WO2021166142A1 - パターンマッチング装置、パターン測定システムおよび非一時的コンピュータ可読媒体 - Google Patents

パターンマッチング装置、パターン測定システムおよび非一時的コンピュータ可読媒体 Download PDF

Info

Publication number
WO2021166142A1
WO2021166142A1 PCT/JP2020/006688 JP2020006688W WO2021166142A1 WO 2021166142 A1 WO2021166142 A1 WO 2021166142A1 JP 2020006688 W JP2020006688 W JP 2020006688W WO 2021166142 A1 WO2021166142 A1 WO 2021166142A1
Authority
WO
WIPO (PCT)
Prior art keywords
edge
pattern
computer system
pattern matching
candidates
Prior art date
Application number
PCT/JP2020/006688
Other languages
English (en)
French (fr)
Inventor
良 李
安部 雄一
渉 長友
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to KR1020227027847A priority Critical patent/KR102690867B1/ko
Priority to PCT/JP2020/006688 priority patent/WO2021166142A1/ja
Priority to US17/800,155 priority patent/US20230071668A1/en
Priority to TW109144853A priority patent/TWI767458B/zh
Publication of WO2021166142A1 publication Critical patent/WO2021166142A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/74Image or video pattern matching; Proximity measures in feature spaces
    • G06V10/75Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
    • G06V10/751Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
    • G06V10/7515Shifting the patterns to accommodate for positional errors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/04Measuring microscopes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/82Auxiliary processes, e.g. cleaning or inspecting
    • G03F1/84Inspecting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/12Edge-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/60Extraction of image or video features relating to illumination properties, e.g. using a reflectance or lighting model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/74Image or video pattern matching; Proximity measures in feature spaces
    • G06V10/75Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
    • G06V10/751Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/74Image or video pattern matching; Proximity measures in feature spaces
    • G06V10/75Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
    • G06V10/757Matching configurations of points or features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/401Imaging image processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/418Imaging electron microscope
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/611Specific applications or type of materials patterned objects; electronic devices
    • G01N2223/6116Specific applications or type of materials patterned objects; electronic devices semiconductor wafer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • G06T2207/10061Microscopic image from scanning electron microscope

