WO2021164629A1 - 一种增益可控的磁阻模拟放大器 - Google Patents

一种增益可控的磁阻模拟放大器 Download PDF

Info

Publication number
WO2021164629A1
WO2021164629A1 PCT/CN2021/076124 CN2021076124W WO2021164629A1 WO 2021164629 A1 WO2021164629 A1 WO 2021164629A1 CN 2021076124 W CN2021076124 W CN 2021076124W WO 2021164629 A1 WO2021164629 A1 WO 2021164629A1
Authority
WO
WIPO (PCT)
Prior art keywords
input signal
gain
output signal
magnetoresistive sensor
parallel
Prior art date
Application number
PCT/CN2021/076124
Other languages
English (en)
French (fr)
Inventor
周志敏
迪克詹姆斯·G
Original Assignee
江苏多维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏多维科技有限公司 filed Critical 江苏多维科技有限公司
Priority to US17/904,515 priority Critical patent/US12081176B2/en
Priority to JP2022549413A priority patent/JP2023514310A/ja
Priority to EP21756348.5A priority patent/EP4109750A4/en
Publication of WO2021164629A1 publication Critical patent/WO2021164629A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F9/00Magnetic amplifiers
    • H03F9/02Magnetic amplifiers current-controlled, i.e. the load current flowing in both directions through a main coil
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/34Negative-feedback-circuit arrangements with or without positive feedback
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0094Sensor arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/091Constructional adaptation of the sensor to specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0023Electronic aspects, e.g. circuits for stimulation, evaluation, control; Treating the measured signals; calibration
    • G01R33/0029Treating the measured signals, e.g. removing offset or noise
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/0206Three-component magnetometers

