WO2021166548A1 - 部品内蔵基板及び電源装置 - Google Patents

部品内蔵基板及び電源装置 Download PDF

Info

Publication number
WO2021166548A1
WO2021166548A1 PCT/JP2021/002167 JP2021002167W WO2021166548A1 WO 2021166548 A1 WO2021166548 A1 WO 2021166548A1 JP 2021002167 W JP2021002167 W JP 2021002167W WO 2021166548 A1 WO2021166548 A1 WO 2021166548A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating layer
conductive portion
dielectric constant
layer
layers
Prior art date
Application number
PCT/JP2021/002167
Other languages
English (en)
French (fr)
Inventor
博田 知之
淳也 三嶋
英一 大村
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2021166548A1 publication Critical patent/WO2021166548A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present invention relates to a component-embedded board containing electronic components and a power supply device.
  • Patent Document 1 a component-embedded substrate in which electronic components such as an IC chip, a capacitor, and an inductor are incorporated inside the substrate.
  • a component-embedded substrate containing an electronic component an electronic component is usually embedded between a pair of conductive portions, and a pair of insulating layers are provided between the pair of conductive portions and the electronic component.
  • organic insulating layers reference numerals 32 and 32
  • It is composed of a multilayer substrate material.
  • an object of the present invention is to provide a component-embedded substrate capable of improving the insulation between the connecting portion of the electronic component and the conductive portion, and a power supply device including the substrate.
  • the component-embedded substrate of the first aspect of the present disclosure includes an electron embedded between a first conductive portion, a second conductive portion facing the first conductive portion, and the first conductive portion and the second conductive portion.
  • a component-embedded substrate including the above insulating layer, wherein the connecting portion of the electronic component is electrically connected to the second conductive portion, and the insulating layer on the first conductive portion side is one layer or a plurality of layers.
  • the first low dielectric constant insulating layer is composed of an insulating layer, and the first low dielectric constant insulating layer includes at least one layer among each of the plurality of first insulating layers, or the first conductive portion and the first insulating layer of the first layer. It is provided between the first conductive portions or between the plurality of first insulating layers.
  • the first aspect having a capacitance smaller than the dielectric constant of the first insulating layer of the first layer or a dielectric constant smaller than the dielectric constant of any of the first insulating layers of the plurality of layers.
  • the low dielectric constant insulating layer is formed between at least one of the first insulating layers of the plurality of layers, or between the first conductive portion and the first insulating layer of the first layer, or with the first conductive portion.
  • the voltage of the first insulating layer becomes lower than the voltage of the first low dielectric constant insulating layer.
  • the voltage of the first insulating layer is relatively low, and the electric field strength is low.
  • the electric field concentration at the location where the potential difference of the connection portion of the electronic component is generated can be relaxed. Therefore, the connection portion of the electronic component and the first unit can be relaxed. The insulation between the conductive portion and the conductive portion can be improved.
  • the insulating layer on the second conductive portion side is a dielectric that is smaller than the dielectric constant of the one-layer or a plurality of second insulating layers and the second insulating layer of the first layer.
  • the second low dielectric constant insulating layer is composed of a second low dielectric constant insulating layer having a rate or a dielectric constant smaller than any of the multiple layers of the second insulating layer, and the second low dielectric constant insulating layer is the second insulating layer of the plurality of layers. It is provided between at least one of the layers, or between the second conductive portion and the second insulating layer of the first layer, or between the second conductive portion and the second insulating layer of the plurality of layers. ..
  • the component-embedded substrate of the second aspect of the present disclosure includes an electron embedded between a first conductive portion, a second conductive portion facing the first conductive portion, and the first conductive portion and the second conductive portion.
  • a component-embedded substrate including a component and an insulating layer on the second conductive portion side provided between the second conductive portion and the electronic component, and the connecting portion of the electronic component is the second conductive portion.
  • the insulating layer on the side of the second conductive portion, which is electrically connected to the conductive portion has a dielectric constant smaller than the dielectric constant of the second insulating layer of one layer or a plurality of layers and the second insulating layer of the first layer, or the above.
  • the second low dielectric constant insulating layer is each layer of the plurality of second insulating layers. It is provided between at least one of the layers, between the second conductive portion and the second insulating layer of the first layer, or between the second conductive portion and the second insulating layer of the plurality of layers.
  • the insulating layer on the second conductive portion side includes the second low dielectric constant insulating layer in the component-embedded substrate of the first aspect of the present disclosure, and according to the component-embedded substrate of the second aspect of the present disclosure.
  • the second low-dielectric-constant insulating layer having a dielectric constant smaller than the dielectric constant of the second insulating layer of one layer or smaller than the dielectric constant of any of the second insulating layers of the plurality of layers is the plurality of layers. At least one layer of each layer of the second insulating layer, or between the second conductive portion and the second insulating layer of the first layer, or between the second conductive portion and the second insulating layer of the plurality of layers.
  • the capacitance of the second low dielectric constant insulating layer becomes smaller than the capacitance of the second insulating layer. Therefore, when a voltage is applied to the electronic component, the voltage of the second insulating layer becomes lower than the voltage of the second low dielectric constant insulating layer. As a result, the voltage of the second insulating layer is relatively low, and the electric field strength is low. As a result, even if a voltage is applied to the electronic component, the electric field concentration at the location where the potential difference of the connection portion of the electronic component is generated can be relaxed. Therefore, the connection portion of the electronic component and the second portion can be relaxed. The insulation property with the conductive portion side can be improved.
  • the component-embedded substrate of the second aspect of the present disclosure includes an insulating layer on the first conductive portion side provided between the first conductive portion and the electronic component. According to this configuration, the insulating property between the first conductive portion and the electronic component can be improved.
  • first conductive portion and the second conductive portion both are wiring pattern layers formed of conductors constituting an electric circuit, or the first conductive portion is a metal heat-dissipating layer or a metal heat-dissipating member.
  • the second conductive portion is a wiring pattern layer formed of a conductor constituting an electric circuit.
  • the power supply device of the present disclosure includes the component-embedded substrate of the first aspect or the second aspect. According to the power supply device of the present disclosure, it is possible to improve the insulating property between the connection portion of the electronic component and the first conductive portion and / or the second conductive portion.
  • the present invention it is possible to relax the electric field concentration on the connecting portion of the electronic component, and therefore, it is possible to improve the insulating property between the connecting portion of the electronic component and the conductive portion.
  • FIG. 1 is a schematic cross-sectional view showing the structure of the component-embedded substrate according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view showing the structure of the component-embedded substrate according to the second embodiment.
  • FIG. 3 is a schematic cross-sectional view showing the structure of the component-embedded substrate according to the third embodiment.
  • FIG. 4 is a schematic cross-sectional view showing the structure of the component-embedded substrate according to the fourth embodiment.
  • FIG. 5 is a schematic cross-sectional view showing the structure of the component-embedded substrate according to the fifth embodiment.
  • FIG. 6 is a schematic cross-sectional view showing the structure of the component-embedded substrate according to the sixth embodiment.
  • FIG. 1 is a schematic cross-sectional view showing the structure of the component-embedded substrate according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view showing the structure of the component-embedded substrate according to the second embodiment.
  • FIG. 7 is a schematic cross-sectional view showing the structure of the component-embedded substrate according to the ninth embodiment.
  • FIG. 8 is a schematic cross-sectional view showing the structure of the component-embedded substrate according to the tenth embodiment.
  • FIG. 9 is a schematic cross-sectional view showing the structure of the component-embedded substrate according to the eleventh embodiment.
  • FIG. 10 is an explanatory diagram showing the analysis conditions of the analysis simulation 1 in which the electric field concentration at the location where the potential difference of the connection portion of the electronic component is generated is analyzed.
  • FIG. 11 is a chart showing the simulation results of the analysis simulation 1 under the analysis conditions shown in FIG. FIG.
  • FIG. 12 is an explanatory diagram for explaining the principle that the electric field strength is lowered in the three insulating layers in which the low dielectric constant insulating layer is sandwiched between the two insulating layers.
  • FIG. 13 is an explanatory diagram showing the analysis conditions of the analysis simulation 2 that analyzes the electric field concentration at the location where the potential difference of the connection portion of the electronic component is generated.
  • FIG. 14 is a diagram showing a simulation result of the analysis simulation 2 under the analysis conditions shown in FIG.