Definitions

  • the present disclosure relates to a pattern matching device, a pattern measuring system, and a non-temporary computer-readable medium, and particularly to a device that realizes highly accurate matching processing even if the edge signal of the pattern is weak.
  • Patent Document 1 describes an example of such template matching. Note that template matching is a process of finding an area that best matches a pre-registered template image from an image to be searched.
  • Patent Document 2 describes a method of creating a template for template matching based on design data of a semiconductor device. If a template can be created based on the design data, there is an advantage that the trouble of acquiring an image with an inspection device for creating the template is eliminated.
  • Patent Document 3 describes highly accurate matching even when there is a change in the position or number of edges (edges of layers, boundaries between layers, etc.) included in the pattern between the template and the image to be searched. Explains how to do this.
  • Patent Document 3 discloses a method of selecting edge candidates based on a threshold value using edge strength, but due to differences in semiconductor pattern configuration, material, structure, etc., or differences in measurement conditions, SEM Since the appearance of the image is different from the design data, it is not possible to predict how weak the edge strength of the weak edge will be.
  • edge selection is performed using threshold processing, there is a possibility that the true edge (correct edge) may be missed.
  • the processing time of the subsequent association processing may become long.
  • the matching process may become unstable due to the increased degree of freedom in the matching process.
  • Patent Documents 1, 2 and 3 do not disclose how to process the edge selection process in the SEM image including the weak edge.
  • the present disclosure has been made to solve such a problem, and is a pattern matching device capable of appropriately selecting edge candidates and performing highly accurate positioning even for an SEM image containing weak edges.
  • a pattern measurement system and a non-temporary computer-readable medium We propose a pattern measurement system and a non-temporary computer-readable medium.
  • An example of the pattern matching device is In a pattern matching apparatus provided with a computer system that executes a pattern matching process between the first pattern data based on the design data and the second pattern data representing an image captured by an electron microscope.
  • the computer system acquires a first edge candidate group including one or more first edge candidates based on the first pattern data, and obtains a first edge candidate group.
  • the computer system acquires the required number of selections, and the required number of selections represents the number of second edge candidates to be selected based on the second pattern data.
  • the computer system Based on the second pattern data, acquires a second edge candidate group including the required number of second edge candidates to be selected.
  • the computer system acquires correspondence evaluation values based on the first and second edge candidate groups for each of the combinations of different associations between the first edge candidate group and the second edge candidate group.
  • the computer system selects one of the combinations based on the corresponding evaluation value.
  • the computer system calculates a matching shift amount based on the selected combination. It is characterized by that.
  • An example of the pattern measurement system according to the present disclosure includes the above-mentioned pattern matching device and a scanning electron microscope.
  • An example of a non-temporary computer-readable medium stores program instructions that can be executed on a computer system to make the computer system function as a computer system included in the above-mentioned pattern matching device.
  • the pattern matching device the pattern measurement system, and the non-temporary computer-readable medium according to the present disclosure, it is possible to appropriately select edge candidates and perform highly accurate positioning even for an SEM image containing weak edges. It becomes.
  • a configuration example of the pattern matching device according to the first embodiment of the present disclosure.
  • FIG. 1 is a configuration example of the pattern matching device according to the first embodiment of the present disclosure.
  • the pattern matching device can be configured as an arithmetic processing unit that executes pattern matching processing.
  • the arithmetic processing unit can be configured by, for example, a computer system.
  • FIG. 1 shows, in particular, the flow of pattern matching processing executed by the arithmetic processing unit.
  • the pattern matching process includes, for example, a step of searching for an appropriate association between the edge candidate obtained from the image acquired by the measuring device and the edge candidate obtained from the design data.
  • a scanning electron microscope (hereinafter referred to as "SEM") is used as an example of the measuring device.
  • SEM is used, for example, to measure the dimensions of a pattern of a semiconductor device formed on a semiconductor wafer. A specific configuration example of the SEM will be described later with reference to FIG.
  • the arithmetic processing unit includes an SEM image acquisition unit 101, a design data acquisition unit 103, and a pattern matching processing unit 130.
  • the pattern matching processing unit 130 can be configured as, for example, a computer system.
  • the design data acquisition unit 103 acquires the design data 104 (first pattern data) and supplies it to the pattern matching processing unit 130.
  • the design data 104 itself is used as the first pattern data, but the first pattern data can be any format and content data as long as it is obtained based on the design data 104.
  • the SEM image acquisition unit 101 acquires the SEM image 102 (second pattern data) and supplies it to the pattern matching processing unit 130.
  • the SEM image 102 an image captured by an electron microscope of another type may be used.
  • the design data 104 corresponds to the pattern appearing in the SEM image 102.
  • a pattern of a semiconductor device is formed based on a certain design data 104, and the SEM image 102 is an image of the pattern by SEM.
  • the design data 104 corresponding to each of the various SEM images 102 is prepared in advance and supplied to the arithmetic processing unit.
  • the association between the SEM image 102 and the design data 104 can be determined by any method.
  • the arithmetic processing unit may automatically acquire the appropriate design data 104 according to the SEM image 102, or the arithmetic processing unit may acquire the appropriate design data 104.
  • the user of the processing unit may specify the design data 104 according to the SEM image 102.
  • a plurality of edges appear in the SEM image 102.
  • An edge is, for example, an edge of a layer or a boundary between layers in a pattern representing a physical structure.
  • the edges in the SEM image 102 have, for example, a line segment-like structure extending in parallel with each other in a predetermined direction (specifically, in the vertical direction).
  • the design data 104 includes, for example, coordinate data representing the start and end points of a line segment representing an edge.
  • the edges in the design data 104 are represented by line segments extending parallel to each other in a predetermined direction (specifically, in the vertical direction).
  • the position of each edge in the SEM image 102 and the design data 104 can be represented by a single scalar value (for example, an X coordinate value).
  • a single scalar value for example, an X coordinate value
  • the pattern matching processing unit 130 executes pattern matching processing between the SEM image 102 and the design data 104. As a result of the pattern matching process, the matching shift amount 107 is output.
  • the matching shift amount 107 represents the shift amount or difference of the position between the SEM image 102 and the design data 104.
  • the matching shift amount 107 can be represented by, for example, a single scalar value (for example, the shift amount in the X direction).
  • edges included in the design data 104 are shifted by the same shift amount, they will completely match the edges included in the SEM image 102.
  • the matching shift amount is the optimum shift amount that gives the optimum correspondence between the edges. It is possible to determine 107.
  • the pattern matching processing unit 130 includes an edge candidate extraction unit 121, an edge candidate selection required number calculation unit 123, an edge candidate selection processing unit 125, and an association candidate selection unit 126 between edge candidates and design data (hereinafter, “association”). It includes a candidate selection unit 126 ”), a corresponding evaluation value calculation unit 110, an edge mapping processing unit 112, and a matching shift amount calculation unit 106.
  • the edge candidate selection required number calculation unit 123 acquires the edge candidate selection required number 124.
  • the required number of edge candidates 124 is equal to or greater than the number of edges included in the design data 104.
  • the method for the calculation unit 123 for the required number of edge candidate selections to acquire the required number 124 for edge candidate selection can be arbitrarily designed.
  • the edge candidate selection required number calculation unit 123 may automatically calculate based on the SEM image 102 and the design data 104 (specific examples will be described later using FIG. 3 and the like). ..
  • the user may input an appropriate number according to the design data 104, and the edge candidate selection required number calculation unit 123 may acquire this.
  • the edge candidate extraction unit 121 acquires the primary edge candidate 122 based on the SEM image 102.
  • the number of primary edge candidates 122 acquired here is 124 or more required for selecting edge candidates.
  • FIG. 2A is a graph relating to the process of extracting the primary edge candidate 122.
  • the horizontal axis 202 represents the coordinates in the specific direction (for example, the X coordinate) in the SEM image 102
  • the vertical axis 204 represents the signal strength (for example, the brightness).
  • the line profile 201 was generated by projecting the signal strength of each pixel of the SEM image 102 in a direction orthogonal to the horizontal axis 202 (for example, the Y-axis direction and corresponding to the longitudinal direction of the line pattern) in the SEM image 102. It is a profile.
  • the point 203 extracted based on the line profile 201 is a primary edge candidate.
  • 20 primary edge candidates are acquired.
  • the position where the signal strength becomes the maximum value in the section having the width of a predetermined number of pixels can be extracted as the primary edge candidate.
  • the process of extracting the primary edge candidate is not limited to the above method, and may be any process that can appropriately extract a position that may be an edge.
  • the required number of edge candidate selection 124 represents the number of second edge candidates 108 to be selected based on the SEM image 102, and is a number determined so that the true edge is not missed in the SEM image 102. By appropriately determining the required number of edge candidate selection 124, it is possible to minimize the number of edge candidates to be calculated. When such a process is used, the number of matching candidates 109 (candidates to be subjected to the discrete optimization process described later) is reduced, the time required for the pattern matching process is shortened, and the process is stable. Be done.
  • the edge candidate selection processing unit 125 selects a plurality of second edge candidates 108 that actually correspond to the edges of the design data 104 from the primary edge candidates in the SEM image 102.
