応答時間との関係は、例えば図20のように表される。図20の特性は一例であり、このような特性は電力消費のために使用可能な機器によって異なる。図20のような特性は、発電プラント1における各機器の運転実績(例えば発電プラント1内で消費される電力量の変動の実績など)から推定することとしてもよいし、各機器の仕様を用いて設定することとしてもよい。 For devices that can consume power, there is a response time for each device. Response time is the time it takes for a device to start up and consume power. Depending on the equipment that can be used for power consumption in the power plant 1, the relationship between the amount of power consumed and the response time is shown, for example, as shown in FIG. The characteristics of FIG. 20 are an example, and such characteristics vary depending on the equipment available for power consumption. The characteristics as shown in FIG. 20 may be estimated from the operation results of each device in the power plant 1 (for example, the record of fluctuations in the amount of power consumed in the power plant 1), or the specifications of each device may be used. It may be set as follows.
 図20では、発電プラント1内におけるある時点での機器の運転状態における電力量をL1として実線で示し、停止可能な機器を停止した場合の電力量をL2として一点鎖線で示し、各機器の消費電力量を合算した設備容量(合計電力量)をL3として破線で示している。すなわち、ある時点C1での運転状態に対して、各機器の起動により電力消費をして吸収可能な電力量であるΔW1は、ΔW1=(L3-L1)となる。停止可能な機器を停止する場合には、送出可能な電力量であるΔW2は、ΔW2=(L1-L2)となる。起動あるいは停止が可能な機器の一例としては、例えば、圧縮機71のように、レシーバタンク72内の圧力が発電プラント1の運転継続に影響のない範囲であれば一時的に起動あるいは停止が可能である。すなわち、起動可能な機器を一時的に起動させることで、発電プラント1から電力系統2へ供給電力量が過剰となった場合に電力消費による吸収制御を実施することができる。停止可能な機器を一時的に停止させることによって、発電プラント1から電力系統2へ供給可能となる電力量が一時的に増加するため、前述の蓄電池等を設置する場合と同様に、電力系統2の周波数低下抑制の一助とすることが可能となる。 In FIG. 20, the electric energy in the operating state of the equipment at a certain time in the power plant 1 is shown by a solid line as L1, and the electric power when the equipment that can be stopped is stopped is shown by a single point chain line as L2, and the consumption of each equipment is shown. The installed capacity (total electric energy) including the total electric energy is shown by a broken line as L3. That is, ΔW1 = (L3-L1), which is the amount of electric power that can be absorbed by consuming electric power by starting each device with respect to the operating state at a certain time point C1. When stopping the device that can be stopped, ΔW2, which is the amount of power that can be transmitted, becomes ΔW2 = (L1-L2). As an example of equipment that can be started or stopped, for example, as in the compressor 71, if the pressure in the receiver tank 72 does not affect the continuation of operation of the power plant 1, it can be temporarily started or stopped. Is. That is, by temporarily starting the startable device, it is possible to carry out absorption control by power consumption when the amount of power supplied from the power generation plant 1 to the power system 2 becomes excessive. By temporarily stopping the equipment that can be stopped, the amount of power that can be supplied from the power plant 1 to the power system 2 temporarily increases. Therefore, as in the case of installing the storage battery or the like described above, the power system 2 It is possible to help suppress the frequency decrease of.
 機器起動により吸収可能な電力量や機器停止により送出可能な電力量は、発電プラント1内における各機器の運転状態によって変化する。例えば図20において運転状態C1と運転状態C2を想定した場合には、運転状態C1から起動可能な機器を起動した場合には吸収可能な電力量はΔW1となり、運転状態C2から起動可能な機器を起動した場合には吸収可能な電力量はΔW3となる。一方、停止可能な機器を停止する場合には、送出可能な電力量は、運転状態C1、C2においてそれぞれΔW2,ΔW4となる。 The amount of power that can be absorbed by starting the equipment and the amount of power that can be transmitted by stopping the equipment changes depending on the operating state of each equipment in the power plant 1. For example, assuming the operating state C1 and the operating state C2 in FIG. 20, when the device that can be started from the operating state C1 is started, the amount of electric power that can be absorbed is ΔW1, and the device that can be started from the operating state C2 is displayed. When started, the amount of power that can be absorbed is ΔW3. On the other hand, when the stoptable device is stopped, the amount of electric power that can be transmitted is ΔW2 and ΔW4, respectively, in the operating states C1 and C2.
 吸収可能量(ΔW1及びΔW3)と応答可能時間との関係は、図21のようになる。図21では、停止している機器を順次(1台ずつまたは複数台同時)起動した場合を示している。すなわち、運転状態C1の方が運転状態C2よりも吸収可能量が大きくなる。このため、発電プラント1内における各機器の稼働状況に基づいて、例えば図22に示すように、閾値以上の領域において、運転状態C2よりも吸収可能量が大きい運転状態C1については、より広い範囲をカバーすることが可能となる。AFC領域を超える領域において電力消費量の吸収制御を行うことによって、より効果的に電力変動の吸収を行うことが可能となる。 The relationship between the absorbable amount (ΔW1 and ΔW3) and the responsive time is as shown in FIG. FIG. 21 shows a case where stopped devices are started in sequence (one by one or a plurality of devices at the same time). That is, the amount that can be absorbed in the operating state C1 is larger than that in the operating state C2. Therefore, based on the operating status of each device in the power plant 1, for example, as shown in FIG. 22, the operating state C1 having a larger absorbable amount than the operating state C2 in the region above the threshold value has a wider range. Can be covered. By controlling the absorption of power consumption in a region exceeding the AFC region, it becomes possible to absorb power fluctuations more effectively.