  • the power supply device 100 is a combination of any two structures of the component-embedded substrates 10A to 10D and the first to fourth embodiments according to the following first to fourth embodiments. It is equipped with a component-embedded substrate having a structure.
  • FIG. 1 is a schematic cross-sectional view showing the structure of the component-embedded substrate 10A according to the first embodiment.
  • the component-embedded substrate 10A shown in FIG. 1 includes a first conductive portion 11, a second conductive portion 12, an electronic component 13, an insulating layer 14 on the first conductive portion 11 side, and an insulating layer on the second conductive portion 12 side. 15 and an insulating layer 16 in the middle portion are provided.
  • the first conductive portion 11 is a wiring pattern layer formed of a conductor constituting an electric circuit, a metal heat dissipation layer made of metal, or a metal discharge member.
  • a typical example of the metal heat-dissipating member is a heat sink.
  • the second conductive portion 12 faces the first conductive portion 11.
  • the second conductive portion 12 is a wiring pattern layer formed of a conductor constituting an electric circuit.
  • the electronic component 13 is built in between the first conductive portion 11 and the second conductive portion 12.
  • the electronic component 13 includes an electronic component for a power source (for power electronics).
  • Examples of the electronic component 13 include semiconductor components such as transistors, integrated circuits, and diodes, and electronic components such as electric resistors, capacitors, relays, and piezoelectric elements.
  • the insulating layer 14 on the first conductive portion 11 side is provided between the first conductive portion 11 and the electronic component 13.
  • the insulating layer 14 on the side of the first conductive portion 11 is composed of a first insulating layer 141 and a first low dielectric constant insulating layer 142.
  • the first insulating layer 141 is of a plurality of layers (two layers in this example).
  • the first insulating layer 141 is continuously formed from one end to the other end of the first conductive portion 11.
  • the first low dielectric constant insulating layer 142 is also continuously formed from one end to the other end of the first conductive portion 11.
  • the insulating layer 15 on the side of the second conductive portion 12 is provided between the second conductive portion 12 and the electronic component 13.
  • the insulating layer 15 on the side of the second conductive portion 12 is composed of the second insulating layer 151.
  • the second insulating layer 151 is one layer or a plurality of layers (one layer in this example).
  • the second insulating layer 151 is continuously formed from one end to the other end of the second conductive portion 12.
  • the insulating layer 16 in the intermediate portion is provided in a portion other than the electronic component 13 between the insulating layer 14 on the first conductive portion 11 side and the insulating layer 15 on the second conductive portion 12 side.
  • the insulating layer 16 in the intermediate portion is composed of a third insulating layer 161.
  • the third insulating layer 161 is one layer or a plurality of layers (one layer in this example).
  • Examples of the first insulating layer 141, the second insulating layer 151, and the third insulating layer 161 include those made of a high heat dissipation substrate material of glass cloth [specifically, CS-3295 (manufactured by Risho Kogyo Co., Ltd.)], glass. Examples thereof include those made of a multilayer substrate material (high heat dissipation substrate material) [specifically, R-1766 (manufactured by Panasonic Corporation)] of a cloth base material and an epoxy resin. As the high heat dissipation substrate material of the glass cloth, about 6 to 7 can be exemplified. The relative permittivity of the multilayer substrate material of the glass cloth base material and the epoxy resin can be exemplified by about 4.7 to 4.8.
  • the connecting portion 13b of the electronic component 13 is electrically connected to the second conductive portion 12.
  • Examples of the connection portion 13b of the electronic component 13 include a terminal, a lead frame, and a conductive core. By doing so, it is possible to improve the insulating properties of the insulating layers 14 and 15 in a configuration in which the terminal, the lead frame, the connecting portion 13b which is the conductive core, and the second conductive portion 12 are electrically connected. It can be preferably realized.
  • the connecting portion 13b of the electronic component 13 is electrically connected to the second conductive portion 12 via a hole portion 13c such as a through hole or a via.
  • the first low dielectric constant insulating layer 142 has a dielectric constant smaller than any of the plurality of first insulating layers 141.
  • the first low dielectric constant insulating layer 142 is provided between at least one (one in this example) of each of the plurality of layers of the first insulating layer 141.
  • the first low dielectric constant insulating layer 142 is provided at the central portion (between the two first insulating layers 141 and 141) in the thickness direction of the insulating layer 14.
  • the first low dielectric constant insulating layer 142 may be a single layer or a plurality of layers.
  • the first low-dielectric-constant insulating layer 142 is made of a multilayer substrate material [specifically, R-1766 (manufactured by Panasonic Corporation)] of a glass cloth base material and an epoxy resin, and has a low transmission loss using a glass cloth.
  • -A material made of a highly heat-resistant multilayer substrate material [specifically, MEGTRON7 (manufactured by Panasonic Corporation)] can be mentioned.
  • the relative permittivity of the multilayer substrate material of the glass cloth base material and the epoxy resin can be exemplified by about 4.7 to 4.8.
  • As the relative permittivity of the low transmission loss and high heat resistant multilayer substrate material using the glass cloth about 3.4 can be exemplified.
  • FIG. 2 is a schematic cross-sectional view showing the structure of the component-embedded substrate 10B according to the second embodiment.
  • the component-embedded substrate 10B according to the second embodiment is the same as the component-embedded substrate 10A according to the first embodiment, except that the layer configuration of the first insulating layer 141 and the arrangement configuration of the first low dielectric constant insulating layer 142 are different. Yes, the description of the part common to the first embodiment will be omitted.
  • the first insulating layer 141 is one layer or a plurality of layers (one layer in this example).
  • the first low dielectric constant insulating layer 142 is between the first conductive portion 11 and the first insulating layer 141 of the first layer, or between the first conductive portion 11 and the first insulating layer 141 of a plurality of layers (this example). Is provided between the first conductive portion 11 and the first insulating layer 141 of the first layer).
  • the first low dielectric constant insulating layer 142 has a dielectric constant smaller than the dielectric constant of the first insulating layer 141 of one layer or a dielectric constant smaller than the dielectric constant of any of the first insulating layers 141 of a plurality of layers (1 in this example). It has a permittivity smaller than that of the first insulating layer 141 of the layer).
  • FIG. 3 is a schematic cross-sectional view showing the structure of the component-embedded substrate 10C according to the third embodiment.
  • the component-embedded substrate 10C according to the third embodiment has a component-embedded substrate according to the first embodiment, except that the layer configurations of the insulating layer 14 on the first conductive portion 11 side and the insulating layer 15 on the second conductive portion 12 side are different. It is the same as 10A, and the description of the part common to the first embodiment will be omitted.
  • the insulating layer 14 on the first conductive portion 11 side is composed of the first insulating layer 141.
  • the first insulating layer 141 is one layer or a plurality of layers (one layer in this example).
  • the first insulating layer 141 is continuously formed from one end to the other end of the first conductive portion 11.
  • the insulating layer 15 on the side of the second conductive portion 12 is composed of a second insulating layer 151 and a second low dielectric constant insulating layer 152.
  • the second insulating layer 151 is of a plurality of layers (two layers in this example).
  • the second insulating layer 151 is continuously formed from one end to the other end of the second conductive portion 12.
  • the second low dielectric constant insulating layer 152 is also continuously formed from one end to the other end of the second conductive portion 12.
  • the second low dielectric constant insulating layer 152 has a dielectric constant smaller than any of the plurality of second insulating layers 151.
  • the second low dielectric constant insulating layer 152 is provided between at least one (one in this example) of each of the plurality of layers of the second insulating layer 151.
  • the second low dielectric constant insulating layer 152 is provided at the central portion (between the two layers of the second insulating layers 151 and 151) in the thickness direction of the insulating layer 15.
  • the second low dielectric constant insulating layer 152 may be a single layer or a plurality of layers. As the second low dielectric constant insulating layer 152, the same material as the first low dielectric constant insulating layer 142 can be used.
  • FIG. 4 is a schematic cross-sectional view showing the structure of the component-embedded substrate 10D according to the fourth embodiment.
  • the component-embedded substrate 10D according to the fourth embodiment is the same as the component-embedded substrate 10C according to the third embodiment, except that the layer configuration of the second insulating layer 151 and the arrangement configuration of the second low dielectric constant insulating layer 152 are different. Yes, the description of the part common to the third embodiment will be omitted.
  • the second insulating layer 151 is one layer or a plurality of layers (one layer in this example).
  • the second low dielectric constant insulating layer 152 is between the second conductive portion 12 and the second insulating layer 151 of the first layer, or between the second conductive portion 12 and the second insulating layer 151 of a plurality of layers (this example). Is provided between the second conductive portion 12 and the first layer of the second insulating layer 151).
  • the second low dielectric constant insulating layer 152 has a dielectric constant smaller than the dielectric constant of the second insulating layer 151 of one layer or a dielectric constant smaller than the dielectric constant of any of the second insulating layers 151 of a plurality of layers (1 in this example). It has a permittivity smaller than the permittivity of the second insulating layer 151 of the layer).