Definitions

  • the disclosed embodiments relate to magnetic sensor technology, and in particular to a magnetoresistive analog amplifier with controllable gain.
  • Modern electronic technology usually uses bipolar transistors, field emission transistors or CMOS integrated circuit chips as amplifiers to achieve input signal amplification.
  • the transistor when the transistor is in the amplification area, its base, collector and emitter usually have a common electrode.
  • the electric field controls the distribution of carriers in different areas and the opening and suppression of channels to achieve emitter current, The relationship between collector current, base current and voltage, so the input signal and output signal cannot be completely isolated.
  • the embodiment of the disclosure provides a magnetoresistive analog amplifier with a controllable gain to realize the isolation of the input signal and the output signal.
  • the disclosed embodiment provides a magnetoresistive analog amplifier with controllable gain, including:
  • An output signal magnetoresistive sensor located on the substrate
  • An input signal coil and a gain adjustment coil, the input signal coil and the gain adjustment coil are respectively located on both sides of the output signal magnetoresistive sensor, wherein,
  • the gain adjustment coil is used to input a gain signal and generate a gain magnetic field, so that the gain magnetic field acts on the free layer magnetization direction of the output signal magnetoresistive sensor, and adjusts the resistance-input magnetic field transfer of the output signal magnetoresistive sensor Curve slope,
  • the input signal coil is used to input a current signal and generate an input magnetic field, so that the input magnetic field acts on the magnetization direction of the pinned layer of the output signal magnetoresistive sensor, and the gain signal is controlled to adjust the current signal to pass through the pinned layer.
  • the output signal is the gain factor of the output signal after the magnetoresistive sensor, and the current signal is an AC or DC signal.
  • the input signal coil and the gain adjustment coil are respectively located on both sides of the output signal magnetoresistive sensor.
  • the gain adjustment coil inputs a gain signal and generates a gain magnetic field
  • the input signal coil inputs an AC or DC signal and When the input magnetic field is generated, the magnetic signal is generated by the coil current signal. Therefore, the amplifier has an independent power supply and output signal.
  • the relationship between the two is magnetic coupling, which can achieve complete isolation between the input signal and the output signal; the effect of the input magnetic field Regarding the magnetization direction of the pinned layer of the output signal magnetoresistive sensor, the gain magnetic field acts on the magnetization direction of the free layer of the output signal magnetoresistive sensor, causing the external magnetic field signal to change, the magnetoresistance change rate can reach 200%, and the gain signal can be adjusted.
  • the gain factor of the output signal after the input current signal passes through the output signal magnetoresistive sensor, the gain of the output signal of the amplifier is controllable.
  • FIG. 1 is a schematic diagram of a magnetoresistive analog amplifier with controllable gain provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a magnetoresistive analog amplifier with controllable gain provided by an embodiment of the disclosure
  • FIG. 3 is a schematic diagram of a magnetoresistive analog amplifier with controllable gain provided by an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a magnetoresistive analog amplifier with controllable gain provided by an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a magnetoresistive analog amplifier with controllable gain provided by an embodiment of the disclosure
  • Figure 6a is a connection diagram of a series magnetoresistance sensing unit
  • Figure 6b is a connection diagram of an extended parallel magnetoresistance sensing unit
  • FIG. 7 is a schematic cross-sectional view of a magnetoresistive analog amplifier with controllable gain provided by an embodiment of the present disclosure
  • FIG. 8 is a schematic cross-sectional view of a magnetoresistive analog amplifier with controllable gain provided by an embodiment of the present disclosure
  • Fig. 9 is a schematic diagram of the principle of gain adjustment of the resistance-input magnetic field transfer curve of the magnetoresistive sensor in the embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of electrical connections of a magnetoresistive analog amplifier with controllable gain provided by an embodiment of the present disclosure
  • FIG. 11 is a schematic diagram of electrical connections of a magnetoresistive analog amplifier with controllable gain provided by an embodiment of the present disclosure.
  • the disclosed embodiment provides a magnetoresistive analog amplifier with controllable gain.
  • the magnetoresistive analog amplifier includes: a substrate on the XY plane; an output signal magnetoresistive sensor on the substrate; an input signal coil and a gain adjustment coil The input signal coil and the gain adjustment coil are respectively located on both sides of the output signal magnetoresistive sensor.
  • the gain adjustment coil is used to input the gain signal and generate the gain magnetic field so that the gain magnetic field acts on the free layer magnetization of the output signal magnetoresistive sensor.
  • the input signal coil is used to input the current signal and generate the input magnetic field, so that the input magnetic field acts on the magnetization direction of the pinned layer of the output signal magnetoresistive sensor to control the gain
  • the signal adjusts the gain factor of the output signal after the current signal passes through the output signal magnetoresistive sensor, and the current signal is an AC or DC signal.
  • the optional magnetoresistive analog amplifier is a tunnel magnetoresistive analog amplifier, which includes an output signal magnetoresistive sensor located on a substrate, an input signal coil and a gain adjustment coil, and the magnetoresistive sensor is used for output signal and is named Output signal magnetoresistive sensor, optional magnetoresistive sensor is tunnel magnetoresistive sensor based on tunnel magnetoresistance technology.
  • the input signal coil and the gain adjustment coil are respectively located on both sides of the output signal magnetoresistive sensor.
  • the input signal coil is located between the substrate and the output signal magnetoresistive sensor and the gain adjustment coil is located on the output signal magnetoresistive sensor, or, The gain adjustment coil is located between the substrate and the output signal magnetoresistive sensor and the input signal coil is located on the output signal magnetoresistive sensor.
  • the tunnel magnetoresistive sensor has the advantages of high resistance, high magnetic sensitivity and low power consumption. It can quickly respond to external magnetic fields. Its working principle is that the change of the magnetic field leads to the change of the angle between the free layer and the pinned layer, which in turn leads to the passing spin electrons. The change in probability causes a change in resistance.
  • the characteristic of the tunnel magnetoresistive sensor is that if the magnetic signal is generated by the coil current signal, the tunnel magnetoresistive sensor has an independent power supply and output signal. The relationship between the two is magnetic coupling, which can realize the relationship between the input signal and the output signal.
  • the magnetic signal of the amplifier using the tunnel magnetoresistive sensor is generated by the current signal of the input signal coil, so the amplifier can realize the isolation of the input signal and the output signal; secondly, the magnetoresistive sensor unit of the tunnel magnetoresistive sensor has KOhm even The resistivity of MOhm, and its magnetoresistance change rate can reach 200% when the external magnetic field signal changes, so the output signal has a wide range of change. By using a constant current source, the change in resistance is converted into a change in voltage.
  • the amplifier adopting the tunnel magnetoresistance sensor can adjust the magnetoresistance change of the magnetoresistance sensor by controlling the gain signal in the gain adjustment coil, thereby affecting the gain factor, so the amplifier can realize the gain factor control; third, the tunnel magnetoresistance The frequency range of the sensor can reach MHz, so it will not affect the frequency band of the amplifier.
  • the gain of the tunnel magnetoresistive sensor is not only related to the rate of change of magnetoresistance and constant current source, but also the sensitivity of the external magnetic field.
  • the gain factor of the amplifier can be controlled by controlling the sensitivity of the external magnetic field of the tunnel magnetoresistive sensor.
  • the magnetic field sensitivity of the magnetoresistance sensing unit in the tunnel magnetoresistive sensor is related to the anisotropy field Hk of the free layer and the shape anisotropy field Ha of the magnetoresistance sensing unit, and also related to the free layer bias magnetic field Hb; the free layer bias
  • the set magnetic field Hb is related to the permanent magnet bias field HPm or the exchange coupling field Hex.
  • Hb can also be realized by generating an external magnetic field by the bias current coil, so by controlling the current of the bias current coil, that is, the input signal coil and the gain adjustment coil
  • the sensitivity of the tunnel magnetoresistive sensor is controllable, and then the gain factor of the amplifier is controlled.
  • the input signal coil and the gain adjustment coil are respectively located on both sides of the output signal magnetoresistive sensor.
  • the gain adjustment coil inputs a gain signal and generates a gain magnetic field
  • the input signal coil inputs an AC or DC signal and When the input magnetic field is generated, the magnetic signal is generated by the coil current signal. Therefore, the amplifier has an independent power supply and output signal.
  • the relationship between the two is magnetic coupling, which can achieve complete isolation between the input signal and the output signal; the effect of the input magnetic field Regarding the magnetization direction of the pinned layer of the output signal magnetoresistive sensor, the gain magnetic field acts on the magnetization direction of the free layer of the output signal magnetoresistive sensor, causing the external magnetic field signal to change, the magnetoresistance change rate can reach 200%, and the gain signal can be adjusted.
  • the gain factor of the output signal after the input current signal passes through the output signal magnetoresistive sensor, the gain of the output signal of the amplifier is controllable.
  • the amplifier adopting the magnetoresistive sensor in the embodiment of the disclosure also has the advantages of low power consumption, small size, and mass production.
  • the optional output signal magnetoresistive sensor includes an array of M rows*N columns of magnetoresistive sensing units; the input signal coil is in the shape of a snake, including alternating current directions with opposite current directions. M+2 input signal straight wires, the long axis of the input signal straight wire is parallel to the X direction and the short axis is parallel to the Y direction, the current direction of the input signal straight wire is parallel to the X direction; the output signal of the magnetoresistive sensor's M line magnetic
  • the resistance sensing unit is set correspondingly to the M input signal straight wires located in the middle of the M+2 input signal straight wires, and the M/2 input signal straight wires with the same first current direction among the M input signal straight wires are set respectively.
  • Corresponding M/2 rows of magnetoresistance sensing units are connected to form a push arm, and M/2 rows of magnetoresistance sensing units corresponding to M/2 input signal straight wires with the same second current direction among the M input signal straight wires
  • the connection forms a pull arm, and the first current direction is opposite to the second current direction; M is an even number.
  • the gain-controllable magnetoresistive analog amplifier includes: a substrate 1 located on the XY plane, a magnetoresistive sensor 34 located on the substrate 1, and the magnetoresistive sensor 34 includes M rows * N columns of magnetoresistance
  • the sensor unit array, the magnetoresistance sensor unit array constitutes a quasi-bridge structure including the push magnetoresistance sensor unit arm 3 and the pull magnetoresistance sensor unit arm 4, the push magnetoresistance sensor unit arm 3 and the pull magnetoresistance sensor unit The arms 4 have a common ground terminal GND.
  • the push magnetic resistance sensing unit arm 3 includes a plurality of push magnetic resistance sensing unit strings 3 (1) connected in series, and a push magnetic resistance sensing unit string 3 (1) consists of a row of push magnetic resistance sensing units 6 (1) in series.
  • Composition; the pull magnetic resistance sensing unit arm 4 includes a plurality of pull magnetic resistance sensing unit strings 4 (1) connected in series, a pull magnetic resistance sensing unit string 4 (1) consists of a row of pull magnetic resistance sensing units 6 (2 ) Series structure.