 次に、閾値の設定について説明する。 Next, the threshold setting will be described.
 本実施形態では、AFCで対応可能な負荷変化幅(負荷変動周期に対応する負荷変化幅)以上の電力変動に対して、吸収制御を行う。このため、閾値は、AFCで対応可能な負荷変化幅の上限として設定される。換言すると、閾値は、電力短周期成分に対してボイラ10への入熱量(燃料供給量)で対応可能な負荷変化幅の上限として設定される。閾値は、例えば、負荷変化幅が±5%、負荷変化速度が1%/min等として設定される。 In this embodiment, absorption control is performed for power fluctuations equal to or larger than the load change width (load change width corresponding to the load fluctuation cycle) that can be handled by AFC. Therefore, the threshold value is set as the upper limit of the load change width that can be handled by AFC. In other words, the threshold value is set as the upper limit of the load change width that can be dealt with by the amount of heat input (fuel supply amount) to the boiler 10 for the short-period electric power component. The threshold values are set, for example, as a load change width of ± 5%, a load change speed of 1% / min, and the like.
 閾値については、AFCで対応可能な負荷変化幅の上限として、発電プラント1の運転状況や気象状況等に応じて適宜設定されることとしてもよい。具体的には、AFC指令の変化度合いや気象状況の変化などに応じて設定されることとしてもよい。この場合には、予め設定した制御則(ルールベース)に基づいて閾値を設定することとしてもよいし、AI等によって、学習済モデルを用いて閾値を設定することとしてもよい。 The threshold value may be appropriately set as the upper limit of the load change range that can be handled by AFC according to the operating conditions and weather conditions of the power plant 1. Specifically, it may be set according to the degree of change of the AFC directive, the change of the weather condition, and the like. In this case, the threshold value may be set based on a preset control rule (rule base), or the threshold value may be set using a trained model by AI or the like.
 閾値が適切な値に設定されることによって、より効果的に電力系統2における電力変動分を発電プラント1において電力消費量を吸収制御により吸収し、効果的に変動に対応した電力供給量の出力制御を実行して、電力系統2の周波数変動を抑制することが可能となる。 By setting the threshold value to an appropriate value, the power fluctuation amount in the power system 2 is more effectively absorbed by the power generation plant 1 by the absorption control, and the output of the power supply amount corresponding to the fluctuation effectively. It is possible to execute control and suppress frequency fluctuations in the power system 2.
 以上説明したように、本実施形態に係る電力調整システム及び発電プラント1、並びに電力調整方法、並びに電力調整プログラムによれば、電力系統2の需給電力の変動により発電プラント1へ要求される負荷変化量(負荷変化幅)が閾値未満である場合には、発電プラント1における電力を消費可能な機器へ電力を供給するため、電力変動分を機器で消費することができる。このため、電力系統2における電力変動を抑制することが可能となる。 As described above, according to the power adjustment system and the power plant 1 according to the present embodiment, the power adjustment method, and the power adjustment program, the load change required for the power plant 1 due to the fluctuation of the supply and demand power of the power system 2. When the amount (load change width) is less than the threshold value, the electric power in the power plant 1 is supplied to the equipment that can consume the electric power, so that the electric power fluctuation amount can be consumed by the electric power. Therefore, it is possible to suppress power fluctuations in the power system 2.
 発電プラント1に電力変動抑制のための機能(例えばAFC等)が設けられている場合には、該機能と併用することによって発電プラント1として、電力供給量の放出制御と、電力消費量の吸収制御とを用いることで、対応可能な電力変動幅を拡大することも可能となる。 When the power generation plant 1 is provided with a function for suppressing power fluctuations (for example, AFC), the power generation plant 1 can control the release of the power supply amount and absorb the power consumption amount by using the function in combination with the function. By using control, it is possible to expand the range of power fluctuations that can be handled.
 負荷変動量及び負荷変動周期に対して設定され、AFC領域を対象として負荷変動量と閾値とを比較している。このため、ボイラ10への入熱量の制御により電力供給量を制御可能な調整領域であるAFC領域において、それを超過する負荷変動が必要となった場合は、機器で電力を消費する吸収制御を使用して電力変動を抑制することができる。このため、AFC領域に余裕をもたせることができ、AFC領域の拡大を図ることも可能となる。 It is set for the load fluctuation amount and the load fluctuation cycle, and the load fluctuation amount and the threshold value are compared for the AFC region. Therefore, in the AFC region, which is an adjustment region in which the amount of power supplied to the boiler 10 can be controlled by controlling the amount of heat input, if a load fluctuation exceeding that is required, absorption control that consumes power in the device is performed. It can be used to suppress power fluctuations. Therefore, a margin can be provided in the AFC region, and the AFC region can be expanded.