  • the edge candidate selection processing unit 125 calculates an edge evaluation value for each of the primary edge candidates, and selects the second edge candidate 108 based on the edge evaluation value.
  • the number of second edge candidates 108 selected here is equal to the required number of edge candidates selected 124.
  • FIG. 2B is a graph related to the process of selecting the second edge candidate 108.
  • the horizontal axis 222 is the same as in FIG. 2A, and the vertical axis 221 represents an edge evaluation value.
  • the edge evaluation value the edge strength indicating the strength as an edge is used.
  • the edge candidate selection processing unit 125 calculates the edge strength for each of the primary edge candidates. For example, the value of the edge strength of a certain primary edge candidate 224 is 223, and in the example of FIG. 2B, it is the primary edge candidate having the highest edge strength.
  • the signal strength corresponding to the primary edge candidate and the front and rear predetermined pixels around the primary edge candidate (for example, the position of the primary edge candidate as the center) It can be calculated as the difference from the minimum value (local minimum value) of the signal strength in the section having the width of the number.
  • the edge strength can be calculated based on the inclination (differential value) around the primary edge candidate.
  • the edge strength is acquired with a relatively small amount of calculation. be able to.
  • the method for calculating the edge strength is not limited to these, and any method may be used as long as it uses an index value that gives a high value at the edge in the SEM image 102.
  • the edge candidate selection processing unit 125 ranks each primary edge candidate based on the edge strength.
  • the primary edge candidates can be ranked in descending order of edge strength. For example, when the edge strength value 223 of a certain primary edge candidate 224 is the highest among all the primary edge candidates, the primary edge candidate 224 is ranked first.
  • edge strength the more likely it is to be a true edge.
  • the smaller the edge strength is the more likely it is to be a true edge. They may be ranked in ascending order of intensity.
  • the selected edge candidate becomes a candidate (second edge candidate 108) that actually corresponds to the edge of the design data 104.
  • one primary edge candidate 224 is selected as the second edge candidate (shown by a solid line), and another edge candidate 225 is not selected (shown by a broken line).
  • the second edge candidate group consisting of the selected second edge candidates 108 is shown in FIG. 2 (c).
  • the pattern matching processing unit 130 determines the position of each second edge candidate 108 based on the SEM image 102, so that the second edge candidate including the second edge candidate 108 having the required number of edge candidate selection 124 is determined. Get a swarm.
  • the association candidate selection unit 126 acquires the first edge candidate group including one or more first edge candidates 113 based on the design data 104.
  • FIG. 2D is a diagram relating to the process of selecting the first edge candidate.
  • the shape 261 schematically represents the unevenness appearing in the cross section of the pattern corresponding to the design data 104. This cross section is parallel to the shaft 262.
  • the axis 262 indicates the position of the first edge candidate corresponding to the shape of the layer 261 and is, for example, the axis in the direction corresponding to the horizontal axis 202 of FIG. 2A.
  • the pattern of FIG. 2D is a pattern having an upper layer and a lower layer.
  • An upper line 263, an upper space 264 (or a lower line), and a lower space 265 are shown. These boundaries serve as edges (first edge candidates) of the design data 104.
  • the edge 266 at the boundary between the upper line 263 and the upper space 264 is the upper edge
  • the edge 267 at the boundary between the upper space 264 (that is, the lower line) and the lower space 265 is the lower edge. It is an edge.
  • the design data 104 includes information indicating the position of the first edge candidate.
  • the design data 104 includes, for example, coordinate data representing the start point and the end point of the line segment representing each edge, so that the position of the first edge candidate can be acquired based on this. can.
  • the first edge candidate group consisting of four first edge candidates is acquired.
  • all the selected first edge candidates are subject to the corresponding processing with the second edge candidate.
  • the association candidate selection unit 126 generates the association candidate 109 representing a combination of different associations between the first edge candidate group and the second edge candidate group.
  • the association candidate selection unit 126 corresponds between the four first edge candidates shown in FIG. 2 (d) and the nine second edge candidates shown in FIG. 2 (c). Generate a combination of relationships.
  • the mapping candidate 109 includes any combination of logically possible mappings.
  • each second edge candidate included in the second edge candidate group is associated with any of the first edge candidates included in the first edge candidate group (or any first edge). It refers to the combination of cases (not associated with candidates). For example, one combination associates a second edge candidate with a first edge candidate, and another combination associates the second edge candidate with another first edge candidate.
  • the correspondence evaluation value calculation unit 110 acquires the correspondence evaluation value 111 based on the first and second edge candidate groups for each of the combinations of associations.
  • the correspondence evaluation value 111 represents the plausibility of the association in the combination of the associations, and can be expressed as, for example, a cost.
  • the corresponding evaluation value 111 can be calculated by, for example, discrete optimization processing. As a specific example, the graph cut described in Patent Document 3 may be used. Further, when calculating the corresponding evaluation value 111, an evaluation value that correlates with the edge strength in the SEM image 102 may be used, or the edge in the SEM image 102 (second edge candidate) and the edge in the design data (first). The evaluation value of the relative deviation from the edge candidate) may be used.
  • the second edge candidate that is considered to be erroneously selected may be excluded from the processing target as it does not correspond to any of the first edge candidates.
  • the edge mapping processing unit 112 determines an appropriate matching combination based on the correspondence evaluation value 111. For example, among the combinations of associations, the one having the largest correspondence evaluation value 111 is selected. As a result, the position information of the true edge and the association information 105 with the design data are acquired.
  • the matching shift amount calculation unit 106 calculates the matching shift amount 107 based on the selected combination of mappings.
  • a calculation method of the matching shift amount 107 for example, the deviation amount of the coordinates of the first edge candidate and the second edge candidate constituting the pair in the correspondence is calculated, and this deviation amount is used as the average value for all the pairs. You can ask.
  • the calculation method of the matching shift amount is not limited to this, and any appropriate method can be used.
  • the pattern matching device As described above, according to the pattern matching device according to the present disclosure, it is possible to appropriately select edge candidates and perform highly accurate positioning even for an SEM image including a weak edge.
  • the required number of edge candidates of 124 it is possible to minimize the number of edge candidates (second edge candidates) extracted from the SEM image 102 while eliminating weak edge omissions. Therefore, the number of matching candidates 109 is reduced, the time required for the pattern matching process is shortened, and the process is stable.
  • the required number of edge candidates to be selected can be obtained by using the number of edges included in the design data 104.
  • the first method for acquiring the required number of edge candidate selection uses a database including a table that associates the required number of edge candidate selection for each edge number in the design data. For example, when the number of edges of the design data is X1, the required number of edge candidates to be selected is Y1, and when the number of edges of the design data is X2, the required number of edge candidates to be selected is Y2. It is defined as.
  • Such a database can be created by any method, but an example is shown below.
  • primary edge candidates are extracted by the same processing as in the edge candidate extraction unit 121, and the edge strength of each primary edge candidate is calculated.
  • Record the number of selected primary edge candidates in the order of edge strength without missing true edges for example, among the primary edge candidates corresponding to true edges, the rank of the one with the lowest edge strength is obtained, and that rank is used as the number of selected pieces. ).
  • the number of selected SEM images is recorded, and the maximum value among them is set as the required number of edge candidates selected corresponding to the number of edges of the design data.
  • Machine learning is used in the second method for acquiring the required number of edge candidate selections.
  • FIG. 3 shows an example of such a method.
  • the arithmetic processing unit includes a trained model.
  • the teacher data used in the learning stage includes an SEM image 307 of the design data, 301 edges of the design data (that is, the number of first edge candidates), and 304 required number of true edge candidates to be selected.
  • the learning model 302 trains using such teacher data, the trained model 306 is generated.
  • the SEM image 307 of the design data is an image captured by an electron microscope corresponding to the design data.
  • a pattern of a semiconductor device is formed based on a certain design data, and an image obtained by capturing the formed pattern by SEM is used. Can be done.
  • the number of edges 301 of the design data can be automatically acquired based on the design data, for example, but may be prepared independently of the design data. Further, other data capable of estimating the number of edges of the design data may be used.
  • the required number of true edge candidate selections 304 can be determined and specified by the user, for example.
  • the user can determine the required number 304 for selecting true edge candidates in consideration of the image quality (contrast, noise, etc.) of the SEM image 307 of the design data.
  • the arithmetic processing unit can determine the required number of edge candidates to be selected in consideration of the image quality of the SEM image.
  • the method for obtaining the required number 304 for selecting true value edge candidates is not limited to such a method, and other methods may be used.
  • a learning model 302 is constructed in which the number of edges 301 of the design data and the SEM image 307 of the design data are input and the estimated number of required edge candidates 303 is output.
  • the learning model 302 obtains an error 305 between the estimated required number of edge candidate selection 303 and the corresponding true value edge candidate selection required number 304, and performs learning so that this error becomes small.
  • the trained model 306 is used to input the number of edges of the design data and the SEM image to be matched (corresponding to the SEM image 102 of FIG. 1), and the estimated number of edge candidates to be selected 308 is calculated. Output. That is, the trained model 306 accepts inputs of the SEM image (second pattern data) to be matched and the number of edges (the number of first edge candidates) of the design data, and outputs the estimated number of edge candidates required to be selected 308. do.