  • the input signal coil 2 is located above or below the magnetoresistive sensor 34, in a meander shape, and includes M+2 input signal straight wires, which are divided into two input signal straight wires 2(1) at both ends and M in the middle.
  • the M input signal straight wires located in the middle include alternately arranged input signal straight wires 2(2) and 2(3).
  • the long axis of the input signal straight wire is parallel to the X direction and the short axis is parallel to the Y direction. Its current direction is parallel to the X direction.
  • the input signal straight wires 2(2) and 2(3) have opposite current directions.
  • the current direction of the signal straight wire 2 (3) is the +X direction, that is, the first current direction
  • the current direction of the optional input signal straight wire 2 (2) is the -X direction, that is the second current direction.
  • the total of the push magnetic resistance sensing unit string 3 (1) and the pull magnetic resistance sensing unit string 6 (2) is a total of M magnetic resistance sensing unit strings, which have the same magnetic field sensitive direction and the same Y direction.
  • the magnetoresistance sensor unit string namely, the M rows of magnetoresistance sensor units and the M+2 input signal straight wires located in the middle of the M input signal straight wires are respectively arranged correspondingly, that is, one row of magnetoresistance sensor units are located on one input signal straight wire s surface.
  • the push arm that is, the push magnetoresistance sensing unit arm 3
  • the push magnetoresistance sensing unit string 3 (1) is located on the surface of the input signal straight wire 2 (3); the pull arm, that is, the pull magnet resistance sensing unit arm 4 is composed of M input signal straight wires located in the middle
  • the M/2 line of magnetoresistive sensor units corresponding to the M/2 input signal straight wires in the -X direction are connected to form, then the pull magnetoresistive sensor unit string 4(1) is located on the input signal straight wire 2(2) s surface.
  • the optional gain adjustment coil 5 has a grid shape and includes N+2 gain straight wires with equidistant parallel arrangement and the same current direction.
  • the long axis of the gain straight wire is parallel to the Y direction and the short axis is parallel to the X direction.
  • the gain is straight.
  • the current direction of the wires is parallel to the Y direction; the N columns of magnetoresistance sensing units of the output signal magnetoresistive sensor are arranged correspondingly to the N gain straight wires in the middle of the N+2 gain straight wires.
  • the gain adjustment coil 5 is located below or above the magnetoresistive sensor 34, and is divided into two gain straight wires 5(1) at both ends and N gain straight wires in the middle.
  • the N gain straight wires in the middle include alternately arranged Gain straight wires 5(2) and 5(3).
  • the current direction of the gain straight wire is the same as +Y or the same as -Y direction.
  • the optional output signal magnetoresistive sensor includes an array of M rows*N columns of magnetoresistive sensing units;
  • the input signal coil is in the shape of a snake, including alternating current directions with opposite current directions.
  • 2M+2 input signal straight wires the long axis of the input signal straight wire is parallel to the X direction and the short axis is parallel to the Y direction, the current direction of the input signal straight wire is parallel to the X direction;
  • the resistance sensing unit and the M input signal straight wires located in the middle and having the same current direction among the 2M+2 input signal straight wires are respectively arranged correspondingly, and the M rows of magnetoresistance sensing units are connected to form a single arm.
  • the gain controllable magnetoresistance analog amplifier includes: a substrate 1 located on the XY plane, a magnetoresistive sensor 3 located on the substrate 1, and the magnetoresistive sensor 3 includes M rows * N columns of magnetoresistance
  • the sensor unit array, the magnetoresistance sensor unit array constitutes a single magnetoresistance sensor unit arm, that is, a single arm.
  • a single arm includes M magnetoresistance sensing unit strings 3(1) connected in series, and a magnetoresistance sensing unit string 3(1) is composed of a row of magnetoresistance sensing units 6(1) connected in series.
  • the input signal coil 2 is located above or below the magnetoresistive sensor, in a meander shape, including 2M+2 input signal straight wires, which are divided into two input signal straight wires 2(1) at both ends and 2M in the middle Input signal straight wires, the 2M input signal straight wires located in the middle include alternately arranged input signal straight wires 2(2) and 2(3).
  • the long axis of the input signal straight wire is parallel to the X direction and the short axis is parallel to the Y direction. Its current direction is parallel to the X direction.
  • the input signal straight wires 2(2) and 2(3) have opposite current directions. Select the current direction of the input signal straight wire 2 (3) as the +X direction, and the current direction of the input signal straight wire 2 (2) as the -X direction.
  • the magnetoresistance sensor unit 6(1) in a single arm has the same magnetic field sensitivity direction, which is the same as the Y direction.
  • the M magnetoresistance sensor unit string 3(1) is the M rows of magnetoresistance sensor units and the 2M magnetoresistance sensor unit in the middle.
  • M input signal straight wires of the same current direction in the input signal straight wires are respectively arranged correspondingly, that is, a row of magnetoresistance sensing units are located on the surface of one input signal straight wire.
  • the M magnetoresistance sensing unit strings 3(1) that is, the M rows of magnetoresistance sensing units, and the M input signal straight wires 2(2) of the same current direction are respectively arranged correspondingly, or the M magnetoresistance sensor units
  • the sensing unit string 3 (1) that is, the M rows of magnetoresistance sensing units are respectively arranged correspondingly to the M input signal straight wires 2 (3) of the same current direction.
  • the optional gain adjustment coil 5 has a grid shape and includes N+2 gain straight wires with equidistant parallel arrangement and the same current direction.
  • the long axis of the gain straight wire is parallel to the Y direction and the short axis is parallel to the X direction.
  • the gain is straight.
  • the current direction of the wires is parallel to the Y direction; the N columns of magnetoresistance sensing units of the output signal magnetoresistive sensor are arranged correspondingly to the N gain straight wires in the middle of the N+2 gain straight wires.
  • the gain adjustment coil 5 is located below or above the magnetoresistive sensor 3, and is divided into two gain straight wires 5(1) at both ends and N gain straight wires in the middle.
  • the N gain straight wires in the middle include alternately arranged Gain straight wires 5(2) and 5(3).
  • the current direction of the gain straight wire is the same as +Y or the same as -Y direction.
  • the optional output signal magnetoresistive sensor includes 1 M row * N column magnetoresistive sensor unit array;
  • the input signal coil is grid-shaped, including the same current direction and equidistant M+2 input signal straight wires arranged in parallel, the long axis of the input signal straight wire is parallel to the X direction and the short axis is parallel to the Y direction, the current direction of the input signal straight wire is parallel to the X direction;
  • M of the output signal magnetoresistive sensor The row magnetoresistance sensing units are respectively arranged corresponding to the M input signal straight wires located in the middle of the M+2 input signal straight wires, and the M rows of magnetoresistance sensing units are connected to form a single arm.
  • the gain-controllable magnetoresistive analog amplifier includes: a substrate 1 located on the XY plane, a magnetoresistive sensor 30 located on the substrate 1, and the magnetoresistive sensor 30 includes M rows * N columns of magnetoresistance
  • the sensor unit array, the magnetoresistance sensor unit array constitutes a single magnetoresistance sensor unit arm, that is, a single arm.
  • a single arm includes M magnetoresistance sensor cell strings 31(1) connected in series, and one magnetoresistance sensor cell string 31(1) is composed of a row of magnetoresistance sensor cells 6(1) connected in series.
  • the input signal coil 20 is located above or below the magnetoresistive sensor 30, in a grid shape, and includes M+2 input signal straight wires, which are divided into two input signal straight wires 20(1) at both ends and M in the middle. There are two input signal straight wires, and the M input signal straight wires located in the middle include alternately arranged input signal straight wires 20(2) and 20(3).
  • the long axis of the input signal straight wire is parallel to the X direction and the short axis is parallel to the Y direction, and the current direction is parallel to the X direction.
  • the input signal straight wire has the same current direction, which is the +X or -X current direction.
  • the magnetoresistance sensor unit 6(1) in a single arm has the same pinning layer direction and the free layer magnetization direction, that is, the same magnetic field sensitive direction, which is the Y direction.
  • the M magnetoresistance sensor unit string 31(1) is The M rows of magnetoresistance sensing units are respectively arranged corresponding to the M input signal straight wires located in the middle, that is, one row of magnetoresistance sensing units are located on the surface of one input signal straight wire.
  • the optional gain adjustment coil 5 has a grid shape and includes N+2 gain straight wires with equidistant parallel arrangement and the same current direction.
  • the long axis of the gain straight wire is parallel to the Y direction and the short axis is parallel to the X direction.
  • the gain is straight.
  • the current direction of the wires is parallel to the Y direction; the N columns of magnetoresistance sensing units of the output signal magnetoresistive sensor are arranged correspondingly to the N gain straight wires in the middle of the N+2 gain straight wires.
  • the gain adjustment coil 5 is located below or above the magnetoresistive sensor 30, and is divided into two gain straight wires 5(1) at both ends and N gain straight wires in the middle.
  • the N gain straight wires in the middle include alternately arranged Gain straight wires 5(2) and 5(3).
  • the current direction of the gain straight wire is the same as +Y or the same as -Y direction.
  • N columns of magnetoresistance sensing units are respectively located below or above the N gain straight wires.
  • M rows and N columns of magnetoresistance sensing units can be connected in series, in parallel, or in series and parallel to form a two-port structure.
  • the optional output signal magnetoresistive sensor includes 2 M rows*N columns of magnetoresistive sensor unit arrays; the input signal coil is a plane spiral, including M rows equidistant parallel arrangement
  • the input signal first area of the input signal straight wire and the input signal second area having M rows of equidistant parallel arrangement of input signal straight wires, the input signal straight wires of the input signal first area and the input signal second area have opposite current directions,
  • the long axis of the input signal straight wire is parallel to the X direction and the short axis is parallel to the Y direction.
  • the current direction of the input signal straight wire is parallel to the X direction; a row of magnetoresistance sensing units is arranged corresponding to one input signal straight wire, the input signal is the first
  • the M rows of magnetoresistance sensing units corresponding to the M input signal straight wires in the area are connected to form a push arm, and the M rows of magnetoresistance sensor units corresponding to the M input signal straight wires in the second area of the input signal are connected to form a pull arm.
  • the gain-controllable magnetoresistive analog amplifier includes: a substrate 1 located on the XY plane, a magnetoresistive sensor 341 located on the substrate 1, and the magnetoresistive sensor 341 includes 2 M rows*N columns
  • the magnetic resistance sensing unit array is arranged along the Y direction.
  • One magnetoresistance sensor unit array constitutes the push arm 31, and the other magnetoresistance sensor unit array constitutes the pull arm 41, and both the push arm 31 and the pull arm 41 are two-port bridge arms.
  • the push arm 31 includes a plurality of push magnetoresistance sensor cell strings 31(1) connected in series.
  • One push magnetoresistance sensor cell string 31(1) is composed of a row of push magnetoresistance sensor cells in series; the pull arm 41 includes a series of multiple One pull-magnetic resistance sensing unit string 41(1), one pull-magnetic resistance sensing unit string 41(1) is composed of a row of pull-magnetic resistance sensing units connected in series.