  • FIG. 5 is a schematic cross-sectional view showing the structure of the component-embedded substrate 10E according to the fifth embodiment.
  • the component-embedded substrate 10E according to the fifth embodiment is an example of a structure in which the first embodiment and the third embodiment are combined.
  • FIG. 6 is a schematic cross-sectional view showing the structure of the component-embedded substrate 10F according to the sixth embodiment.
  • the component-embedded substrate 10F according to the sixth embodiment is an example of a structure in which the second embodiment and the fourth embodiment are combined.
  • the seventh embodiment may have a structure in which the first embodiment and the fourth embodiment are combined, and the eighth embodiment includes the second embodiment and the third embodiment. It may be a combined structure.
  • the first insulating layer 141 may be the same layer as the third insulating layer 161.
  • FIG. 7 is a schematic cross-sectional view showing the structure of the component-embedded substrate 10G according to the ninth embodiment.
  • the component-embedded substrate 10G according to the ninth embodiment shows an example in which the component-embedded substrate 10A according to the first embodiment has the first insulating layer 141 as the same layer as the third insulating layer 161. Although not shown, the same configuration may be used in the second to eighth embodiments.
  • the first insulating layer 141 the same layer as the third insulating layer 161
  • the connecting portion 13a of the electronic component 13 may be electrically connected to the first conductive portion 11 via a hole such as a through hole or a via.
  • a back surface electrode can be typically exemplified.
  • FIG. 8 is a schematic cross-sectional view showing the structure of the component-embedded substrate 10H according to the tenth embodiment.
  • the component-embedded substrate 10H according to the tenth embodiment electrically connects (conducts) the connection portion 13a of the electronic component 13 and the first conductive portion 11 via the hole portion 13d in the component-embedded substrate 10A according to the first embodiment.
  • the effect that the insulating properties of the insulating layers 14 and 15 can be improved in a configuration in which the connecting portion 13a and the first conductive portion 11 are electrically connected via the hole portion 13d is suitably realized. Can be made to.
  • the connecting portion 13a of the electronic component 13 is first formed by removing the insulating layer 14 on the first conductive portion side. It may be directly electrically connected to the conductive portion 11.
  • FIG. 9 is a schematic cross-sectional view showing the structure of the component-embedded substrate 10I according to the eleventh embodiment.
  • the component-embedded substrate 10I according to the eleventh embodiment removes the insulating layer 14 on the first conductive portion side in the component-embedded substrate 10C according to the third embodiment, thereby removing the connecting portion 13a and the first conductive portion of the electronic component 13.
  • An example in which 11 is directly electrically connected (conducted) is shown.
  • the same configuration may be used in the fourth to tenth embodiments in which the second low dielectric constant insulating layer 152 is formed on the insulating layer 15 on the second conductive portion side.
  • FIG. 10 is an explanatory diagram showing the analysis conditions of the analysis simulation 1 in which the electric field concentration at the location ⁇ 1 where the potential difference of the connection portion of the electronic component is generated is analyzed.
  • This analysis simulation 1 was performed using commercially available analysis software [Femtet (registered trademark) manufactured by Murata Software Co., Ltd.].
  • an insulating layer (resin Y) having a thickness of 0.3 mm is sandwiched between a pair of electrodes (X, X) made of copper foil having a thickness of 35 ⁇ m, and a voltage V of 1 kV is applied between the electrodes (X, X).
  • V 1 kV
  • FIG. 11 is a chart showing the simulation results of the analysis simulation 1 under the analysis conditions shown in FIG.
  • FIG. 11 three types of insulating layers Y1, Y2, Y3 having different relative permittivity ⁇ , and three insulating layers Y4 in which a low dielectric constant insulating layer (intermediate layer Ya) is sandwiched between two insulating layers Y3 and Y3.
  • the simulation result of is shown.
  • the relative permittivity of the insulating layers Y1, Y2, and Y3 was set to 4, 3, and 7, respectively, and the relative permittivity of the low dielectric constant insulating layer (Ya) was set to 7.
  • FIG. 12 is an explanatory diagram for explaining the principle that the electric field strength is lowered in the three-layer insulating layer Y4 in which the low dielectric constant insulating layer (Ya) is sandwiched between the two insulating layers Y3 and Y3.
  • Capacitance C can be expressed by the following equation.
  • Capacitance C ⁇ ⁇ S / d C: Capacitance ⁇ : Dielectric constant S: Area of conductive parts (X, X) d: Distance between conductive parts (X, X) Since the dielectric constant of the low dielectric constant insulating layer (Ya) is small, capacitance C (capacitance C) Capacity) becomes smaller. When the applied voltage V is divided, the capacitance C (capacitance) of the low dielectric constant insulating layer (Ya) is small, so that the voltage of the low dielectric constant insulating layer (Ya) is high, and the other insulating layer Y3 , The voltage of Y3 becomes low.
  • the voltage of the low dielectric constant insulating layer (Ya) becomes relatively low, and the electric field strength becomes small. Therefore, the electric field concentration is relaxed.
  • FIG. 13 is an explanatory diagram showing the analysis conditions of the analysis simulation 2 that analyzes the electric field concentration at the location ⁇ 2 where the potential difference of the connection portion of the electronic component is generated.
  • the above-mentioned analysis software is used to image the ⁇ portion of FIG. 13 of the component-embedded substrate 10A shown in FIG. 1 between the electrodes (X, X) (for example, the connection portion 13a of the electronic component 13 and the first conductivity).
  • a voltage of 1 kV is applied to (between the parts 11), and measurement points separated by 50 ⁇ m in the horizontal / vertical direction from the boundary point ⁇ 0 of the electrode (X) / three-layer insulating layer (Yb) / insulating layer (Yc).
  • the electric field strength of ⁇ 2 was derived and compared.
  • the three insulating layers (Yb) are composed of an insulating layer (Yb1), an insulating layer (Yb2), and an insulating layer (Yb1).
  • FIG. 14 is a diagram showing the simulation results of the analysis simulation 2 under the analysis conditions shown in FIG.
  • the electric field strength of the insulating layers Yc and Yb1 is 7 and the relative permittivity of the insulating layer Yb2 is 4, the electric field strength is 3.752 MV / mm.
  • the electric field strength in the vicinity of the electrode (X) is relaxed.
  • the dielectric constant is smaller than the dielectric constant of the first insulating layer 141 of one layer or smaller than the dielectric constant of any of the first insulating layers 141 of a plurality of layers.
  • the first low dielectric constant insulating layer 142 having a dielectric constant is at least one layer among each of the plurality of layers of the first insulating layer 141, or between the first conductive portion 11 and the first insulating layer 141 of the first layer.
  • the capacitance of the first low dielectric constant insulating layer 142 is larger than the capacitance of the first insulating layer 141. It becomes smaller. Therefore, when a voltage is applied to the electronic component 13, the voltage of the first insulating layer 141 is lower than the voltage of the first low dielectric constant insulating layer 142. As a result, the voltage of the first insulating layer 141 becomes relatively low, and the electric field strength becomes low.
  • the dielectric constant is smaller than the dielectric constant of the second insulating layer 151 of one layer or smaller than the dielectric constant of any of the second insulating layers 151 of the plurality of layers.
  • the second low dielectric constant insulating layer 152 having a dielectric constant is at least one layer among each of the plurality of layers of the second insulating layer 151, or between the second conductive portion 12 and the first layer of the second insulating layer 151.
  • the capacitance of the second low dielectric constant insulating layer 152 is larger than the capacitance of the second insulating layer 151.
  • the voltage of the second insulating layer 151 is lower than the voltage of the second low dielectric constant insulating layer 152. As a result, the voltage of the second insulating layer 151 becomes relatively low, and the electric field strength becomes low. As a result, even if a voltage is applied to the electronic component 13, the locations ⁇ 1 and ⁇ 2 (particularly the edge portion) where the potential difference of the connection portion 13b (terminal, lead frame or conductive core in this example) of the electronic component 13 is generated. The electric field concentration can be relaxed, and therefore, the insulating property between the connecting portion 13b of the electronic component 13 and the second conductive portion 12 can be improved. As a result, electric discharge between the connecting portion 13b of the electronic component 13 and the second conductive portion 12 can be effectively prevented.
  • the insulating layer 14 on the first conductive portion side is provided between the first conductive portion 11 and the electronic component 13, so that the insulation between the first conductive portion 11 and the electronic component 13 is insulated.
  • the sex can be improved.
  • both are wiring pattern layers formed of conductors constituting an electric circuit, or the first conductive portion 11 dissipates metal. It is a layer or a metal heat-dissipating member, and the second conductive portion 12 is a wiring pattern layer formed of a conductor constituting an electric circuit.
  • the power supply device 100 includes the above-mentioned component-embedded substrate and at least one of these combinations. By doing so, in the power supply device 100, the insulating property between the connecting portion 13a of the electronic component 13 and the first conductive portion 11 and / or between the connecting portion 13b of the electronic component 13 and the second conductive portion 12 is improved. Can be made to.
  • the component built-in board is applied to the power supply device, but it may be applied to other applications (for example, an electronic device whose output is smaller than the output of the power supply device).
  • the present invention relates to a component-embedded substrate containing electronic components and a power supply device, and is particularly applicable to applications for improving the insulation between a connecting portion and a conductive portion of electronic components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Dc-Dc Converters (AREA)