 間欠動作をしている機器へ電力を供給することができるため、電力系統2の電力変動を発電プラント1において電力消費して吸収することが可能となる、さらに、別の形態のエネルギとして貯蔵することが可能となる機器もある。例えば、レシーバタンク72へ接続された圧縮機71を駆動することにより、電力系統2の電力変動を発電プラント1において空気圧力として吸収・貯蔵することが可能となる。またボイラ10へ給水を供給する電気駆動の給水ポンプ(M-BFP)を駆動することにより電力を消費することができるため、電力系統2の電力変動を発電プラント1において吸収することが可能となる。M-BFPを稼働することによって、蒸気駆動の給水ポンプ(T-BFP)で使用する蒸気量を低減しつつ、ボイラ10へ給水を供給することができ、電力変動による消費が望ましい余剰電力を有効活用してボイラ10への安定した給水流量を維持することが可能となる。水を加熱するヒートポンプ203へ電力を供給することができるため、電力系統2の電力変動を発電プラント1において電力消費して吸収することが可能となる。ヒートポンプ203を稼働することによって、水の加熱を行うことができ、電力変動による消費が望ましい余剰電力を有効活用することが可能となる。タンクへ水を送る送水ポンプ92へ電力を供給することができるため、電力系統2の電力変動を発電プラント1において電力消費して吸収することが可能となる。電力変動による消費が望ましい余剰電力を有効活用することが可能となる。送水ポンプ92を稼働することによって、純水の生成及び純水の輸送・貯蔵を行うことができ、電力変動による消費が望ましい余剰電力を有効活用することが可能となる。 Since power can be supplied to the equipment that is performing intermittent operation, the power fluctuation of the power system 2 can be consumed and absorbed in the power plant 1, and further stored as another form of energy. There are also devices that can do this. For example, by driving the compressor 71 connected to the receiver tank 72, it becomes possible to absorb and store the power fluctuation of the power system 2 as air pressure in the power generation plant 1. Further, since electric power can be consumed by driving an electrically driven water supply pump (M-BFP) that supplies electric power to the boiler 10, electric power fluctuations in the electric power system 2 can be absorbed in the power plant 1. .. By operating the M-BFP, it is possible to supply water to the boiler 10 while reducing the amount of steam used in the steam-driven water supply pump (T-BFP), and effective surplus power that is desirable to be consumed due to power fluctuations. It is possible to maintain a stable water supply flow rate to the boiler 10 by utilizing it. Since electric power can be supplied to the heat pump 203 that heats water, it is possible to consume and absorb electric power fluctuations in the electric power system 2 in the power plant 1. By operating the heat pump 203, water can be heated, and surplus electric power, which is desirable to be consumed due to electric power fluctuation, can be effectively utilized. Since the electric power can be supplied to the water pump 92 that sends water to the tank, the electric power fluctuation of the electric power system 2 can be consumed and absorbed in the power plant 1. It is possible to effectively utilize surplus power, which is desirable to be consumed due to power fluctuations. By operating the water supply pump 92, it is possible to generate pure water and transport / store pure water, and it is possible to effectively utilize surplus electric power that is desirable to be consumed due to electric power fluctuation.
 本開示は、上述の実施形態のみに限定されるものではなく、発明の要旨を逸脱しない範囲において、種々変形実施が可能である。 The present disclosure is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the invention.
 以上説明した各実施形態に記載の電力調整システム及び発電プラント(1)、並びに電力調整方法、並びに電力調整プログラムは例えば以下のように把握される。
 本開示に係る電力調整システム(60)は、電力系統(2)の需給電力量の変動により発電プラント(1)へ要求される負荷変化量が予め設定した閾値以上であるか否かを判定する判定部(66)と、前記負荷変化量が前記閾値以上である場合に、前記発電プラント(1)における電力を消費可能な機器へ前記発電プラント(1)で発電した電力及び前記電力系統(2)からの電力の少なくともいずれか一方を供給する供給制御部(67)とを備える。
The electric power adjustment system and power plant (1) described in each of the above-described embodiments, the electric power adjustment method, and the electric power adjustment program are grasped as follows, for example.
The power adjustment system (60) according to the present disclosure determines whether or not the load change amount required for the power plant (1) due to the fluctuation of the supply and demand power amount of the power system (2) is equal to or more than a preset threshold value. When the load change amount is equal to or greater than the threshold value, the power generated by the power plant (1) and the power system (2) are generated by the determination unit (66) and the equipment capable of consuming the power in the power plant (1). ) Is provided with a supply control unit (67) that supplies at least one of the electric powers from the).
 本開示に係る電力調整システム(60)によれば、電力系統(2)の電力変動による発電プラント(1)の電力供給量の変化量に対応する負荷変化量(負荷変化幅)が予め設定した閾値以上である場合には、発電プラント(1)における電力を消費可能な機器へ電力を供給するため、電力変動で消費が望ましい余剰電力分の一部を機器で有効利用して消費することができる。このため、電力系統(2)における電力変動を抑制することが可能となり、電力系統(2)における周波数変動を抑制することができる。 According to the power adjustment system (60) according to the present disclosure, the load change amount (load change width) corresponding to the change amount of the power supply amount of the power plant (1) due to the power fluctuation of the power system (2) is set in advance. If it is above the threshold, the power is supplied to the equipment that can consume the power in the power plant (1), so that the equipment can effectively utilize and consume a part of the surplus power that is desirable to be consumed due to power fluctuations. can. Therefore, it is possible to suppress the power fluctuation in the power system (2), and it is possible to suppress the frequency fluctuation in the power system (2).
 発電プラント(1)に電力変動抑制のための機能(例えばAFC等)が設けられている場合には、該機能と併用することによって発電プラント(1)として対応可能な電力供給量の変動幅を拡大することも可能となり、効果的に変動に対応した電力供給量の変化量の制御を行うことが可能となる。 If the power plant (1) is provided with a function for suppressing power fluctuations (for example, AFC), the fluctuation range of the power supply amount that can be handled by the power plant (1) by using the function in combination with the function can be determined. It is also possible to expand, and it is possible to effectively control the amount of change in the amount of power supply in response to fluctuations.