  • Machine learning is also used in the third method for obtaining the required number of edge candidate selections.
  • FIG. 5 shows an example of such a method.
  • the arithmetic processing unit includes a trained model.
  • the teacher data used in the learning stage includes the SEM image 507 of the design data and the addition rate 504 of the number of true edge candidates.
  • the trained model 506 is generated when the training model 502 trains using such teacher data.
  • the addition rate 504 of the number of true edge candidates is a value representing the relationship between the number of edges in the design data (the number of first edge candidates) and the required number of edge candidates to be selected.
  • the ratio of the required number of edge candidates to the number of edges in the design data can be used.
  • this value may be the difference between the number of edges in the design data and the required number of edge candidates to be selected, or may be another value representing these relationships.
  • the addition rate 504 of the number of true edge candidates can be determined and specified by the user, for example.
  • the user can determine the addition rate 504 of the number of true edge candidates in consideration of the image quality (contrast, noise, etc.) of the SEM image 507 of the design data.
  • the arithmetic processing unit can determine the required number of edge candidates to be selected in consideration of the image quality of the SEM image.
  • the method of obtaining the addition rate 504 of the number of true edge candidates is not limited to such a method, and other methods may be used.
  • a learning model 502 is constructed in which the SEM image 507 of the design data is input and the addition rate 503 of the estimated number of edge candidates is output.
  • the learning model 502 obtains an error 505 between the estimated addition rate 503 of the number of edge candidates and the addition rate 504 of the corresponding true number of edge candidates, and performs learning so that this error becomes small.
  • the trained model 506 is used to input the SEM image to be matched (corresponding to the SEM image 102 in FIG. 1), and the estimated addition rate 508 of the number of edge candidates is output. That is, the trained model 506 accepts the input of the SEM image (second pattern data) to be matched, and the addition rate 508 of the estimated number of edge candidates (that is, the number of first edge candidates and the number of edge candidates required to be selected). (Value representing the relationship of) is output.
  • FIG. 4 is a configuration example of a pattern measurement system including the pattern matching device of FIG. 1 and SEM400.
  • the SEM400 can be used, for example, for measuring the pattern dimensions of a semiconductor device formed on the semiconductor wafer 403.
  • the arithmetic processing unit or computer system in the pattern measurement system can be configured as, for example, a processing / control unit 414.
  • the processing / control unit 414 includes a calculation means (for example, CPU 416) and a storage means (for example, a memory including an image memory 415). Information can be stored in the storage means, for example, a program related to pattern matching processing is stored.
  • the storage means may include a non-transitory computer-readable medium, and the program may be stored on the non-temporary computer-readable medium as program instructions that can be executed on the computer system.
  • this program causes the computer system to function as an arithmetic processing unit included in the pattern matching device and execute the pattern matching process shown in FIG.
  • the SEM400 generates an electron beam from the electron gun 401.
  • the deflector 404 and the objective lens 405 are controlled so that the electron beam is focused and emitted at an arbitrary position on the semiconductor wafer 403, which is a sample placed on the stage 402.
  • Secondary electrons are emitted from the semiconductor wafer 403 irradiated with the electron beam and detected by the secondary electron detector 406.
  • the detected secondary electrons are converted into a digital signal by the A / D converter 407.
  • the image represented by the digital signal is stored in the image memory 415 in the processing / control unit 414.
  • This image is used as, for example, an SEM image 102, and based on this image, the processing / control unit 414 or the CPU 416 performs the pattern matching process shown in FIG. 1 and the learning process shown in FIGS. 3 and 5.
  • the setting process required for these processes and the display of the process result can be performed on the display device 420.
  • the optical camera 411 may be used.
  • the signal obtained by imaging the semiconductor wafer 403 with the optical camera 411 is also converted into a digital signal by the A / D converter 412 (when the signal from the optical camera 411 is a digital signal, the A / D converter).
  • the image represented by the digital signal is stored in the image memory 415 in the processing / control unit 414, and the CPU 416 performs image processing according to the purpose.
  • the SEM400 may include a backscattered electron detector 408.
  • the backscattered electron detector 408 When the backscattered electron detector 408 is provided, the backscattered electrons emitted from the semiconductor wafer 403 are detected by the backscattered electron detector 408, and the detected backscattered electrons are digitally signaled by the A / D converter 409 or 410. Convert to.
  • the image represented by the digital signal is stored in the image memory 415 in the processing / control unit 414, and the CPU 416 performs image processing according to the purpose.
  • the storage means 421 may be provided separately from the image memory 415. Further, the processing / control unit 414 may control the stage 402 via the stage controller 430, or may control the objective lens 405 or the like via the deflection control unit 341.
  • SEM400 is shown as an example of the inspection device used together with the pattern matching device, but the device that can be used together with the pattern matching device is not limited to this. Any device (measuring device, inspection device, etc.) that acquires an image and performs pattern matching processing can be used together with the pattern matching device.
  • FIG. 6 is another configuration example of the pattern measurement system of FIG.
  • the configuration example of FIG. 6 may be understood as another expression for the same configuration as that of FIG.
  • the pattern measurement system includes an SEM main body 601 and a control device 602 that controls the SEM main body 601, an arithmetic processing unit 604 that executes the pattern matching process of FIG. 1, a design data storage medium 605 that stores design data, and arithmetic processing.
  • the device 604 is provided with an input device 606 for inputting necessary information.
  • the arithmetic processing unit 604 includes arithmetic means (for example, arithmetic processing unit 607) and storage means (for example, memory 608). Information can be stored in the storage means, for example, a program related to pattern matching processing is stored.
  • the arithmetic processing unit 607 executes this program, the pattern matching processing shown in FIG. 1 is executed, that is, the arithmetic processing unit 604 functions as a pattern matching apparatus.
  • this program causes the computer system to function as an arithmetic processing unit 604 included in the pattern matching device and execute the pattern matching process shown in FIG.
  • the arithmetic processing unit 607 is a recipe creation unit 611 that sets template conditions, a matching processing unit 612 that executes pattern matching processing based on the set template, and a measurement process of a measurement position specified by the matching processing unit 612.
  • a pattern measuring unit 610 for executing the above is provided.
  • SEM image (corresponding to the SEM image 102 in FIG. 1) is generated based on the correspondence.
  • the SEM image is sent to the arithmetic processing unit 604 as an image to be searched by the matching processing unit 612 and as a measurement signal by the pattern measuring unit 610.
  • control device 602 and the arithmetic processing unit 604 are described as separate bodies, but these may be integrated control devices.
  • the electron-based signal captured by the detector 603 is converted into a digital signal by the A / D converter built in the control device 602. Based on this digital signal, image processing according to the purpose is performed by the image processing hardware (CPU, ASIC, FPGA, etc.) built in the arithmetic processing device 604.
  • image processing hardware CPU, ASIC, FPGA, etc.
  • the arithmetic processing unit 607 includes a recipe creation unit 611, a matching processing unit 612, and a pattern measurement unit 610.
  • the cutting unit 613 reads the design data from the design data storage medium 605 and performs a process of cutting out a part of the design data.
  • the portion cut out from the design data is determined based on pattern identification data such as coordinate information set from the input device 606, for example.
  • the recipe creation unit 611 creates pattern data to be used for matching based on the cut out design data (layout data).
  • the pattern data created here may correspond to the design data 104 of FIG.
  • the processing in the matching processing unit 612 is as described with reference to FIG. Further, the matching process execution unit 609 calculates the matching shift amount by using the selected combination of associations. Design data, recipe information, image information, measurement results, etc. are stored in the memory 608.
  • the input device 606 also functions as an imaging recipe creation device and creates an imaging recipe.
  • the imaging recipe represents the measurement conditions and includes, for example, the coordinates of the electronic device, the type of pattern, and the imaging conditions (optical conditions and stage movement conditions) required for measurement and inspection.
  • the input device 606 has a function of collating the input coordinate information and information related to the pattern type with the layer information of the design data or the pattern identification information and reading out the necessary information from the design data storage medium 605. May be good.
  • the design data stored in the design data storage medium 605 can be expressed in any format, but can be expressed in, for example, the GDS format or the OASIS format.
  • Appropriate software for displaying the design data can display the design data in various formats of the design data or treat it as graphic data.
  • the graphic data may be line segment image information indicating the ideal shape of the pattern formed based on the design data, or by performing an exposure simulation on this, deformation processing is performed so as to be close to the actual pattern. It may be line segment image information.
  • the program for performing the process described with reference to FIG. 1 may be registered in the storage medium, and the program may be executed by a control processor having an image memory and supplying a signal required for the scanning electron microscope.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • Computing Systems (AREA)
  • Artificial Intelligence (AREA)
  • Medical Informatics (AREA)
  • Databases & Information Systems (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Data Mining & Analysis (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Pathology (AREA)
  • Computational Linguistics (AREA)
  • Biochemistry (AREA)
  • Quality & Reliability (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Image Analysis (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Eye Examination Apparatus (AREA)
  • Collating Specific Patterns (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