  • the input signal coil 21 is located above or below the magnetoresistive sensor 341, in a planar spiral shape, and includes two input signal areas, namely the first input signal area 21(1) and the second input signal area 21(2).
  • the input signal areas 21(1) and 21(2) each include M input signal straight wires 211(1) and 211(2) which are arranged in parallel and equidistant and have the same current.
  • the long axis of the input signal straight wire is parallel to the X direction and the short axis is parallel to the Y direction, and its current direction is parallel to the X direction.
  • the input signal straight wires 211(1) and 211(2) have opposite current directions.
  • Input is optional
  • the current direction of the signal straight wire 211(1) is the +X direction
  • the current direction of the input signal straight wire 211(2) is the -X direction.
  • a magnetoresistance sensing unit string is arranged corresponding to an input signal straight wire, and is located above or below the input signal straight wire.
  • the optional gain adjustment coil 5 has a grid shape and includes N+2 gain straight wires with equidistant parallel arrangement and the same current direction.
  • the long axis of the gain straight wire is parallel to the Y direction and the short axis is parallel to the X direction.
  • the gain is straight.
  • the current direction of the wires is parallel to the Y direction; the N columns of magnetoresistance sensing units of the output signal magnetoresistive sensor are arranged correspondingly to the N gain straight wires in the middle of the N+2 gain straight wires.
  • the gain adjustment coil 5 is located below or above the magnetoresistive sensor 341, and is divided into two gain straight wires 5(1) at both ends and N gain straight wires in the middle.
  • the N gain straight wires in the middle include alternately arranged Gain straight wires 5(2) and 5(3).
  • the current direction of the gain straight wire is the same as +Y or the same as -Y direction.
  • M magnetoresistance sensor unit rows are all located on the upper or lower surface of the M input signal straight wires in the input signal first area 21(1), and the other M In the row*N column magnetoresistance sensing unit array, the M magnetoresistance sensing unit rows are all located on the upper surface or lower surface of the M input signal straight wires in the input signal second region 21(2).
  • the N magnetic resistance sensing unit columns are respectively located on the lower surface or the upper surface of the middle N gain straight wires in the gain coil 5, and all the magnetic resistance sensing units have the same magnetic field sensitivity direction.
  • the optional output signal magnetoresistive sensor includes an M row * N column magnetoresistive sensor unit array;
  • the input signal coil is a plane spiral and includes an input signal area.
  • the input signal area has M rows of input signal straight wires that are equally spaced in parallel and in the same current direction.
  • the long axis of the input signal straight wire is parallel to the X direction and the short axis is parallel to the Y direction.
  • the current direction of the input signal straight wire is parallel to the X direction.
  • a row of magnetoresistance sensing units is arranged corresponding to an input signal straight wire, and the M rows of magnetoresistance sensing units are connected to form a single arm.
  • the gain-controllable magnetoresistive analog amplifier includes: a substrate 1 located on the XY plane, a magnetoresistive sensor located on the substrate 1, and the magnetoresistive sensor includes 1 M row * N column magnetoresistance Array of sensing units.
  • the magnetoresistance sensing unit array constitutes a single arm 32, and the single arm 32 is a two-port bridge arm.
  • the single arm 32 includes M magnetoresistance sensor cell strings 32(1) connected in series, and one magnetoresistance sensor cell string 32(1) is composed of a row of magnetoresistance sensor cells in series.
  • the input signal coil 22 is located above or below the magnetoresistive sensor, in a plane spiral shape, and includes one input signal area 22(1), and the input signal area 22(1) includes M input signals with parallel and equidistant arrangement and the same current.
  • Straight wire 221(1) The long axis of the input signal straight wire is parallel to the X direction and the short axis is parallel to the Y direction, and the current direction is parallel to the X direction.
  • the current direction of the input signal straight wire 221(1) is either the +X direction or the ⁇ X direction.
  • a magnetoresistance sensing unit string is arranged corresponding to an input signal straight wire, and is located above or below the input signal straight wire.
  • the optional gain adjustment coil 5 has a grid shape and includes N+2 gain straight wires with equidistant parallel arrangement and the same current direction.
  • the long axis of the gain straight wire is parallel to the Y direction and the short axis is parallel to the X direction.
  • the gain is straight.
  • the current direction of the wires is parallel to the Y direction; the N columns of magnetoresistance sensing units of the output signal magnetoresistive sensor are arranged correspondingly to the N gain straight wires in the middle of the N+2 gain straight wires.
  • the gain adjustment coil 5 is located below or above the magnetoresistive sensor, and is divided into two gain straight wires 5(1) at both ends and N gain straight wires in the middle.
  • the N gain straight wires in the middle include alternately arranged gains.
  • the current direction of the gain straight wire is the same as +Y or the same as -Y direction.
  • the N magnetic resistance sensing unit columns are respectively located on the lower surface or the upper surface of the middle N gain straight wires in the gain coil 5, and all the magnetic resistance sensing units have the same magnetic field sensitivity direction.
  • the bridge arms in the magnetoresistive sensor can be connected in multiple ways, which can be series, parallel, or a combination of series and parallel. Only part of the connection structure is shown above.
  • Figure 6a is a connection diagram of the series connection of magnetoresistance sensing units.
  • Ns magnetoresistance sensing units 6 (1) are connected in series to form a magnetoresistance sensing unit string 3 (1), and are located on the input signal straight wire 2 (1)
  • a plurality of magnetoresistance sensing unit strings 3 (1) are connected in series to form a bridge arm.
  • the advantage is that the bridge arm is powered by a constant current source, so the series connection can increase the total resistance of the magnetoresistive sensor and increase the total voltage of the output signal.
  • Each optional input signal straight wire is expanded into several sub-input signal straight wires with equidistant parallel arrangement and the same current direction, and one row of magnetoresistance sensing unit corresponding to the input signal straight wire is expanded to several rows of sub-magnetoresistance sensing. unit.
  • Figure 6b is a parallel connection diagram of the magnetoresistive sensing units. As shown in FIG.
  • a plurality of magnetoresistance sensing unit strings 30(1), 30(2), 30(3) and 30(4) are connected in parallel to each other to form a two-port structure 30, and input signal straight wires 20 It is also expanded into 20(1), 20(2), 20(3) and 20(4) straight wires, and corresponds to the magnetoresistance sensor unit string 30 one-to-one, that is, Ns magnetoresistance sensor units are expanded into Ns* Np magnetoresistance sensing unit array.
  • the utility of this parallel structure is that the current that a single magnetoresistance sensing unit can pass is small, at the microampere level. Therefore, increasing the number of parallel connections can increase the maximum current of the constant current source and also increase the output signal voltage.
  • FIG. 7 is a cross-sectional structure diagram of a magnetoresistive analog amplifier with controllable gain.
  • 1 is the substrate
  • 2 is the input signal straight wire corresponding to the input signal coil, and its current direction is the X direction
  • 6 is the magnetoresistance sensor unit string
  • 5 is the gain straight wire corresponding to the gain adjustment coil, and its current direction It is the Y direction.
  • the substrate 1, the input signal coil 2, the magnetoresistive sensor 6, and the gain adjustment coil 5 are stacked in sequence.
  • FIG 8 is a cross-sectional structure diagram of a magnetoresistive analog amplifier with controllable gain.
  • 1 is the substrate
  • 2(1) and 2(2) are the two adjacent input signal straight wires with opposite current directions corresponding to the input signal coils.
  • the current directions are +X and -X directions, corresponding to 6(1) and 6(2) are adjacent to two magnetoresistance sensing unit strings
  • 5 is the gain straight wire corresponding to the gain adjustment coil
  • its current direction is the Y direction.
  • Figures 7 and 8 show two cross-sectional structure diagrams of the magnetoresistive analog amplifier.
  • the structure of the magnetoresistive analog amplifier can include multiple types, so the cross-sectional structure is not limited to those shown in Figures 7 and 8.
  • FIG. 9 is a schematic diagram of adjusting the R-H transfer characteristic curve of the magnetoresistive sensing unit.
  • Rap is the resistance when the free layer and the pinned layer are in the opposite direction
  • Rp is the resistance when the free layer and the pinned layer are in the same direction.
  • An increase in the gain current leads to an increase in the bias magnetic field of the free layer, and its slope decreases as the gain current increases.
  • the resistance R-magnetic field H curve is 50, 51, 52, 53, and its magnetic field sensitivity gradually decreases.
  • the push arm is powered by a push current source
  • the pull arm is powered by a pull current source.
  • the push arm and the pull arm have a common ground terminal, and the push output signal terminal It is located between the push current source and the push arm, the pull output signal terminal is located between the pull current source and the pull arm, and the signal difference between the push output signal terminal and the pull output signal terminal obtains the output signal.
  • the magnetization direction of the pinned layer and the magnetization direction of the free layer constituting the output signal magnetoresistive sensor are perpendicular to each other.
  • the push magnetic resistance sensing unit arm 700 and the pull magnetic resistance sensing unit arm 800 have the same magnetic field sensitivity direction, and one end is supplied with a current source 300 and a current source 301 respectively, and the two current sources input signals Exactly the same, the other end is connected to the public ground.
  • the input signal coils 500 and 501 respectively generate input magnetic fields, which act on the magnetic field sensitive directions of the push magnetoresistance sensing unit arm 700 and the pull magnetoresistance sensing unit arm 800, respectively.
  • 100 is the input signal connected to the input signal coils 500 and 501.
  • the gain adjustment coils 600 and 601 act on the gain coils of the push magnetoresistance sensing unit arm 700 and the pull magnetoresistance sensing unit arm 800, respectively, to generate a bias magnetic field perpendicular to the magnetic field sensitive direction, which is used to adjust the magnetoresistance sensing unit Magnetic field sensitivity, 200 is the gain signal source connected to the gain adjustment coils 600 and 601.
  • the push magnetic resistance sensing unit arm 700 and the current source 300 are connected to the output signal V+, and the pull magnetic resistance sensing unit arm 800 and the current source 301 are connected to the output signal V- and connected to the output signal circuit 400 for differential output.
  • one end of the single arm is powered by a current source and the other end is connected to the ground, and the single arm output signal end is located between the current source and the single arm , The output signal is obtained after connecting the capacitor to the output signal terminal of the single arm.
  • the magnetization direction of the pinned layer and the magnetization direction of the free layer constituting the output signal magnetoresistive sensor are perpendicular to each other.
  • one end of a single magnetoresistance sensing unit arm 702 is powered by a current source 302, and the other end is connected to the ground.
  • the input signal coil 502 generates an input magnetic field, which acts on the magnetic field sensitive direction of a single magnetoresistance sensing unit arm 702, and 100 is an input signal connected to the input signal coil 502.
  • the gain adjustment coil 602 acts on a single magnetoresistance sensing unit arm 702 to generate a bias magnetic field perpendicular to the magnetic field sensitivity direction for adjusting the magnetic field sensitivity of the magnetoresistance sensing unit.
  • 200 is a gain signal source connected to the gain coil 602.
  • the single magnetoresistance sensing unit arm 702 and the current source 302 are connected to the output signal connection capacitor 800 to filter out the DC voltage, and are connected to the output signal circuit 402 for output.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)
  • Control Of Amplification And Gain Control (AREA)