 本開示に係る電力調整システム(60)は、前記閾値は、ボイラ(10)への入熱量の制御により前記発電プラント(1)の電力供給量を制御可能な領域を調整領域として、前記調整領域における負荷変動周期に対応した負荷変化量の上限値として設定されていることとしてもよい。 In the power adjustment system (60) according to the present disclosure, the threshold value is set to the adjustment area in which the power supply amount of the power plant (1) can be controlled by controlling the amount of heat input to the boiler (10). It may be set as an upper limit value of the load change amount corresponding to the load fluctuation cycle in.
 本開示に係る電力調整システム(60)によれば、閾値が、ボイラ(10)への入熱量の制御により電力供給量を制御可能な調整領域における負荷変動周期に対応した負荷変化量の上限値として設定されているため、ボイラへの入熱量で対応できない場合であっても吸収制御をして電力変動を抑制することができる。 According to the power adjustment system (60) according to the present disclosure, the threshold value is the upper limit value of the load change amount corresponding to the load fluctuation cycle in the adjustment region where the power supply amount can be controlled by controlling the amount of heat input to the boiler (10). Therefore, even if the amount of heat input to the boiler is not sufficient, absorption control can be performed to suppress power fluctuations.
 本開示に係る電力調整システム(60)は、前記供給制御部(67)は、前記機器として前記発電プラント(1)において設けられた間欠動作を行う補機へ電力を供給することとしてもよい。 In the power adjustment system (60) according to the present disclosure, the supply control unit (67) may supply power to an auxiliary machine that performs intermittent operation provided in the power plant (1) as the equipment.
 本開示に係る電力調整システム(60)によれば、間欠動作をしている機器へ電力を供給することで消費が望ましい余剰電力分の一部を有効利用するができるため、電力系統(2)の電力変動を発電プラント(1)において吸収することが可能となる。間欠動作機器を駆動することで、電力を一時的に別のエネルギとして貯蓄することを図ることもできる。 According to the power adjustment system (60) according to the present disclosure, it is possible to effectively use a part of the surplus power that is desirable to be consumed by supplying power to the device that is operating intermittently. Therefore, the power system (2) It becomes possible to absorb the power fluctuation of the above in the power generation plant (1). By driving the intermittent operation device, it is possible to temporarily store electric power as another energy.
 本開示に係る電力調整システム(60)は、前記機器は、レシーバタンク(72)へ接続された圧縮機(71)であることとしてもよい。 In the power adjustment system (60) according to the present disclosure, the device may be a compressor (71) connected to a receiver tank (72).
 本開示に係る電力調整システム(60)によれば、レシーバタンク(72)へ接続された圧縮機(71)へ電力を供給することができるため、電力系統(2)の電力変動を発電プラント(1)において電力消費して吸収することが可能となる。圧縮機(71)を稼働することによって、電力を空気圧力エネルギとしてレシーバタンク(72)へ貯蓄することができ、電力変動による消費が望ましい余剰電力分の一部の電力を有効活用することが可能となる。 According to the power adjustment system (60) according to the present disclosure, power can be supplied to the compressor (71) connected to the receiver tank (72), so that the power fluctuation of the power system (2) can be caused by the power generation plant (2). In 1), it becomes possible to consume and absorb electric power. By operating the compressor (71), electric power can be stored in the receiver tank (72) as air pressure energy, and it is possible to effectively utilize a part of the surplus electric power that is desirable to be consumed due to electric power fluctuation. It becomes.
 本開示に係る電力調整システム(60)は、前記機器は、ボイラ(10)へ給水を供給する電気駆動ポンプ(M-BFP)であることとしてもよい。 In the power adjustment system (60) according to the present disclosure, the device may be an electric drive pump (M-BFP) that supplies water to the boiler (10).
 本開示に係る電力調整システム(60)によれば、ボイラ(10)へ給水を供給する電気駆動ポンプ(M-BFP)へ電力を供給することができるため、電力系統(2)の電力変動を発電プラント(1)において電力消費して吸収することが可能となる。電気駆動ポンプ(M-BFP)を稼働することによって、ボイラ(10)へ給水を供給することができ、電力変動による消費が望ましい余剰電力分の一部の電力を有効活用することが可能となる。 According to the power adjustment system (60) according to the present disclosure, power can be supplied to the electric drive pump (M-BFP) that supplies water to the boiler (10), so that the power fluctuation of the power system (2) can be affected. It becomes possible to consume and absorb electric power in the power plant (1). By operating the electric drive pump (M-BFP), water can be supplied to the boiler (10), and it becomes possible to effectively utilize a part of the surplus electric power that is desirable to be consumed due to electric power fluctuation. ..
 本開示に係る電力調整システム(60)は、前記機器は、前記発電プラント(1)を循環する水の少なくとも一部を加熱するヒートポンプ(203)であることとしてもよい。 In the power adjustment system (60) according to the present disclosure, the device may be a heat pump (203) that heats at least a part of the water circulating in the power plant (1).
 本開示に係る電力調整システム(60)によれば、水を加熱するヒートポンプ(203)へ電力を供給することができるため、電力系統(2)の電力変動を発電プラント(1)において電力消費して吸収することが可能となる。ヒートポンプ(203)を稼働することによって、ボイラ(10)へ供給する給水などの水の加熱を行うことができ、電力変動による消費が望ましい余剰電力分の一部の電力を有効活用することが可能となる。 According to the electric power adjustment system (60) according to the present disclosure, since electric power can be supplied to the heat pump (203) for heating water, the electric power fluctuation of the electric power system (2) is consumed in the power plant (1). Can be absorbed. By operating the heat pump (203), it is possible to heat water such as water supplied to the boiler (10), and it is possible to effectively utilize a part of the surplus electric power that is desirable to be consumed due to electric power fluctuation. It becomes.