パターンマッチング装置は、設計データ104に基づく第1パターンデータと、電子顕微鏡の撮像画像102を表す第2パターンデータとの間で、パターンマッチング処理を実行するコンピュータシステムを備える。コンピュータシステムは、1本以上の第1エッジ候補を含む第1エッジ候補群を取得し、選出必要本数(第2パターンデータに基づいて選出すべき第2エッジ候補の数)を取得し、選出必要本数の第2エッジ候補を含む第2エッジ候補群を取得し、第1エッジ候補群と、第2エッジ候補群との異なる対応付けの組み合わせのそれぞれについて対応評価値を取得し、対応評価値に基づいて組み合わせのうち1つを選択し、選択された前記組み合わせに基づき、マッチングシフト量を計算する。

Description

パターンマッチング装置、パターン測定システムおよび非一時的コンピュータ可読媒体
 本開示はパターンマッチング装置、パターン測定システムおよび非一時的コンピュータ可読媒体に関し、特に、パターンのエッジ信号が微弱であっても、高精度なマッチング処理を実現するものに関する。
 半導体ウェーハ上に形成されたパターンを計測、検査する装置では、テンプレートマッチング技術を利用して、所望の計測を行ったり、計測位置に検査装置の視野を合わせたりすることが多い。特許文献1にはそのようなテンプレートマッチングの一例が説明されている。なお、テンプレートマッチングは、予め登録されたテンプレート画像と最も一致する領域を、探索対象の画像から見つける処理である。
 また特許文献2には、テンプレートマッチング用のテンプレートを、半導体デバイスの設計データに基づいて作成する方法が説明されている。設計データに基づいてテンプレートを作成できれば、テンプレート作成のためにわざわざ検査装置で画像を取得するという手間がなくなる等の利点がある。
 特許文献3には、テンプレートと被探索画像との間で、パターンに含まれるエッジ(層の端部または層間の境界等)の位置や数に変化がある場合であっても、高精度なマッチングを行う方法が説明されている。
特許第4218171号公報(対応米国特許第6,627,888号明細書) 特許第4199939号公報(対応米国特許第7,235,782号明細書) 国際公開第2016/121073号パンフレット
 近年、半導体プロセスの進化により、走査電子顕微鏡(SEM)で撮影した画像(SEM像)において、エッジが微弱であるケースが増えてきている。特に多層パターンにおいては、この傾向が顕著である。微弱なエッジを使ったパターンマッチング処理が必要である。
 しかし、従来の技術では、SEM像から微弱なエッジを正確に取得することは困難である。
 たとえば、特許文献3は、エッジ強度を使った閾値に基づいてエッジ候補を選出する方法を開示しているが、半導体パターンの構成、材質、構造などの違い、または計測条件の違い等により、SEM像の見え方が設計データと異なるため、微弱なエッジのエッジ強度がどれほど弱いかを予測できない。閾値処理を用いてエッジの選出を行うと、真のエッジ(正しいエッジ)の取りこぼしがある可能性がある。逆に閾値処理を使わずに全部のエッジ候補を選出してしまうと、後段の対応付け処理の処理時間が長くなるケースがある。また、対応付け処理の自由度が増えることにより、マッチング処理が不安定になる可能性がある。
 このように、微弱なパターンエッジを含むSEM像では、適切なマッチングを行うことができない可能性があり、これがマッチング処理後の計測や検査に影響を及ぼす可能性がある。
 微弱なエッジを含むSEM像において、エッジの選出処理をいかに処理するかは、特許文献1、2、3には開示されていない。
 本開示はこのような課題を解決するためになされたものであり、微弱なエッジを含むSEM像であっても適切にエッジ候補を選出し、高精度な位置決めを行うことができるパターンマッチング装置、パターン測定システムおよび非一時的コンピュータ可読媒体を提案する。
 本開示に係るパターンマッチング装置の一例は、
 設計データに基づく第1パターンデータと、電子顕微鏡の撮像画像を表す第2パターンデータとの間で、パターンマッチング処理を実行するコンピュータシステムを備えた、パターンマッチング装置において、
 前記コンピュータシステムは、前記第1パターンデータに基づいて、1本以上の第1エッジ候補を含む第1エッジ候補群を取得し、
 前記コンピュータシステムは選出必要本数を取得し、前記選出必要本数は、前記第2パターンデータに基づいて選出すべき第2エッジ候補の数を表し、
 前記コンピュータシステムは、前記第2パターンデータに基づき、前記選出必要本数の第2エッジ候補を含む第2エッジ候補群を取得し、
 前記コンピュータシステムは、前記第1エッジ候補群と、前記第2エッジ候補群との異なる対応付けの組み合わせのそれぞれについて、前記第1および第2エッジ候補群に基づく対応評価値を取得し、
 前記コンピュータシステムは、前記対応評価値に基づいて前記組み合わせのうち1つを選択し、
 前記コンピュータシステムは、選択された前記組み合わせに基づき、マッチングシフト量を計算する、
ことを特徴とする。
 本開示に係るパターン測定システムの一例は、上述のパターンマッチング装置と、走査電子顕微鏡とを含む。
 本開示に係る非一時的コンピュータ可読媒体の一例には、コンピュータシステムを、上述のパターンマッチング装置に含まれるコンピュータシステムとして機能させる、コンピュータシステム上で実行可能なプログラム命令が格納されている。
 本開示に係るパターンマッチング装置、パターン測定システムおよび非一時的コンピュータ可読媒体によれば、微弱なエッジを含むSEM像であっても適切にエッジ候補を選出し、高精度な位置決めを行うことが可能となる。
本開示の実施例1に係るパターンマッチング装置の構成例。 エッジに係る処理の例。 エッジ候補選出必要本数を取得するために機械学習を用いる方法の例。 図1のパターンマッチング装置と、走査電子顕微鏡とを含む、パターン測定システムの構成例。 エッジ候補選出必要本数を取得するために機械学習を用いる方法の別の例。 図4のパターン測定システムの別の構成例。
 以下に、図面を用いて、本開示に係るパターンマッチング装置、パターン測定システムおよび非一時的コンピュータ可読媒体を説明する。なお、図中で同一の構成要素には同一の参照符号を付している。
[実施例1]
 図1は、本開示の実施例1に係るパターンマッチング装置の構成例である。パターンマッチング装置は、パターンマッチング処理を実行する演算処理装置として構成することができる。演算処理装置は、たとえばコンピュータシステムによって構成することができる。
 図1は、とくに、演算処理装置によって実行されるパターンマッチング処理の流れを示す。パターンマッチング処理は、たとえば、計測装置によって取得される像から得られるエッジ候補と、設計データから得られるエッジ候補との適切な対応付けを探索する工程を含む。
 本実施例では、計測装置の一例として走査電子顕微鏡(Scanning Electron Microscope。以下「SEM」)を用いる。SEMは、たとえば半導体ウェーハ上に形成された半導体デバイスのパターンの寸法を計測するために用いられる。なおSEMの具体的構成例については図4を用いて後述する。
 本実施例において、演算処理装置は、SEM像取得部101と、設計データ取得部103と、パターンマッチング処理部130とを備える。パターンマッチング処理部130は、たとえばコンピュータシステムとして構成することができる。
 設計データ取得部103は、設計データ104(第1パターンデータ)を取得してパターンマッチング処理部130に供給する。なお、本実施例では設計データ104そのものを第1パターンデータとするが、第1パターンデータは設計データ104に基づいて得られるものであれば任意の形式および内容のデータとすることができる。
 SEM像取得部101は、SEM像102(第2パターンデータ)を取得してパターンマッチング処理部130に供給する。なお、SEM像102に代えて、他の方式の電子顕微鏡の撮像画像を用いてもよい。
 設計データ104は、SEM像102に現れるパターンに対応する。たとえば、ある設計データ104に基づいて半導体デバイスのパターンが形成され、そのパターンをSEMによって撮像したものがSEM像102である。様々なSEM像102にそれぞれ対応する設計データ104が、事前に準備され演算処理装置に供給される。
 SEM像102と設計データ104との関連付けは任意の方法で決定することができるが、たとえば演算処理装置がSEM像102に応じて自動的に適切な設計データ104を取得してもよいし、演算処理装置のユーザがSEM像102に応じた設計データ104を指定してもよい。
 SEM像102には複数のエッジが現れる。エッジとは、たとえば、物理的構造を表すパターンにおける層の端部または層間の境界等である。SEM像102におけるエッジは、たとえば所定方向(具体例として縦方向)に、互いに平行に延びる線分状の構造である。
 同様に、設計データ104にも複数のエッジが現れる。設計データ104はたとえばエッジを表す線分の始点および終点を表す座標データを含む。本実施例では、設計データ104におけるエッジは所定方向(具体例として縦方向)に、互いに平行に延びる線分によって表される。
 本実施例では、SEM像102および設計データ104における各エッジの位置は、それぞれ単一のスカラー値(たとえばX座標値)によって表すことができるものとする。このように表現されたエッジの位置を用いると、画像上のエッジを具体的な情報処理に用いることができる。
 パターンマッチング処理部130は、SEM像102と設計データ104との間で、パターンマッチング処理を実行する。パターンマッチング処理の結果として、マッチングシフト量107が出力される。マッチングシフト量107は、SEM像102と設計データ104との間の位置のシフト量または差を表す。
 マッチングシフト量107は、たとえば単一のスカラー値(たとえばX方向のシフト量)によって表すことができる。
 理想的には、設計データ104に含まれるすべてのエッジを、同じシフト量だけシフトさせると、SEM像102に含まれるエッジに完全に一致することになる。現実には、互いに対応しないエッジが存在する可能性があり、またシフト量にもある程度の誤差が発生する可能性があるが、エッジ間の最適な対応付けを与える最適なシフト量としてマッチングシフト量107を決定することは可能である。
 以下、パターンマッチング処理部130の構成および動作について説明する。パターンマッチング処理部130は、エッジ候補抽出部121と、エッジ候補選出必要本数計算部123と、エッジ候補選出処理部125と、エッジ候補と設計データとの対応付け候補選出部126(以下「対応付け候補選出部126」という)と、対応評価値計算部110と、エッジ対応付け処理部112と、マッチングシフト量計算部106とを備える。
 まず、エッジ候補選出必要本数計算部123が、エッジ候補選出必要本数124を取得する。エッジ候補選出必要本数124は、設計データ104に含まれるエッジの数以上の数である。
 エッジ候補選出必要本数計算部123がエッジ候補選出必要本数124を取得するための方法は、任意に設計可能である。たとえば、図1に示すように、エッジ候補選出必要本数計算部123が、SEM像102および設計データ104に基づいて自動的に計算してもよい(具体例は図3等を用いて後述する)。または、ユーザが設計データ104に応じて適切な数を入力し、これをエッジ候補選出必要本数計算部123が取得してもよい。
 次に、エッジ候補抽出部121が、SEM像102に基づき、一次エッジ候補122を取得する。ここで取得される一次エッジ候補122の数は、エッジ候補選出必要本数124以上である。
 図2を用いて、エッジに係る処理の例を説明する。図2(a)は一次エッジ候補122を抽出する処理に係るグラフである。横軸202はSEM像102における特定方向の座標(たとえばX座標)を表し、縦軸204は信号強度(たとえば輝度)を表す。ラインプロファイル201は、SEM像102の各画素の信号強度を、SEM像102において横軸202と直交する方向(たとえばY軸方向であり、ラインパターンの長手方向に対応する)に投影して生成したプロファイルである。
 ラインプロファイル201に基づいて抽出される点203が、一次エッジ候補となる。図2(a)の例では20個の一次エッジ候補が取得される。