Abstract

一种增益可控的磁阻模拟放大器,该放大器包括:位于X-Y平面上的衬底(1);位于衬底(1)上的输出信号磁阻传感器(34);输入信号线圈(2)和增益调节线圈(5),输入信号线圈(2)和增益调节线圈(5)分别位于输出信号磁阻传感器(34)的两侧表面,增益调节线圈(5)用于输入增益信号并产生增益磁场,以使增益磁场作用于输出信号磁阻传感器(34)的自由层磁化方向,调节输出信号磁阻传感器(34)的电阻-输入磁场转移曲线斜率,输入信号线圈(2)用于输入电流信号并产生输入磁场,以使输入磁场作用于输出信号磁阻传感器(34)的钉扎层磁化方向,控制增益信号以调节电流信号经过输出信号磁阻传感器(34)后的输出信号的增益因子。该磁阻模拟放大器实现了输入和输出信号隔离以及增益可控。

Description

一种增益可控的磁阻模拟放大器 技术领域
本揭露实施例涉及磁传感器技术,尤其涉及一种增益可控的磁阻模拟放大器。
背景技术
现代电子技术通常使用双极性晶体管、场发射晶体管或者CMOS集成电路芯片作为放大器,以实现输入信号的放大。
实际使用时,晶体管在放大区域时,其基极、集电极和发射极之间通常具有公共的电极,通过电场控制载流子在不同区域的分配以及通道的开通和抑制来实现发射极电流、集电极电流、基极电流及电压之间的相互关系,因此输入信号和输出信号不能完全的进行隔离。
发明内容
本揭露实施例提供一种增益可控的磁阻模拟放大器,以实现输入信号和输出信号的隔离。
本揭露实施例提供了一种增益可控的磁阻模拟放大器,包括:
位于X-Y平面上的衬底;
位于所述衬底上的输出信号磁阻传感器;
输入信号线圈和增益调节线圈,所述输入信号线圈和所述增益调节线圈分别位于所述输出信号磁阻传感器的两侧表面,其中,
所述增益调节线圈用于输入增益信号并产生增益磁场,以使所述增益磁场作用于所述输出信号磁阻传感器的自由层磁化方向,调节所述输出信号磁阻传感器的电阻-输入磁场转移曲线斜率,
所述输入信号线圈用于输入电流信号并产生输入磁场,以使所述输入磁场作用于所述 输出信号磁阻传感器的钉扎层磁化方向,控制所述增益信号以调节所述电流信号经过所述输出信号磁阻传感器后的输出信号的增益因子,所述电流信号为交流或直流信号。
本揭露实施例中,输入信号线圈和增益调节线圈分别位于输出信号磁阻传感器的两侧表面,工作中,增益调节线圈中输入增益信号并产生增益磁场,输入信号线圈中输入交流或直流信号并产生输入磁场,则磁信号通过线圈电流信号而产生,因此放大器具有独立的电源和输出信号,两者之间为磁耦合的关系,可以实现输入信号和输出信号之间的完全隔离;输入磁场作用于输出信号磁阻传感器的钉扎层磁化方向,增益磁场作用于输出信号磁阻传感器的自由层磁化方向,使得外磁场信号发生变化,磁电阻变化率可以达到200%,控制增益信号就可以调节输入电流信号经过输出信号磁阻传感器后的输出信号的增益因子,则放大器的输出信号的增益可控。
附图说明
为了更清楚地说明本揭露实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做一简单地介绍,显而易见地,下面描述中的附图虽然是本揭露的一些具体的实施例,对于本领域的技术人员来说,可以根据本揭露的各种实施例所揭示和提示的器件结构,驱动方法和制造方法的基本概念,拓展和延伸到其它的结构和附图,毋庸置疑这些都应该是在本揭露的权利要求范围之内。
图1是本揭露实施例提供的一种增益可控的磁阻模拟放大器的示意图;
图2是本揭露实施例提供的一种增益可控的磁阻模拟放大器的示意图;
图3是本揭露实施例提供的一种增益可控的磁阻模拟放大器的示意图;
图4是本揭露实施例提供的一种增益可控的磁阻模拟放大器的示意图;
图5是本揭露实施例提供的一种增益可控的磁阻模拟放大器的示意图;
图6a是串联磁电阻传感单元的连接图;
图6b是扩展并联磁电阻传感单元的连接图;
图7是本揭露实施例提供的增益可控的磁阻模拟放大器的截面示意图;
图8是本揭露实施例提供的增益可控的磁阻模拟放大器的截面示意图;
图9是本揭露实施例中磁阻传感器的电阻-输入磁场转移曲线增益调节原理的示意 图;
图10是本揭露实施例提供的增益可控的磁阻模拟放大器的电连接示意图;
图11是本揭露实施例提供的增益可控的磁阻模拟放大器的电连接示意图。
具体实施方式
为使本揭露的目的、技术方案和优点更加清楚,以下将参照本揭露实施例中的附图,通过实施方式清楚、完整地描述本揭露的技术方案,显然,所描述的实施例是本揭露一部分实施例,而不是全部的实施例。基于本揭露中的实施例所揭示和提示的基本概念,本领域的技术人员所获得的所有其他实施例,都属于本揭露保护的范围。
本揭露实施例提供了一种增益可控的磁阻模拟放大器,该磁阻模拟放大器包括:位于X-Y平面上的衬底;位于衬底上的输出信号磁阻传感器;输入信号线圈和增益调节线圈,输入信号线圈和增益调节线圈分别位于输出信号磁阻传感器的两侧表面,其中,增益调节线圈用于输入增益信号并产生增益磁场,以使增益磁场作用于输出信号磁阻传感器的自由层磁化方向,调节输出信号磁阻传感器的电阻-输入磁场转移曲线斜率,输入信号线圈用于输入电流信号并产生输入磁场,以使输入磁场作用于输出信号磁阻传感器的钉扎层磁化方向,控制增益信号以调节电流信号经过输出信号磁阻传感器后的输出信号的增益因子,电流信号为交流或直流信号。
本实施例中,可选磁阻模拟放大器为隧道磁阻模拟放大器,其中,包含位于衬底上的输出信号磁阻传感器以及输入信号线圈和增益调节线圈,磁阻传感器用于输出信号即命名为输出信号磁阻传感器,可选磁阻传感器为基于隧道磁阻技术的隧道磁阻传感器。输入信号线圈和增益调节线圈分别位于输出信号磁阻传感器的两侧表面,具体的,输入信号线圈位于衬底和输出信号磁阻传感器之间且增益调节线圈位于输出信号磁阻传感器上,或者,增益调节线圈位于衬底和输出信号磁阻传感器之间且输入信号线圈位于输出信号磁阻传感器上。
隧道磁阻传感器具有高电阻、高磁灵敏度和低功耗等优点,可以快速响应外磁场,其工作原理为磁场的变化导致自由层和钉扎层夹角的变化,进而导致通过的自旋电子的概率的变化,引起电阻的变化。隧道磁阻传感器的特点在于,磁信号如果通过线圈电流信号 而产生,则隧道磁阻传感器具有独立的电源和输出信号,两者之间为磁耦合的关系,可以实现输入信号和输出信号之间的完全隔离,采用隧道磁阻传感器的放大器的磁信号通过输入信号线圈的电流信号产生,因此放大器能够实现输入信号和输出信号的隔离;其次,隧道磁阻传感器的磁电阻传感单元具有KOhm甚至MOhm的电阻率,而其在外磁场信号变化时,其磁电阻变化率可以达到200%,因此输出信号的变化范围很宽,通过使用恒流源的方法,将电阻的变化转变成电压的变化,实现增益可控,采用隧道磁阻传感器的放大器通过控制增益调节线圈中增益信号,可以调节磁阻传感器的磁电阻变化,进而影响增益因子,因此放大器能够实现增益因子控制;第三,隧道磁阻传感器频率范围可以达到MHz,因此不会影响放大器的频带。
隧道磁阻传感器的增益除了与磁电阻变化率和恒流源有关之外,还与外磁场灵敏度,通过控制隧道磁阻传感器的外磁场灵敏度可以实现控制放大器的增益因子。隧道磁阻传感器中磁电阻传感单元的磁场灵敏度与自由层的各向异性场Hk及磁电阻传感单元的形状各向异性场Ha有关,还与自由层偏置磁场Hb有关;自由层偏置磁场Hb与永磁偏置场Hpm或者交换耦合场Hex有关,还可以通过偏置电流线圈产生外磁场来实现Hb,因此通过控制偏置电流线圈即输入信号线圈和增益调节线圈的电流即可以实现隧道磁阻传感器的灵敏度可控,进而控制放大器的增益因子。
本揭露实施例中,输入信号线圈和增益调节线圈分别位于输出信号磁阻传感器的两侧表面,工作中,增益调节线圈中输入增益信号并产生增益磁场,输入信号线圈中输入交流或直流信号并产生输入磁场,则磁信号通过线圈电流信号而产生,因此放大器具有独立的电源和输出信号,两者之间为磁耦合的关系,可以实现输入信号和输出信号之间的完全隔离;输入磁场作用于输出信号磁阻传感器的钉扎层磁化方向,增益磁场作用于输出信号磁阻传感器的自由层磁化方向,使得外磁场信号发生变化,磁电阻变化率可以达到200%,控制增益信号就可以调节输入电流信号经过输出信号磁阻传感器后的输出信号的增益因子,则放大器的输出信号的增益可控。本揭露实施例中采用磁阻传感器的放大器还具有低功耗、尺寸小、可批量生产等优势。
以上是本揭露实施例的总体构思和原理,以下给出了多种不同的磁阻模拟放大器。
示例性的,在上述技术方案的基础上,可选输出信号磁阻传感器包括1个M行*N列磁电阻传感单元阵列;输入信号线圈为弯蛇形,包含具有相反电流方向且交替排列的M+2个输入信号直导线,输入信号直导线的长轴平行于X方向且短轴平行于Y方向,输入信号直导线的电流方向平行于X方向;输出信号磁阻传感器的M行磁电阻传感单元与M+2个输入信号直导线中位于中间的M个输入信号直导线分别对应设置,M个输入信号直导线中具有相同第一电流方向的M/2个输入信号直导线所对应的M/2行磁电阻传感单元连接形成推臂,M个输入信号直导线中具有相同第二电流方向的M/2个输入信号直导线所对应的M/2行磁电阻传感单元连接形成挽臂,第一电流方向和第二电流方向相反;M为偶数。
参考图1所示,该增益可控的磁阻模拟放大器包括:位于X-Y平面上的衬底1,位于衬底1之上的磁阻传感器34,磁阻传感器34包含M行*N列磁电阻传感单元阵列,磁电阻传感单元阵列构成包含推磁电阻传感单元臂3和挽磁电阻传感单元臂4的准桥结构,推磁电阻传感单元臂3和挽磁电阻传感单元臂4具有共同的接地端GND。推磁电阻传感单元臂3包括串联的多个推磁电阻传感单元串3(1),一个推磁电阻传感单元串3(1)由一行推磁电阻传感单元6(1)串联构成;挽磁电阻传感单元臂4包括串联的多个挽磁电阻传感单元串4(1),一个挽磁电阻传感单元串4(1)由一行挽磁电阻传感单元6(2)串联构成。
输入信号线圈2位于磁阻传感器34的上方或者下方,呈弯蛇形,包括M+2个输入信号直导线,其中分为位于两端的两个输入信号直导线2(1)和位于中间的M个输入信号直导线,位于中间的M个输入信号直导线包括交替排列的输入信号直导线2(2)和2(3)。输入信号直导线的长轴平行于X方向且短轴平行于Y方向,其电流方向平行于X方向,显然输入信号直导线2(2)和2(3)具有相反的电流方向,其中,输入信号直导线2(3)的电流方向为+X方向即第一电流方向,可选输入信号直导线2(2)的电流方向为-X方向即第二电流方向。
推磁电阻传感单元串3(1)和挽磁电阻传感单元串6(2)总和共为M个磁电阻传感单元串,具有相同的磁场敏感方向,同为Y方向,该M个磁电阻传感单元串即M行磁电阻传感单元与M+2个输入信号直导线中位于中间的M个输入信号直导线分别对应设置,即一行磁电阻传感单元位于一个输入信号直导线的表面。具体的,推臂即推磁电阻传感单元臂 3是由位于中间的M个输入信号直导线中具有+X方向的M/2个输入信号直导线所对应的M/2行磁电阻传感单元连接形成,则推磁电阻传感单元串3(1)位于输入信号直导线2(3)的表面;挽臂即挽磁电阻传感单元臂4是由位于中间的M个输入信号直导线中具有-X方向的M/2个输入信号直导线所对应的M/2行磁电阻传感单元连接形成,则挽磁电阻传感单元串4(1)位于输入信号直导线2(2)的表面。
可选增益调节线圈5为排栅形,包含具有等距平行排列且相同电流方向的N+2个增益直导线,增益直导线的长轴平行于Y方向且短轴平行于X方向,增益直导线的电流方向平行于Y方向;输出信号磁阻传感器的N列磁电阻传感单元与N+2个增益直导线中位于中间的N个增益直导线分别对应设置。增益调节线圈5位于磁阻传感器34的下方或者上方,分为位于两端的两个增益直导线5(1)和位于中间的N个增益直导线,位于中间的N个增益直导线包括交替排列的增益直导线5(2)和5(3)。增益直导线的电流方向同为+Y或者同为-Y方向。
示例性的,在上述技术方案的基础上,可选输出信号磁阻传感器包括1个M行*N列磁电阻传感单元阵列;输入信号线圈为弯蛇形,包含具有相反电流方向且交替排列的2M+2个输入信号直导线,输入信号直导线的长轴平行于X方向且短轴平行于Y方向,输入信号直导线的电流方向平行于X方向;输出信号磁阻传感器的M行磁电阻传感单元与2M+2个输入信号直导线中位于中间且具有相同电流方向的M个输入信号直导线分别对应设置,M行磁电阻传感单元连接形成单臂。
参考图2所示,该增益可控的磁阻模拟放大器包括:位于X-Y平面上的衬底1,位于衬底1之上的磁阻传感器3,磁阻传感器3包含M行*N列磁电阻传感单元阵列,磁电阻传感单元阵列构成单个磁电阻传感单元臂即单臂。单臂包括串联的M个磁电阻传感单元串3(1),一个磁电阻传感单元串3(1)由一行磁电阻传感单元6(1)串联构成。
输入信号线圈2位于磁阻传感器的上方或者下方,呈弯蛇形,包括2M+2个输入信号直导线,其中分为位于两端的两个输入信号直导线2(1)和位于中间的2M个输入信号直导线,位于中间的2M个输入信号直导线包括交替排列的输入信号直导线2(2)和2(3)。输入信号直导线的长轴平行于X方向且短轴平行于Y方向,其电流方向平行于X方向,显然输入信号直导线2(2)和2(3)具有相反的电流方向,其中,可选输入信号直导线2(3)的电 流方向为+X方向,输入信号直导线2(2)的电流方向为-X方向。
单臂中磁电阻传感单元6(1)具有相同的磁场敏感方向,同为Y方向,该M个磁电阻传感单元串3(1)即M行磁电阻传感单元与位于中间的2M个输入信号直导线中相同电流方向的M个输入信号直导线分别对应设置,即一行磁电阻传感单元位于一个输入信号直导线的表面。例如,该M个磁电阻传感单元串3(1)即M行磁电阻传感单元与相同电流方向的M个输入信号直导线2(2)分别对应设置,或者,该M个磁电阻传感单元串3(1)即M行磁电阻传感单元与相同电流方向的M个输入信号直导线2(3)分别对应设置。
可选增益调节线圈5为排栅形,包含具有等距平行排列且相同电流方向的N+2个增益直导线,增益直导线的长轴平行于Y方向且短轴平行于X方向,增益直导线的电流方向平行于Y方向;输出信号磁阻传感器的N列磁电阻传感单元与N+2个增益直导线中位于中间的N个增益直导线分别对应设置。增益调节线圈5位于磁阻传感器3的下方或者上方,分为位于两端的两个增益直导线5(1)和位于中间的N个增益直导线,位于中间的N个增益直导线包括交替排列的增益直导线5(2)和5(3)。增益直导线的电流方向同为+Y或者同为-Y方向。
示例性的,在上述技术方案的基础上,可选输出信号磁阻传感器包括1个M行*N列磁电阻传感单元阵列;输入信号线圈为排栅形,包含具有相同电流方向且等距平行排列的M+2个输入信号直导线,输入信号直导线的长轴平行于X方向且短轴平行于Y方向,输入信号直导线的电流方向平行于X方向;输出信号磁阻传感器的M行磁电阻传感单元与M+2个输入信号直导线中位于中间的M个输入信号直导线分别对应设置,M行磁电阻传感单元连接形成单臂。
参考图3所示,该增益可控的磁阻模拟放大器包括:位于X-Y平面上的衬底1,位于衬底1之上的磁阻传感器30,磁阻传感器30包含M行*N列磁电阻传感单元阵列,磁电阻传感单元阵列构成单个磁电阻传感单元臂即单臂。单臂包括串联的M个磁电阻传感单元串31(1),一个磁电阻传感单元串31(1)由一行磁电阻传感单元6(1)串联构成。
输入信号线圈20位于磁阻传感器30的上方或者下方,呈排栅形,包括M+2个输入信号直导线,其中分为位于两端的两个输入信号直导线20(1)和位于中间的M个输入信号 直导线,位于中间的M个输入信号直导线包括交替排列的输入信号直导线20(2)和20(3)。输入信号直导线的长轴平行于X方向且短轴平行于Y方向,其电流方向平行于X方向,输入信号直导线具有相同的电流方向,同为+X或-X电流方向。
单臂中磁电阻传感单元6(1)具有相同的钉扎层方向和自由层磁化方向即相同的磁场敏感方向,同为Y方向,该M个磁电阻传感单元串31(1)即M行磁电阻传感单元与位于中间的M个输入信号直导线分别对应设置,即一行磁电阻传感单元位于一个输入信号直导线的表面。
可选增益调节线圈5为排栅形,包含具有等距平行排列且相同电流方向的N+2个增益直导线,增益直导线的长轴平行于Y方向且短轴平行于X方向,增益直导线的电流方向平行于Y方向;输出信号磁阻传感器的N列磁电阻传感单元与N+2个增益直导线中位于中间的N个增益直导线分别对应设置。增益调节线圈5位于磁阻传感器30的下方或者上方,分为位于两端的两个增益直导线5(1)和位于中间的N个增益直导线,位于中间的N个增益直导线包括交替排列的增益直导线5(2)和5(3)。增益直导线的电流方向同为+Y或者同为-Y方向。N列磁电阻传感单元分别位于N个增益直导线的下方或者上方。在其他实施例中,还可选M行N列磁电阻传感单元串联、并联或者串并联成两端口结构。
示例性的,在上述技术方案的基础上,可选输出信号磁阻传感器包含2个M行*N列磁电阻传感单元阵列;输入信号线圈为平面螺旋形,包含具有M行等距平行排列输入信号直导线的输入信号第一区域和具有M行等距平行排列输入信号直导线的输入信号第二区域,输入信号第一区域和输入信号第二区域的输入信号直导线具有相反电流方向,输入信号直导线的长轴平行于X方向且短轴平行于Y方向,输入信号直导线的电流方向平行于X方向;一行磁电阻传感单元与一个输入信号直导线对应设置,输入信号第一区域中M个输入信号直导线所对应的M行磁电阻传感单元连接形成推臂,输入信号第二区域中M个输入信号直导线所对应的M行磁电阻传感单元连接形成挽臂。
参考图4所示,该增益可控的磁阻模拟放大器包括:位于X-Y平面上的衬底1,位于衬底1之上的磁阻传感器341,磁阻传感器341包含2个M行*N列磁电阻传感单元阵列,沿Y方向排布。一个磁电阻传感单元阵列构成推臂31,另一个磁电阻传感单元阵列构成挽臂41,推臂31和挽臂41均为两端口桥臂。推臂31包括串联的多个推磁电阻传感 单元串31(1),一个推磁电阻传感单元串31(1)由一行推磁电阻传感单元串联构成;挽臂41包括串联的多个挽磁电阻传感单元串41(1),一个挽磁电阻传感单元串41(1)由一行挽磁电阻传感单元串联构成。
输入信号线圈21位于磁阻传感器341的上方或者下方,呈平面螺旋形,包括两个输入信号区域,分别为输入信号第一区域21(1)和输入信号第二区域21(2),两个输入信号区域21(1)和21(2)均包括M个具有平行等距排列且电流相同的输入信号直导线211(1)和211(2)。输入信号直导线的长轴平行于X方向且短轴平行于Y方向,其电流方向平行于X方向,显然输入信号直导线211(1)和211(2)具有相反的电流方向,可选输入信号直导线211(1)的电流方向为+X方向,输入信号直导线211(2)的电流方向为-X方向。一个磁电阻传感单元串与一个输入信号直导线对应设置,位于该输入信号直导线的上方或下方。
可选增益调节线圈5为排栅形,包含具有等距平行排列且相同电流方向的N+2个增益直导线,增益直导线的长轴平行于Y方向且短轴平行于X方向,增益直导线的电流方向平行于Y方向;输出信号磁阻传感器的N列磁电阻传感单元与N+2个增益直导线中位于中间的N个增益直导线分别对应设置。增益调节线圈5位于磁阻传感器341的下方或者上方,分为位于两端的两个增益直导线5(1)和位于中间的N个增益直导线,位于中间的N个增益直导线包括交替排列的增益直导线5(2)和5(3)。增益直导线的电流方向同为+Y或者同为-Y方向。
一个M行*N列磁电阻传感单元阵列中,M个磁电阻传感单元行均位于输入信号第一区域21(1)中的M个输入信号直导线上表面或者下表面,另一个M行*N列磁电阻传感单元阵列中,M个磁电阻传感单元行均位于输入信号第二区域21(2)中的M个输入信号直导线上表面或者下表面。N个磁电阻传感单元列分别位于增益线圈5中的中间N个增益直导线的下表面或者上表面,所有磁电阻传感单元具有相同的磁场灵敏度方向。
示例性的,在上述技术方案的基础上,可选输出信号磁阻传感器包含1个M行*N列磁电阻传感单元阵列;输入信号线圈为平面螺旋形,包含1个输入信号区域,该输入信号区域具有M行等距平行排列且相同电流方向的输入信号直导线,输入信号直导线的长轴平行于X方向且短轴平行于Y方向,输入信号直导线的电流方向平行于X方向;一行 磁电阻传感单元与一个输入信号直导线对应设置,该M行磁电阻传感单元连接形成单臂。
参考图5所示,该增益可控的磁阻模拟放大器包括:位于X-Y平面上的衬底1,位于衬底1之上的磁阻传感器,磁阻传感器包含1个M行*N列磁电阻传感单元阵列。磁电阻传感单元阵列构成单臂32,单臂32为两端口桥臂。单臂32包括串联的M个磁电阻传感单元串32(1),一个磁电阻传感单元串32(1)由一行磁电阻传感单元串联构成。
输入信号线圈22位于磁阻传感器的上方或者下方,呈平面螺旋形,包括1个输入信号区域22(1),输入信号区域22(1)包括M个具有平行等距排列且电流相同的输入信号直导线221(1)。输入信号直导线的长轴平行于X方向且短轴平行于Y方向,其电流方向平行于X方向,输入信号直导线221(1)的电流方向均为+X方向或均为-X方向。一个磁电阻传感单元串与一个输入信号直导线对应设置,位于该输入信号直导线的上方或下方。
可选增益调节线圈5为排栅形,包含具有等距平行排列且相同电流方向的N+2个增益直导线,增益直导线的长轴平行于Y方向且短轴平行于X方向,增益直导线的电流方向平行于Y方向;输出信号磁阻传感器的N列磁电阻传感单元与N+2个增益直导线中位于中间的N个增益直导线分别对应设置。增益调节线圈5位于磁阻传感器的下方或者上方,分为位于两端的两个增益直导线5(1)和位于中间的N个增益直导线,位于中间的N个增益直导线包括交替排列的增益直导线5(2)和5(3)。增益直导线的电流方向同为+Y或者同为-Y方向。N个磁电阻传感单元列分别位于增益线圈5中的中间N个增益直导线的下表面或者上表面,所有磁电阻传感单元具有相同的磁场灵敏度方向。
对于上述多个实施例提供的磁阻模拟放大器,其磁阻传感器中桥臂的连接方式有多种,可以是串联、并联、串并联混合,以上仅示出了部分连接结构。
图6a为磁电阻传感单元串联的连接图,Ns个磁电阻传感单元6(1)相互串联连接成磁电阻传感单元串3(1),并位于输入信号直导线2(1)上表面或者下表面,此时多个磁电阻传感单元串3(1)串联构成桥臂。其优点在于,其桥臂由恒流源供电,因此串联连接可以增加磁电阻传感器的总电阻,提高输出信号总电压。
可选的每个输入信号直导线扩展成具有等距平行排列且相同电流方向的数个子输入信号直导线,输入信号直导线所对应的一行磁电阻传感单元相应扩展为数行子磁电阻传感单元。图6b为磁电阻传感单元并联的连接图。如图6a所示的多个磁电阻传感单元串30(1), 30(2),30(3)和30(4)相互之间并联连接成两端口结构30,并且输入信号直导线20也扩展成20(1),20(2),20(3)和20(4)直导线,并与磁电阻传感单元串30一一对应,即Ns个磁电阻传感单元扩展成Ns*Np个磁电阻传感单元阵列。这种并联结构的用处在于,单个磁电阻传感单元可以通过的电流较小,在微安培级别,因此增加并联的数量,可以提高恒流源的最大电流数量,也可以增加输出信号电压。
参考图7所示,为增益可控的磁阻模拟放大器的截面结构图。其中,1为衬底,2为输入信号线圈对应的输入信号直导线,其电流方向为X方向,6为磁电阻传感单元串,5为增益调节线圈所对应的增益直导线,其电流方向为Y方向。其中,衬底1、输入信号线圈2、磁阻传感器6和增益调节线圈5依次层叠设置。
参考图8所示,为增益可控的磁阻模拟放大器的截面结构图。其中,1为衬底,2(1)和2(2)分别为输入信号线圈对应的相邻两个具有相反电流方向的输入信号直导线,其电流方向为+X和-X方向,分别对应6(1)和6(2)相邻两个磁电阻传感单元串,5为增益调节线圈所对应的增益直导线,其电流方向为Y方向。图7和图8给出了磁阻模拟放大器的两个截面结构图,磁阻模拟放大器的结构可以包括多种,因此截面结构也并不限于图7和图8所示。
参考图9所示,为磁电阻传感单元R-H转移特征曲线调节原理图。其中,Rap为自由层与钉扎层反方向时的电阻,Rp为自由层和钉扎层同向时的电阻,增益电流增加导致自由层偏置磁场增加,其斜率减小,随增益电流增加,电阻R-磁场H曲线依次为50,51,52,53,其磁场灵敏度逐渐减小。
可选的,对于图1和图4所示的磁阻模拟放大器,其中推臂由推电流源供电,挽臂由挽电流源供电,推臂和挽臂具有共同的接地端,推输出信号端位于推电流源和推臂之间,挽输出信号端位于挽电流源和挽臂之间,推输出信号端和挽输出信号端的信号差分得到输出信号。其电连接方式参考图10所示。可选的,对于上述任意实施例所述的磁阻模拟放大器,构成输出信号磁阻传感器的钉扎层磁化方向和自由层磁化方向相互垂直。
如图10所示,推磁电阻传感单元臂700和挽磁电阻传感单元臂800具有相同的磁场敏感方向,且一端分别通过电流源300和电流源301供电,且两个电流源输入信号完全相同,另一端与公共地相连。输入信号线圈500和501分别产生输入磁场,分别作用于推磁 电阻传感单元臂700和挽磁电阻传感单元臂800的磁场敏感方向,100为与输入信号线圈500和501相连的输入信号。增益调节线圈600和601分别作用于推磁电阻传感单元臂700和挽磁电阻传感单元臂800的增益线圈,产生垂直于磁场敏感方向的偏置磁场,用于调节磁电阻传感单元的磁场灵敏度,200为与增益调节线圈600和601相连的增益信号源。推磁电阻传感单元臂700和电流源300中间连接输出信号V+,挽磁电阻传感单元臂800和电流源301中间连接输出信号V-,并且连接输出信号电路400差分输出。
可选的,对于图2、图3和图5所示的磁阻模拟放大器,其中单臂的一端由电流源供电且另一端连接接地端,单臂输出信号端位于电流源和单臂之间,单臂输出信号端连接电容后得到输出信号。其电连接方式参考图11所示。可选的,对于上述任意实施例所述的磁阻模拟放大器,构成输出信号磁阻传感器的钉扎层磁化方向和自由层磁化方向相互垂直。
如图11所示,单个磁电阻传感单元臂702一端分别通过电流源302供电,另一端与地相连。输入信号线圈502产生输入磁场,作用于单个磁电阻传感单元臂702的磁场敏感方向,100为与输入信号线圈502相连的输入信号。增益调节线圈602作用于单个磁电阻传感单元臂702,产生垂直于磁场敏感方向的偏置磁场,用于调节磁电阻传感单元的磁场灵敏度,200为与增益线圈602相连的增益信号源。单个磁电阻传感单元臂702和电流源302中间连接输出信号连接电容800,以过滤掉直流电压,并且连接输出信号电路402输出。
注意,上述仅为本揭露的较佳实施例及所运用技术原理。本领域技术人员会理解,本揭露不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整、相互组合和替代而不会脱离本揭露的保护范围。因此,虽然通过以上实施例对本揭露进行了较为详细的说明,但是本揭露不仅仅限于以上实施例,在不脱离本揭露构思的情况下,还可以包括更多其他等效实施例,而本揭露的范围由所附的权利要求范围决定。

Claims (11)

  1. 一种增益可控的磁阻模拟放大器,其特征在于,包括:
    位于X-Y平面上的衬底;
    位于所述衬底上的输出信号磁阻传感器;
    输入信号线圈和增益调节线圈,所述输入信号线圈和所述增益调节线圈分别位于所述输出信号磁阻传感器的两侧表面,其中,
    所述增益调节线圈用于输入增益信号并产生增益磁场,以使所述增益磁场作用于所述输出信号磁阻传感器的自由层磁化方向,调节所述输出信号磁阻传感器的电阻-输入磁场转移曲线斜率,
    所述输入信号线圈用于输入电流信号并产生输入磁场,以使所述输入磁场作用于所述输出信号磁阻传感器的钉扎层磁化方向,控制所述增益信号以调节所述电流信号经过所述输出信号磁阻传感器后的输出信号的增益因子,所述电流信号为交流或直流信号。
  2. 根据权利要求1所述的磁阻模拟放大器,其特征在于,所述输出信号磁阻传感器包括1个M行*N列磁电阻传感单元阵列;
    所述输入信号线圈为弯蛇形,包含具有相反电流方向且交替排列的M+2个输入信号直导线,所述输入信号直导线的长轴平行于X方向且短轴平行于Y方向,所述输入信号直导线的电流方向平行于X方向;
    所述输出信号磁阻传感器的M行磁电阻传感单元与所述M+2个输入信号直导线中位于中间的M个输入信号直导线分别对应设置,所述M个输入信号直导线中具有相同第一电流方向的M/2个输入信号直导线所对应的M/2行磁电阻传感单元连接形成推臂,所述M个输入信号直导线中具有相同第二电流方向的M/2个输入信号直导线所对应的M/2行磁电阻传感单元连接形成挽臂,所述第一电流方向和所述第二电流方向相反;
    M为偶数。
  3. 根据权利要求1所述的磁阻模拟放大器,其特征在于,所述输出信号磁阻传感器包括1个M行*N列磁电阻传感单元阵列;
    所述输入信号线圈为弯蛇形,包含具有相反电流方向且交替排列的2M+2个输入信号直导线,所述输入信号直导线的长轴平行于X方向且短轴平行于Y方向,所述输入信 号直导线的电流方向平行于X方向;
    所述输出信号磁阻传感器的M行磁电阻传感单元与所述2M+2个输入信号直导线中位于中间且具有相同电流方向的M个输入信号直导线分别对应设置,所述M行磁电阻传感单元连接形成单臂。
  4. 根据权利要求1所述的磁阻模拟放大器,其特征在于,所述输出信号磁阻传感器包括1个M行*N列磁电阻传感单元阵列;
    所述输入信号线圈为排栅形,包含具有相同电流方向且等距平行排列的M+2个输入信号直导线,所述输入信号直导线的长轴平行于X方向且短轴平行于Y方向,所述输入信号直导线的电流方向平行于X方向;
    所述输出信号磁阻传感器的M行磁电阻传感单元与所述M+2个输入信号直导线中位于中间的M个输入信号直导线分别对应设置,所述M行磁电阻传感单元连接形成单臂。
  5. 根据权利要求1所述的磁阻模拟放大器,其特征在于,所述输出信号磁阻传感器包含2个M行*N列磁电阻传感单元阵列;
    所述输入信号线圈为平面螺旋形,包含具有M行等距平行排列输入信号直导线的输入信号第一区域和具有M行等距平行排列输入信号直导线的输入信号第二区域,所述输入信号第一区域和所述输入信号第二区域的输入信号直导线具有相反电流方向,所述输入信号直导线的长轴平行于X方向且短轴平行于Y方向,所述输入信号直导线的电流方向平行于X方向;
    一行磁电阻传感单元与一个所述输入信号直导线对应设置,所述输入信号第一区域中M个输入信号直导线所对应的M行磁电阻传感单元连接形成推臂,所述输入信号第二区域中M个输入信号直导线所对应的M行磁电阻传感单元连接形成挽臂。
  6. 根据权利要求1所述的磁阻模拟放大器,其特征在于,所述输出信号磁阻传感器包含1个M行*N列磁电阻传感单元阵列;
    所述输入信号线圈为平面螺旋形,包含1个输入信号区域,该输入信号区域具有M行等距平行排列且相同电流方向的输入信号直导线,所述输入信号直导线的长轴平行于X方向且短轴平行于Y方向,所述输入信号直导线的电流方向平行于X方向;
    一行磁电阻传感单元与一个所述输入信号直导线对应设置,该M行磁电阻传感单元 连接形成单臂。
  7. 根据权利要求1所述的磁阻模拟放大器,其特征在于,所述输出信号磁阻传感器包含1个M行*N列磁电阻传感单元阵列;
    所述增益调节线圈为排珊形,包含具有等距平行排列且相同电流方向的N+2个增益直导线,所述增益直导线的长轴平行于Y方向且短轴平行于X方向,所述增益直导线的电流方向平行于Y方向;
    所述输出信号磁阻传感器的N列磁电阻传感单元与所述N+2个增益直导线中位于中间的N个增益直导线分别对应设置。
  8. 根据权利要求2或3所述的磁阻模拟放大器,其特征在于,每个所述输入信号直导线扩展成具有等距平行排列且相同电流方向的数个子输入信号直导线,所述输入信号直导线所对应的一行所述磁电阻传感单元相应扩展为数行子磁电阻传感单元。
  9. 根据权利要求2或5所述的磁阻模拟放大器,其特征在于,所述推臂由推电流源供电,所述挽臂由挽电流源供电,所述推臂和所述挽臂具有共同的接地端,推输出信号端位于所述推电流源和所述推臂之间,挽输出信号端位于所述挽电流源和所述挽臂之间,所述推输出信号端和所述挽输出信号端的信号差分得到输出信号。
  10. 根据权利要求3、4或6所述的磁阻模拟放大器,其特征在于,所述单臂的一端由电流源供电且另一端连接接地端,单臂输出信号端位于所述电流源和所述单臂之间,所述单臂输出信号端连接电容后得到输出信号。
  11. 根据权利要求1所述的磁阻模拟放大器,其特征在于,构成所述输出信号磁阻传感器的钉扎层磁化方向和自由层磁化方向相互垂直。
PCT/CN2021/076124 2020-02-18 2021-02-09 一种增益可控的磁阻模拟放大器 WO2021164629A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/904,515 US12081176B2 (en) 2020-02-18 2021-02-09 Gain-controllable magnetoresistive analog amplifier
JP2022549413A JP2023514310A (ja) 2020-02-18 2021-02-09 ゲイン制御可能な磁気抵抗アナログ増幅器
EP21756348.5A EP4109750A4 (en) 2020-02-18 2021-02-09 GAIN-CONTROLLED MAGNETORESISTIVE ANALOG AMPLIFIER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010098935.3A CN111277231B (zh) 2020-02-18 2020-02-18 一种增益可控的磁阻模拟放大器
CN202010098935.3 2020-02-18

Publications (1)

Publication Number Publication Date
WO2021164629A1 true WO2021164629A1 (zh) 2021-08-26

Family

ID=71003931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076124 WO2021164629A1 (zh) 2020-02-18 2021-02-09 一种增益可控的磁阻模拟放大器

Country Status (5)

Country Link
US (1) US12081176B2 (zh)
EP (1) EP4109750A4 (zh)
JP (1) JP2023514310A (zh)
CN (1) CN111277231B (zh)
WO (1) WO2021164629A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12081176B2 (en) 2020-02-18 2024-09-03 MultiDimension Technology Co., Ltd. Gain-controllable magnetoresistive analog amplifier

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114441946B (zh) * 2022-04-02 2022-06-10 广东威灵电机制造有限公司 磁传导装置、电控板测试系统和电控板测试方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06294853A (ja) * 1993-04-12 1994-10-21 Nippon Steel Corp 磁気検出装置
CN101641609A (zh) * 2007-03-23 2010-02-03 旭化成微电子株式会社 磁传感器及其灵敏度测量方法
CN103414176A (zh) * 2013-07-30 2013-11-27 江苏多维科技有限公司 一种磁阻限流器
CN110412118A (zh) * 2019-08-30 2019-11-05 江苏多维科技有限公司 一种基于电隔离隧道磁阻敏感元件的氢气传感器
CN111277231A (zh) * 2020-02-18 2020-06-12 江苏多维科技有限公司 一种增益可控的磁阻模拟放大器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5351005A (en) * 1992-12-31 1994-09-27 Honeywell Inc. Resetting closed-loop magnetoresistive magnetic sensor
US5917680A (en) * 1996-06-24 1999-06-29 Read-Rite Corporation Magnetoresistive head with magnetic bias level control
JP4941733B2 (ja) * 2007-03-28 2012-05-30 日本電気株式会社 電流増幅回路
EP2413154B1 (en) * 2010-07-30 2013-04-17 Nxp B.V. Magnetoresistive Sensor
US9013175B2 (en) * 2010-11-26 2015-04-21 Stmicroelectronics S.R.L. Reading circuit for a magnetic field sensor with sensitivity calibration, and related reading method
CN202433514U (zh) * 2011-01-17 2012-09-12 江苏多维科技有限公司 独立封装的桥式磁场传感器
US8933750B2 (en) * 2012-02-17 2015-01-13 Crocus Technology Inc. Magnetic logic units configured as an amplifier
JP6065635B2 (ja) * 2012-02-20 2017-01-25 日立金属株式会社 磁気センサ装置
US9523742B2 (en) * 2015-04-27 2016-12-20 Allegro Microsystems, Llc Circuits and methods for modulating current in circuits comprising sensing elements
JP6776677B2 (ja) * 2015-07-21 2020-10-28 Tdk株式会社 マイクロ波受信装置および磁気抵抗効果デバイス
CN105185655B (zh) * 2015-08-12 2017-08-29 江苏多维科技有限公司 一种磁电阻继电器
CN206311652U (zh) * 2016-08-05 2017-07-07 江苏多维科技有限公司 一种具有集成电流线圈的磁电阻电流传感器
CN106160670B (zh) * 2016-08-18 2023-05-30 江苏多维科技有限公司 一种平衡磁电阻混频器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06294853A (ja) * 1993-04-12 1994-10-21 Nippon Steel Corp 磁気検出装置
CN101641609A (zh) * 2007-03-23 2010-02-03 旭化成微电子株式会社 磁传感器及其灵敏度测量方法
CN103414176A (zh) * 2013-07-30 2013-11-27 江苏多维科技有限公司 一种磁阻限流器
CN110412118A (zh) * 2019-08-30 2019-11-05 江苏多维科技有限公司 一种基于电隔离隧道磁阻敏感元件的氢气传感器
CN111277231A (zh) * 2020-02-18 2020-06-12 江苏多维科技有限公司 一种增益可控的磁阻模拟放大器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4109750A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12081176B2 (en) 2020-02-18 2024-09-03 MultiDimension Technology Co., Ltd. Gain-controllable magnetoresistive analog amplifier

Also Published As

Publication number Publication date
EP4109750A1 (en) 2022-12-28
JP2023514310A (ja) 2023-04-05
CN111277231A (zh) 2020-06-12
CN111277231B (zh) 2022-02-18
EP4109750A4 (en) 2024-04-03
US20230084058A1 (en) 2023-03-16
US12081176B2 (en) 2024-09-03

Similar Documents

Publication Publication Date Title
WO2021164629A1 (zh) 一种增益可控的磁阻模拟放大器
KR100467117B1 (ko) 전-금속,자이언트자기저항고체-상태소자장치
JP6474822B2 (ja) 高感度プッシュプルブリッジ磁気センサ
US10845430B2 (en) Magnetoresistive sensor with compensating coil
CN102565727B (zh) 用于测量磁场的磁电阻传感器
WO2015158243A1 (zh) 一种单芯片三轴线性磁传感器及其制备方法
US9739850B2 (en) Push-pull flipped-die half-bridge magnetoresistive switch
US9857434B2 (en) Push-pull bridge-type magnetic sensor for high-intensity magnetic fields
JP2015511705A (ja) 磁気抵抗磁場勾配センサ
CN107356885B (zh) 一种单片集成二维磁场传感器及其制作工艺
WO2018014590A1 (zh) Oled显示装置及其压力触控驱动方法
CN108469317B (zh) 具有处于多个惠斯通电桥中的感应元件的压力传感器
JP4498414B2 (ja) 直列ブリッジ回路
US7531883B2 (en) Magneto-resistance transistor and method thereof
CN202494772U (zh) 用于测量磁场的磁电阻传感器
US11009569B2 (en) Magnetic field sensing device
CN211182246U (zh) 电流传感器芯片
CN203233390U (zh) 推挽式芯片翻转半桥磁阻开关
JP3995911B2 (ja) 半導体磁気センサおよびその製造方法
TWI711833B (zh) 磁場感測裝置
JP3636831B2 (ja) 超電導増幅器及びこれを利用した検出器
JP2008507923A (ja) デュアルブリッジトランスデューサ用差動増幅器
US7235851B2 (en) Spin transistor and method thereof
Krasyukov et al. Investigation of magnetotransistors with new topology
TWI241044B (en) Magneto-resistance transistor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21756348

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022549413

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021756348

Country of ref document: EP

Effective date: 20220919