Abstract

導電部側の絶縁層は、1層又は複数層の絶縁層と、1層の絶縁層の誘電率よりも小さい誘電率又は複数層の絶縁層の何れの誘電率よりも小さい誘電率を有する低誘電率絶縁層とからなり、低誘電率絶縁層は、複数層の絶縁層の各層のうち少なくとも1つの層間、又は、導電部と1層の絶縁層との間もしくは導電部と複数層の絶縁層との間に設けられる。

Description

部品内蔵基板及び電源装置
 本発明は、電子部品を内蔵した部品内蔵基板及び電源装置に関する。
 電源装置等の電子機器に用いられる電気回路基板は、近年、電子機器の小型化の要求に伴い、小型化が求められている。この要求に対し、基板の内部にICチップやコンデンサー、インダクターといった電子部品を内蔵した部品内蔵基板が提案されている(例えば特許文献1)。電子部品を内蔵した部品内蔵基板は、通常、一対の導電部の間に電子部品が内蔵され、一対の導電部と電子部品との間に一対の絶縁層がそれぞれ設けられる。なお、特許文献1に記載の一対の絶縁層(特許文献Fig.1中の符号30,30’)は、ガラス層(符号31)の両側に有機絶縁層(符号32,32)が配置された多層基板材料で構成されている。
独国特許出願公開第102016222885号明細書
 このような部品内蔵基板においては、電子部品に電圧が印加されると、電子部品の接続部(例えば端子もしくはリードフレーム)の電位差が生じている個所(特にエッジ部)に電界が集中する。そうすると、電子部品の接続部の電位差が生じている個所と導電部との間で部分放電が発生し易く、そのため、電子部品の接続部と導電部との間の絶縁性が悪化するという不都合がある。
 この点に関し、従来の構成では、電子部品の接続部と導電部との間の絶縁性を向上させるための対策がなされていないのが実情である。
 そこで、本発明は、電子部品の接続部と導電部との間の絶縁性を向上させることができる部品内蔵基板及びそれを備えた電源装置を提供することを目的とする。
 本開示の第1態様の部品内蔵基板は、第1導電部と、前記第1導電部に対向する第2導電部と、前記第1導電部及び前記第2導電部の間に内蔵される電子部品と、前記第1導電部と前記電子部品との間に設けられた第1導電部側の絶縁層と、前記第2導電部と前記電子部品との間に設けられた第2導電部側の絶縁層と、を備えた部品内蔵基板であって、前記電子部品の接続部は、前記第2導電部と電気的に接続され、前記第1導電部側の絶縁層は、1層又は複数層の第1絶縁層と、前記1層の第1絶縁層の誘電率よりも小さい誘電率又は前記複数層の第1絶縁層の何れの誘電率よりも小さい誘電率を有する第1低誘電率絶縁層とからなり、前記第1低誘電率絶縁層は、前記複数層の第1絶縁層の各層のうち少なくとも1つの層間、又は、前記第1導電部と前記1層の第1絶縁層との間もしくは前記第1導電部と前記複数層の第1絶縁層との間に設けられる。
 本開示の第1態様によれば、前記1層の第1絶縁層の誘電率よりも小さい誘電率又は前記複数層の第1絶縁層の何れの誘電率よりも小さい誘電率を有する前記第1低誘電率絶縁層が、前記複数層の第1絶縁層の各層のうち少なくとも1つの層間、又は、前記第1導電部と前記1層の第1絶縁層との間もしくは前記第1導電部と前記複数層の第1絶縁層との間に設けられることにより、前記第1低誘電率絶縁層の静電容量が前記第1絶縁層の静電容量よりも小さくなる。このため、前記電子部品に電圧が印加された場合、前記第1低誘電率絶縁層の電圧よりも、前記第1絶縁層の電圧が低くなる。その結果、相対的に、前記第1絶縁層の電圧が低くなり、電界強度が小さくなる。これにより、前記電子部品に電圧が印加されたとしても、前記電子部品の接続部の電位差が生じている個所の電界集中を緩和することができ、従って、前記電子部品の接続部と前記第1導電部との間の絶縁性を向上させることができる。
 本開示の第1態様の部品内蔵基板において、前記第2導電部側の絶縁層は、1層又は複数層の第2絶縁層と、前記1層の第2絶縁層の誘電率よりも小さい誘電率又は前記複数層の第2絶縁層の何れの誘電率よりも小さい誘電率を有する第2低誘電率絶縁層とからなり、前記第2低誘電率絶縁層は、前記複数層の第2絶縁層の各層のうち少なくとも1つの層間、又は、前記第2導電部と前記1層の第2絶縁層との間もしくは前記第2導電部と前記複数層の第2絶縁層との間に設けられる。
 本開示の第2態様の部品内蔵基板は、第1導電部と、前記第1導電部に対向する第2導電部と、前記第1導電部及び前記第2導電部の間に内蔵される電子部品と、前記第2導電部と前記電子部品との間に設けられた第2導電部側の絶縁層と、を備えた部品内蔵基板であって、前記電子部品の接続部は、前記第2導電部と電気的に接続され、前記第2導電部側の絶縁層は、1層又は複数層の第2絶縁層と、前記1層の第2絶縁層の誘電率よりも小さい誘電率又は前記複数層の第2絶縁層の何れの誘電率よりも小さい誘電率を有する第2低誘電率絶縁層とからなり、前記第2低誘電率絶縁層は、前記複数層の第2絶縁層の各層のうち少なくとも1つの層間、又は、前記第2導電部と前記1層の第2絶縁層との間もしくは前記第2導電部と前記複数層の第2絶縁層との間に設けられる。
 本開示の第1態様の部品内蔵基板において前記第2導電部側の絶縁層が前記第2低誘電率絶縁層を含む場合、及び、本開示の第2態様の部品内蔵基板によれば、前記1層の第2絶縁層の誘電率よりも小さい誘電率又は前記複数層の第2絶縁層の何れの誘電率よりも小さい誘電率を有する前記第2低誘電率絶縁層が、前記複数層の第2絶縁層の各層のうち少なくとも1つの層間、又は、前記第2導電部と前記1層の第2絶縁層との間もしくは前記第2導電部と前記複数層の第2絶縁層との間に設けられることにより、前記第2低誘電率絶縁層の静電容量が前記第2絶縁層の静電容量よりも小さくなる。このため、前記電子部品に電圧が印加された場合、前記第2低誘電率絶縁層の電圧よりも、前記第2絶縁層の電圧が低くなる。その結果、相対的に、前記第2絶縁層の電圧が低くなり、電界強度が小さくなる。これにより、前記電子部品に電圧が印加されたとしても、前記電子部品の接続部の電位差が生じている個所の電界集中を緩和することができ、従って、前記電子部品の接続部と前記第2導電部側との間の絶縁性を向上させることができる。
 本開示の第2態様の部品内蔵基板において、前記第1導電部と前記電子部品との間に設けられた第1導電部側の絶縁層を備える。本構成によれば、前記第1導電部と前記電子部品との間の絶縁性を向上させることができる。
 前記第1導電部及び前記第2導電部のうち、双方が電気回路を構成する導電体で形成された配線パターン層であるか、或いは、前記第1導電部が金属放熱層又は金属放熱性部材であり、前記第2導電部が電気回路を構成する導電体で形成された配線パターン層である。本構成によれば、前記第1導電部及び前記第2導電部が前記配線パターン層や前記金属放熱層又は金属放熱性部材である構成において絶縁性を向上させることができるという効果を好適に実現させることができる。
 本開示の電源装置は、本第1態様又は本第2態様の部品内蔵基板を備えている。本開示の電源装置によれば、前記電子部品の接続部と前記第1導電部及び/又は前記第2導電部との間の絶縁性を向上させることができる。
 本発明によると、電子部品の接続部への電界集中を緩和することができ、従って、電子部品の接続部と導電部との間の絶縁性を向上させることが可能となる。