 本開示に係る電力調整システム(60)は、前記機器は、タンク(94)へ水を送るポンプ(92)であることとしてもよい。 In the power adjustment system (60) according to the present disclosure, the device may be a pump (92) that sends water to the tank (94).
 本開示に係る電力調整システム(60)によれば、タンク(94)へ水を送るポンプ(92)へ電力を供給することができるため、電力系統(2)の電力変動を発電プラント(1)において電力消費して吸収することが可能となる。電力変動による電力を有効活用することが可能となる。ポンプ(92)を稼働することによって、水の輸送を行うことができ、電力変動による消費が望ましい余剰電力分の一部の電力を有効活用することが可能となる。 According to the power adjustment system (60) according to the present disclosure, power can be supplied to the pump (92) that sends water to the tank (94), so that the power fluctuation of the power system (2) is caused by the power plant (1). It is possible to consume and absorb electric power in the system. It is possible to effectively utilize the electric power due to the electric power fluctuation. By operating the pump (92), water can be transported, and it becomes possible to effectively utilize a part of the surplus electric power that is desirable to be consumed due to electric power fluctuation.
 本開示に係る電力調整システム(60)は、前記閾値は、前記発電プラント(1)の運転状況及び気象状況の少なくともいずれか1つに基づいて設定されることとしてもよい。 In the power adjustment system (60) according to the present disclosure, the threshold value may be set based on at least one of the operating condition and the weather condition of the power plant (1).
 本開示に係る電力調整システム(60)によれば、発電プラント(1)の運転状況及び気象状況の少なくともいずれか1つを用いることによって、状況に合わせて閾値を適切に設定することが可能となる。 According to the power adjustment system (60) according to the present disclosure, it is possible to appropriately set the threshold value according to the situation by using at least one of the operating condition and the weather condition of the power plant (1). Become.
 本開示に係る発電プラント(1)は、ボイラ(10)と、蒸気タービン(111、112、113)と、上記の電力調整システム(60)と、を備える。 The power plant (1) according to the present disclosure includes a boiler (10), steam turbines (111, 112, 113), and the above-mentioned power adjustment system (60).
 本開示に係る電力調整方法は、電力系統(2)の需給電力量の変動により発電プラント(1)へ要求される負荷変化量が予め設定した閾値以上であるか否かを判定する工程と、前記負荷変化量が前記閾値以上である場合に、前記発電プラント(1)における電力を消費可能な機器へ前記発電プラント(1)で発電した電力及び前記電力系統(2)からの電力の少なくともいずれか一方を供給する工程とを有する。 The power adjustment method according to the present disclosure includes a step of determining whether or not the load change amount required for the power plant (1) due to the fluctuation of the supply and demand power amount of the power system (2) is equal to or more than a preset threshold value. When the load change amount is equal to or greater than the threshold value, at least one of the electric power generated by the power plant (1) and the electric power from the electric power system (2) to the device capable of consuming the electric power in the power plant (1). It has a step of supplying one of them.
 本開示に係る電力調整プログラムは、電力系統(2)の需給電力量の変動により発電プラント(1)へ要求される負荷変化量が予め設定した閾値以上であるか否かを判定する処理と、前記負荷変化量が前記閾値以上である場合に、前記発電プラント(1)における電力を消費可能な機器へ前記発電プラント(1)で発電した電力及び前記電力系統(2)からの電力の少なくともいずれか一方を供給する処理とをコンピュータに実行させる。 The power adjustment program according to the present disclosure includes a process of determining whether or not the load change amount required for the power plant (1) due to the fluctuation of the supply and demand power amount of the power system (2) is equal to or more than a preset threshold value. When the load change amount is equal to or greater than the threshold value, at least one of the electric power generated by the power plant (1) and the electric power from the electric power system (2) to the device capable of consuming the electric power in the power plant (1). Have the computer execute the process of supplying one of them.
1    :発電プラント
2    :電力系統
3    :再生エネルギ発電設備
4    :電力需要家
10   :ボイラ
11   :火炉
12   :燃焼装置
13   :燃焼ガス通路
14   :煙道
21   :燃焼バーナ
22   :燃焼バーナ
23   :燃焼バーナ
24   :燃焼バーナ
25   :燃焼バーナ
26   :微粉炭供給管
27   :微粉炭供給管
28   :微粉炭供給管
29   :微粉炭供給管
30   :微粉炭供給管
31   :粉砕機
32   :粉砕機
33   :粉砕機
34   :粉砕機
35   :粉砕機
36   :風箱
37   :空気ダクト
38   :押込通風機
39   :アディショナル空気ポート
40   :アディショナル空気ダクト
41   :ガスダクト
42   :エアヒータ
43   :脱硝装置
44   :集塵装置
46   :脱硫装置
50   :煙突
60   :制御装置
61   :出力調整部
62   :DPC部(運転基準出力制御部)
63   :AFC部(自動周波数制御部)
64   :GF部(ガバナフリー部)
65   :消費制御部
66   :判定部
67   :供給制御部
71   :圧縮機
72   :レシーバタンク
73   :弁
81   :蒸気タービン
82   :調整弁
84   :弁
85   :モータ
91   :原水タンク
92   :送水ポンプ
93   :イオン交換部
94   :純水タンク
101  :火炉壁
102  :第1過熱器
103  :第2過熱器
104  :第3過熱器
105  :第1再熱器
106  :第2再熱器
107  :節炭器
110  :蒸気タービン
111  :高圧タービン
112  :中圧タービン
113  :低圧タービン
114  :復水器
115  :発電機
121  :復水ポンプ
122  :低圧給水ヒータ
123  :ボイラ給水ポンプ
124  :高圧給水ヒータ
126  :汽水分離器
127  :汽水分離器ドレンタンク
201  :弁
202  :GV弁(ガバナ弁)
203  :ヒートポンプ
1100 :CPU
1200 :ROM
1300 :RAM
1400 :ハードディスクドライブ
1500 :通信部
1800 :バス
L1   :給水ライン
L2   :ドレン水ライン
L3   :蒸気ライン
L4   :蒸気ライン
L5   :蒸気ライン
L6   :循環ライン
 