 一次エッジ候補を抽出する方法としては、例えばラインプロファイル201において、所定画素数の幅を持つ区画内において信号強度が最大値となる位置を、一次エッジ候補として抽出することができる。なお、一次エッジ候補を抽出する処理は、上記手法に限定するものでなく、エッジとなる可能性のある位置を適切に抽出できる処理であればよい。
 この処理においては、微弱なエッジをより確実に抽出するために、閾値に基づく除外処理や、ノイズに起因する偽エッジの除外処理を行わないことが好ましい。
 エッジ候補選出必要本数124は、SEM像102に基づいて選出すべき第2エッジ候補108の数を表し、SEM像102における真のエッジの取りこぼしがないように決定される数である。エッジ候補選出必要本数124を適切に決定することにより、演算の対象となるエッジ候補の数を最小限にすることが可能になる。このような処理を用いると、対応付け候補109(後述する離散最適化処理の対象となる候補)が少なくなり、パターンマッチング処理に必要な時間が短縮され、また、処理が安定するという効果が得られる。
 次に、エッジ候補選出処理部125が、SEM像102における一次エッジ候補のうちから、設計データ104のエッジと実際に対応させる第2エッジ候補108を複数選出する。
 たとえば、エッジ候補選出処理部125は、一次エッジ候補のそれぞれについてエッジ評価値を算出し、このエッジ評価値に基づいて第2エッジ候補108を選出する。ここで選出される第2エッジ候補108の数は、エッジ候補選出必要本数124に等しい。
 図2(b)は第2エッジ候補108を選出する処理に係るグラフである。横軸222は図2(a)と同様であり、縦軸221はエッジ評価値を表す。以下、エッジ評価値の例として、エッジとしての強度を示すエッジ強度を用いる。
 まず、エッジ候補選出処理部125は、一次エッジ候補のそれぞれについてエッジ強度を算出する。例えば、ある一次エッジ候補224のエッジ強度の値は223であり、図2(b)の例ではエッジ強度が一番高い一次エッジ候補である。
 エッジ強度の算出方法としては、例えば図2(a)のラインプロファイル201において、当該一次エッジ候補に対応する信号強度と、当該一次エッジ候補周辺(たとえばその一次エッジ候補の位置を中央として前後所定画素数の幅を有する区画内)の信号強度の最低値(局所的な最小値)と差として算出することができる。
 また、別の例として、図2(a)のラインプロファイル201において、当該一次エッジ候補周辺の傾斜(微分値)に基づいてエッジ強度を算出することができる。
 このように、SEM像102における輝度に基づいて、またはSEM像102における各位置の輝度を表す信号の波形に基づいて、エッジ強度を算出することにより、比較的少ない演算量でエッジ強度を取得することができる。
 エッジ強度の算出方法はこれらに限られず、SEM像102において、エッジにおいて高い値を与える指標値を用いる方法であればどのような方法であってもよい。
 次に、エッジ候補選出処理部125は、エッジ強度に基づき、各一次エッジ候補に順位付けをする。順位付けの具体例として、エッジ強度の降順で一次エッジ候補に順位をつけることができる。例えば、ある一次エッジ候補224のエッジ強度の値223が、すべての一次エッジ候補のエッジ強度の中で一番高いものである場合には、その一次エッジ候補224に対して1位と順位付ける。
 なお、上記の例は、エッジ強度が大きいほど真のエッジである可能性が高い場合を想定しているが、逆にエッジ強度が小さいほど真のエッジである可能性が高い場合には、エッジ強度の昇順で順位付けをしてもよい。
 このようにして順位付けられた一次エッジ候補のうちから、順位に従って、エッジ候補選出必要本数124に等しい数の一次エッジ候補のみを選出する。選出されたエッジ候補は、設計データ104のエッジと実際に対応させる候補(第2エッジ候補108)となる。
 図2(b)の例において、ある一次エッジ候補224は第2エッジ候補として選出されており(実線で示す)、別のエッジ候補225は選出されていない(破線で示す)。選出された第2エッジ候補108からなる第2エッジ候補群を図2(c)に示す。
 このようにして、パターンマッチング処理部130は、SEM像102に基づき、各第2エッジ候補108の位置を決定することにより、エッジ候補選出必要本数124の第2エッジ候補108を含む第2エッジ候補群を取得する。
 次に、対応付け候補選出部126が、設計データ104に基づいて、1本以上の第1エッジ候補113を含む第1エッジ候補群を取得する。
 図2(d)は第1エッジ候補を選出する処理に係る図である。形状261は、設計データ104に対応するパターンの断面に現れる凹凸を模式的に表す。この断面は、軸262と平行である。軸262は、層の形状261に対応する第1エッジ候補の位置を示し、たとえば図2(a)の横軸202に対応する方向の軸である。
 図2(d)のパターンは、上層および下層を有するパターンである。上層のライン263と、上層のスペース264(または下層のライン)と、下層のスペース265とが示されている。これらの境界が、設計データ104のエッジ(第1エッジ候補)となる。例えば、上層のライン263と上層のスペース264との境界にあるエッジ266は上層のエッジであり、上層のスペース264(すなわち下層のライン)と下層のスペース265との境界にあるエッジ267は下層のエッジである。
 このように、設計データ104は、第1エッジ候補の位置を表す情報を含んでいる。なお、上述のように本実施例では設計データ104はたとえば各エッジを表す線分の始点および終点を表す座標データを含んでいるので、これに基づいて第1エッジ候補の位置を取得することができる。
 図2(d)の例では、上層のエッジが2本、下層のエッジが2本、それぞれ示される。このようにして、4本の第1エッジ候補からなる第1エッジ候補群が取得される。なお本実施例では、選出された第1エッジ候補がすべて第2エッジ候補との対応付処理の対象となる。
 次に、対応付け候補選出部126は、第1エッジ候補群と、第2エッジ候補群との異なる対応付けの組み合わせを表す、対応付け候補109を生成する。図2の例では、対応付け候補選出部126は、図2(d)に示す4本の第1エッジ候補と、図2(c)に示す9本の第2エッジ候補との間で、対応関係の組み合わせを生成する。本実施例では、対応付け候補109は、論理的に可能なあらゆる対応付けの組み合わせを含む。
 この「対応関係の組み合わせ」は、たとえば、第2エッジ候補群に含まれる各第2エッジ候補を、第1エッジ候補群に含まれる第1エッジ候補のいずれかに対応付ける(またはいずれの第1エッジ候補にも対応付けない)場合の組み合わせをいう。たとえば、ある組み合わせは、ある第2エッジ候補をある第1エッジ候補に対応付け、別の組み合わせは、その第2エッジ候補を別の第1エッジ候補に対応付ける。
 対応評価値計算部110は、対応付けの組み合わせのそれぞれについて、第1および第2エッジ候補群に基づく対応評価値111を取得する。対応評価値111は、その対応付けの組み合わせにおける対応付けの尤もらしさを表し、たとえばコストとして表現することができる。
 対応評価値111は、たとえば離散最適化処理によって算出することができる。具体例として、特許文献3に記載されるグラフカットを用いてもよい。また、対応評価値111を算出する際には、SEM像102におけるエッジ強度に相関する評価値を用いてもよいし、SEM像102におけるエッジ(第2エッジ候補)と設計データにおけるエッジ(第1エッジ候補)との相対ずれの評価値を用いてもよい。
 なお、この離散最適化処理において、誤って選出されたと考えられる第2エッジ候補は、いずれの第1エッジ候補とも対応しないものとして、処理の対象から除外してもよい。このように、処理の対象となる第2エッジ候補の数を少なくことにより、対応付けの組み合わせの候補数が少なくなり、離散最適化処理が高速化され、または安定化する。
 次に、エッジ対応付け処理部112が、対応評価値111に基づいて、適切な対応付けの組み合わせを決定する。たとえば、対応付けの組み合わせのうち、対応評価値111が最も大きいものを1つ選択する。これによって、真エッジの位置情報および設計データとの対応付け情報105が取得される。
 次に、マッチングシフト量計算部106が、選択された対応付けの組み合わせに基づいて、マッチングシフト量107を計算する。マッチングシフト量107の計算手法として、例えば対応付けにおいて対を構成する第1エッジ候補および第2エッジ候補について、これらの座標のずれ量を計算し、このずれ量をすべての対について平均した値として求めることができる。ただし、マッチングシフト量の計算手法はこれに限定するものでなく、任意の適切な方法を用いることができる。
 以上説明するように、本開示に係るパターンマッチング装置によれば、微弱なエッジを含むSEM像であっても適切にエッジ候補を選出し、高精度な位置決めを行うことが可能となる。
 とくに、エッジ候補選出必要本数124を用いることで、微弱なエッジの取りこぼしを無くしつつ、SEM像102から抽出されるエッジ候補(第2エッジ候補)の数を最小限にすることが可能になる。従って、対応付け候補109が少なくなり、パターンマッチング処理に必要な時間が短縮され、また、処理が安定するという効果が得られる。
 以下、エッジ候補選出必要本数計算部123がエッジ候補選出必要本数124を取得する際の具体的処理の例について説明する。エッジ候補選出必要本数は、設計データ104に含まれるエッジの本数を用いて求めることができる。
 エッジ候補選出必要本数を取得するための第1の方法では、設計データのエッジ本数ごとにエッジ候補選出必要本数を関連付ける表を含むデータベースを用いる。関連付けは、たとえば、設計データのエッジ本数がX1である場合には、エッジ候補選出必要本数がY1であり、設計データのエッジ本数がX2である場合には、エッジ候補選出必要本数がY2であるというように定義される。
 このようなデータベースは任意の方法で作成することができるが、一例を以下に示す。まず、設計データのエッジの本数ごとに、モデルとなるSEM像を数枚用意する。各SEM像において、エッジ候補抽出部121と同様の処理によって一次エッジ候補を抽出し、各一次エッジ候補のエッジ強度を計算する。エッジ強度の順番で真のエッジの取りこぼしがない選出本数を記録する(たとえば、真のエッジに対応する一次エッジ候補のうち、エッジ強度が最も小さいものの順位を取得し、その順位を選出本数とする)。このようにして、各SEM像について選出本数を記録し、それらのうち最大値を、当該設計データのエッジ本数に対応するエッジ候補選出必要本数とする。
 エッジ候補選出必要本数を取得するための第2の方法では、機械学習を用いる。図3に、このような方法の例を示す。この例では、演算処理装置は学習済みモデルを備える。
 学習段階において用いられる教師データは、設計データのSEM像307と、その設計データのエッジ本数301(すなわち第1エッジ候補の数)と、真値のエッジ候補選出必要本数304とを含む。学習モデル302がこのような教師データを用いて学習を行うことにより、学習済みモデル306が生成される。
 設計データのSEM像307は、設計データに対応する電子顕微鏡の撮像画像であり、たとえば、ある設計データに基づいて半導体デバイスのパターンを形成し、形成されたパターンをSEMによって撮像した画像を用いることができる。
 設計データのエッジ本数301は、たとえば当該設計データに基づいて自動的に取得することができるが、設計データとは独立して準備されてもよい。また、設計データのエッジ本数を推定することができる他のデータを用いてもよい。
 真値のエッジ候補選出必要本数304は、たとえばユーザが決定して指定することができる。たとえば、ユーザは、設計データのSEM像307の画質(コントラスト、ノイズ、等)を考慮して、真値のエッジ候補選出必要本数304を決定することができる。このようにすると、演算処理装置はSEM像の画質を考慮したエッジ候補選出必要本数を決定することができる。なお、真値のエッジ候補選出必要本数304の求め方は、このような方法に限定するものでなく、他の方法を用いてもよい。
 学習段階において、まず、上記のような教師データを複数組用意する。次に、設計データのエッジ本数301と設計データのSEM像307とを入力として、推定したエッジ候補選出必要本数303を出力とする学習モデル302を構築する。学習モデル302は、推定したエッジ候補選出必要本数303と、対応する真値のエッジ候補選出必要本数304との誤差305を求め、この誤差が小さくなるように、学習を行う。