図1は、第1実施形態に係る部品内蔵基板の構造を示す概略断面図である。 図2は、第2実施形態に係る部品内蔵基板の構造を示す概略断面図である。 図3は、第3実施形態に係る部品内蔵基板の構造を示す概略断面図である。 図4は、第4実施形態に係る部品内蔵基板の構造を示す概略断面図である。 図5は、第5実施形態に係る部品内蔵基板の構造を示す概略断面図である。 図6は、第6実施形態に係る部品内蔵基板の構造を示す概略断面図である。 図7は、第9実施形態に係る部品内蔵基板の構造を示す概略断面図である。 図8は、第10実施形態に係る部品内蔵基板の構造を示す概略断面図である。 図9は、第11実施形態に係る部品内蔵基板の構造を示す概略断面図である。 図10は、電子部品の接続部の電位差が生じている個所への電界集中を解析した解析シミュレーション1の解析条件を示す説明図である。 図11は、図10に示す解析条件における解析シミュレーション1のシミュレーション結果を示す図表である。 図12は、低誘電率絶縁層を2つの絶縁層で挟持した3層の絶縁層において電界強度が低くなる原理を説明するための説明図である。 図13は、電子部品の接続部の電位差が生じている個所への電界集中を解析した解析シミュレーション2の解析条件を示す説明図である。 図14は、図13に示す解析条件における解析シミュレーション2のシミュレーション結果を示す図である。
 以下、本発明の実施の形態に係る部品内蔵基板を電源装置(例えば出力40W以上)に適用した例について図面を参照しながら説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称及び機能も同じである。従って、それらについての詳細な説明は繰り返さない。
 本実施の形態に係る電源装置100は、次の第1実施形態から第4実施形態に係る部品内蔵基板10A~10D及び第1実施形態から第4実施形態のうち何れか2つの構造を組み合わせた構造を有する部品内蔵基板を備えている。
 [第1実施形態]
 図1は、第1実施形態に係る部品内蔵基板10Aの構造を示す概略断面図である。
 図1に示す部品内蔵基板10Aは、第1導電部11と、第2導電部12と、電子部品13と、第1導電部11側の絶縁層14と、第2導電部12側の絶縁層15と、中間部の絶縁層16と、を備えている。
 第1導電部11は、電気回路を構成する導電体で形成された配線パターン層、又は、金属からなる金属放熱層もしくは金属放電性部材である。金属放熱性部材としては、代表的には、ヒートシンクを挙げることができる。第2導電部12は、第1導電部11に対向している。第2導電部12は、電気回路を構成する導電体で形成された配線パターン層である。
 電子部品13は、第1導電部11及び第2導電部12の間に内蔵されている。電子部品13は、この例では、電源用(パワーエレクトロニクス用)の電子部品を含んでいる。電子部品13としては、例えば、トランジスタ、集積回路、ダイオード等の半導体部品や、電気抵抗器、キャパシタ、リレー、圧電素子等の電子部品を挙げることができる。
 第1導電部11側の絶縁層14は、第1導電部11と電子部品13との間に設けられている。第1導電部11側の絶縁層14は、第1絶縁層141と、第1低誘電率絶縁層142とからなっている。第1絶縁層141は、複数層(この例では2層)のものである。第1絶縁層141は、第1導電部11の一端部から他端部にかけて連続的に形成されている。この例では、第1低誘電率絶縁層142も、第1導電部11の一端部から他端部にかけて連続的に形成されている。
 第2導電部12側の絶縁層15は、第2導電部12と電子部品13との間に設けられている。第2導電部12側の絶縁層15は、第2絶縁層151からなっている。第2絶縁層151は、1層又は複数層(この例では1層)のものである。第2絶縁層151は、第2導電部12の一端部から他端部にかけて連続的に形成されている。
 中間部の絶縁層16は、第1導電部11側の絶縁層14と第2導電部12側の絶縁層15との間において電子部品13以外の部分に設けられている。中間部の絶縁層16は、第3絶縁層161からなっている。第3絶縁層161は、1層又は複数層(この例では1層)のものである。
 第1絶縁層141、第2絶縁層151及び第3絶縁層161としては、例えば、ガラス布の高放熱基板材料〔具体的にはCS-3295(利昌工業株式会社製)〕からなるもの、ガラス布基材とエポキシ樹脂との多層基板材料(高放熱基板材料)〔具体的にはR-1766(パナソニック株式会社製)〕からなるものを挙げることができる。ガラス布の高放熱基板材料としては、6~7程度を例示できる。ガラス布基材とエポキシ樹脂との多層基板材料の比誘電率としては、4.7~4.8程度を例示できる。
 電子部品13の接続部13bは、第2導電部12と電気的に接続されている。電子部品13の接続部13bとしては、端子、リードフレーム、導電コアを例示できる。こうすることで、端子、リードフレーム、導電コアである接続部13bと第2導電部12とが電気的に接続された構成において絶縁層14,15の絶縁性を向上させることができるという効果を好適に実現させることができる。例えば、電子部品13の接続部13bは、スルーホール、ビア等の孔部13cを介して第2導電部12と電気的に接続される。
 そして、第1低誘電率絶縁層142は、複数層の第1絶縁層141の何れの誘電率よりも小さい誘電率を有している。第1低誘電率絶縁層142は、複数層の第1絶縁層141の各層のうち少なくとも1つ(この例では1つ)の層間に設けられている。詳しくは、第1低誘電率絶縁層142は、絶縁層14の厚み方向における中央部(2つ層の第1絶縁層141,141の間)に設けられている。
 第1低誘電率絶縁層142は、1層のものであっても、複数層のものであってもよい。第1低誘電率絶縁層142としては、ガラス布基材とエポキシ樹脂との多層基板材料〔具体的にはR-1766(パナソニック株式会社製)〕からなるもの、ガラス布を用いた低伝送損失・高耐熱多層基板材料〔具体的にはMEGTRON7(パナソニック株式会社製)〕からなるものを挙げることができる。ガラス布基材とエポキシ樹脂との多層基板材料の比誘電率としては、4.7~4.8程度を例示できる。ガラス布を用いた低伝送損失・高耐熱多層基板材料の比誘電率としては、3.4前後を例示できる。
 [第2実施形態]
 図2は、第2実施形態に係る部品内蔵基板10Bの構造を示す概略断面図である。
 第2実施形態に係る部品内蔵基板10Bは、第1絶縁層141の層構成及び第1低誘電率絶縁層142の配置構成が異なる以外は、第1実施形態に係る部品内蔵基板10Aと同様であり、第1実施形態と共通する部分の説明を省略する。
 図2に示す部品内蔵基板10Bにおいて、第1絶縁層141は、1層又は複数層(この例では1層)のものである。第1低誘電率絶縁層142は、第1導電部11と1層の第1絶縁層141との間、又は、第1導電部11と複数層の第1絶縁層141との間(この例では第1導電部11と1層の第1絶縁層141との間)に設けられている。第1低誘電率絶縁層142は、1層の第1絶縁層141の誘電率よりも小さい誘電率又は複数層の第1絶縁層141の何れの誘電率よりも小さい誘電率(この例では1層の第1絶縁層141の誘電率よりも小さい誘電率)を有している。
 [第3実施形態]
 図3は、第3実施形態に係る部品内蔵基板10Cの構造を示す概略断面図である。
 第3実施形態に係る部品内蔵基板10Cは、第1導電部11側の絶縁層14及び第2導電部12側の絶縁層15の層構成が異なる以外は、第1実施形態に係る部品内蔵基板10Aと同様であり、第1実施形態と共通する部分の説明を省略する。
 図3に示す部品内蔵基板10Cにおいて、第1導電部11側の絶縁層14は、第1絶縁層141からなっている。第1絶縁層141は、1層又は複数層(この例では1層)のものである。第1絶縁層141は、第1導電部11の一端部から他端部にかけて連続的に形成されている。第2導電部12側の絶縁層15は、第2絶縁層151と、第2低誘電率絶縁層152とからなっている。第2絶縁層151は、複数層(この例では2層)のものである。第2絶縁層151は、第2導電部12の一端部から他端部にかけて連続的に形成されている。この例では、第2低誘電率絶縁層152も、第2導電部12の一端部から他端部にかけて連続的に形成されている。
 そして、第2低誘電率絶縁層152は、複数層の第2絶縁層151の何れの誘電率よりも小さい誘電率を有している。第2低誘電率絶縁層152は、複数層の第2絶縁層151の各層のうち少なくとも1つ(この例では1つ)の層間に設けられている。詳しくは、第2低誘電率絶縁層152は、絶縁層15の厚み方向における中央部(2つ層の第2絶縁層151,151の間)に設けられている。
 第2低誘電率絶縁層152は、1層のものであっても、複数層のものであってもよい。第2低誘電率絶縁層152は、第1低誘電率絶縁層142と同様の材料を用いることができる。
 [第4実施形態]
 図4は、第4実施形態に係る部品内蔵基板10Dの構造を示す概略断面図である。
 第4実施形態に係る部品内蔵基板10Dは、第2絶縁層151の層構成及び第2低誘電率絶縁層152の配置構成が異なる以外は、第3実施形態に係る部品内蔵基板10Cと同様であり、第3実施形態と共通する部分の説明を省略する。
 図4に示す部品内蔵基板10Dにおいて、第2絶縁層151は、1層又は複数層(この例では1層)のものである。第2低誘電率絶縁層152は、第2導電部12と1層の第2絶縁層151との間、又は、第2導電部12と複数層の第2絶縁層151との間(この例では第2導電部12と1層の第2絶縁層151との間)に設けられている。第2低誘電率絶縁層152は、1層の第2絶縁層151の誘電率よりも小さい誘電率又は複数層の第2絶縁層151の何れの誘電率よりも小さい誘電率(この例では1層の第2絶縁層151の誘電率よりも小さい誘電率)を有している。
 (第1実施形態から第4実施形態の組合せ)
 第1実施形態から第4実施形態の構成のうち何れか2つの構造を組み合わせてもよい。
 [第5実施形態]
 図5は、第5実施形態に係る部品内蔵基板10Eの構造を示す概略断面図である。
 第5実施形態に係る部品内蔵基板10Eは、第1実施形態と第3実施形態とを組み合わせた構造の一例である。
 [第6実施形態]
 図6は、第6実施形態に係る部品内蔵基板10Fの構造を示す概略断面図である。
 第6実施形態に係る部品内蔵基板10Fは、第2実施形態と第4実施形態とを組み合わせた構造の一例である。
 [第7実施形態、第8実施形態]
 なお、図示を省略したが、第7実施形態として第1実施形態と第4実施形態とを組み合わせた構造であってもよいし、第8実施形態として第2実施形態と第3実施形態とを組み合わせた構造であってもよい。
 [第9実施形態]
 第1実施形態から第8実施形態において、第1絶縁層141を第3絶縁層161と同じ層にしてもかまわない。
 図7は、第9実施形態に係る部品内蔵基板10Gの構造を示す概略断面図である。
 第9実施形態に係る部品内蔵基板10Gは、第1実施形態に係る部品内蔵基板10Aにおいて第1絶縁層141を第3絶縁層161と同じ層とした一例を示している。図示を省略したが、第2実施形態から第8実施形態において同様の構成としてもよい。
 このように、第1絶縁層141を第3絶縁層161と同じ層とすることで、かかる第3絶縁層161にキャビティを空けて、部品を埋め込むこともできる。
 [第10実施形態]
 第1実施形態から第9実施形態において、電子部品13の接続部13aは、スルーホール、ビア等の孔部を介して第1導電部11と電気的に接続されていてもよい。電子部品13の接続部13aとしては、代表的には、裏面電極を例示できる。
 図8は、第10実施形態に係る部品内蔵基板10Hの構造を示す概略断面図である。
 第10実施形態に係る部品内蔵基板10Hは、第1実施形態に係る部品内蔵基板10Aにおいて電子部品13の接続部13aと第1導電部11とを孔部13dを介して電気的に接続(導通)させた一例を示している。図示を省略したが、第2実施形態から第9実施形態において同様の構成としてもよい。
 こうすることで、接続部13aと第1導電部11とが孔部13dを介して電気的に接続された構成において絶縁層14,15の絶縁性を向上させることができるという効果を好適に実現させることができる。
 [第11実施形態]
 第2導電部側の絶縁層15に第2低誘電率絶縁層152が形成された実施形態において第1導電部側の絶縁層14を除去することで、電子部品13の接続部13aが第1導電部11と直接電気的に接続されていてもよい。
 図9は、第11実施形態に係る部品内蔵基板10Iの構造を示す概略断面図である。
 第11実施形態に係る部品内蔵基板10Iは、第3実施形態に係る部品内蔵基板10Cにおいて第1導電部側の絶縁層14を除去することで、電子部品13の接続部13aと第1導電部11とを直接電気的に接続(導通)させた一例を示している。図示を省略したが、第4実施形態から第10実施形態のうち第2導電部側の絶縁層15に第2低誘電率絶縁層152が形成された実施形態において同様の構成としてもよい。
 こうすることで、接続部13aと第1導電部11とが直接電気的に接続された構成において絶縁層15の絶縁性を向上させることができるという効果を好適に実現させることができる。
 (解析シミュレーションについて)
 次に、電子部品に電圧を印加したときの電子部品の接続部の電位差が生じている個所(特にエッジ部)への電界集中を解析したので、以下に説明する。
 [解析シミュレーション1]
 図10は、電子部品の接続部の電位差が生じている個所α1への電界集中を解析した解析シミュレーション1の解析条件を示す説明図である。
 この解析シミュレーション1は、市販の解析ソフト〔ムラタソフトウェア株式会社製 Femtet(登録商標)〕を用いて行った。この解析シミュレーション1では、厚み0.3mmの絶縁層(樹脂Y)を厚み35μmの銅箔からなる一対の電極(X,X)で挟持し、電極(X,X)間に1kVの電圧Vを印加して、電極(X)/絶縁層(Y)/空気層Zの境界点β0から水平/垂直方向に0.1mmずつ離れた測定点β1の電界強度を測定した。
 図11は、図10に示す解析条件における解析シミュレーション1のシミュレーション結果を示す図表である。
 図11では、比誘電率εが異なる3種類の絶縁層Y1,Y2,Y3、及び、低誘電率絶縁層(中間層Ya)を2つの絶縁層Y3,Y3で挟持した3層の絶縁層Y4のシミュレーション結果を示している。絶縁層Y1,Y2,Y3の比誘電率をそれぞれ4、3、7とし、低誘電率絶縁層(Ya)の比誘電率を7とした。
 図11に示すように、低誘電率絶縁層(Ya)を2つの絶縁層Y3,Y3で挟持した3層の絶縁層Y4では、電界強度が低くなり、従って、電界集中が緩和され、絶縁層Y4の絶縁性が高くなった。
 図12は、低誘電率絶縁層(Ya)を2つの絶縁層Y3,Y3で挟持した3層の絶縁層Y4において電界強度が低くなる原理を説明するための説明図である。
 キャパシタンス(静電容量)Cは、次の式で表すことができる。
 C=ε×S/d
 C:キャパシタンス
 ε:誘電率
 S:導電部(X,X)の面積
 d:導電部(X,X)間の距離
 低誘電率絶縁層(Ya)の誘電率が小さいため、キャパシタンスC(静電容量)が小さくなる。印加された電圧Vが分圧された場合、低誘電率絶縁層(Ya)のキャパシタンスC(静電容量)が小さいため、低誘電率絶縁層(Ya)の電圧が高く、その他の絶縁層Y3,Y3の電圧が低くなる。
 その結果、相対的に、低誘電率絶縁層(Ya)の電圧が低くなり、電界強度が小さくなる。そのため電界集中が緩和される。
 [解析シミュレーション2]
 前述した解析シミュレーション1は、片方の層が空気層と面していた場合でのシミュレーションであった。これに対し、より実例に近い解析シミュレーション2を行ったので、以下に解析シミュレーション2について説明する。
 図13は、電子部品の接続部の電位差が生じている個所α2への電界集中を解析した解析シミュレーション2の解析条件を示す説明図である。
 解析シミュレーション2では、前記した解析ソフトを用いて図1に示す部品内蔵基板10Aの図13のγ部分のイメージとして、電極(X,X)間(例えば電子部品13の接続部13aと第1導電部11との間)に1kVの電圧を印加して、電極(X)/3層の絶縁層(Yb)/絶縁層(Yc)の境界点β0から水平/垂直方向に50μmずつ離れた測定点β2の電界強度を導出し、比較した。なお、3層の絶縁層(Yb)は、絶縁層(Yb1)、絶縁層(Yb2)、絶縁層(Yb1)で構成されている。
 図14は、図13に示す解析条件における解析シミュレーション2のシミュレーション結果を示す図である。
 絶縁層Yc,Yb1,Yb2の比誘電率をいずれも7とすると、電界強度は4.331MV/mmであった。絶縁層Yc,Yb1,Yb2の比誘電率をいずれも4とすると、電界強度は4.332MV/mmであった。絶縁層Yc,Yb1,Yb2の比誘電率をいずれも3とすると、電界強度は4.318MV/mmであった。また、絶縁層Yc,Yb1の比誘電率をいずれも4とし、絶縁層Yb2の比誘電率を7とすると、電界強度は4.76MV/mmであった。
 これに対し、絶縁層Yc,Yb1の比誘電率をいずれも7とし、絶縁層Yb2の比誘電率を4とすると、電界強度は3.752MV/mmとなった。このように、中間に誘電率が低い絶縁層Yb2〔低誘電率絶縁層(Ya)〕がある場合、電極(X)近傍の電界強度が緩和される。
 (本実施の形態について)
 第1実施形態及び第2実施形態を含む実施形態によれば、1層の第1絶縁層141の誘電率よりも小さい誘電率又は複数層の第1絶縁層141の何れの誘電率よりも小さい誘電率を有する第1低誘電率絶縁層142が、複数層の第1絶縁層141の各層のうち少なくとも1つの層間、又は、第1導電部11と1層の第1絶縁層141との間もしくは第1導電部11と複数層の第1絶縁層141との間に設けられていることにより、第1低誘電率絶縁層142の静電容量が第1絶縁層141の静電容量よりも小さくなる。このため、電子部品13に電圧が印加された場合、第1低誘電率絶縁層142の電圧よりも、第1絶縁層141の電圧が低くなる。その結果、相対的に、第1絶縁層141の電圧が低くなり、電界強度が小さくなる。これにより、電子部品13に電圧が印加されたとしても、電子部品13の接続部13a(この例では端子、リードフレームもしくは導電コア)の電位差が生じている個所α1,α2(特にエッジ部)の電界集中を緩和することができ、従って、電子部品13の接続部13aと第1導電部11との間の絶縁性を向上させることができる。ひいては、電子部品13の接続部13aと第1導電部11との間の放電を効果的に防止することができる。
 第3実施形態及び第4実施形態を含む実施形態によれば、1層の第2絶縁層151の誘電率よりも小さい誘電率又は複数層の第2絶縁層151の何れの誘電率よりも小さい誘電率を有する第2低誘電率絶縁層152が、複数層の第2絶縁層151の各層のうち少なくとも1つの層間、又は、第2導電部12と1層の第2絶縁層151との間もしくは第2導電部12と複数層の第2絶縁層151との間に設けられていることにより、第2低誘電率絶縁層152の静電容量が第2絶縁層151の静電容量よりも小さくなる。このため、電子部品13に電圧が印加された場合、第2低誘電率絶縁層152の電圧よりも、第2絶縁層151の電圧が低くなる。その結果、相対的に、第2絶縁層151の電圧が低くなり、電界強度が小さくなる。これにより、電子部品13に電圧が印加されたとしても、電子部品13の接続部13b(この例では端子、リードフレームもしくは導電コア)の電位差が生じている個所α1,α2(特にエッジ部)の電界集中を緩和することができ、従って、電子部品13の接続部13bと第2導電部12との間の絶縁性を向上させることができる。ひいては、電子部品13の接続部13bと第2導電部12との間の放電を効果的に防止することができる。
 本実施の形態において、第1導電部11と電子部品13との間に第1導電部側の絶縁層14が設けられていることで、第1導電部11と電子部品13との間の絶縁性を向上させることができる。
 本実施の形態において、第1導電部11及び第2導電部12のうち、双方が電気回路を構成する導電体で形成された配線パターン層であるか、或いは、第1導電部11が金属放熱層又は金属放熱性部材であり、第2導電部12が電気回路を構成する導電体で形成された配線パターン層である。こうすることで、第1導電部11及び第2導電部12が配線パターン層や金属放熱層又は金属放熱性部材である構成において絶縁性を向上させることができるという効果を好適に実現させることができる。
 電源装置100は、前記した部品内蔵基板及びこれらの組合せのうち少なくとも1つを備えている。こうすることで、電源装置100において、電子部品13の接続部13aと第1導電部11との間及び/又は電子部品13の接続部13bと第2導電部12との間の絶縁性を向上させることができる。
 以上説明したように、本実施の形態では、部品内蔵基板を電源装置に適用したが、その他の用途(例えば出力が電源装置の出力よりも小さい電子機器)に適用してもよい。
 本発明は、以上説明した実施の形態に限定されるものではなく、他のいろいろな形で実施することができる。そのため、係る実施の形態はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。
この出願は、2020年2月18日に日本で出願された特願2020-025135号に基づく優先権を請求する。これに言及することにより、その全ての内容は本出願に組み込まれるものである。
 本発明は、電子部品を内蔵した部品内蔵基板及び電源装置に係るものであり、特に、電子部品の接続部と導電部との間の絶縁性を向上させるための用途に適用できる。
100 電源装置
10A~10I 部品内蔵基板
11  第1導電部
12  第2導電部
13  電子部品
13a 接続部
13b 接続部
13c 孔部
14  第1導電部側の絶縁層
141 第1絶縁層
142 第1低誘電率絶縁層
15  第2導電部側の絶縁層
151 第2絶縁層
152 第2低誘電率絶縁層
16  中間部の絶縁層
161 第3絶縁層
α1  電位差が生じている個所
α2  電位差が生じている個所
β0  境界点
β1  測定点
β2  測定点