1: Power plant 2: Power system 3: Regenerated energy power generation equipment 4: Power consumer 10: Boiler 11: Fire furnace 12: Combustion device 13: Combustion gas passage 14: Chimney 21: Combustion burner 22: Combustion burner 23: Combustion burner 24: Combustion burner 25: Combustion burner 26: Pulverized coal supply pipe 27: Pulverized coal supply pipe 28: Pulverized charcoal supply pipe 29: Pulverized charcoal supply pipe 30: Pulverized charcoal supply pipe 31: Crusher 32: Crusher 33: Crusher 34: Crusher 35: Crusher 36: Air box 37: Air duct 38: Push-in ventilator 39: Additional air port 40: Additional air duct 41: Gas duct 42: Air heater 43: Denitration device 44: Dust collector 46: Sulfurization device 50: Chimney 60: Control device 61: Output adjustment unit 62: DPC unit (operation standard output control unit)
63: AFC unit (automatic frequency control unit)
64: GF part (governor-free part)
65: Consumption control unit 66: Judgment unit 67: Supply control unit 71: Compressor 72: Receiver tank 73: Valve 81: Steam turbine 82: Adjustment valve 84: Valve 85: Motor 91: Raw water tank 92: Condenser pump 93: Ion Replacement unit 94: Pure water tank 101: Fire furnace wall 102: First superheater 103: Second superheater 104: Third superheater 105: First reheater 106: Second reheater 107: Coal saver 110: Steam turbine 111: High pressure turbine 112: Medium pressure turbine 113: Low pressure turbine 114: Condenser 115: Generator 121: Condensation pump 122: Low pressure water supply heater 123: Boiler water supply pump 124: High pressure water supply heater 126: Steam water separator 127 : Steam water separator drain tank 201: Valve 202: GV valve (turbine valve)
203: Heat pump 1100: CPU
1200: ROM
1300: RAM
1400: Hard disk drive 1500: Communication unit 1800: Bus L1: Water supply line L2: Drain water line L3: Steam line L4: Steam line L5: Steam line L6: Circulation line