 学習が完了した後、学習済みモデル306を使って、設計データのエッジ本数とマッチング対象のSEM像(図1のSEM像102に対応する)とを入力し、推定したエッジ候補選出必要本数308を出力する。すなわち、学習済みモデル306は、マッチング対象のSEM像(第2パターンデータ)と、設計データのエッジ本数(第1エッジ候補の数)との入力を受け付け、推定したエッジ候補選出必要本数308を出力する。
 このようにして学習を行うことにより、高い精度で適切に推定したエッジ候補選出必要本数308を出力する学習済みモデル306を生成することができる。たとえば、真のエッジの取りこぼしがない必要な本数を選出することが可能になり、微弱なエッジを含むSEM像であっても、適切な対応付けが可能となる。
 エッジ候補選出必要本数を取得するための第3の方法でも、機械学習を用いる。図5に、このような方法の例を示す。この例でも、演算処理装置は学習済みモデルを備える。
 学習段階において用いられる教師データは、設計データのSEM像507と、真値のエッジ候補本数の追加率504とを含む。学習モデル502がこのような教師データを用いて学習を行うことにより、学習済みモデル506が生成される。
 真値のエッジ候補本数の追加率504は、設計データのエッジ本数(第1エッジ候補の数)と、エッジ候補選出必要本数との関係を表す値である。たとえば、設計データのエッジ本数に対するエッジ候補選出必要本数の比を用いることができる。変形例として、この値は設計データのエッジ本数とエッジ候補選出必要本数との差であってもよく、これらの関係を表す他の値であってもよい。
 真値のエッジ候補本数の追加率504は、たとえばユーザが決定して指定することができる。たとえば、ユーザは、設計データのSEM像507の画質(コントラスト、ノイズ、等)を考慮して、真値のエッジ候補本数の追加率504を決定することができる。このようにすると、演算処理装置はSEM像の画質を考慮したエッジ候補選出必要本数を決定することができる。なお、真値のエッジ候補本数の追加率504の求め方は、このような方法に限定するものでなく、他の方法を用いてもよい。
 学習段階において、まず、上記のような教師データを複数組用意する。次に、設計データのSEM像507を入力として、推定したエッジ候補本数の追加率503を出力とする学習モデル502を構築する。学習モデル502は、推定したエッジ候補本数の追加率503と、対応する真値のエッジ候補本数の追加率504との誤差505を求め、この誤差が小さくなるように、学習を行う。
 学習が完了した後、学習済みモデル506を使って、マッチング対象のSEM像(図1のSEM像102に対応する)を入力し、推定したエッジ候補本数の追加率508を出力する。すなわち、学習済みモデル506は、マッチング対象のSEM像(第2パターンデータ)の入力を受け付け、推定したエッジ候補本数の追加率508(すなわち、第1エッジ候補の数と、エッジ候補選出必要本数との関係を表す値)を出力する。
 このようにして学習を行うことにより、高い精度で適切に推定したエッジ候補本数の追加率508を出力する学習済みモデル506を生成することができる。たとえば、真のエッジの取りこぼしがない必要な本数を選出することが可能になり、微弱なエッジを含むSEM像であっても、適切な対応付けが可能となる。
 図4は、図1のパターンマッチング装置と、SEM400とを含む、パターン測定システムの構成例である。SEM400は、たとえば半導体ウェーハ403上に形成された半導体デバイスのパターン寸法計測に用いることができる。パターン測定システムにおける演算処理装置またはコンピュータシステムは、たとえば処理・制御部414として構成することができる。
 処理・制御部414は、演算手段(たとえばCPU416)と、記憶手段(たとえば画像メモリ415を含むメモリ)とを備える。記憶手段には情報を格納することができ、たとえばパターンマッチング処理に関するプログラムが格納される。記憶手段は非一時的コンピュータ可読媒体を含んでもよく、プログラムは、コンピュータシステム上で実行可能なプログラム命令として、非一時的コンピュータ可読媒体に格納されてもよい。
 CPU416がこのプログラムを実行することにより、図1に示すパターンマッチング処理が実行され、すなわち処理・制御部414がパターンマッチング装置として機能する。言い換えると、このプログラムは、コンピュータシステムを、パターンマッチング装置に含まれる演算処理装置として機能させ、図1に示すパターンマッチング処理を実行させる。
 SEM400は、電子銃401から電子ビームを発生させる。ステージ402上におかれた試料である半導体ウェーハ403上の任意の位置において、電子ビームが焦点を結んで照射されるように、偏向器404および対物レンズ405が制御される。
 電子ビームを照射された半導体ウェーハ403からは2次電子が放出され、2次電子検出器406により検出される。検出された2次電子はA/D変換器407でデジタル信号に変換される。デジタル信号によって表される画像が、処理・制御部414内の画像メモリ415に格納される。
 この画像は、たとえばSEM像102として用いられ、この画像に基づき、処理・制御部414またはCPU416によって、図1に示すパターンマッチング処理、図3および図5に示す学習処理が行われる。
 これらの処理について必要な設定処理および処理結果の表示は、表示装置420で行うことができる。
 SEMよりも低倍率の光学式カメラを用いたアライメントにおいては、光学式カメラ411を用いてもよい。半導体ウェーハ403を光学式カメラ411で撮像することで得られる信号も、A/D変換器412でデジタル信号に変換され(光学式カメラ411からの信号がデジタル信号の場合は、A/D変換器412は不要となる)、デジタル信号によって表される画像が処理・制御部414内の画像メモリ415に格納され、CPU416で目的に応じた画像処理が行われる。
 SEM400は反射電子検出器408を備えてもよい。反射電子検出器408が備わっている場合には、半導体ウェーハ403から放出される反射電子を、反射電子検出器408により検出し、検出された反射電子をA/D変換器409あるいは410でデジタル信号に変換する。デジタル信号によって表される画像は、処理・制御部414内の画像メモリ415に格納され、CPU416で目的に応じた画像処理が行われる。
 なお、画像メモリ415とは別に記憶手段421が設けられてもよい。また、処理・制御部414は、ステージコントローラ430を介してステージ402を制御してもよく、偏向制御部341を介して対物レンズ405等を制御してもよい。
 図4の例では、パターンマッチング装置とともに用いる検査装置の例としてSEM400を示したが、パターンマッチング装置とともに用いることができる装置はこれに限らない。画像を取得し、パターンマッチング処理を行う任意の装置(計測装置、検査装置、等)をパターンマッチング装置とともに用いることができる。
 図6は、図4のパターン測定システムの別の構成例である。なお、図6の構成例は、図4と同一の構成に対する別の表現として理解されてもよい。パターン測定システムは、SEM本体601と、SEM本体601を制御する制御装置602と、図1のパターンマッチング処理を実行する演算処理装置604と、設計データを格納する設計データ記憶媒体605と、演算処理装置604に必要な情報を入力するための入力装置606とを備える。
 演算処理装置604は、演算手段(たとえば演算処理部607)と、記憶手段(たとえばメモリ608)とを備える。記憶手段には情報を格納することができ、たとえばパターンマッチング処理に関するプログラムが格納される。
 演算処理部607がこのプログラムを実行することにより、図1に示すパターンマッチング処理が実行され、すなわち演算処理装置604がパターンマッチング装置として機能する。言い換えると、このプログラムは、コンピュータシステムを、パターンマッチング装置に含まれる演算処理装置604として機能させ、図1に示すパターンマッチング処理を実行させる。
 演算処理部607は、テンプレートの条件を設定するレシピ作成部611と、設定されたテンプレートに基づいてパターンマッチング処理を実行するマッチング処理部612と、マッチング処理部612によって特定された測定位置の測定処理を実行するパターン測定部610とを備える。
 電子ビームの走査によって得られた二次電子等は、検出器603によって補足され、対応するに基づいてSEM像(図1のSEM像102に対応する)が生成される。SEM像は、マッチング処理部612の被探索画像として、及びパターン測定部610による測定用信号として、演算処理装置604に送られる。
 なお、本実施例では、制御装置602と演算処理装置604が別体のものとして説明するが、これらは一体型の制御装置であっても良い。
 検出器603によって補足された電子に基づく信号は、制御装置602に内蔵されたA/D変換器によってデジタル信号に変換される。このデジタル信号に基づき、演算処理装置604に内蔵される画像処理ハードウェア(CPU、ASIC、FPGA等)によって、目的に応じた画像処理が行われる。
 演算処理部607は、上述したように、レシピ作成部611、マッチング処理部612、及びパターン測定部610を備えている。切り出し部613は、設計データ記憶媒体605から設計データを読み出し、その一部を切り出す処理を行う。ここで、設計データから切り出される部分は、たとえば入力装置606から設定された座標情報等のパターン識別データに基づいて決定される。
 また、レシピ作成部611は、切り出された設計データ(レイアウトデータ)に基づいて、マッチングに供されるパターンデータを作成する。ここで作成されるパターンデータが、図1の設計データ104に対応してもよい。
 マッチング処理部612内の処理は、図1を用いて説明した通りである。更にマッチング処理実行部609では、選択された対応づけの組み合わせを用いて、マッチングシフト量を算出する。メモリ608には、設計データ、レシピ情報、画像情報、測定結果等が記憶される。
 演算処理装置604における制御または処理の一部または全てを、CPUや画像の蓄積が可能なメモリを搭載した電子計算機等において実現することも可能である。
 また、入力装置606は、撮像レシピ作成装置としても機能し、撮像レシピを作成する。撮像レシピは測定条件を表し、たとえば、測定および検査に必要とされる電子デバイスの座標、パターンの種類、撮影条件(光学条件やステージの移動条件)を含む。
 また、入力装置606は、入力された座標情報や、パターンの種類に関する情報を、設計データのレイヤ情報またはパターンの識別情報と照合し、必要な情報を設計データ記憶媒体605から読み出す機能を備えてもよい。
 設計データ記憶媒体605に記憶される設計データは、任意の形式で表現することができるが、たとえばGDSフォーマットやOASISフォーマットなどで表現することができる。設計データを表示するための適切なソフトウェアが、設計データの様々なフォーマットによる設計データを表示し、または図形データとして取り扱うことができる。図形データは、設計データに基づいて形成されるパターンの理想形状を示す線分画像情報であってもよいし、これに露光シミュレーションを施すことによって、実パターンに近くなるような変形処理が施された線分画像情報であってもよい。
 また、図1で説明する処理を行うプログラムを記憶媒体に登録しておき、画像メモリを有し走査電子顕微鏡に必要な信号を供給する制御プロセッサで、当該プログラムを実行するようにしても良い。
 102…SEM像(第2パターンデータ)
 104…設計データ(第1パターンデータ)
 107…マッチングシフト量
 108…第2エッジ候補
 109…対応付け候補
 111…対応評価値
 122…一次エッジ候補
 124…エッジ候補選出必要本数
 130…パターンマッチング処理部(コンピュータシステム)
 302…学習モデル
 306…学習済みモデル
 414…処理・制御部(コンピュータシステム)
 502…学習モデル
 506…学習済みモデル
 508…推定したエッジ候補本数の追加率(第1エッジ候補の数と選出必要本数との関係を表す値)
 604…演算処理装置(コンピュータシステム)