Claims (6)

  1.  第1導電部と、
     前記第1導電部に対向する第2導電部と、
     前記第1導電部及び前記第2導電部の間に内蔵される電子部品と、
     前記第1導電部と前記電子部品との間に設けられた第1導電部側の絶縁層と、
     前記第2導電部と前記電子部品との間に設けられた第2導電部側の絶縁層と、
     を備えた部品内蔵基板であって、
     前記電子部品の接続部は、前記第2導電部と電気的に接続され、
     前記第1導電部側の絶縁層は、1層又は複数層の第1絶縁層と、前記1層の第1絶縁層の誘電率よりも小さい誘電率又は前記複数層の第1絶縁層の何れの誘電率よりも小さい誘電率を有する第1低誘電率絶縁層とからなり、
     前記第1低誘電率絶縁層は、前記複数層の第1絶縁層の各層のうち少なくとも1つの層間、又は、前記第1導電部と前記1層の第1絶縁層との間もしくは前記第1導電部と前記複数層の第1絶縁層との間に設けられる、部品内蔵基板。
  2.  前記第2導電部側の絶縁層は、1層又は複数層の第2絶縁層と、前記1層の第2絶縁層の誘電率よりも小さい誘電率又は前記複数層の第2絶縁層の何れの誘電率よりも小さい誘電率を有する第2低誘電率絶縁層とからなり、
     前記第2低誘電率絶縁層は、前記複数層の第2絶縁層の各層のうち少なくとも1つの層間、又は、前記第2導電部と前記1層の第2絶縁層との間もしくは前記第2導電部と前記複数層の第2絶縁層との間に設けられる、請求項1に記載の部品内蔵基板。
  3.  第1導電部と、
     前記第1導電部に対向する第2導電部と、
     前記第1導電部及び前記第2導電部の間に内蔵される電子部品と、
     前記第2導電部と前記電子部品との間に設けられた第2導電部側の絶縁層と、
     を備えた部品内蔵基板であって、
     前記電子部品の接続部は、前記第2導電部と電気的に接続され、
     前記第2導電部側の絶縁層は、1層又は複数層の第2絶縁層と、前記1層の第2絶縁層の誘電率よりも小さい誘電率又は前記複数層の第2絶縁層の何れの誘電率よりも小さい誘電率を有する第2低誘電率絶縁層とからなり、
     前記第2低誘電率絶縁層は、前記複数層の第2絶縁層の各層のうち少なくとも1つの層間、又は、前記第2導電部と前記1層の第2絶縁層との間もしくは前記第2導電部と前記複数層の第2絶縁層との間に設けられる、部品内蔵基板。
  4.  前記第1導電部と前記電子部品との間に設けられた第1導電部側の絶縁層を備える、請求項3に記載の部品内蔵基板。
  5.  前記第1導電部及び前記第2導電部のうち、双方が電気回路を構成する導電体で形成された配線パターン層であるか、或いは、前記第1導電部が金属放熱層又は金属放熱性部材であり、前記第2導電部が電気回路を構成する導電体で形成された配線パターン層である、請求項1から請求項4までの何れか1項に記載の部品内蔵基板。
  6.  請求項1から請求項5までの何れか1項に記載の部品内蔵基板を備えた、電源装置。
PCT/JP2021/002167 2020-02-18 2021-01-22 部品内蔵基板及び電源装置 WO2021166548A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020025135A JP2021132060A (ja) 2020-02-18 2020-02-18 部品内蔵基板及び電源装置
JP2020-025135 2020-02-18

Publications (1)

Publication Number Publication Date
WO2021166548A1 true WO2021166548A1 (ja) 2021-08-26

Family

ID=77391980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002167 WO2021166548A1 (ja) 2020-02-18 2021-01-22 部品内蔵基板及び電源装置

Country Status (2)

Country Link
JP (1) JP2021132060A (ja)
WO (1) WO2021166548A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63224934A (ja) * 1987-03-14 1988-09-20 松下電工株式会社 積層板
JPH0424986A (ja) * 1990-05-15 1992-01-28 Matsushita Electric Works Ltd 電気用積層板の製造方法
JP2002344346A (ja) * 2001-05-22 2002-11-29 Tdk Corp 移動体通信機器用モジュール
JP2003174115A (ja) * 2001-09-26 2003-06-20 Kyocera Corp 複合セラミック部品及びその製造方法
JP2007098692A (ja) * 2005-09-30 2007-04-19 Nippon Pillar Packing Co Ltd 銅張積層板、プリント配線板及び多層プリント配線板並びにこれらの製造方法
JP2008201124A (ja) * 2007-01-24 2008-09-04 Hitachi Chem Co Ltd 電気絶縁用積層材料及びこの積層材料を用いたプリント配線板
JP2008230035A (ja) * 2007-03-20 2008-10-02 Nippon Shokubai Co Ltd ポリイミド積層フィルムおよびそれを用いたプリント基板
JP2019096850A (ja) * 2017-11-28 2019-06-20 株式会社フジクラ 部品内蔵基板

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63224934A (ja) * 1987-03-14 1988-09-20 松下電工株式会社 積層板
JPH0424986A (ja) * 1990-05-15 1992-01-28 Matsushita Electric Works Ltd 電気用積層板の製造方法
JP2002344346A (ja) * 2001-05-22 2002-11-29 Tdk Corp 移動体通信機器用モジュール
JP2003174115A (ja) * 2001-09-26 2003-06-20 Kyocera Corp 複合セラミック部品及びその製造方法
JP2007098692A (ja) * 2005-09-30 2007-04-19 Nippon Pillar Packing Co Ltd 銅張積層板、プリント配線板及び多層プリント配線板並びにこれらの製造方法
JP2008201124A (ja) * 2007-01-24 2008-09-04 Hitachi Chem Co Ltd 電気絶縁用積層材料及びこの積層材料を用いたプリント配線板
JP2008230035A (ja) * 2007-03-20 2008-10-02 Nippon Shokubai Co Ltd ポリイミド積層フィルムおよびそれを用いたプリント基板
JP2019096850A (ja) * 2017-11-28 2019-06-20 株式会社フジクラ 部品内蔵基板

Also Published As

Publication number Publication date
JP2021132060A (ja) 2021-09-09

Similar Documents

Publication Publication Date Title
JP5339384B2 (ja) ラミネートキャパシタおよび集積回路基板
US7187071B2 (en) Composite electronic component
JP2009094333A (ja) キャパシタを内蔵したプリント配線板およびその製造方法
KR20140087742A (ko) 다층기판
US8802999B2 (en) Embedded printed circuit board and manufacturing method thereof
US20180370463A1 (en) Circuit assembly and electrical junction box
US6785147B2 (en) Circuit module
US6756628B2 (en) Capacitor sheet with built in capacitors
US20080013295A1 (en) Capacitor sheet and electronic circuit board
WO2021166548A1 (ja) 部品内蔵基板及び電源装置
US20190215963A1 (en) Circuit board, method of manufacturing circuit board, and electronic device
US9609741B1 (en) Printed circuit board and electronic apparatus
US7084501B2 (en) Interconnecting component
TWI615075B (zh) 一種柔性線路板及其製作方法
US20050012198A1 (en) Semiconductor device
JP2011035170A (ja) 多層積層回路
JP2000188448A (ja) 配線基板及びその製造方法
US8023278B2 (en) Circuit board
KR100653247B1 (ko) 내장된 전기소자를 구비한 인쇄회로기판 및 그 제작방법
JP4801603B2 (ja) 電源モジュール
JP2007158207A (ja) 積層型電子回路構造体とその製造方法
WO2019194200A1 (ja) 部品内蔵基板
US20070178226A1 (en) Printed circuit board
JP2005340535A (ja) 電子部品実装基板
US8796817B2 (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21757845

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21757845

Country of ref document: EP

Kind code of ref document: A1