Claims (11)

  1.  電力系統の需給電力量の変動により発電プラントへ要求される負荷変化量が予め設定した閾値以上であるか否かを判定する判定部と、
     前記負荷変化量が前記閾値以上である場合に、前記発電プラントにおける電力を消費可能な機器へ前記発電プラントで発電した電力及び前記電力系統からの電力の少なくともいずれか一方を供給する供給制御部と
    を備える電力調整システム。
    A determination unit that determines whether or not the amount of load change required for the power plant due to fluctuations in the amount of supply and demand power of the power system is equal to or greater than a preset threshold value.
    When the load change amount is equal to or greater than the threshold value, a supply control unit that supplies at least one of the electric power generated by the power plant and the electric power from the electric power system to a device capable of consuming electric power in the power plant. Power regulation system equipped with.
  2.  前記閾値は、ボイラへの入熱量の制御により前記発電プラントの電力供給量を制御可能な領域を調整領域として、前記調整領域における負荷変動周期に対応した負荷変化量の上限値として設定されている請求項1に記載の電力調整システム。 The threshold value is set as an upper limit value of a load change amount corresponding to a load fluctuation cycle in the adjustment area, with a region in which the power supply amount of the power plant can be controlled by controlling the amount of heat input to the boiler as an adjustment region. The power adjustment system according to claim 1.
  3.  前記供給制御部は、前記機器として前記発電プラントにおいて設けられた間欠動作を行う補機へ電力を供給する請求項1または2に記載の電力調整システム。 The power adjustment system according to claim 1 or 2, wherein the supply control unit supplies power to an auxiliary machine that performs intermittent operation provided as the equipment in the power plant.
  4.  前記機器は、レシーバタンクへ接続された圧縮機である請求項3に記載の電力調整システム。 The power adjustment system according to claim 3, wherein the device is a compressor connected to a receiver tank.
  5.  前記機器は、ボイラへ給水を供給する電気駆動ポンプである請求項3または4に記載の電力調整システム。 The power adjustment system according to claim 3 or 4, wherein the device is an electrically driven pump that supplies water to the boiler.
  6.  前記機器は、前記発電プラントを循環する水の少なくとも一部を加熱するヒートポンプである請求項3から5のいずれか1項に記載の電力調整システム。 The power adjustment system according to any one of claims 3 to 5, wherein the device is a heat pump that heats at least a part of water circulating in the power plant.
  7.  前記機器は、タンクへ水を送るポンプである請求項3から6のいずれか1項に記載の電力調整システム。 The power adjustment system according to any one of claims 3 to 6, wherein the device is a pump that sends water to a tank.
  8.  前記閾値は、前記発電プラントの運転状況及び気象状況の少なくともいずれか1つに基づいて設定される請求項1から7のいずれか1項に記載の電力調整システム。 The power adjustment system according to any one of claims 1 to 7, wherein the threshold value is set based on at least one of the operating condition and the weather condition of the power plant.
  9.  ボイラと、
     蒸気タービンと、
     請求項1から8のいずれか1項に記載の電力調整システムと、
    を備える発電プラント。
    With a boiler
    With a steam turbine
    The power adjustment system according to any one of claims 1 to 8.
    Power plant equipped with.
  10.  電力系統の需給電力量の変動により発電プラントへ要求される負荷変化量が予め設定した閾値以上であるか否かを判定する工程と、
     前記負荷変化量が前記閾値以上である場合に、前記発電プラントにおける電力を消費可能な機器へ前記発電プラントで発電した電力及び前記電力系統からの電力の少なくともいずれか一方を供給する工程と
    を有する電力調整方法。
    The process of determining whether or not the load change amount required for the power plant due to the fluctuation of the supply and demand power amount of the power system is equal to or more than the preset threshold value, and
    It has a step of supplying at least one of the electric power generated by the power plant and the electric power from the electric power system to a device capable of consuming the electric power in the power plant when the load change amount is equal to or more than the threshold value. Power adjustment method.
  11.  電力系統の需給電力量の変動により発電プラントへ要求される負荷変化量が予め設定した閾値以上であるか否かを判定する処理と、
     前記負荷変化量が前記閾値以上である場合に、前記発電プラントにおける電力を消費可能な機器へ前記発電プラントで発電した電力及び前記電力系統からの電力の少なくともいずれか一方を供給する処理と
    をコンピュータに実行させるための電力調整プログラム。
    Processing to determine whether the load change amount required for the power plant due to fluctuations in the supply and demand power amount of the power system is equal to or greater than a preset threshold value, and
    When the load change amount is equal to or greater than the threshold value, a computer performs a process of supplying at least one of the electric power generated by the power plant and the electric power from the electric power system to a device capable of consuming electric power in the power plant. Power adjustment program to be executed by.
PCT/JP2021/002872 2020-02-20 2021-01-27 Power adjustment system, electricity generation plant, power adjustment method, and power adjustment program WO2021166575A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-027207 2020-02-20
JP2020027207A JP2021132489A (en) 2020-02-20 2020-02-20 Power regulation system and power plant, power adjustment method, and power adjustment program

Publications (1)

Publication Number Publication Date
WO2021166575A1 true WO2021166575A1 (en) 2021-08-26

Family

ID=77390952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002872 WO2021166575A1 (en) 2020-02-20 2021-01-27 Power adjustment system, electricity generation plant, power adjustment method, and power adjustment program

Country Status (2)

Country Link
JP (1) JP2021132489A (en)
WO (1) WO2021166575A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090778A1 (en) * 2010-12-27 2012-07-05 三菱重工業株式会社 Condensate flow rate control device for power-plant, and control method
WO2015136631A1 (en) * 2014-03-12 2015-09-17 株式会社日立製作所 Control system, renewable energy power generation system, or method for controling renewable energy power generation facility and so on
WO2017138629A1 (en) * 2016-02-12 2017-08-17 日本電気株式会社 Charge/discharge control system, charge/discharge control method, and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090778A1 (en) * 2010-12-27 2012-07-05 三菱重工業株式会社 Condensate flow rate control device for power-plant, and control method
WO2015136631A1 (en) * 2014-03-12 2015-09-17 株式会社日立製作所 Control system, renewable energy power generation system, or method for controling renewable energy power generation facility and so on
WO2017138629A1 (en) * 2016-02-12 2017-08-17 日本電気株式会社 Charge/discharge control system, charge/discharge control method, and program

Also Published As

Publication number Publication date
JP2021132489A (en) 2021-09-09

Similar Documents

Publication Publication Date Title
US7355297B2 (en) Methods and apparatus for electric power grid frequency stabilization
KR101401135B1 (en) Methods and apparatus for electric power grid frequency stabilization
RU2352859C2 (en) Steam generator on waste heat
CN107327322B (en) Combustion engine-coal engine coupling power generation system and operation method thereof
JP2014105612A (en) Waste heat recovery facility, waste heat recovery method and waste treatment furnace
JPH09203305A (en) Power generating system utilizing waste incinerating heat
WO2021166575A1 (en) Power adjustment system, electricity generation plant, power adjustment method, and power adjustment program
JP2007187352A (en) Starting method of boiler
JP7305347B2 (en) BYPASS CONTROL SYSTEM FOR POWER PLANT AND CONTROL METHOD AND CONTROL PROGRAM THEREOF, POWER PLANT
JP2021177107A (en) Coal-fired power generation system
JP2001108201A (en) Multiple pressure waste heat boiler
JP2021021554A (en) Boiler control device, boiler system, power generation plant, and boiler control method
CN109058959A (en) A method of reducing overcritical " W " the flame unit depth peak regulation oil consumption of 600MW
CN115342337A (en) Flexible peak regulation control method for realizing non-stop of blowing out of CFB unit
JP2009174745A (en) Draft system in steam power generation facility
JP5766527B2 (en) Method and apparatus for controlling once-through boiler
JP2022144706A (en) Boiler control system, power generation plant, and boiler control method
JP2022123455A (en) Power generation plant, and control method and modification method therefor
JP2022112859A (en) Operational state improvement system, power generation plant, operational state improvement method and operational state improvement program
JP2024077776A (en) Method for operating power plant and power plant
JP7150670B2 (en) BOILER, POWER PLANT INCLUDING THE SAME, AND BOILER CONTROL METHOD
CN221032779U (en) Quick peak regulating steam turbine power generation system
CN221074393U (en) Turbine power generation system capable of carrying out peak regulation in real time
CN221002880U (en) Quick start peak regulation turbine power generation system
JP2022097122A (en) Boiler and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21756756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21756756

Country of ref document: EP

Kind code of ref document: A1