Claims (13)

  1.  設計データに基づく第1パターンデータと、電子顕微鏡の撮像画像を表す第2パターンデータとの間で、パターンマッチング処理を実行するコンピュータシステムを備えた、パターンマッチング装置において、
     前記コンピュータシステムは、前記第1パターンデータに基づいて、1本以上の第1エッジ候補を含む第1エッジ候補群を取得し、
     前記コンピュータシステムは選出必要本数を取得し、前記選出必要本数は、前記第2パターンデータに基づいて選出すべき第2エッジ候補の数を表し、
     前記コンピュータシステムは、前記第2パターンデータに基づき、前記選出必要本数の第2エッジ候補を含む第2エッジ候補群を取得し、
     前記コンピュータシステムは、前記第1エッジ候補群と、前記第2エッジ候補群との異なる対応付けの組み合わせのそれぞれについて、前記第1および第2エッジ候補群に基づく対応評価値を取得し、
     前記コンピュータシステムは、前記対応評価値に基づいて前記組み合わせのうち1つを選択し、
     前記コンピュータシステムは、選択された前記組み合わせに基づき、マッチングシフト量を計算する、
    ことを特徴とするパターンマッチング装置。
  2.  前記コンピュータシステムは、前記第1パターンデータに基づいて前記選出必要本数を決定することを特徴とする、請求項1に記載のパターンマッチング装置。
  3.  前記コンピュータシステムは、前記第2パターンデータに基づき、前記選出必要本数以上の一次エッジ候補を取得し、
     前記コンピュータシステムは、前記一次エッジ候補のそれぞれについてエッジ評価値を算出し、
     前記コンピュータシステムは、前記エッジ評価値に基づき、前記一次エッジ候補のうちから前記第2エッジ候補を選出する、
    請求項1に記載のパターンマッチング装置。
  4.  前記コンピュータシステムは、前記撮像画像における輝度に基づいて前記エッジ評価値を算出する、請求項3に記載のパターンマッチング装置。
  5.  前記コンピュータシステムは、前記撮像画像における各位置の輝度を表す信号の波形に基づいて前記エッジ評価値を算出する、請求項4に記載のパターンマッチング装置。
  6.  前記第1パターンデータは前記第1エッジ候補の位置を表す情報を含む、請求項1に記載のパターンマッチング装置。
  7.  前記コンピュータシステムは、各前記第2エッジ候補の位置を決定することにより前記第2エッジ候補群を取得する、請求項1に記載のパターンマッチング装置。
  8.  前記コンピュータシステムは、学習済みモデルを備え、
     前記学習済みモデルは、前記第2パターンデータと、前記第1エッジ候補の数との入力を受け付け、
     前記学習済みモデルは、前記選出必要本数を出力する、
    請求項1に記載のパターンマッチング装置。
  9.  前記学習済みモデルは、前記第1パターンデータに対応する電子顕微鏡の撮像画像と、前記第1エッジ候補の数と、前記選出必要本数とを含む教師データを用いて学習されたものである、請求項8に記載のパターンマッチング装置。
  10.  前記コンピュータシステムは、学習済みモデルを備え、
     前記学習済みモデルは、前記第2パターンデータの入力を受け付け、
     前記学習済みモデルは、前記第1エッジ候補の数と前記選出必要本数との関係を表す値を出力する、
    請求項1に記載のパターンマッチング装置。
  11.  前記学習済みモデルは、前記第1パターンデータに対応する電子顕微鏡の撮像画像と、前記関係を表す前記値とを含む教師データを用いて学習されたものである、請求項10に記載のパターンマッチング装置。
  12.  請求項1に記載のパターンマッチング装置と、走査電子顕微鏡とを含む、パターン測定システム。
  13.  コンピュータシステムを、請求項1に記載のパターンマッチング装置に含まれるコンピュータシステムとして機能させる、コンピュータシステム上で実行可能なプログラム命令が格納されている非一時的コンピュータ可読媒体。
PCT/JP2020/006688 2020-02-20 2020-02-20 パターンマッチング装置、パターン測定システムおよび非一時的コンピュータ可読媒体 WO2021166142A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227027847A KR102690867B1 (ko) 2020-02-20 2020-02-20 패턴 매칭 장치, 패턴 측정 시스템 및 비일시적 컴퓨터 가독 매체
PCT/JP2020/006688 WO2021166142A1 (ja) 2020-02-20 2020-02-20 パターンマッチング装置、パターン測定システムおよび非一時的コンピュータ可読媒体
US17/800,155 US20230071668A1 (en) 2020-02-20 2020-02-20 Pattern Matching Device, Pattern Measurement System, and Non-Transitory Computer-Readable Medium
TW109144853A TWI767458B (zh) 2020-02-20 2020-12-18 圖案匹配裝置、圖案測定系統及非暫態電腦可讀媒體

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/006688 WO2021166142A1 (ja) 2020-02-20 2020-02-20 パターンマッチング装置、パターン測定システムおよび非一時的コンピュータ可読媒体

Publications (1)

Publication Number Publication Date
WO2021166142A1 true WO2021166142A1 (ja) 2021-08-26

Family

ID=77391870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006688 WO2021166142A1 (ja) 2020-02-20 2020-02-20 パターンマッチング装置、パターン測定システムおよび非一時的コンピュータ可読媒体

Country Status (4)

Country Link
US (1) US20230071668A1 (ja)
KR (1) KR102690867B1 (ja)
TW (1) TWI767458B (ja)
WO (1) WO2021166142A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11175701A (ja) * 1997-12-15 1999-07-02 Toshiba Corp 画像記録装置及び画像記録方法、並びに画像処理装置及び画像処理方法
JP2009211960A (ja) * 2008-03-05 2009-09-17 Hitachi High-Technologies Corp エッジ検出方法、及び荷電粒子線装置
US20140023265A1 (en) * 2011-01-26 2014-01-23 Masahiro Kitazawa Pattern matching apparatus and computer program

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4218171B2 (ja) 2000-02-29 2009-02-04 株式会社日立製作所 走査電子顕微鏡,マッチング方法、及びプログラムを記録したコンピュータ読み取り可能な記録媒体
JP4199939B2 (ja) 2001-04-27 2008-12-24 株式会社日立製作所 半導体検査システム
TWI292031B (en) * 2006-02-10 2008-01-01 Ind Tech Res Inst Dimension measuring method and optical measuring system implemented with the method
WO2008032387A1 (fr) * 2006-09-14 2008-03-20 Advantest Corporation Dispositif de mesure de dimension de motif et procédé de mesure de superficie de motif
JP5639925B2 (ja) * 2011-02-25 2014-12-10 株式会社日立ハイテクノロジーズ パターンマッチング装置、及びコンピュータープログラム
JP6088337B2 (ja) * 2013-04-17 2017-03-01 株式会社アドバンテスト パターン検査方法及びパターン検査装置
US9214317B2 (en) * 2013-06-04 2015-12-15 Kla-Tencor Corporation System and method of SEM overlay metrology
JP6227466B2 (ja) * 2014-04-14 2017-11-08 株式会社日立ハイテクノロジーズ 荷電粒子線装置および検査装置
US11669953B2 (en) 2015-01-30 2023-06-06 Hitachi High-Tech Corporation Pattern matching device and computer program for pattern matching

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11175701A (ja) * 1997-12-15 1999-07-02 Toshiba Corp 画像記録装置及び画像記録方法、並びに画像処理装置及び画像処理方法
JP2009211960A (ja) * 2008-03-05 2009-09-17 Hitachi High-Technologies Corp エッジ検出方法、及び荷電粒子線装置
US20140023265A1 (en) * 2011-01-26 2014-01-23 Masahiro Kitazawa Pattern matching apparatus and computer program

Also Published As

Publication number Publication date
TW202132747A (zh) 2021-09-01
KR20220123467A (ko) 2022-09-06
US20230071668A1 (en) 2023-03-09
KR102690867B1 (ko) 2024-08-05
TWI767458B (zh) 2022-06-11

Similar Documents

Publication Publication Date Title
JP6731370B2 (ja) 画像処理システム及び画像処理を行うためのコンピュータープログラム
KR101764658B1 (ko) 결함 해석 지원 장치, 결함 해석 지원 장치에 의해 실행되는 프로그램 및 결함 해석 시스템
TWI748242B (zh) 掃描晶圓的系統及方法
JP4791141B2 (ja) 電子線式寸法計測装置及びそれを用いた寸法計測方法
JPWO2020121564A1 (ja) 寸法計測装置、寸法計測プログラム及び半導体製造システム
JP5988615B2 (ja) 半導体評価装置、及びコンピュータープログラム
JP6317725B2 (ja) 取得された画像内のクラッタを決定するためのシステム及び方法
JPWO2021024402A1 (ja) 寸法計測装置、寸法計測方法及び半導体製造システム
JP5094033B2 (ja) パターンマッチング方法、及びパターンマッチングを行うためのコンピュータープログラム
WO2021166142A1 (ja) パターンマッチング装置、パターン測定システムおよび非一時的コンピュータ可読媒体
JP5592414B2 (ja) テンプレート評価装置、顕微鏡装置及びプログラム
WO2020158261A1 (ja) 画像マッチング判定方法、画像マッチング判定装置、および画像マッチング判定方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体
CN114945801A (zh) 图案边缘检测方法、图案边缘检测装置、记录有用于让计算机执行图案边缘检测的程序的记录介质
KR20220040466A (ko) 하전 입자선 장치
JP7555310B2 (ja) 試料観察装置、試料観察方法、およびコンピュータシステム
WO2024053043A1 (ja) 寸法計測システム、推定システム、および寸法計測方法
WO2023021540A1 (ja) 荷電粒子線装置
JP2020144942A (ja) 画像処理システム
JP2020123034A (ja) 画像マッチング支援方法、画像マッチング支援装置、および画像マッチング支援方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体
JP5303230B2 (ja) 画像処理システム、及び走査型電子顕微鏡装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920198

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227027847

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20920198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP