WO2021164406A1 - 一种光交换装置、重定向方法以及可重构光分插复用器 - Google Patents

一种光交换装置、重定向方法以及可重构光分插复用器 Download PDF

Info

Publication number
WO2021164406A1
WO2021164406A1 PCT/CN2020/137478 CN2020137478W WO2021164406A1 WO 2021164406 A1 WO2021164406 A1 WO 2021164406A1 CN 2020137478 W CN2020137478 W CN 2020137478W WO 2021164406 A1 WO2021164406 A1 WO 2021164406A1
Authority
WO
WIPO (PCT)
Prior art keywords
light beam
input port
component
sub
beams
Prior art date
Application number
PCT/CN2020/137478
Other languages
English (en)
French (fr)
Inventor
贾伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20919681.5A priority Critical patent/EP4095576A4/en
Priority to JP2022549796A priority patent/JP7445008B2/ja
Publication of WO2021164406A1 publication Critical patent/WO2021164406A1/zh
Priority to US17/891,853 priority patent/US20220390681A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35543D constellations, i.e. with switching elements and switched beams located in a volume
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • G02B6/29386Interleaving or deinterleaving, i.e. separating or mixing subsets of optical signals, e.g. combining even and odd channels into a single optical signal
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3512Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35543D constellations, i.e. with switching elements and switched beams located in a volume
    • G02B6/35581xN switch, i.e. one input and a selectable single output of N possible outputs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/356Switching arrangements, i.e. number of input/output ports and interconnection types in an optical cross-connect device, e.g. routing and switching aspects of interconnecting different paths propagating different wavelengths to (re)configure the various input and output links
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3564Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details
    • G02B6/3582Housing means or package or arranging details of the switching elements, e.g. for thermal isolation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0015Construction using splitting combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0026Construction using free space propagation (e.g. lenses, mirrors)

Definitions

  • This application relates to the field of optical fiber communication, and in particular to an optical switching device, a redirection method, and a reconfigurable optical add/drop multiplexer.
  • ROADM reconfigurable optical add drop multiplexers
  • FIG. 1 An input port 101 inputs a C-band beam and an L-band beam, and arrayed waveguide gratings (arrayed waveguide grating, AWG) 102 and 103 are arranged in parallel along the dispersion direction X.
  • AWG arrayed waveguide grating
  • the C-band beam and the L-band beam enter the grating 105 at different angles after passing through the lens 104, and in the dispersion direction X, the angle at which the C-band beam and the L-band beam exit the grating 105 The same, so that the positions of the spots of the C-band beam and the L-band beam on the switching engine 106 are as shown in FIG. 2.
  • the C-band beam generates multiple C-band spots
  • the L-band beam generates multiple L-band spots.
  • C-band spot 201 and L-band spot 202 Separate along the port direction Y, and coincide along the dispersion direction X, which can effectively increase the filtering bandwidth.
  • the present application provides an optical switching device, a redirection method, and a reconfigurable optical add/drop multiplexer, which are used to increase the filtering bandwidth and effectively reduce the insertion loss.
  • the first aspect of the present application provides an optical switching device, including an input port, a dispersive component, a first lens component, a redirection component, and an output port; the input port is used to make a first light beam incident in a first direction along a first direction. Incident angle to the dispersive component, and the input port is also used to incident a second light beam into the dispersive component at a second angle of incidence along the first direction, the absolute value of the first incident angle and the second angle of incidence The difference between the values is not zero; the dispersive component is used to disperse the first light beam to form a plurality of first sub-beams, and the dispersive component is also used to disperse the second light beam to form a plurality of first sub-beams.
  • the second sub-beam; the first lens assembly is used to focus the plurality of first sub-beams and the plurality of second sub-beams to the redirection assembly, and the plurality of first sub-beams are incident on the The first area of the redirection component, the plurality of second sub-beams are incident on the second area of the redirection component, and the difference between the absolute value of the first incident angle and the second incident angle is such that the The first area and the second area are separated from each other along the first direction, and the first area and the second area are at least partially overlapped along the second direction; the first direction and the second area The directions are perpendicular to each other, and the first direction and the second direction are both perpendicular to the propagation direction of the first light beam; the output port is used to output the plurality of first beams redirected by the redirecting component A sub-beam and the plurality of second sub-beams.
  • the optical switching device shown in this aspect by adjusting the size of the angle at which the light beam enters the dispersive component in the first direction, the angle at which the first light beam exits the dispersive component in the second direction and the second light beam in the second direction can be effectively ensured
  • the purpose of the angles of the exiting dispersive components are equal or approximately equal, so as to effectively increase the filter bandwidth of the optical switching device while reducing the insertion loss as much as possible, and the first beam and the second beam enter the dispersive component at the same angle in the second direction. Or approximately equal, so that the structure of the optical switching device along the second direction is more compact.
  • the first area and the second area overlap at least part of the area along the second direction, including: the first area is the plurality of first sub-regions. A position where a first spot is generated by a light beam, the second area is a position where a second spot is generated by the plurality of second sub-beams, and the first spot and the second spot at least partially overlap along the second direction.
  • the multiple light spots included in the first light spot correspond to the multiple light spots included in the second light spot in a one-to-one correspondence.
  • the arrangement order of the first light spot and the second light spot are the same
  • the input port is used to incident the first light beam into the dispersive component at a third angle of incidence along the second direction, and the input port is also For incident the second light beam to the dispersive component at a fourth incident angle along the second direction, and the difference between the third incident angle and the fourth incident angle is within a preset range.
  • the optical switching device shown in this aspect when the difference between the third incident angle and the fourth incident angle is within a preset range, the third incident angle and the In the case of the fourth incident angle, only the first incident angle and the second incident angle need to be adjusted to ensure that the angle at which the first light beam exits the dispersive component in the second direction and the second light beam exits in the second direction
  • the angles of the dispersive components are equal or approximately equal to effectively increase the filter bandwidth of the optical switching device.
  • a second lens component is included between the input port and the dispersive component, and the second lens component is used to combine the first light beam with the The second light beam is coupled to the dispersive component.
  • a third lens assembly is included between the input port and the dispersive component, and the first incident angle and/or the second incident angle depend on The position of the third lens assembly.
  • the first incident angle and/or the second incident angle depends on the distance between the input port and the main optical axis of the third lens assembly the distance.
  • the first incident angle of the first light beam entering the dispersive component in the first direction and the second incident angle of the second light beam entering the dispersive component in the first direction are adjusted through the third lens assembly
  • the size can effectively ensure that the angle of the first light beam exiting the dispersive component in the second direction is equal or approximately equal to the angle of the second light beam exiting the dispersive component in the second direction, thereby effectively improving the filter bandwidth of the optical switching device
  • the insertion loss is reduced as much as possible, and the angles at which the first light beam and the second light beam enter the dispersive component in the second direction are equal or approximately the same, so that the structure of the optical switching device along the second direction is more compact.
  • the dispersion component is used to emit the plurality of first sub-beams along the second direction at a first emission angle, and is also used to emit the plurality of first sub-beams along the The second direction emits the plurality of second sub-beams at a second emission angle, and the difference between the first emission angle and the second emission angle is within a preset range.
  • the first area and the second area are at least partially in the second direction.
  • the overlapping of the regions also causes the first region and the second region to be at least partially separated along the first direction, which effectively improves the filtering bandwidth of the optical switching device.
  • the focal length of the first lens assembly is related to the target distance, and the target distance is two light spots corresponding to each other along the first direction. the distance between.
  • the distance between the first lens assembly and the redirection assembly is equal to the focal length of the first lens assembly, and the first lens assembly and the The distance between the dispersive components is equal to the focal length of the first lens component.
  • the optical switching device further includes a collimating lens located between the input port and the second lens assembly, and the collimating lens is used to align the first light beam and The second beam is collimated.
  • the input port is located at the front focus of the collimating lens.
  • the redirection component is used to deflect each first sub-beam and each second sub-beam in the propagation direction
  • the first lens component is used to respectively Focusing the first sub-beam and the second sub-beam to the dispersive component
  • the dispersive component is used to combine a plurality of first sub-beams to generate a first output beam
  • the dispersive component is used to combine a plurality of second sub-beams
  • the sub-beams are combined to generate a second output beam.
  • the third lens assembly is used to couple the first output beam and the first output beam from the dispersive assembly to the second lens assembly
  • the second lens assembly is used to adjust the first output.
  • the light beam and the second output light beam propagate the first output light beam and the second output light beam to the collimating lens, and the first output light beam and the second output light beam collimated by the collimating lens are output through the output port.
  • the first light beam and the second light beam have at least one different wavelength value.
  • the optical switching device further includes a filter, the filter includes the input port, and the filter is configured to receive an optical signal from an optical fiber.
  • the filter is also used to separate the optical signal into the first light beam and the second light beam.
  • the number of input ports and output ports can be effectively reduced by the filter.
  • the input port includes a first input port and a second input port, and the first input port is used to input the first light beam, and the second The input port is used to input the second light beam, and the positions of the first input port and the second input port along the second direction at least partially overlap.
  • the first beam is a C-band beam and the second beam is an L-band beam.
  • the second aspect of the present application provides a redirection method applied to an optical switching device.
  • the optical switching device includes an input port, a dispersion component, a first lens component, a redirection component, and an output port.
  • the method includes: The input port enters the first light beam into the dispersive component at a first angle of incidence along the first direction; the second light beam enters the dispersive component at a second angle of incidence along the first direction through the input port, the The difference between the absolute value of the first incident angle and the second incident angle is not zero; the first beam is dispersed by the dispersive component to form a plurality of first sub-beams; The second beam is dispersed to form a plurality of second sub-beams; the plurality of first sub-beams and the plurality of second sub-beams are focused to the redirection assembly through the first lens assembly, and The plurality of first sub-beams are incident on the first area of the redirection component, the plurality of second sub-beam
  • the first area and the second area overlap at least a part of the area along the second direction, including: the first area is the plurality of first sub-regions A position where a first spot is generated by a light beam, the second area is a position where a second spot is generated by the plurality of second sub-beams, and the first spot and the second spot at least partially overlap along the second direction.
  • the multiple light spots included in the first light spot correspond to the multiple light spots included in the second light spot in a one-to-one correspondence.
  • the method further includes: in the second direction, incident the first light beam at a third incident angle to the dispersive component through the input port Along the second direction, the second light beam is incident on the dispersive component at a fourth angle of incidence through the input port, and the difference between the third angle of incidence and the fourth angle of incidence is in the preset Set within the range.
  • a second lens assembly is included between the input port and the dispersive assembly, and the method further includes: connecting the second lens assembly through the second lens assembly A light beam and the second light beam are coupled to the dispersive component.
  • a third lens component is included between the input port and the dispersive component, and the method further includes: adjusting the third lens component through the third lens component.
  • An incident angle and/or the second incident angle, the first incident angle and/or the second incident angle depends on the position of the third lens assembly.
  • the first incident angle and/or the second incident angle depends on the distance between the input port and the main optical axis of the third lens assembly the distance.
  • the method further includes: emitting the plurality of first sub-beams at a first emission angle through the dispersion component along the second direction Along the second direction, the plurality of second sub-beams are emitted at a second emission angle through the dispersive component, and the difference between the first emission angle and the second emission angle is within a preset range Inside.
  • the method further includes: adjusting a target distance through the first lens assembly, and the focal length of the first lens assembly is related to the size of the target distance ,
  • the target distance is the distance between two light spots in a one-to-one correspondence along the first direction.
  • the optical switching device further includes a filter
  • the filter includes the input port
  • the method further includes: receiving from the optical fiber through the filter The optical signal; the optical signal is separated into the first light beam and the second light beam by the filter.
  • the input port includes a first input port and a second input port
  • the method further includes: inputting the first light beam through the first input port
  • the second light beam is input through the second input port, and the positions of the first input port and the second input port along the second direction at least partially overlap.
  • the third aspect of the present application provides a reconfigurable optical add/drop multiplexer, including a plurality of optical switching devices, and the different optical switching devices are connected by optical fibers, and the optical switching devices are as described in the above-mentioned first aspect. Show, do not repeat it.
  • FIG. 1 is a schematic diagram of the structure of a wavelength selective switch provided by the prior art
  • FIG. 2 is a schematic diagram of the arrangement of light spots on the switching engine provided by the prior art
  • FIG. 3 is a structural example diagram of the reconfigurable optical add/drop multiplexer provided by this application.
  • FIG. 4 is a schematic structural diagram of the optical switching device provided by this application along the second direction;
  • FIG. 5 is a schematic structural diagram of the optical switching device provided by this application along the first direction;
  • FIG. 6 is a schematic diagram of the dispersion component provided by the application dispersing the light beam
  • FIG. 7 is a schematic diagram of the structure of the dispersive component provided by this application.
  • FIG. 8 is a schematic diagram of an arrangement of light spots on the redirection component provided by this application.
  • FIG. 9 is another schematic diagram of the dispersion component provided by the application dispersing the light beam.
  • FIG. 10 is another schematic diagram of the dispersive component provided by the application dispersing the light beam
  • FIG. 11 is a schematic diagram of another structure of the optical switching device provided by this application along the first direction;
  • FIG. 12 is a schematic diagram of another structure of the optical switching device provided by this application along the second direction;
  • FIG. 13 is a schematic diagram of another structure of the optical switching device provided by this application along the first direction;
  • FIG. 14 is a schematic diagram of another arrangement of light spots on the redirecting component provided by this application.
  • 15 is a schematic diagram of another structure of the optical switching device provided by this application along the second direction;
  • 16 is a schematic diagram of another structure of the optical switching device provided by this application along the first direction;
  • FIG. 17 is a flow chart of a step of the redirection method provided by this application.
  • the ROADM can adopt a chain, ring, and mesh network structure. As shown in Figure 3, the ROADM adopts a mesh network as an example for illustration. .
  • the ROADM includes eight WSSs (that is, WSS1, WSS2 to WSS8) as an example, and the eight WSSs are located at different positions.
  • WSSs that is, WSS1, WSS2 to WSS8
  • This embodiment does not make any distinction on the number of WSSs included in the ROADM and the location where each WSS is located. limited. WSSs located at different locations are used to exchange optical signals to realize flexible scheduling of optical signals.
  • the different positions shown in this embodiment may refer to different directions in N dimensions, where N is a positive integer greater than or equal to 1.
  • WSS1 can propagate optical signals to any WSS included in the ROADM that is connected to WSS1 through optical fibers to realize the exchange of optical signals in different dimensions.
  • WSS4, WSS6, and WSS8 are connected to the WSS1 through optical fibers, and the WSS1 can propagate the optical signal to any one of WSS4, WSS6, and WSS8.
  • the WSS1 is connected to WSS4, WSS6, and WSS8 through optical fibers as an example for illustrative description, and is not limited.
  • the WSS1 can also be connected to any of WSS2, WSS3, WSS5, and WSS7 included in ROADM.
  • WSS is connected by optical fiber.
  • the optical signal propagating in the first direction 301 is input to WSS1 through the input port of WSS1, the optical signal is redirected through WSS1, the optical signal is propagated to WSS4 through the optical fiber through the output port of WSS1, and the light output from the output port of WSS4
  • the signal propagates in the second direction 302 to achieve the purpose of switching the propagation direction of the optical signal from the first direction 301 to the second direction 302.
  • FIG. 4 is a schematic diagram of the optical switching device along the second direction
  • the optical switching device is taken as an example of a WSS.
  • the optical switching device is specifically taken as an example of a WSS1.
  • the optical switching device shown in this embodiment includes an input port, a dispersion component 506, a first lens component 507, a redirection component 508, and an output port. This embodiment does not limit the specific number of input ports and output ports.
  • the first direction shown in this embodiment can also be referred to as the switching direction or the port direction
  • the second direction can also be referred to as the wavelength direction or The dispersion direction
  • the definition of the first direction and the second direction are different, the specific definitions are as follows:
  • the dispersive component 506 is used to disperse the light beam 601 irradiated on the dispersive component 506 to form a plurality of sub-beams with different wavelengths, such as forming a sub-beam with a wavelength of ⁇ 1 the sub-beams, sub-beam having a wavelength ⁇ 2, and so on, forming a sub-beam having a wavelength of [lambda] N, an example of the present value of N is not particularly limited as long as ⁇ 1, ⁇ 2 [lambda] to the N can be different from each other.
  • the dispersion component 506 enables the sub-beam having a wavelength ⁇ 1 having a wavelength [lambda] sub-beam 2 and a sub having a wavelength ⁇ N of light beams with different emission angle from the dispersion assembly 506 exit for propagation, wherein, the second The direction Y is the direction in which the emitted sub-beams spread out, that is, the direction in which the dispersion component 506 causes the multiple sub-beams to produce angular dispersion.
  • the propagation direction of the light beam 601 is the direction Z shown in FIG. 6, and the first direction X is a direction perpendicular to the second direction Y and the propagation direction Z of the light beam 601.
  • this example uses the dispersive component 506 as a volume grating as an example for illustrative description: in this example, the first direction X is a direction parallel to the grating line 701 , And the second direction Y is a direction perpendicular to the grating scribe line 701, and it can be seen that the first direction X is perpendicular to the second direction Y.
  • the redirecting component 508 takes the input port to input the first light beam and the second light beam as an example for illustrative description, and takes the redirecting component 508 as a reference.
  • the redirecting component 508 is formed with a first area 801 and a second Area 802, where the first area 801 includes multiple light spots generated by the first light beam, and the second area 802 includes multiple light spots generated by the second light beam.
  • Both the first light beam and the second light beam have a specific waveband range, and the waveband range of the first light beam and the waveband range of the second light beam are different.
  • the first beam is a C-band beam
  • the second beam is an L-band beam.
  • the second direction Y is the arrangement direction of multiple light spots in the same area.
  • the second direction Y is the arrangement direction of multiple light spots included in the first area 801.
  • the second direction Y is The arrangement direction of the multiple light spots included in the second area 802.
  • the redirecting component 508 is a liquid crystal on silicon (LCOS) chip
  • the first direction X is the direction in which the redirecting component 508 loads a phase grating to generate diffracted light.
  • the redirection component 508 is a liquid crystal (liquid crystal) array chip or a microelectromechanical system (MEMS)
  • the first direction is the propagation direction of the deflected light beam.
  • the first direction X is also the arrangement direction of the first area 801 and the second area 802, that is, the second direction Y is the arrangement direction of multiple light spots in the same wavelength range, and the first direction X is the arrangement direction of light spots in different wavelength ranges. . It can be seen that the first direction X is perpendicular to the second direction Y, and both the first direction X and the second direction Y are perpendicular to the propagation direction Z of the first light beam and the propagation direction Z of the second light beam.
  • the optical switching device includes two input ports, namely an input port 410 and an input port 420, and the optical switching device also includes four output ports, namely output ports. 411, 412, 421, and 422.
  • the description of the number of input ports and output ports shown in FIG. 5 is an optional example and is not limited.
  • the first direction X is the arrangement direction of multiple input ports and multiple output ports. It can be seen that along the first direction X, multiple input ports and multiple output ports are separated in position, as shown in Figure 4 As shown in the second direction Y, multiple input ports and multiple output ports may completely overlap or partially overlap.
  • the first direction X is also the direction in which the redirecting component 508 deflects the first light beam 501 input through the input port 410 and the second light beam 502 input through the input port 420 to generate a deflection angle.
  • the second direction Y is a direction perpendicular to the first direction X, and both the first direction X and the second direction Y are perpendicular to the propagation direction Z of the first light beam 501 and the propagation direction Z of the second light beam 502.
  • the optical switching device is used for optical switching of the first light beam 501 and the second light beam 502 as an example to illustrate:
  • the optical switching device can also perform optical switching on more than two light beams.
  • the number of light beams for optical exchange is not limited.
  • the first light beam 501 and the second light beam 502 shown in this embodiment have different wavelength ranges. The following will illustrate the first light beam 501 and the second light beam 502 having different wavelength ranges in combination with specific examples. Sexual description:
  • the first light beam 501 shown in this embodiment is a C band (C band) light beam
  • the second light beam 502 is an L band (L band) light beam.
  • the description of the specific wavelength bands of the first light beam 501 and the second light beam 502 in this embodiment is an example and is not limited.
  • the first light beam 501 may also be an E band (E band) light beam
  • the The second light beam 502 may also be an O band light beam, as long as the first light beam 501 and the second light beam 502 are of different wavelength bands.
  • the first light beam 501 has N wavelength values, namely ⁇ c-1 , ⁇ c-2 ...
  • the second light beam 502 may also have N wavelength values, namely ⁇ L-1 , ⁇ L-2 ... ⁇ LN , the value of N is not limited in this embodiment.
  • the number of wavelength values of the first light beam 501 and the second light beam 502 may also be different.
  • the first light beam 501 and the second light beam 502 having different wavelength ranges can specifically refer to, ⁇ c-1 , ⁇ c-2 ... ⁇ cN and ⁇ L-1 , ⁇ L-2 ... ⁇ In LN , each wavelength value is different.
  • the first light beam 501 and the second light beam 502 having different wavelength ranges can also be referred to as ⁇ c-1 , ⁇ c-2 ...
  • wavelength values are the same, some of the wavelength values different.
  • the input port 410 included in the optical switching device is used to input the first light beam 501, and the input port 420 is used to input the second light beam 502.
  • the positions of the input port 410 and the input port 420 are described below. Be explained:
  • the positions of the input port 410 and the input port 420 along the second direction Y at least partially overlap. Specifically, for example, the input port 410 and the input port 420 completely overlap each other. Coincidence, for example, the input port 410 and the input port 420 partially overlap.
  • the input port 410 and the input port 420 are separated from each other, and along the first direction X, the input port 410 and the input port 420 are arranged in parallel. In this embodiment, the distance between the positions of the input port 410 and the input port 420 along the second direction Y is not limited.
  • the input port 410 is used to inject the first beam 501 into the dispersive component 506 at a third incident angle ⁇ c along the second direction Y, and the input port 420 is also used for in the second direction Y of the second light beam 502 at a fourth incident angle ⁇ l of the dispersion component 506 is incident.
  • the difference between the third incident angle ⁇ c and the fourth incident angle ⁇ l is at a preset value within the range, this embodiment does not limit the size of the preset range, as long as the third incident angle ⁇ c and the fourth incident angle ⁇ l are equal or nearly equal. For example, if the positions of the input port 410 and the input port 420 in the second direction completely coincide, the third incident angle ⁇ c and the fourth incident angle ⁇ l are equal.
  • the ports (that is, the input port 410, the output port 411, and the output port 412) of the first beam 501 and the A collimating lens array (that is, including a collimating lens 413, a collimating lens 414, and a collimating lens 415) is included between the dispersive components 506.
  • the input port 410 is located at the front focal point of the collimating lens 414
  • the output port 411 is located at the front focal point of the collimating lens 413
  • the output port 412 is located at the front focal point of the collimating lens 415.
  • the collimating lens 414 is used to collimate the first light beam 501 from the input port 410.
  • a collimating lens array ( That is, it includes a collimating lens 423, a collimating lens 424, and a collimating lens 425).
  • the input port 420 is located at the front focus of the collimating lens 424
  • the output port 421 is located at the front focus of the collimating lens 423
  • the output port 422 is located at the front focus of the collimating lens 425.
  • the collimating lens 424 is used to collimate the second light beam 502 from the input port 420.
  • a second lens assembly is included between the collimating lens array and the dispersion assembly 506.
  • the second lens assembly shown in this embodiment includes a plurality of lenses, and the number of lenses included in the second lens assembly is equal to the number of light beams propagating to the light exchange device.
  • the second lens assembly includes a first lens 503 and a second lens 504.
  • the first lens 503 is located between the collimating lens array (ie collimating lenses 413, 414, and 415) and the dispersion component 506, and the second lens 504 is located between the collimating lens array (ie collimating lenses 423, 424, and 425).
  • the dispersion component 506 For example, along the first direction X or the second direction Y, the back focus of the collimating lens 414 coincides with the front focus of the first lens 503, that is, the distance between the collimating lens 414 and the first lens 503 is equal to The sum of the focal length of the collimating lens 414 and the focal length of the first lens 503.
  • the back focus of the collimating lens 424 coincides with the front focus of the second lens 504, that is, the distance between the collimating lens 424 and the second lens 504 is equal to the focal length of the collimating lens 424 and the second lens 504 The sum of focal lengths.
  • the first lens 503 is used to couple the first light beam 501 from the collimating lens 414 to the third lens assembly 505, and the second lens 504 is used to couple the second light beam 502 from the collimating lens 424 to the third lens assembly 505.
  • Lens assembly 505. The coupling shown in this embodiment refers to a process in which an optical signal propagates from one optical device to another optical device in the field of optical fiber communication.
  • the optical switching device may not include the second lens assembly, and the first light beam 501 and the second light beam 502 may not be coupled to the third lens assembly 505 via the second lens assembly.
  • the third lens assembly 505 is located between the second lens assembly and the dispersion assembly 506, and the third lens assembly 505 includes one or more lenses.
  • the third lens assembly 505 includes a lens as an example for illustration.
  • the dispersion component 506 is located at the back focus of the third lens component 505, and the distance between the third lens component 505 and the first lens 503 is equal to the focal length of the third lens component 505 and the first lens 503.
  • the distance between the third lens assembly 505 and the second lens 504 is equal to the sum of the focal length of the third lens assembly 505 and the focal length of the second lens 504.
  • the third lens assembly 505 is used to couple the first light beam 501 from the first lens 503 to the dispersion assembly 506, and the third lens assembly 505 is also used to couple the first light beam 502 from the second lens 504 to the dispersion assembly 506.
  • Component 506 As shown in FIG. 4, the dispersive component 506 is used to disperse the first light beam 501 to form a plurality of first sub-beams 5011 (that is, as shown by the solid line part emerging from the dispersive component 506), the dispersive component 506 is also used to disperse the second light beam 502 to form a plurality of second sub-beams 5012 (that is, as shown by the dotted line emerging from the dispersive component 506).
  • the first sub-beam 5011 and the The specific number of the second sub-beams 5012 is not limited.
  • a plurality of the first sub-beams 5011 have mutually different wavelength values, and a plurality of the second sub-beams 5012 have mutually different wavelength values.
  • the multiple wavelength values of the first sub-beam 5011 and the multiple wavelength values of the multiple second sub-beams 5012 there is at least one different wavelength value, for example, a plurality of the first sub-beams
  • the multiple wavelength values of 5011 and the multiple wavelength values of the multiple second sub-beams 5012 are not the same, or the multiple wavelength values of the multiple first sub-beams 5011 and the multiple second sub-beams 5011 Some of the multiple wavelength values of the sub-beam 5012 are different.
  • a first lens assembly 507 is provided between the dispersive component 506 and the redirecting component 508.
  • the first lens component 507 shown in this embodiment may include one or more lenses.
  • a lens assembly 507 includes a lens as an example for illustration. Wherein, the dispersive component 506 is located at the front focus of the first lens component 507, and it can be seen that the distance between the dispersive component 506 and the first lens component 507 is equal to the focal length of the first lens component 507.
  • the redirection component 508 is located at the back focus of the first lens component 507, and it can be seen that the distance between the redirection component 508 and the first lens component 507 is equal to the focal length of the first lens component 507.
  • the first lens assembly 507 is used to focus the plurality of first sub-beams 5011 and the plurality of second sub-beams 5012 to the redirection assembly 508, wherein The positions of the spots generated by the first sub-beams 5011 incident on the redirecting component 508 and the spots generated by the multiple second sub-beams 5012 on the redirecting component 508 are not the same.
  • the positions of the light spot generated by the light beam 5011 incident on the redirecting component 508 and the light spots generated by the plurality of second sub-beams 5012 on the redirecting component 508 will be described:
  • the spot of each first sub-beam 5011 is arranged in the first area 801 shown in FIG. 8, and the spot of each second sub-beam 5012 is arranged in the second area 802 shown in FIG.
  • the first area 801 and the second area 802 shown in the embodiment at least partially overlap along the second direction Y (the figure shows a complete overlap), and the first area 801 and the second area 802 overlap along the
  • the first direction X is at least partially separated (the figure shows a complete separation).
  • the first light spot generated by the first light beam 501 and the second light spot generated by the second light beam 502 are taken as an example for illustration.
  • the first light spot is a plurality of light spots generated by the first light beam 501.
  • the second light spots are multiple light spots generated by the second light beam 502, and the first light spots are arranged in the first area 801, and the second light spots are arranged in the second area 802.
  • the multiple light spots included in the first light spot shown in this embodiment correspond to the multiple light spots included in the second light spot in a one-to-one correspondence.
  • the two light spots in a one-to-one correspondence are arranged in the same order as in the first light spot.
  • the arrangement order in the second light spots is the same, and the two light spots corresponding to each other are described in detail below:
  • the wavelengths of the two sub-beams are ⁇ L-1 , ⁇ L-2 ... ⁇ LN , and the wavelength values of ⁇ L-1 , ⁇ L-2 ... ⁇ LN are different from each other.
  • a light spot included in the first light spot is a light spot generated by a first sub-beam having a wavelength ⁇ c-1 incident on the redirecting component 508, and a light spot included in the second light spot is a light spot having a wavelength ⁇ L-
  • the second sub-beam of 1 is incident on the spot generated by the redirecting component 508, and the order of the spots with the wavelength ⁇ c-1 in the first spot and the order of the spots with the wavelength ⁇ L-1 in the second spot are
  • the arrangement sequence is the first one, and it can be seen that these two light spots are two light spots in one-to-one correspondence.
  • a light spot included in the first light spot is a light spot generated by a first sub-beam having a wavelength ⁇ cN incident on the redirecting component 508, and a light spot included in the second light spot is a first light spot having a wavelength ⁇ LN
  • the two sub-beams are incident on the spot generated by the redirecting component 508, and the arrangement order of the spots with the wavelength ⁇ cN in the first spot and the arrangement order of the spots with the wavelength ⁇ LN in the second spot are both Nth
  • the specific value of N is not limited, as long as the N is equal to a positive integer greater than or equal to 1.
  • the positions of the two light spots corresponding to each other are arranged separately, and the target distance between the two light spots corresponding to each other is related to the focal length of the first lens assembly 507.
  • the first lens The larger the focal length of the component 507, the larger the target distance, and the smaller the focal length of the first lens component 507, the smaller the target distance.
  • two light spots in a one-to-one correspondence at least partially overlap.
  • the present embodiment takes the overlap of two light spots in a one-to-one correspondence along the second direction Y as an example for illustration.
  • the filter bandwidth of the C-band and the L-band can be effectively improved.
  • the redirection component 508 is used for deflecting the propagation direction of each first sub-beam 5011, wherein each first sub-beam 5011 deflects the propagation direction via the redirection component 508 and then propagates to the first lens component 507.
  • Each second sub-beam 5012 propagates to the first lens assembly 507 after deflecting the propagation direction by the redirecting assembly 508.
  • the angle at which each sub-beam exits from the redirection component 508 in the first direction is not limited. Taking FIG.
  • the exit is performed along two exit angles (that is, the first light beam exits after being deflected in the propagation direction by the redirecting component 508 as shown by the two dotted lines).
  • the first light beam exits after being deflected in the propagation direction by the redirecting component 508 as shown by the two dotted lines.
  • the first lens assembly 507 is used to focus the first sub-beam 5011 and the second sub-beam 5012 to the dispersion assembly 506 respectively.
  • the dispersive component 506 is used to combine a plurality of first sub-beams 5011 to generate a first output beam. Taking FIG. 5 as an example, the dispersive component 506 generates two first beams according to the plurality of first sub-beams 5011. The output beams are the first output beam 511 and the first output beam 512.
  • the dispersive component 506 is also used to combine a plurality of second light beams 5012 to generate a second output beam. Continue to take the example shown in FIG. Two output beams, namely, the second output beam 513 and the second output beam 514.
  • the third lens assembly 505 is used for coupling the first output beam 511 and the first output beam 512 from the dispersive assembly 506 to the first lens 503 included in the second lens assembly, and the third lens assembly 505 is also used for The second output beam 513 and the second output beam 514 from the dispersive component 506 are coupled to the second lens 504 included in the second lens component.
  • the first lens 503 is used to adjust the propagation optical path of the first output beam 511 to propagate the first output beam 511 to the collimating lens 415, and the first output beam collimated by the collimating lens 415 passes through the output port 412 Output.
  • the first lens 503 is also used to adjust the propagation optical path of the first output beam 512 to propagate the first output beam 512 to the collimating lens 413, and the first output beam 512 collimated by the collimating lens 413 passes through the output port 411 output.
  • the transmission process of the second output beam 513 and the second output beam 514 please refer to the description of the transmission process of the first output beam 511 and the first output beam 512 for details, and will not be repeated.
  • the first output beams output from the output ports 411 and 412 of WSS1 can propagate to WSS4 via the optical fiber
  • the second output beams output from the output ports 421 and 422 of WSS1 can also propagate to WSS4 via the optical fiber. Realize the light exchange of the first light beam and the second light beam.
  • the number of sub-beams output by each output port is not limited.
  • the output port 421 can propagate one or more first sub-beams to the WSS4 via an optical fiber.
  • the optical switching device outputs the first output beam through two output ports (ie, output ports 411 and 412) as an example for illustrative description, and is not limited. In other examples, the optical switching device may also include other The number of output ports.
  • the first emission angle ⁇ c of each first sub-beam from the dispersion component 506 and the first emission angle ⁇ c of each second sub-beam from the dispersion component 506 is within a preset range, so that the arrangement of the spots of each first sub-beam 5011 and each second sub-beam 5012 is as shown in FIG.
  • the size of the preset range is not limited, as long as ⁇ c and ⁇ L are equal or approximately equal, and this embodiment takes the equality of ⁇ c and ⁇ L as an example for illustration.
  • ⁇ c can be adjusted by the following formula 1
  • ⁇ L can be adjusted by formula 2
  • ⁇ c and ⁇ L can be equalized by adjusting formula 1 and formula 2.
  • the parameter d in Formula 1 and Formula 2 is the distance between two adjacent grating lines in the dispersive component 506, and m is the diffraction order of the grating, which is a constant.
  • ⁇ c and ⁇ c in Formula 1 and the specific descriptions of ⁇ L and ⁇ L in Formula 2 please refer to the above description for details, and will not be repeated.
  • ⁇ c in Formula 1 is the wavelength of a first sub-beam
  • ⁇ L in Formula 2 is the wavelength of a second sub-beam.
  • the first light beam 501 is incident on the dispersive component 506 at a first incident angle ⁇ c
  • the second light beam 502 is incident on the dispersive component 506 at a second incident angle ⁇ L.
  • the difference between the absolute value of the first incident angle ⁇ c and the second incident angle ⁇ L is not zero.
  • the first incident angle ⁇ c of the first light beam 501 incident on the dispersive component 506 and the second incident angle ⁇ c of the second light beam 502 incident on the dispersive component 506 can be adjusted in the first direction X.
  • the angle ⁇ L is used to achieve the equality of ⁇ c and ⁇ L in the second direction.
  • the positions of the input port 410 and the input port 420 along the second direction Y coincide, then ⁇ c and ⁇ L are equal as an example.
  • the input port 410 and the input port 420 are along the In the case where the positions of the second direction Y do not overlap, so that ⁇ c and ⁇ L are not equal to each other, how to achieve the equality of ⁇ c and ⁇ L is explained:
  • the first incident angle ⁇ c and/or the second incident angle ⁇ L shown in this embodiment depend on the position of the third lens assembly:
  • the beneficial effect of using the optical switching device shown in this embodiment is that there is no need to increase the optical device (such as AWG) to adjust the angle at which the light beam enters the dispersive component in the second direction, but to adjust the light beam to enter the first direction.
  • the size of the angle of the dispersive component can effectively ensure that the angle of the first light beam exiting the dispersive component in the second direction is equal to or approximately equal to the angle of the second light beam exiting the dispersive component in the second direction, thereby effectively improving light exchange While the filtering bandwidth of the device, the insertion loss caused by the addition of optical devices (such as AWG) is minimized, and the angles of the first beam and the second beam entering the dispersive component in the second direction are the same or approximately the same, so that the light The structure of the exchange device along the second direction is more compact.
  • the light beams in different wavelength bands are input to the optical switching device through different input ports.
  • the optical switching device shown in this embodiment How the device realizes optical switching is explained:
  • the optical switching device shown in this embodiment is shown in FIG. 11, along the first direction X, the optical switching device includes one or more filters and WSS, and the filters and the WSS are connected by optical fibers.
  • the optical switching device is used for optical switching of the first light beam (C band) and the second light beam (L wave band) as an example for illustrative description, where the specific description of the first light beam and the second light beam is as follows: Please refer to the first embodiment for details, and will not repeat them.
  • the filter 1102 is used to separate the optical signal from the optical fiber 1104 to generate the first beam and the second beam.
  • the filter 1102 is also used to propagate the first beam to the WSS1100 via the optical fiber 1105 and the second beam to pass the optical fiber 1106 Propagating to the WSS1100, the description of the specific structure of the WSS1100 and the specific description of the optical exchange between the first beam and the second beam, please refer to the first embodiment above for details, and details are not repeated.
  • the two first output beams generated by WSS1100 propagate to filter 1101 and filter 1103 via fiber 1107 and fiber 1108, respectively, and the two second output beams generated by WSS1100 propagate to filter via fiber 1109 and fiber 1110, respectively.
  • the first output light beam and the second output light beam please refer to the first embodiment for details, and will not be repeated.
  • the filter 1101 can combine the two first output beams, and propagate the combined optical signal to WSS4 through an optical fiber
  • the filter 1103 can also combine the two second output beams, and propagate the combined optical signal to the WSS4 through the optical fiber, so as to realize the optical exchange of the optical signal.
  • the filters shown in this embodiment and the optical fibers connected to the filters can also be replaced by spatial light components, coating components, and the like.
  • the filter can effectively reduce the input ports and output ports. quantity.
  • the first embodiment takes the optical switching device as a WSS as an example for exemplification.
  • the optical switching device includes two or more WSSs.
  • the WSS included in the optical switching device is The number is not limited, and the optical switching device includes two WSSs as an example for illustration.
  • the two WSSs included in the optical switching device shown in this embodiment may be WSS1 and WSS2 shown in FIG. 3, and the description of the specific structure is as follows:
  • FIG. 12 is a schematic structural diagram of the optical switching device along the second direction
  • FIG. 13 is a schematic structural diagram of the optical switching device along the first direction.
  • first direction and the second direction please refer to the first embodiment above, and will not be repeated.
  • the WSS1 is used for optical switching between the first beam 1301 and the second beam 1302
  • the WSS2 is used for optical switching between the first beam 1303 and the second beam 1304, where the first beam 1301 and the first beam 1301 are
  • the beam 1303 is both a C-band beam
  • the second beam 1302 and the second beam 1304 are both L-band beams.
  • the input port 1310 of the WSS1 is used to input the first beam 1301, the input port 1311 is used to input the second beam 1302, the input port 1312 of the WSS2 is used to input the first beam 1303, and the input port 1313 is used to input the second beam 1304 .
  • the input ports 1310 and 1311 of WSS1 and the input ports 1312 and 1313 of WSS2 at least partially overlap.
  • the input port 1310 and the input port 1312 are completely overlapped, and the input port 1311 and the input port 1313 are completely overlapped as an example.
  • the input port 1310, input port 1311, input port 1312, and input port 1313 are separated in position, and along the first direction X, the input port 1310, input port 1311, The input port 1312 and the input port 1313 are arranged in parallel.
  • the input ports 1310 and 1311 of WSS1 and the input ports 1312 and 1313 of WSS2 may be in completely separated positions.
  • the input port 1310 is used to inject the first light beam 1310 into the dispersive component 506 at a third angle of incidence ⁇ c1 along the second direction Y, and the input port 1311 is also used to transmit the second light beam along the second direction Y. 1311 is incident on the dispersive component 506 at the fourth incident angle ⁇ L1 .
  • the input port 1312 is used to inject the first light beam 1303 into the dispersive component 506 at a third incident angle ⁇ c2 along the second direction Y, and the input port 1314 is used to transmit the second light beam 1304 along the second direction Y.
  • the dispersive component 506 is incident at a fourth incident angle ⁇ L2.
  • the third incident angle ⁇ c1 , the fourth incident angle ⁇ L1 , and the difference between any two angles is within a preset range, so that four angles ( ⁇ c1 , ⁇ L1 , ⁇ c2 and ⁇ L2 ) Equal or nearly equal, for specific description, please refer to the description of the third incident angle ⁇ c and the fourth incident angle ⁇ l shown in the first embodiment, and will not be repeated.
  • the WSS1 and WSS2 shown in this embodiment share some optical components.
  • the optical components shared by the WSS1 and WSS2 are the third lens component 505, the dispersion component 506, the first lens component 507, and The redirection component 508, for the specific description of the third lens component 505, the dispersion component 506, the first lens component 507, and the redirection component 508, please refer to the first embodiment for details, and will not be repeated.
  • the arrangement of the light spots generated by the first light beam 1301, the second light beam 1302, the first light beam 1303, and the second light beam 1304 on the redirecting component 508 is shown in FIG.
  • the multiple light spots of the second light beam 1302 are arranged in the first area 1401, the multiple light spots generated by the second light beam 1302 are arranged in the second area 1402, and the multiple light spots generated by the first light beam 1303 are arranged in the third area 1403.
  • the multiple light spots generated by the light beam 1304 are arranged in the fourth area 1404.
  • the first area 1401, the second area 1402, the third area 1403, and the fourth area 1404 shown in this embodiment overlap at least part of the area along the second direction Y.
  • the third area 1403 and the fourth area 1404 completely overlap along the second direction Y.
  • the first area 1401, the second area 1402, the third area 1403, and the fourth area 1404 are at least partially separated along the first direction X.
  • FIG. 14 shows the first area 1401, the second area 1402, the third area 1403, and the fourth area. 1404 Along the first direction X to complete separation. Please refer to Figure 8 for specific instructions, and will not be repeated.
  • the filter bandwidth of the C band and the L band can be effectively improved.
  • the output port of WSS1 and WSS2 are used to receive the output light beam. Please refer to the first embodiment for specific descriptions, and will not be repeated.
  • the first emission angle ⁇ c1 of each sub-beam of the first beam 1301 from the dispersive component 506 and each of the second beam 1302 The second emission angle ⁇ L1 of the sub-beams emitted from the dispersive component 506, the third emission angle ⁇ c2 of the sub-beams of the first beam 1303 from the dispersive component 506, and the sub-beams of the second beam 1304 from the In the fourth exit angle ⁇ L2 emitted by the dispersion component 506, the difference between any two angles is within a preset range, so that the four angles, namely ⁇ c1 , ⁇ L1 , ⁇ c2 and ⁇ L2 are equal or approximately If they are equal, the present embodiment takes ⁇ c1 , ⁇ L1 , ⁇ c2 and ⁇ L2 as an example for illustration. The following describes how to adjust ⁇ c1 , ⁇ L
  • ⁇ c1 can be adjusted by formula four
  • ⁇ L1 by formula five
  • ⁇ c2 by formula six
  • ⁇ L2 can be adjusted by formula seven, so that ⁇ c1 , ⁇ L1 , ⁇ c2 and ⁇ L2 are all equal.
  • ⁇ c1 is the wavelength of a sub-beam in the first beam 1301
  • ⁇ L1 is the wavelength of a sub-beam in the second beam 1302
  • ⁇ c2 is the wavelength of a sub-beam in the first beam 1303
  • ⁇ L2 is The wavelength of one sub-beam in the second light beam 1304.
  • formula 7 is derived according to formula 4 to formula 6, and formula 7 is as follows:
  • ⁇ c1 is equal to ⁇ c2
  • ⁇ L1 is equal to ⁇ L2
  • ⁇ c1 is not equal to ⁇ L1
  • ⁇ C2 is not equal to ⁇ L2 .
  • ⁇ c1 , ⁇ L1 , ⁇ c2 and ⁇ L2 are equal.
  • the values of ⁇ c1 , ⁇ L1 , ⁇ c2 and ⁇ L2 can be adjusted to realize that ⁇ c1 , ⁇ L1 , ⁇ c2 and ⁇ L2 are all equal.
  • ⁇ c1 , ⁇ L1 , ⁇ c2 and ⁇ L2 are not equal, you can adjust the size of ⁇ c1 , ⁇ L1 , ⁇ c2 , ⁇ L2 , ⁇ c1 , ⁇ L1 , ⁇ c2 and ⁇ L2 In order to realize that ⁇ c1 , ⁇ L1 , ⁇ c2 and ⁇ L2 are all equal. The following describes ⁇ c1 , ⁇ L1 , ⁇ c2 and ⁇ L2 :
  • the first light beam 1301 is incident on the dispersive component 506 at a first incident angle ⁇ c1
  • the second light beam 1302 is incident on the dispersive component 506 at a second incident angle ⁇ L1.
  • the first light beam 1303 is incident on the dispersive component 506 at a first incident angle ⁇ c2
  • the second light beam 1304 is incident on the dispersive component 506 at a second incident angle ⁇ L2.
  • the difference between the absolute values of ⁇ c1 and ⁇ L1 is not zero, and the difference between the absolute values of ⁇ c2 and ⁇ L2 is not zero.
  • the position of the spot of the first beam 1301 and the spot of the first beam 1303 are overlapped, that is, to avoid The first area 1401 and the third area 1404 shown in FIG.
  • Combining formula 7 shows that when ⁇ c1 and ⁇ c2 are symmetrical along the main optical axis 1300, the absolute values of ⁇ c1 and ⁇ c2 are equal or nearly equal, and cos ⁇ c1 is equal to cos(- ⁇ c1 ), which effectively Ensure that ⁇ c1 and ⁇ c2 are equal.
  • ⁇ L1 and ⁇ L2 are equal or nearly equal, in order to prevent the spot of the second light beam 1302 and the spot of the second light beam 1304 from being coincident with each other on the redirecting component 508 in the first direction X, that is, avoid
  • the second area 1402 and the fourth area 1403 shown in FIG. 14 overlap in the first direction X, and the second incident angle ⁇ L1 and the second incident angle ⁇ L2 are symmetrical along the main optical axis 1300.
  • Combining formula 7 shows that when ⁇ L1 and ⁇ L2 are symmetrical along the main optical axis 1300, then ⁇ L1 and ⁇ L2 are equal or nearly equal, and cos ⁇ L1 is equal to cos(- ⁇ L1 ), which effectively guarantees ⁇ L1 is equal to ⁇ L2.
  • the optical switching device shown in this embodiment includes multiple WSSs, which effectively realizes a larger exchange. capacity.
  • the relevant ports (input port 410, output port 411, and output port 412 shown in FIG. 5) used to propagate the first light beam are arranged adjacently, and the relevant ports ( The input port 420, the output port 421, and the output port 422 shown in FIG. 5 are arranged adjacently, and the relevant ports for propagating the first light beam and the relevant ports for propagating the second light beam are separately arranged.
  • the positions of the relevant ports for propagating the first light beam are set at intervals, and the positions of the relevant ports for propagating the second light beam are also set at intervals. For details, please refer to FIG. 15 and FIG.
  • Figure 15 is a schematic structural diagram of the optical switching device along the second direction
  • Figure 16 is a schematic structural diagram of the optical switching device along the first direction.
  • first direction and the second direction please refer to the first embodiment. , Do not repeat it.
  • the optical switching device is used to perform optical switching between the first light beam 1601 and the second light beam 1602 as an example.
  • first light beam 1601 and the second light beam 1602 please refer to the first embodiment. Shown, do not repeat them.
  • the input port 1610 included in the optical switching device is used to input the first light beam 1601, the input port 1611 is used to input the second light beam 1602, and the input port 1610 and the input port 1611 shown in this embodiment are arranged adjacently.
  • the light exchange device includes a collimator lens array 1620, a second lens assembly 1630, a dispersion assembly 1640, a first lens assembly 1650, and a heavy
  • a collimator lens array 1620 collimator lens array 1620
  • a second lens assembly 1630 dispersion assembly 1640
  • a first lens assembly 1650 a first lens assembly 1650
  • a heavy For the specific description of the orientation component 1660 and each device, please refer to the first embodiment for details, and the details are not repeated here.
  • the first incident angle ⁇ c and the second incident angle ⁇ L of the dispersive component 1640 in the first direction X are adjusted to achieve the second direction.
  • the first exit angle ⁇ c and the second exit angle ⁇ L are equal.
  • the specific adjustment process please refer to Embodiment 1 for details, and will not be repeated.
  • the arrangement positions of the light spots generated by the first light beam 1601 and the second light beam 1602 on the redirecting component 1660 please refer to the first embodiment for details, and will not be repeated.
  • the output port 1612 for outputting the first output beam 1603 and the output port 1613 for outputting the second output beam 1604 are located adjacent to each other, and the output port 1614 for outputting the first output beam 1605 and the output port 1614 are adjacent to each other.
  • the output port 1615 for outputting the second output light beam 1606 is adjacent to each other, and the output port 1612 for outputting the first output light beam 1603 and the output port 1614 for outputting the first output light beam 1605 are arranged at intervals for outputting the second output
  • the output port 1613 of the light beam 1604 and the output port 1615 for outputting the second output light beam 1606 are arranged at intervals.
  • the optical switching device shown in this embodiment can effectively reduce the lens.
  • the redirection method shown in this embodiment specifically includes the following steps:
  • Step 1701 The optical switching device obtains the first light beam and the second light beam through a filter.
  • Step 1701 shown in this embodiment is an optional step. If the optical switching device is not provided with a filter, the execution of step 1702 can be directly performed.
  • Step 1702 The optical switching device injects the first light beam into the dispersive component at a first angle of incidence along the first direction through the input port.
  • Step 1703 The optical switching device injects the second light beam into the dispersive component at a second angle of incidence along the first direction through the input port.
  • the second lens component and the third lens component are further included, and the first light beam and the second light beam are incident to the dispersive component through the second lens component and the third lens component in turn.
  • the first light beam and the second light beam are incident to the dispersive component through the second lens component and the third lens component in turn.
  • Step 1704 The optical switching device disperses the first light beam through the dispersion component to form a plurality of first sub-beams.
  • Step 1705 The optical switching device disperses the second light beam through the dispersion component to form a plurality of second sub-beams.
  • the optical switching device emits the plurality of first sub-beams along the second direction at a first exit angle through the dispersive component, and the optical switching device emits the plurality of first sub-beams along the second direction through the dispersive component.
  • the plurality of second sub-beams are emitted at a second emission angle, and the difference between the first emission angle and the second emission angle is within a preset range.
  • Step 1706 The optical switching device focuses the plurality of first sub-beams and the plurality of second sub-beams to the redirection assembly through the first lens assembly.
  • Step 1707 The optical switching device deflects the propagation direction of each first sub-beam and each second sub-beam through the redirection component.
  • Step 1708 The optical switching device separately focuses the first sub-beam and the second sub-beam to the dispersive component through the first lens component.
  • Step 1709 The optical switching device combines the multiple first sub-beams through the dispersion component to generate a first output beam.
  • Step 1710 The optical switching device combines the multiple second sub-beams through the dispersion component to generate a second output beam.
  • Step 1711 the optical switching device couples the first output beam and the first output beam from the dispersive component to the second lens component through the third lens component.
  • Step 1712 the optical switching device couples the first output beam and the first output beam to the output port through the second lens assembly.
  • step 1707 to step 1712 shown in this embodiment please refer to the first embodiment for details, and the details will not be repeated.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光交换装置、重定向方法以及可重构光分插复用器,应用于光纤通信领域,其用于提升滤波带宽且有效地减少插损。光交换装置包括输入端口(410、420)、色散组件(506)、第一透镜组件(507)、重定向组件(508)以及输出端口(411、412、421、422);输入端口(410、420)用于沿第一方向(X)将第一光束(501)以第一入射角度(θ C)入射色散组件(506),输入端口(410、420)还用于沿第一方向(X)将第二光束(502)以第二入射角度(θ L)入射色散组件(506),第一入射角度(θ C)和第二入射角度(θ L)的绝对值的差值不为零;第一入射角度(θ C)和第二入射角度(θ L)的绝对值的差值使得排列有第一光束(501)的光斑的第一区域(801)和排列有第二光束(502)的光斑的第二区域(802)沿第一方向(X)互相分离,且使得第一区域(801)和第二区域(802)沿第二方向(Y)至少部分区域重合。

Description

一种光交换装置、重定向方法以及可重构光分插复用器
本申请要求于2020年2月21日提交中国国家知识产权局、申请号为202010108090.1、发明名称为“一种光交换装置、重定向方法以及可重构光分插复用器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光纤通信领域,尤其涉及一种光交换装置、重定向方法以及可重构光分插复用器。
背景技术
随着光网络业务的迅速发展和交换容量的增加,可重构光分插复用器(reconfigurable optical add drop multiplexer,ROADM)需要处理的信号波段范围也在增加。其中,波长选择开关(wavelength selective switch,WSS)是构成ROADM的重要组件。
现有技术所示的WSS如图1所示,输入端口101输入C波段光束和L波段光束,沿色散方向X并列设置有阵列波导光栅(arrayed waveguide grating,AWG)102和103。通过该AWG102和103使得在色散方向X上,C波段光束和L波段光束经透镜104后入射光栅105的角度不同,并在色散方向X上,使得C波段光束和L波段光束出射光栅105的角度相同,进而使得C波段的光束和L波段的光束的光斑在交换引擎106上的位置如图2所示。可见,在交换引擎上106,C波段光束产生多个C波段光斑,L波段光束产生多个L波段光斑,以C波段光斑201和L波段光斑202为例,C波段光斑201和L波段光斑202沿端口方向Y分离,而沿色散方向X重合,可有效地提升滤波带宽。
但是,在WSS内设置AWG,会增加AWG与空间光学耦合的插损。C波段光束和L波段光束入射光栅105的角度不同导致透镜104等器件在色散方向X上的宽度的增加。
发明内容
本申请提供了一种光交换装置、重定向方法以及可重构光分插复用器,其用于提升滤波带宽且有效地减少插损。
本申请第一方面提供了一种光交换装置,包括输入端口、色散组件、第一透镜组件、重定向组件以及输出端口;所述输入端口用于沿第一方向将第一光束以第一入射角度入射所述色散组件,所述输入端口还用于沿所述第一方向将第二光束以第二入射角度入射所述色散组件,所述第一入射角度和所述第二入射角度的绝对值的差值不为零;所述色散组件用于将所述第一光束进行色散以形成多个第一子光束,所述色散组件还用于将所述第二光束进行色散以形成多个第二子光束;所述第一透镜组件用于将所述多个第一子光束和所述多个第二子光束聚焦至所述重定向组件,且所述多个第一子光束入射所述重定向组件的第一区域,所述多个第二子光束入射所述重定向组件的第二区域,所述第一入射角度和所述第二入射角度的绝对值的差值使得所述第一区域和所述第二区域沿所述第一方向互相分离,且使得所述第一区域和所述第二区域沿第二方向至少部分区域重合;所述第一方向与所述第二方向相互垂直,且所述第一方向和所述第二方向均与所述第一光束的传播方向相互垂直;所述输出端口用于输出经由所述重定向组件重定向的所述多个第一子光束和所述多个第二子光束。
采用本方面所示的光交换装置,通过调节光束沿第一方向入射色散组件的角度的大小,即可有效地保证第一光束沿第二方向出射色散组件的角度与第二光束沿第二方向出射色散组件的角度相等或近似相等的目的,从而有效地提升光交换装置的滤波带宽的同时,尽可能减小插损,而且第一光束和第二光束在第二方向入射色散组件的角度相等或近似相等,从而使得光交换装置沿第二方向的结构更为紧凑。
结合本申请第一方面,一种可选地实现方式中,所述第一区域和所述第二区域沿第二方向至少部分区域重合包括:所述第一区域为所述多个第一子光束产生第一光斑的位置,所述第二区域为所述多个第二子光束产生第二光斑的位置,所述第一光斑和所述第二光斑沿所述第二方向至少部分重合。
结合本申请第一方面,一种可选地实现方式中,所述第一光斑包括的多个光斑和所述第二光斑包括的多个光斑一一对应。
采用本方面所示的光交换装置,因所述第一光斑包括的多个光斑和所述第二光斑包括的多个光斑一一对应,则第一光斑中和第二光斑中,排列顺序相同的光斑沿第二方向至少部分区域重合,且沿第一方向互相分离,从而有效地提升光交换装置的滤波带宽。
结合本申请第一方面,一种可选地实现方式中,所述输入端口用于沿所述第二方向将所述第一光束以第三入射角度入射所述色散组件,所述输入端口还用于沿所述第二方向将所述第二光束以第四入射角度入射所述色散组件,所述第三入射角度和所述第四入射角度之间的差值在预设范围内。
采用本方面所示的光交换装置,在所述第三入射角度和所述第四入射角度之间的差值在预设范围内的情况下,可在无需调节所述第三入射角度和所述第四入射角度的情况下,仅需要调节所述第一入射角度和所述第二入射角度,即可保证第一光束沿第二方向出射色散组件的角度与第二光束沿第二方向出射色散组件的角度相等或近似相等,以有效地提升光交换装置的滤波带宽。
结合本申请第一方面,一种可选地实现方式中,所述输入端口和所述色散组件之间包括第二透镜组件,所述第二透镜组件用于将所述第一光束和所述第二光束耦合至所述色散组件。
结合本申请第一方面,一种可选地实现方式中,所述输入端口和所述色散组件之间包括第三透镜组件,所述第一入射角度和/或所述第二入射角度取决于所述第三透镜组件的位置。
结合本申请第一方面,一种可选地实现方式中,所述第一入射角度和/或所述第二入射角度取决于所述输入端口和所述第三透镜组件的主光轴之间的距离。
采用本方面所示的光交换装置,通过第三透镜组件调节第一光束沿第一方向入射色散组件的第一入射角度的大小以及调节第二光束沿第一方向入射色散组件的第二入射角度的大小,可有效地保证第一光束沿第二方向出射色散组件的角度与第二光束沿第二方向出射色散组件的角度相等或近似相等的目的,从而有效地提升光交换装置的滤波带宽的同时,尽可能减小插损,而且第一光束和第二光束在第二方向入射色散组件的角度相等或近似相等,从而使得光交换装置沿第二方向的结构更为紧凑。
结合本申请第一方面,一种可选地实现方式中,所述色散组件用于沿所述第二方向以第一出射角度将所述多个第一子光束进行出射,还用于沿所述第二方向以第二出射角度将所述多个第二子光束进行出射,所述第一出射角度和第二出射角度之间的差值在预设范围内。
采用本方面所示的光交换装置,因所述第一出射角度和第二出射角度之间的差值在预设范围内,从而使得第一区域和所述第二区域沿第二方向至少部分区域重合,还使得所述第一区域和所述第二区域沿第一方向至少部分区域分离,有效地提升了光交换装置的滤波带宽。
结合本申请第一方面,一种可选地实现方式中,所述第一透镜组件的焦距大小和目标距离的大小相关,所述目标距离为沿所述第一方向一一对应的两个光斑之间的距离。
结合本申请第一方面,一种可选地实现方式中,所述第一透镜组件和所述重定向组件之间的距离等于所述第一透镜组件的焦距,所述第一透镜组件和所述色散组件之间的距离等于所述第一透镜组件的焦距。
结合本申请第一方面,一种可选地实现方式中,所述光交换装置还包括位于输入端口和第二透镜组件之间还包括准直透镜,该准直透镜用于对第一光束和第二光束进行准直。该输入端口位于该准直透镜的前焦点处。
结合本申请第一方面,一种可选地实现方式中,所述重定向组件用于对各第一子光束和各第二子光束进行传播方向的偏转,所述第一透镜组件用于分别将第一子光束和第二子光束聚焦至所述色散组件,所述色散组件用于对多个第一子光束进行合并以产生第一输出光束,所述色散组件用于对多个第二子光束进行合并以产生第二输出光束,所述第三透镜组件用于将来自色散组件的第一输出光束以及第一输出光束耦合至第二透镜组件,第二透镜组件用于调整第一输出光束以及第二输出光束的传播光路,以将该第一输出光束和第二输出光束传播至准直透镜,经由准直透镜准直后的第一输出光束和第二输出光束经由输出端口输出。
结合本申请第一方面,一种可选地实现方式中,所述第一光束和所述第二光束具有至少一个不同的波长值。
结合本申请第一方面,一种可选地实现方式中,所述光交换装置还包括滤波器,所述滤波器包括所述输入端口,所述滤波器用于接收来自光纤的光信号,所述滤波器还用于将所述光信号分离为所述第一光束和所述第二光束。
采用本方面所示的光交换装置,通过滤波器可有效地减少输入端口以及输出端口的数量。
结合本申请第一方面,一种可选地实现方式中,所述输入端口包括第一输入端口和第二输入端口,所述第一输入端口用于输入所述第一光束,所述第二输入端口用于输入所述第二光束,所述第一输入端口和所述第二输入端口沿所述第二方向的位置至少部分重合。
结合本申请第一方面,一种可选地实现方式中,所述第一光束为C波段光束,所述第二光束为L波段光束。
本申请第二方面提供了一种重定向方法,应用于光交换装置,所述光交换装置包括输 入端口、色散组件、第一透镜组件、重定向组件以及输出端口,所述方法包括:通过所述输入端口沿第一方向将第一光束以第一入射角度入射所述色散组件;通过所述输入端口沿所述第一方向将第二光束以第二入射角度入射所述色散组件,所述第一入射角度和所述第二入射角度的绝对值的差值不为零;通过所述色散组件将所述第一光束进行色散以形成多个第一子光束;通过所述色散组件将所述第二光束进行色散以形成多个第二子光束;通过所述第一透镜组件将所述多个第一子光束和所述多个第二子光束聚焦至所述重定向组件,且所述多个第一子光束入射所述重定向组件的第一区域,所述多个第二子光束入射所述重定向组件的第二区域,所述第一入射角度和所述第二入射角度的绝对值的差值使得所述第一区域和所述第二区域沿所述第一方向互相分离,且使得所述第一区域和所述第二区域沿第二方向至少部分区域重合;所述第一方向与所述第二方向相互垂直,且所述第一方向和所述第二方向均与所述第一光束的传播方向相互垂直;通过所述输出端口输出经由所述重定向组件重定向的所述多个第一子光束和所述多个第二子光束。
本方面所示的重定向方法的具体执行过程以及有益效果的说明,请详见第一方面所示,不做赘述。
结合本申请第二方面,一种可选地实现方式中,所述第一区域和所述第二区域沿第二方向至少部分区域重合包括:所述第一区域为所述多个第一子光束产生第一光斑的位置,所述第二区域为所述多个第二子光束产生第二光斑的位置,所述第一光斑和所述第二光斑沿所述第二方向至少部分重合。
结合本申请第二方面,一种可选地实现方式中,所述第一光斑包括的多个光斑和所述第二光斑包括的多个光斑一一对应。
结合本申请第二方面,一种可选地实现方式中,所述方法还包括:沿所述第二方向,通过所述输入端口将所述第一光束以第三入射角度入射所述色散组件;沿所述第二方向,通过所述输入端口将所述第二光束以第四入射角度入射所述色散组件,所述第三入射角度和所述第四入射角度之间的差值在预设范围内。
结合本申请第二方面,一种可选地实现方式中,所述输入端口和所述色散组件之间包括第二透镜组件,所述方法还包括:通过所述第二透镜组件将所述第一光束和所述第二光束耦合至所述色散组件。
结合本申请第二方面,一种可选地实现方式中,所述输入端口和所述色散组件之间包括第三透镜组件,所述方法还包括:通过所述第三透镜组件调节所述第一入射角度和/或所述第二入射角度,所述第一入射角度和/或所述第二入射角度取决于所述第三透镜组件的位置。
结合本申请第二方面,一种可选地实现方式中,所述第一入射角度和/或所述第二入射角度取决于所述输入端口和所述第三透镜组件的主光轴之间的距离。
结合本申请第二方面,一种可选地实现方式中,所述方法还包括:沿所述第二方向,通过所述色散组件以第一出射角度将所述多个第一子光束进行出射;沿所述第二方向,通过所述色散组件以第二出射角度将所述多个第二子光束进行出射,所述第一出射角度和第二出射角度之间的差值在预设范围内。
结合本申请第二方面,一种可选地实现方式中,所述方法还包括:通过所述第一透镜组件调节目标距离,所述第一透镜组件的焦距大小和所述目标距离的大小相关,所述目标距离为沿所述第一方向一一对应的两个光斑之间的距离。
结合本申请第二方面,一种可选地实现方式中,所述光交换装置还包括滤波器,所述滤波器包括所述输入端口,所述方法还包括:通过所述滤波器接收来自光纤的光信号;通过所述滤波器将所述光信号分离为所述第一光束和所述第二光束。
结合本申请第二方面,一种可选地实现方式中,所述输入端口包括第一输入端口和第二输入端口,所述方法还包括:通过所述第一输入端口输入所述第一光束;通过所述第二输入端口输入所述第二光束,所述第一输入端口和所述第二输入端口沿所述第二方向的位置至少部分重合。
本申请第三方面提供了一种可重构光分插复用器,包括多个光交换装置,不同的所述光交换装置之间通过光纤连接,所述光交换装置如上述第一方面所示,不做赘述。
附图说明
图1为现有技术所提供的波长选择开关的结构示意图;
图2为现有技术所提供的光斑在交换引擎上的排列示意图;
图3为本申请所提供的可重构光分插复用器的一种结构示例图;
图4为本申请所提供的光交换装置沿第二方向的一种结构示意图;
图5为本申请所提供的光交换装置沿第一方向的一种结构示意图;
图6为本申请所提供的色散组件对光束进行色散的一种示意图;
图7为本申请所提供的色散组件的结构示意图;
图8为本申请所提供的光斑在重定向组件上的一种排列示意图;
图9为本申请所提供的色散组件对光束进行色散的另一种示意图;
图10为本申请所提供的色散组件对光束进行色散的另一种示意图;
图11为本申请所提供的光交换装置沿第一方向的另一种结构示意图;
图12为本申请所提供的光交换装置沿第二方向的另一种结构示意图;
图13为本申请所提供的光交换装置沿第一方向的另一种结构示意图;
图14为本申请所提供的光斑在重定向组件上的另一种排列示意图;
图15为本申请所提供的光交换装置沿第二方向的另一种结构示意图;
图16为本申请所提供的光交换装置沿第一方向的另一种结构示意图;
图17为本申请所提供的重定向方法的一种步骤流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
首先结合图3所示对本申请所提供的ROADM的结构进行说明,其中,图3为本申请所 提供的ROADM的一种结构示例图。
本实施例对该ROADM的具体网络结构不做限定,例如,ROADM可采用链形、环形和网状网等网络结构,图3所示以ROADM采用网状网的网络结构为例进行示例性说明。
本实施例以该ROADM包括八个WSS(即WSS1、WSS2至WSS8)为例,该八个WSS位于不同的位置,本实施例对ROADM所包括的WSS的数量以及各WSS所位于的位置不做限定。位于不同位置处的WSS之间用于进行光信号的交换,以实现对光信号的灵活调度。本实施例所示的位于不同位置可指在N个维度的方向不同,该N为大于或等于1的正整数。
以WSS1为例,WSS1可将光信号传播至该ROADM所包括的任一与WSS1通过光纤连接的WSS,以实现光信号的不同维度的方向的交换,例如,本实施例所示的ROADM中,与该WSS1通过光纤连接有WSS4、WSS6以及WSS8,则WSS1可将光信号传播至WSS4、WSS6以及WSS8中的任一个WSS。本实施例以该WSS1通过光纤与WSS4、WSS6以及WSS8连接为例进行示例性说明,不做限定,在其他示例中,该WSS1还可与ROADM所包括的WSS2、WSS3、WSS5以及WSS7中的任意WSS通过光纤连接。
以下继续以WSS1和WSS4为例,对光信号的交换进行说明:
沿第一方向301传播的光信号,经由WSS1的输入端口输入至WSS1,经由WSS1对光信号的重定向,经由WSS1的输出端口将光信号经由光纤传播至WSS4,从WSS4的输出端口输出的光信号沿第二方向302进行传播,以实现对该光信号的传播方向由第一方向301交换至第二方向302的目的。
以下结合不同的实施例,对本申请所提供的光交换装置的结构进行说明:
实施例一
以下结合图4和图5所示对本申请所提供的光交换装置的具体结构进行说明:其中,图4为该光交换装置沿第二方向的结构示意图,图5为该光交换装置沿第一方向的结构示意图。本实施例所示以该光交换装置为一个WSS为例,结合图3所示,具体以该光交换装置为WSS1为例。
本实施例所示的光交换装置包括输入端口、色散组件506、第一透镜组件507、重定向组件508以及输出端口,本实施例对输入端口和输出端口的具体数量不做限定。
以下首先对本申请所示的第一方向和第二方向进行说明,其中,本实施例所示的第一方向还可称之为交换方向或者端口方向,第二方向还可称之为波长方向或者色散方向,以该光交换装置所包括的不同的器件为参照,对第一方向和第二方向的定义是不同的,具体定义如下所示:
定义1
以色散组件506为参照,结合图6所示,该色散组件506用于将照射在该色散组件506上的光束601进行色散以形成多个具有不同波长的子光束,如形成具有波长λ 1的子光束,具有波长λ 2的子光束,依次类推,形成具有波长λ N的子光束,本示例对N的具体取值不做限定,只要λ 1、λ 2至λ N互不相同即可。该色散组件506能够使得具有波长λ 1的子光束,具有波长λ 2的子光束以及具有波长λ N的子光束分别以不同的出射角度从该色散组件506出射以进行传播,其中,该第二方向Y为出射的子光束散开的方向,亦即该色散组件506使 得多个子光束产生角色散的方向。光束601的传播方向为图6所示的方向Z,而第一方向X为与第二方向Y和光束601的传播方向Z均垂直的方向。
定义2
继续以色散组件506为参照,结合图7所示,本示例以色散组件506为体光栅为例进行示例性说明:在本示例中,该第一方向X为与光栅刻线701相互平行的方向,而第二方向Y为与光栅刻线701相垂直的方向,可见,第一方向X与第二方向Y相垂直。
定义3
本定义以该输入端口输入第一光束和第二光束为例进行示例性说明,且以重定向组件508为参照,如图8所示,该重定向组件508形成有第一区域801和第二区域802,其中,该第一区域801包括第一光束所产生的多个光斑,该第二区域802包括第二光束所产生的多个光斑。第一光束和第二光束均具有特定的波段范围,且第一光束的波段范围和第二光束的波段范围不同。例如,第一光束为C波段光束,第二光束为L波段光束。其中,该第二方向Y为同一区域中,多个光斑的排列方向,例如,第二方向Y为该第一区域801所包括的多个光斑的排列方向,又如,该第二方向Y为该第二区域802所包括的多个光斑的排列方向。可选地,若该重定向组件508为硅基液晶(liquid crystal on silicon,LCOS)芯片,则该第一方向X为该重定向组件508加载相位光栅产生衍射光的方向。还可选地,若该重定向组件508为液晶(liquid crystal)阵列芯片或者微机电系统(micro electro mechanical system,MEMS),则该第一方向为偏转光束的传播方向。该第一方向X也为第一区域801和第二区域802的排列方向,即第二方向Y为同一个波段范围的多个光斑的排列方向,第一方向X为不同波段范围的光斑排列方向。可见,第一方向X与第二方向Y垂直,且第一方向X与第二方向Y均与第一光束的传播方向Z和第二光束的传播方向Z垂直。
定义4
以图5所示的输入端口和输出端口为参照,具体地,该光交换装置包括两个输入端口,即输入端口410和输入端口420,该光交换装置还包括四个输出端口,即输出端口411、412、421以及422,需明确的是,图5所示对输入端口和输出端口的数量的说明为可选地的示例,不做限定。在图5中,该第一方向X为多个输入端口和多个输出端口的排列方向,可见,沿第一方向X,多个输入端口和多个输出端口位置分离,而如图4所示的沿第二方向Y所示,多个输入端口和多个输出端口可完全重合或部分重合。该第一方向X也为重定向组件508对经由输入端口410输入的第一光束501和经由输入端口420输入的第二光束502进行偏转,产生偏转角度的方向。该第二方向Y为与该第一方向X垂直的方向,且第一方向X与第二方向Y均与第一光束501的传播方向Z和第二光束502的传播方向Z垂直。
本实施例以该光交换装置用于对第一光束501和第二光束502进行光交换为例进行示例性说明:在其他示例中,该光交换装置也可对两个以上的光束进行光交换,本实施例对具体进行光交换的光束数量不做限定。本实施例所示的所述第一光束501和所述第二光束502具有不同的波长范围,以下结合具体示例对所述第一光束501和所述第二光束502具有不同的波长范围进行示例性说明:
例如,本实施例所示的所述第一光束501为C波段(C band)光束,所述第二光束502 为L波段(L band)光束。本实施例对所述第一光束501和所述第二光束502的具体波段的说明为一种示例,不做限定,例如,第一光束501还可为E波段(E band)光束,而第二光束502还可为O波段(O band)光束,只要所述第一光束501和所述第二光束502为不同的波段即可。具体例如,第一光束501具有N个波长值,即λ c-1、λ c-2……λ c-N,第二光束502也可具有N个波长值,即λ L-1、λ L-2……λ L-N,本实施例对N的取值不做限定。第一光束501和第二光束502具有的波长值的数量也可以不同。其中,所述第一光束501和所述第二光束502具有不同的波长范围具体可指,λ c-1、λ c-2……λ c-N与λ L-1、λ L-2……λ L-N中,各波长值均不相同。所述第一光束501和所述第二光束502具有不同的波长范围还可指,λ c-1、λ c-2……λ c-N与λ L-1、λ L-2……λ L-N中,具有一个或多个不相同的波长值,即λ c-1、λ c-2……λ c-N与λ L-1、λ L-2……λ L-N中,部分波长值相同,部分波长值不同。
以下对该光交换装置的各个器件进行说明:
以图5所示为例,该光交换装置所包括的输入端口410用于输入第一光束501,输入端口420用于输入第二光束502,以下对所述输入端口410和输入端口420的位置进行说明:
如图4所示,在第二方向Y上,所述输入端口410和输入端口420沿所述第二方向Y的位置至少部分重合,具体例如,所述输入端口410和所述输入端口420完全重合,又如,所述输入端口410和所述输入端口420部分重合。如图5所示,在第一方向X上,所述输入端口410和输入端口420位置分离,且沿第一方向X,所述输入端口410和所述输入端口420平行设置。本实施例对所述输入端口410和输入端口420沿所述第二方向Y上的位置所分离的间距不做限定。
结合图4和图9所示为例,所述输入端口410用于沿第二方向Y将第一光束501以第三入射角度α c入射所述色散组件506,所述输入端口420还用于沿所述第二方向Y将第二光束502以第四入射角度α l入射所述色散组件506。
在所述输入端口410和输入端口420沿所述第二方向的位置至少部分重合的情况下,所述第三入射角度α c和所述第四入射角度α l之间的差值在预设范围内,本实施例对该预设范围的大小不做限定,只要该第三入射角度α c和所述第四入射角度α l相等或接近相等即可。例如,若在所述输入端口410和输入端口420沿所述第二方向的位置完全重合的情况下,则该第三入射角度α c和所述第四入射角度α l相等。
可选地,结合图5所示,沿所述第一方向X或第二方向Y,用于传播该第一光束501的各端口(即输入端口410、输出端口411以及输出端口412)与该色散组件506之间包括准直透镜阵列(即包括准直透镜413、准直透镜414以及准直透镜415)。该输入端口410位于该准直透镜414的前焦点处,该输出端口411位于该准直透镜413的前焦点处,该输出端口412位于该准直透镜415的前焦点处。其中,该准直透镜414用于对来自输入端口410的第一光束501进行准直。
沿所述第一方向X或第二方向Y,用于传播该第二光束的各端口(即输入端口420、输出端口421以及输出端口422)与该色散组件506之间包括准直透镜阵列(即包括准直透镜423、准直透镜424以及准直透镜425)。该输入端口420位于该准直透镜424的前焦点处, 该输出端口421位于该准直透镜423的前焦点处,该输出端口422位于该准直透镜425的前焦点处。其中,该准直透镜424用于对来自输入端口420的第二光束502进行准直。
可选地,继续结合图4和图5所示,沿所述第一方向X或第二方向Y,准直透镜阵列与该色散组件506之间包括第二透镜组件。本实施例所示的第二透镜组件包括多个透镜,且第二透镜组件所包括的透镜的数量与传播至该光交换装置的光束的数量相等。具体地,在第一光束501和第二光束502输入至该光交换装置的情况下,该第二透镜组件包括第一透镜503和第二透镜504。其中,所述第一透镜503位于准直透镜阵列(即准直透镜413、414以及415)与色散组件506之间,第二透镜504位于准直透镜阵列(即准直透镜423、424以及425)与色散组件506之间。例如,沿该第一方向X或第二方向Y,该准直透镜414的后焦点与该第一透镜503的前焦点重合,即该准直透镜414与该第一透镜503之间的距离等于该准直透镜414的焦距和该第一透镜503的焦距之和。该准直透镜424的后焦点与该第二透镜504的前焦点重合,即该准直透镜424与该第二透镜504之间的距离等于该准直透镜424的焦距和该第二透镜504的焦距之和。
所述第一透镜503用于将来自准直透镜414的第一光束501耦合至第三透镜组件505,所述第二透镜504用于将来自准直透镜424的第二光束502耦合至第三透镜组件505。本实施例所示的耦合是指,在光纤通信领域,光信号从一个光器件传播到另一种光器件的过程。可选地,在其他示例中,该光交换装置也可不包括该第二透镜组件,则第一光束501和第二光束502也可不经由该第二透镜组件耦合至第三透镜组件505。
该第三透镜组件505位于所述第二透镜组件和所述色散组件506之间,该第三透镜组件505包括一个或多个透镜。本实施例以该第三透镜组件505包括有一个透镜为例进行示例性说明。其中,所述色散组件506位于所述第三透镜组件505的后焦点处,所述第三透镜组件505和该第一透镜503之间的距离等于所述第三透镜组件505的焦距和该第一透镜503的焦距之和。且所述第三透镜组件505和该第二透镜504之间的距离等于所述第三透镜组件505的焦距和该第二透镜504的焦距之和。
所述第三透镜组件505用于将来自第一透镜503的第一光束501耦合至色散组件506,所述第三透镜组件505还用于将来自第二透镜504的第一光束502耦合至色散组件506。如图4所示,所述色散组件506用于对所述第一光束501进行色散以形成多个第一子光束5011(即从色散组件506出射的实线部分所示),所述色散组件506还用于对所述第二光束502进行色散以形成多个第二子光束5012(即从色散组件506出射的虚线部分所示),本实施例对所述第一子光束5011和所述第二子光束5012的具体数量不做限定,其中,多个所述第一子光束5011具有互不相同的波长值,多个所述第二子光束5012具有互不相同的波长值,且多个所述第一子光束5011所具有的多个波长值和多个第二子光束5012所具有的多个波长值中,具有至少一个不同的波长值,例如,多个所述第一子光束5011所具有的多个波长值和多个第二子光束5012所具有的多个波长值均不相同,或者,多个所述第一子光束5011所具有的多个波长值和多个第二子光束5012所具有的多个波长值中部分不相同。
所述色散组件506和所述重定向组件508之间设置有第一透镜组件507,本实施例所示的所述第一透镜组件507可包括一个或多个透镜,本实施例以所述第一透镜组件507包 括有一个透镜为例进行示例性说明。其中,所述色散组件506位于所述第一透镜组件507的前焦点处,可见,所述色散组件506与所述第一透镜组件507之间的距离等于所述第一透镜组件507的焦距。所述重定向组件508位于所述第一透镜组件507的后焦点处,可见,所述重定向组件508和所述第一透镜组件507之间的距离等于所述第一透镜组件507的焦距。
如图4和图5所示,所述第一透镜组件507用于将所述多个第一子光束5011和所述多个第二子光束5012聚焦至所述重定向组件508,其中,多个第一子光束5011入射所述重定向组件508所产生的光斑和多个第二子光束5012所产生的光斑在所述重定向组件508上的位置均不相同,以下对多个第一子光束5011入射所述重定向组件508所产生的光斑和多个第二子光束5012所产生的光斑在所述重定向组件508上的位置进行说明:
继续参见图8所示,各第一子光束5011的光斑排列于图8所示的第一区域801,各第二子光束5012的光斑的排列于图8所示的第二区域802,且本实施例所示的第一区域801和所述第二区域802沿第二方向Y至少部分区域重合(图中示出完全重合的情况),所述第一区域801和所述第二区域802沿第一方向X至少部分区域分离(图中示出完全分离的情况)。
具体地,以第一光束501所产生的第一光斑和第二光束502所产生的第二光斑为例进行示例性说明,所述第一光斑为所述第一光束501所产生的多个光斑,所述第二光斑为所述第二光束502所产生的多个光斑,且第一光斑排列于所述第一区域801,第二光斑排列于所述第二区域802。
本实施例所示的第一光斑包括的多个光斑和所述第二光斑包括的多个光斑一一对应,具体地,一一对应的两个光斑,分别在第一光斑中的排列顺序和在第二光斑中的排列顺序相同,以下对一一对应的两个光斑进行具体说明:
多个第一子光束所具有的波长分别为λ c-1、λ c-2……λ c-N,且λ c-1、λ c-2……λ c-N的波长值互不相同,多个第二子光束所具有的波长分别为λ L-1、λ L-2……λ L-N,且λ L-1、λ L-2……λ L-N的波长值互不相同。
例如,该第一光斑所包括的一个光斑为具有波长λ c-1的第一子光束入射所述重定向组件508所产生的光斑,该第二光斑所包括的一个光斑为具有波长λ L-1的第二子光束入射所述重定向组件508所产生的光斑,且具有波长λ c-1的光斑在第一光斑中的排列顺序和具有波长λ L-1的光斑在第二光斑中的排列顺序均为第一个,可见,这两个光斑为一一对应的两个光斑。又如,该第一光斑所包括的一个光斑为具有波长λ c-N的第一子光束入射所述重定向组件508所产生的光斑,该第二光斑所包括的一个光斑为具有波长λ L-N的第二子光束入射所述重定向组件508所产生的光斑,且具有波长λ c-N的光斑在第一光斑中的排列顺序和具有波长λ L-N的光斑在第二光斑中的排列顺序均为第N个,本实施例对N的具体取值不做限定,只要该N等于大于或等于1的正整数即可。
沿第一方向X,一一对应的两个光斑位置分离设置,且一一对应的两个光斑之间的目标距离和所述第一透镜组件507的焦距大小相关,具体地,该第一透镜组件507的焦距越大,则该目标距离越大,该第一透镜组件507的焦距越小,则该目标距离越小。
沿第二方向Y,一一对应的两个光斑至少部分区域重合,本实施例以沿第二方向Y,一一对应的两个光斑重合为例进行示例性说明。
在第一光束501和第二光束502所产生的光斑的排列如图8所示的情况下,可有效地提升C波段和L波段的滤波带宽。
所述重定向组件508用于对各第一子光束5011进行传播方向的偏转,其中,各第一子光束5011经由所述重定向组件508偏转传播方向后传播至第一透镜组件507。各第二子光束5012经由所述重定向组件508偏转传播方向后传播至第一透镜组件507。本实施例对各子光束沿第一方向从所述重定向组件508出射的角度不做限定,以图5所示为例,第一子光束5011经由所述重定向组件508偏转传播方向后,沿两个出射角度进行出射(即第一光束经由所述重定向组件508偏转传播方向后出射的两条虚线部分所示)。在其他示例中,第一子光束5011经由所述重定向组件508偏转传播方向后,可沿一个出射角度进行出射,也可沿两个以上的出射角度进行出射。
所述第一透镜组件507用于分别将第一子光束5011和第二子光束5012聚焦至所述色散组件506。所述色散组件506用于对多个第一子光束5011进行合并以产生第一输出光束,以图5所示为例,所述色散组件506根据多个第一子光束5011产生两路第一输出光束,即第一输出光束511以及第一输出光束512。所述色散组件506还用于对多个第二光束5012进行合并以产生第二输出光束,继续以图5所示为例,所述色散组件506根据多个第二子光束5012产生两路第二输出光束,即第二输出光束513和第二输出光束514。
所述第三透镜组件505用于将来自色散组件506的第一输出光束511以及第一输出光束512耦合至第二透镜组件所包括的第一透镜503,所述第三透镜组件505还用于将来自色散组件506的第二输出光束513以及第二输出光束514耦合至第二透镜组件所包括的第二透镜504。
所述第一透镜503用于调整第一输出光束511的传播光路,以将该第一输出光束511传播至准直透镜415,经由准直透镜415准直后的第一输出光束经由输出端口412输出。该第一透镜503还用于调整第一输出光束512的传播光路,以将该第一输出光束512传播至准直透镜413,经由准直透镜413准直后的第一输出光束512经由输出端口411输出。对第二输出光束513和第二输出光束514的传输过程的说明,请详见第一输出光束511以及第一输出光束512的传输过程的说明,不做赘述。
结合图3所示,从WSS1的输出端口411以及412输出的第一输出光束经由光纤可传播至WSS4,从WSS1的输出端口421以及422输出的第二输出光束经由光纤也可传播至WSS4,从而实现对第一光束和第二光束的光交换。本实施例所示对各输出端口所输出的子光束的数量不做限定,例如,输出端口421可经由光纤将一个或多个第一子光束传播至WSS4。
本实施例以光交换装置通过两个输出端口(即输出端口411以及412)输出第一输出光束为例进行示例性说明,不做限定,在其他的示例中,该光交换装置也可包括其他数量的输出端口。
本实施例中,为有效地提升滤波带宽,则需要在第二方向Y上,各第一子光束从所述色散组件506出射的第一出射角度β c与各第二子光束从所述色散组件506出射的第二出射 角度β L之间的差值在预设范围内,从而使得各第一子光束5011和各第二子光束5012的光斑的排列如图8所示,本实施例对该预设范围的大小不做限定,只要β c和β L相等或近似相等即可,本实施例以所述β c和β L相等为例进行示例性说明。
以下对调节所述β c和β L相等的方式进行说明:
调节方式1:
具体可通过以下公式一调节β c,并通过公式二调节β L,通过调节公式一和公式二,使得β c和β L相等。
公式一为dcosθ c(sinα c+sinβ c)=mλ c;公式二为dcosθ L(sinα L+sinβ L)=mλ L
具体地,公式一和公式二中的参数d为色散组件506中相邻的两个光栅刻线之间的间距,m为光栅的衍射级次,为常数。公式一中的α c、β c的具体说明以及公式二中的α L、β L的具体说明,请详见上述所示,不做赘述。公式一中的λ c为一个第一子光束的波长,公式二中的λ L为一个第二子光束的波长。
为使得β c=β L,则根据公式一和公式二推导出公式三,公式三如下所示:
Figure PCTCN2020137478-appb-000001
由上述所示可知,λ c和λ L的取值不同,因所述输入端口410和输入端口420沿所述第二方向Y的位置至少部分重合,则α c和αL相等或近似相等,本示例以α c和αL相等为例,由该公式三所示可知,可通过调节θ c和θ L的大小的方式,以实现β c=β L,以下对θ c和θ L进行说明:
参见图5和图10所示,沿第一方向X,第一光束501以第一入射角度θ c入射该色散组件506,该第二光束502以第二入射角度θ L入射所述色散组件506。本实施例中,所述第一入射角度θ c和所述第二入射角度θ L的绝对值的差值不为零。
可见,本实施例所示可通过调节第一方向X上,所述第一光束501入射所述色散组件506的第一射角度θ c以及第二光束502入射所述色散组件506的第二入射角度θ L的方式以实现第二方向上的β c和β L的相等。
调节方式2
在调节方式1中以所述输入端口410和输入端口420沿所述第二方向Y的位置重合,则α c和αL相等为例,本调节方式以所述输入端口410和输入端口420沿所述第二方向Y的位置不重合,以使α c与α L互不相等的情况下,是如何实现β c和β L的相等的方式进行说明:
本调节方式还可参见上述公式三所示,即在公式三中,通过调节α c、α L、θ c和θ L的大小的方式,以实现β c=β L,对θ c和θ L的说明请详见上述调节方式1所示,不做赘述。
以下对调节第一射角度θ c和第二入射角度θ L的方式进行说明:
本实施例所示的第一射角度θ c和/或第二入射角度θ L取决于所述第三透镜组件的位置:
其中,沿第一方向X,所述输入端口410和所述第三透镜组件505的主光轴之间的距离越大,则第一射角度θ c越大,所述输入端口410和所述第三透镜组件505的主光轴之间的距离越小,则第一射角度θ c越小。
同样的,沿第一方向X,所述输入端口420和所述第三透镜组件505的主光轴之间的 距离越大,则第二射角度θ L越大,所述输入端口420和所述第三透镜组件505的主光轴之间的距离越小,则第二射角度θ L越小。
采用本实施例所示的光交换装置的有益效果在于,无需通过增加光器件(如AWG)的方式对光束沿第二方向入射色散组件的角度进行调节,而是通过调节光束沿第一方向入射色散组件的角度的大小,即可有效地保证第一光束沿第二方向出射色散组件的角度与第二光束沿第二方向出射色散组件的角度相等或近似相等的目的,从而有效地提升光交换装置的滤波带宽的同时,尽可能减小因增加光器件(如AWG)带来的插损,而且第一光束和第二光束在第二方向入射色散组件的角度相等或近似相等,从而使得光交换装置沿第二方向的结构更为紧凑。
实施例二
在实施例一中,位于不同波段的光束经由不同的输入端口输入至光交换装置,而实施例二中,若不同波段的光束在同一光纤中传播的情况下,本实施例所示的光交换装置是如何实现光交换的进行说明:
本实施例所示的光交换装置如图11所示,沿第一方向X,该光交换装置包括一个或多个滤波器以及WSS,且滤波器和该WSS之间通过光纤连接。本实施例以该光交换装置用于对第一光束(C波段)和第二光束(L波段)进行光交换为例进行示例性说明,其中,对第一光束和第二光束的具体说明,请详见实施例一所示,不做赘述。
本实施例以包括有三个滤波器(即滤波器1101、滤波器1102以及滤波器1103)为例进行示例性说明。该滤波器1102用于对来自光纤1104的光信号进行分离以产生第一光束和第二光束,该滤波器1102还用于将第一光束经由光纤1105传播至WSS1100,将第二光束经由光纤1106传播至WSS1100,该WSS1100具体结构的说明以及对第一光束和第二光束进行光交换的具体说明,请详见上述实施例一所示,具体不做赘述。
经由WSS1100所产生的两路第一输出光束经由光纤1107和光纤1108,分别传播至滤波器1101和滤波器1103,经由WSS1100所产生的两路第二输出光束经由光纤1109和光纤1110分别传播至滤波器1101和滤波器1103,对第一输出光束和第二输出光束的说明,请详见实施例一所示,不做赘述。
结合图3所示,若本实施例所示的WSS1100为图3所示的WSS1,则该滤波器1101可将两路第一输出光束进行合并,并通过光纤将已合并的光信号向WSS4传播,该滤波器1103也可将两路第二输出光束进行合并,并通过光纤将已合并的光信号向WSS4传播,以实现光信号的光交换。
本实施例所示的各滤波器和与各滤波器有连接关系的光纤,也可采用空间光组件和镀膜组件等进行代替。
采用本实施例所示的光交换装置的有益效果请参见实施例一所示,具体不做赘述,且采用本实施例所示的光交换装置,通过滤波器可有效地减少输入端口以及输出端口的数量。
实施例三
实施例一以光交换装置为一个WSS为例进行示例性说明,本实施例以光交换装置包括有两个或两个以上的WSS进行说明,本实施例对该光交换装置所包括的WSS的数量不做限 定,以下以该光交换装置包括有两个WSS为例进行示例性说明。本实施例所示的光交换装置所包括的两个WSS可为图3所示的WSS1和WSS2,具体结构的说明如下所示:
参见图12和图13所示,其中,图12为该光交换装置沿第二方向的结构示意图,图13为该光交换装置沿第一方向的结构示意图。对第一方向和第二方向的说明,请详见上述实施例一所示,不做赘述。
本实施例中,该WSS1用于对第一光束1301和第二光束1302进行光交换,该WSS2用于对第一光束1303和第二光束1304进行光交换,其中,第一光束1301和第一光束1303均为C波段光束,第二光束1302和第二光束1304均为L波段光束。本实施例所示的WSS1以及WSS2所包括的输入端口、输出端口、准直透镜阵列以及第二透镜组件的说明,请详见实施例一所示,具体在本实施例中不做赘述。
该WSS1的输入端口1310用于输入第一光束1301,输入端口1311用于输入第二光束1302,该WSS2的输入端口1312用于输入第一光束1303,该输入端口1313用于输入第二光束1304。
如图12所示,在第二方向Y上,WSS1的输入端口1310和1311,以及WSS2的输入端口1312和1313至少部分重合。图12所示以所述输入端口1310和所述输入端口1312完全重合,且以所述输入端口1311和所述输入端口1313完全重合为例。如图13所示,在第一方向X上,所述输入端口1310、输入端口1311、输入端口1312以及输入端口1313位置分离,且沿第一方向X,所述输入端口1310、输入端口1311、输入端口1312以及输入端口1313平行设置。在其他示例中,在第二方向Y上,WSS1的输入端口1310和1311,以及WSS2的输入端口1312和1313可处于完全分离的位置。
所述输入端口1310用于沿第二方向Y将第一光束1310以第三入射角度α c1入射所述色散组件506,所述输入端口1311还用于沿所述第二方向Y将第二光束1311以第四入射角度α L1入射所述色散组件506,对所述色散组件506的说明,请详见实施例一所示,不做赘述。所述输入端口1312用于沿第二方向Y将第一光束1303以第三入射角度α c2入射所述色散组件506,所述输入端口1314用于沿所述第二方向Y将第二光束1304以第四入射角度α L2入射所述色散组件506。
在所述输入端口1310、输入端口1311、输入端口1312以及输入端口1313沿所述第二方向的位置至少部分重合的情况下,所述第三入射角度α c1、第四入射角度α L1、所述第三入射角度α c2以及第四入射角度α L2之间,任意两个角度之间的差值在预设范围内,从而使得四个角度(α c1、α L1、α c2以及α L2)相等或接近相等,具体说明可参见实施例一所示对第三入射角度α c和第四入射角度α l的说明,不做赘述。
本实施例所示的WSS1和WSS2共享部分光学组件,以图12和图13所示,该WSS1和该WSS2所共享的光学器件为第三透镜组件505、色散组件506、第一透镜组件507以及重定向组件508,对第三透镜组件505、色散组件506、第一透镜组件507以及重定向组件508的具体说明,请详见实施例一所示,不做赘述。
本实施例中,第一光束1301、第二光束1302、第一光束1303以及第二光束1304在该重定向组件508上所产生的光斑的排列如图14所示,该第一光束1301所产生的多个光斑 排列于第一区域1401,该第二光束1302所产生的多个光斑排列于第二区域1402,该第一光束1303所产生的多个光斑排列于第三区域1403,该第二光束1304所产生的多个光斑排列于第四区域1404。
本实施例所示的第一区域1401、第二区域1402、第三区域1403以及第四区域1404沿第二方向Y至少部分区域重合,图14所示第一区域1401、第二区域1402、第三区域1403以及第四区域1404沿第二方向Y完全重合。第一区域1401、第二区域1402、第三区域1403以及第四区域1404沿第一方向X至少部分区域分离,图14以第一区域1401、第二区域1402、第三区域1403以及第四区域1404沿第一方向X至完全分离。具体说明请参见图8所示,不做赘述。在第一光束1301、第二光束1302、第一光束1303以及第二光束1304所产生的光斑的排列如图14所示的情况下,可有效地提升C波段和L波段的滤波带宽。
WSS1的输出端口以及WSS2用于接收输出光束,具体说明请参见实施例一所示,不做赘述。
本实施例中,为有效地提升滤波带宽,则需要在第二方向Y上,第一光束1301的各子光束从所述色散组件506出射的第一出射角度β c1、第二光束1302的各子光束从所述色散组件506出射的第二出射角度β L1、第一光束1303的各子光束从所述色散组件506出射的第三出射角度β c2以及第二光束1304的各子光束从所述色散组件506出射的第四出射角度β L2中,任意两个角度之间的差值在预设范围内,从而使得四个角度,即β c1、β L1、β c2以及β L2相等或近似相等即可,本实施例以β c1、β L1、β c2以及β L2均相等为例进行示例性说明,以下对调节β c1、β L1、β c2以及β L2均相等的方式进行说明:
具体可通过以下公式四调节β c1、通过公式五调节β L1、通过公式六调节β c2以及通过公式七调节β L2,使得β c1、β L1、β c2以及β L2均相等。
公式四为dcosθ c1(sinα c1+sinβ c1)=mλ c1;公式五为dcosθ L1(sinα L1+sinβ L1)=mλ L1;公式六为dcosθ c2(sinα c2+sinβ c2)=mλ c2;公式六为dcosθ L2(sinα L2+sinβ L2)=mλ L2
公式中的参数d、m的具体说明,请详见实施例一所示,α c1、α L1、α c2以及α L2的具体说明以及β c1、β L1、β c2以及β L2的具体说明,请详见上述所示,不做赘述。其中,λ c1为第一光束1301中的一个子光束的波长,λ L1为第二光束1302中的一个子光束的波长,λ c2为第一光束1303中的一个子光束的波长,λ L2为第二光束1304中的一个子光束的波长。
为使得β c1、β L1、β c2以及β L2均相等,则根据公式四至公式六推导出公式七,公式七为如下所示:
Figure PCTCN2020137478-appb-000002
由上述所示可知,λ c1等于λ c2,λ L1等于λ L2,且λ c1不等于λ L1,λ C2不等于λ L2,本示例以α c1、α L1、α c2以及α L2相等为例,由该公式七所示可知,可通过调节θ c1、θ L1、θ c2以及θ L2的大小的方式,以实现β c1、β L1、β c2以及β L2均相等。若在其他示例中,α c1、α L1、α c2以及α L2不相等,则可通过调节α c1、α L1、α c2、α L2、θ c1、θ L1、θ c2以及θ L2的大小的方式,以实现β c1、β L1、β c2以及β L2均相等。以下对θ c1、θ L1、θ c2以及θ L2进行说明:
参见图12和图13所示,沿第一方向X,第一光束1301以第一入射角度θ c1入射该色散组件506,该第二光束1302以第二入射角度θ L1入射所述色散组件506,第一光束1303以第一入射角度θ c2入射该色散组件506,该第二光束1304以第二入射角度θ L2入射所述色散组件506。其中,θ c1与θ L1的绝对值的差值不为零,θ c2与θ L2的绝对值的差值不为零。
本实施例中,调节θ c1、θ L1、θ c2以及θ L2的大小的方式的具体说明,可参见实施例一所示的调节θ c以及θ L的方式,具体不做赘述。
可选地,在λ c1与λ c2相等或接近相等的情况下,为避免沿第一方向X,第一光束1301的光斑和第一光束1303的光斑在重定向组件508上位置重合,即避免图14所示的第一区域1401和第三区域1404在第一方向X上重合,则第一入射角度θ c1与第一入射角度θ c2沿主光轴1300对称,从而使得θ c1=-θ c2,且|θ C1|=|θ C2|,其中,该主光轴1300可为该第三透镜组件505的主光轴,也可为第一透镜组件507的主光轴。
结合公式七所示,在θ c1与θ c2沿主光轴1300对称的情况下,则θ c1与θ c2的绝对值相等或接近相等,则cosθ c1等于cos(-θ c1),则有效地保证了β c1与β c2的相等。
可选地,在λ L1与λ L2相等或接近相等的情况下,为避免沿第一方向X,第二光束1302的光斑和第二光束1304的光斑在重定向组件508上位置重合,即避免图14所示的第二区域1402和第四区域1403在第一方向X上重合,则第二入射角度θ L1与第二入射角度θ L2沿主光轴1300对称。
结合公式七所示,在θ L1与θ L2沿主光轴1300对称的情况下,则θ L1与θ L2相等或接近相等,则cosθ L1等于cos(-θ L1),则有效地保证了β L1与β L2的相等。
采用本实施例所示的光交换装置的有益效果请参见实施例一所示,具体不做赘述,且本实施例所示的光交换装置包括多个WSS,则有效地实现了更大的交换容量。
实施例四
上述实施例中,用于传播第一光束的各相关端口(如图5所示的输入端口410、输出端口411以及输出端口412)位置相邻设置,用于传播第二光束的各相关端口(如图5所示的输入端口420、输出端口421以及输出端口422)位置相邻设置,且用于传播第一光束的各相关端口和用于传播第二光束的各相关端口位置分离设置。而本实施例中,用于传播第一光束的各相关端口的位置间隔设置,且用于传播第二光束的各相关端口的位置也间隔设置,具体请参见图15和图16所示,其中,图15为该光交换装置沿第二方向的结构示意图,图16为该光交换装置沿第一方向的结构示意图,对第一方向和第二方向的说明,请详见实施例一所示,不做赘述。
本实施例以该光交换装置用于对第一光束1601和第二光束1602进行光交换为例进行示例性说明,对第一光束1601和第二光束1602的具体说明,请详见实施例一所示,不做赘述。以下对该光交换装置的各个器件进行说明:
该光交换装置所包括的输入端口1610用于输入第一光束1601,输入端口1611用于输入第二光束1602,且本实施例所示的输入端口1610和输入端口1611相邻设置。
本实施例所示为实现对第一光束1601和第二光束1602的光交换,则该光交换装置包括准直透镜阵列1620、第二透镜组件1630、色散组件1640、第一透镜组件1650以及重定 向组件1660,各器件的具体说明,请详见实施例一所示,具体不做赘述。
本实施例通过调节第一光束1601和第二光束1602,在第一方向X上入射所述色散组件1640的第一射角度θ c以及第二入射角度θ L的方式以实现第二方向上的第一出射角度β c和第二出射角度β L相等,具体调节过程请详见实施例一所示,不做赘述。所述第一光束1601和所述第二光束1602的所产生的光斑在重定向组件1660上的排列位置,请详见实施例一所示,不做赘述。
如图16所示,用于输出第一输出光束1603的输出端口1612以及用于输出第二输出光束1604的输出端口1613位置相邻,且用于输出第一输出光束1605的输出端口1614以及用于输出第二输出光束1606的输出端口1615位置相邻,且用于输出第一输出光束1603的输出端口1612以及用于输出第一输出光束1605的输出端口1614间隔设置,用于输出第二输出光束1604的输出端口1613以及用于输出第二输出光束1606的输出端口1615间隔设置,对第一输出光束以及第二输出光束的说明,请详见实施例一所示,不做赘述。
采用本实施例所示的光交换装置的有益效果请参见实施例一所示,具体不做赘述,且采用本实施例所示的光交换装置相对于实施例一所示,可有效地减少透镜组件的数量。
实施例五
基于实施例一至实施例四对光交换装置的说明,以下结合实施例五对重定向方法的执行过程进行说明:
具体参见图17所示,本实施例所示的重定向方法具体包括如下所示的步骤:
步骤1701、光交换装置通过滤波器获取第一光束和第二光束。
具体过程,请详见实施例三所示,不做赘述。本实施例所示的步骤1701为可选地步骤,若光交换装置未设置滤波器,则可直接进行步骤1702的执行。
步骤1702、光交换装置通过输入端口沿第一方向将第一光束以第一入射角度入射所述色散组件。
步骤1703、光交换装置通过输入端口沿第一方向将第二光束以第二入射角度入射色散组件。
具体地,该输入端口和色散组件之间还包括该第二透镜组件以及第三透镜组件,第一光束和第二光束依次经由该第二透镜组件以及该第三透镜组件入射至色散组件,具体过程的说明,请详见实施例一所示,不做赘述。
步骤1704、光交换装置通过色散组件将第一光束进行色散以形成多个第一子光束。
步骤1705、光交换装置通过色散组件将第二光束进行色散以形成多个第二子光束。
具体地,该光交换装置通过所述色散组件沿所述第二方向以第一出射角度将所述多个第一子光束进行出射,该光交换装置通过所述色散组件沿所述第二方向以第二出射角度将所述多个第二子光束进行出射,所述第一出射角度和第二出射角度之间的差值在预设范围内。具体执行过程的说明,请详见实施例一对色散组件的说明,具体不做赘述。
步骤1706、光交换装置通过第一透镜组件将多个第一子光束和多个第二子光束聚焦至重定向组件。
具体执行过程的说明,请详见实施例一对第一透镜组件的说明,具体不做赘述。
步骤1707、光交换装置通过重定向组件对各第一子光束和各第二子光束进行传播方向的偏转。
步骤1708、光交换装置通过第一透镜组件分别将第一子光束和第二子光束聚焦至色散组件。
步骤1709、光交换装置通过色散组件对多个第一子光束进行合并以产生第一输出光束。
步骤1710、光交换装置通过色散组件对多个第二子光束进行合并以产生第二输出光束。
步骤1711、光交换装置通过第三透镜组件将来自色散组件的第一输出光束以及第一输出光束耦合至第二透镜组件。
步骤1712、光交换装置通过第二透镜组件将第一输出光束以及第一输出光束耦合至输出端口。
本实施例所示的步骤1707至步骤1712的具体执行过程,请详见实施例一所示,具体不做赘述。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (26)

  1. 一种光交换装置,其特征在于,包括输入端口、色散组件、第一透镜组件、重定向组件以及输出端口;
    所述输入端口用于沿第一方向将第一光束以第一入射角度入射所述色散组件,所述输入端口还用于沿所述第一方向将第二光束以第二入射角度入射所述色散组件,所述第一入射角度和所述第二入射角度的绝对值的差值不为零;
    所述色散组件用于将所述第一光束进行色散以形成多个第一子光束,所述色散组件还用于将所述第二光束进行色散以形成多个第二子光束;
    所述第一透镜组件用于将所述多个第一子光束和所述多个第二子光束聚焦至所述重定向组件,且所述多个第一子光束入射所述重定向组件的第一区域,所述多个第二子光束入射所述重定向组件的第二区域,所述第一入射角度和所述第二入射角度的绝对值的差值使得所述第一区域和所述第二区域沿所述第一方向互相分离,且使得所述第一区域和所述第二区域沿第二方向至少部分区域重合;所述第一方向与所述第二方向相互垂直,且所述第一方向和所述第二方向均与所述第一光束的传播方向相互垂直;
    所述输出端口用于输出经由所述重定向组件重定向的所述多个第一子光束和所述多个第二子光束。
  2. 根据权利要求1所述的光交换装置,其特征在于,所述第一区域为所述多个第一子光束产生第一光斑的位置,所述第二区域为所述多个第二子光束产生第二光斑的位置,所述第一光斑和所述第二光斑沿所述第二方向至少部分重合。
  3. 根据权利要求2所述的光交换装置,其特征在于,所述第一光斑包括的多个光斑和所述第二光斑包括的多个光斑一一对应。
  4. 根据权利要求1至3任一项所述的光交换装置,其特征在于,所述输入端口用于沿所述第二方向将所述第一光束以第三入射角度入射所述色散组件,所述输入端口还用于沿所述第二方向将所述第二光束以第四入射角度入射所述色散组件,所述第三入射角度和所述第四入射角度之间的差值在预设范围内。
  5. 根据权利要求1至4任一项所述的光交换装置,其特征在于,所述输入端口和所述色散组件之间包括第二透镜组件,所述第二透镜组件用于将所述第一光束和所述第二光束耦合至所述色散组件。
  6. 根据权利要求1至5任一项所述的光交换装置,其特征在于,所述输入端口和所述色散组件之间包括第三透镜组件,所述第一入射角度和/或所述第二入射角度取决于所述第三透镜组件的位置。
  7. 根据权利要求6所述的光交换装置,其特征在于,
    所述第一入射角度和/或所述第二入射角度取决于所述输入端口和所述第三透镜组件的主光轴之间的距离。
  8. 根据权利要求1至7任一项所述的光交换装置,其特征在于,所述色散组件用于沿所述第二方向以第一出射角度将所述多个第一子光束进行出射,还用于沿所述第二方向以第二出射角度将所述多个第二子光束进行出射,所述第一出射角度和第二出射角度之间的 差值在预设范围内。
  9. 根据权利要求3所述的光交换装置,其特征在于,所述第一透镜组件的焦距大小和目标距离的大小相关,所述目标距离为沿所述第一方向一一对应的两个光斑之间的距离。
  10. 根据权利要求1至9任一项所述的光交换装置,其特征在于,所述第一透镜组件和所述重定向组件之间的距离等于所述第一透镜组件的焦距,所述第一透镜组件和所述色散组件之间的距离等于所述第一透镜组件的焦距。
  11. 根据权利要求1至10任一项所述的光交换装置,其特征在于,所述第一光束和所述第二光束具有至少一个不同的波长值。
  12. 根据权利要求1至11任一项所述的光交换装置,其特征在于,所述光交换装置还包括滤波器,所述滤波器包括所述输入端口,所述滤波器用于接收来自光纤的光信号,所述滤波器还用于将所述光信号分离为所述第一光束和所述第二光束。
  13. 根据权利要求1至12任一项所述的光交换装置,其特征在于,所述输入端口包括第一输入端口和第二输入端口,所述第一输入端口用于输入所述第一光束,所述第二输入端口用于输入所述第二光束,所述第一输入端口和所述第二输入端口沿所述第二方向的位置至少部分重合。
  14. 根据权利要求1至13任一项所述的光交换装置,其特征在于,所述第一光束为C波段光束,所述第二光束为L波段光束。
  15. 一种重定向方法,其特征在于,应用于光交换装置,所述光交换装置包括输入端口、色散组件、第一透镜组件、重定向组件以及输出端口,所述方法包括:
    通过所述输入端口沿第一方向将第一光束以第一入射角度入射所述色散组件;
    通过所述输入端口沿所述第一方向将第二光束以第二入射角度入射所述色散组件,所述第一入射角度和所述第二入射角度的绝对值的差值不为零;
    通过所述色散组件将所述第一光束进行色散以形成多个第一子光束;
    通过所述色散组件将所述第二光束进行色散以形成多个第二子光束;
    通过所述第一透镜组件将所述多个第一子光束和所述多个第二子光束聚焦至所述重定向组件,且所述多个第一子光束入射所述重定向组件的第一区域,所述多个第二子光束入射所述重定向组件的第二区域,所述第一入射角度和所述第二入射角度的绝对值的差值使得所述第一区域和所述第二区域沿所述第一方向互相分离,且使得所述第一区域和所述第二区域沿第二方向至少部分区域重合;所述第一方向与所述第二方向相互垂直,且所述第一方向和所述第二方向均与所述第一光束的传播方向相互垂直;
    通过所述输出端口输出经由所述重定向组件重定向的所述多个第一子光束和所述多个第二子光束。
  16. 根据权利要求15所述的重定向方法,其特征在于,所述第一区域和所述第二区域沿第二方向至少部分区域重合包括:
    所述第一区域为所述多个第一子光束产生第一光斑的位置,所述第二区域为所述多个第二子光束产生第二光斑的位置,所述第一光斑和所述第二光斑沿所述第二方向至少部分重合。
  17. 根据权利要求16所述的重定向方法,其特征在于,所述第一光斑包括的多个光斑和所述第二光斑包括的多个光斑一一对应。
  18. 根据权利要求15至17任一项所述的重定向方法,其特征在于,所述方法还包括:
    沿所述第二方向,通过所述输入端口将所述第一光束以第三入射角度入射所述色散组件;
    沿所述第二方向,通过所述输入端口将所述第二光束以第四入射角度入射所述色散组件,所述第三入射角度和所述第四入射角度之间的差值在预设范围内。
  19. 根据权利要求15至18任一项所述的重定向方法,其特征在于,所述输入端口和所述色散组件之间包括第二透镜组件,所述方法还包括:
    通过所述第二透镜组件将所述第一光束和所述第二光束耦合至所述色散组件。
  20. 根据权利要求15至19任一项所述的重定向方法,其特征在于,所述输入端口和所述色散组件之间包括第三透镜组件,所述方法还包括:
    通过所述第三透镜组件调节所述第一入射角度和/或所述第二入射角度,所述第一入射角度和/或所述第二入射角度取决于所述第三透镜组件的位置。
  21. 根据权利要求20所述的重定向方法,其特征在于,所述第一入射角度和/或所述第二入射角度取决于所述输入端口和所述第三透镜组件的主光轴之间的距离。
  22. 根据权利要求15至21任一项所述的重定向方法,其特征在于,所述方法还包括:
    沿所述第二方向,通过所述色散组件以第一出射角度将所述多个第一子光束进行出射;
    沿所述第二方向,通过所述色散组件以第二出射角度将所述多个第二子光束进行出射,所述第一出射角度和第二出射角度之间的差值在预设范围内。
  23. 根据权利要求17所述的重定向方法,其特征在于,所述方法还包括:
    通过所述第一透镜组件调节目标距离,所述第一透镜组件的焦距大小和所述目标距离的大小相关,所述目标距离为沿所述第一方向一一对应的两个光斑之间的距离。
  24. 根据权利要求15至23任一项所述的重定向方法,其特征在于,所述光交换装置还包括滤波器,所述滤波器包括所述输入端口,所述方法还包括:
    通过所述滤波器接收来自光纤的光信号;
    通过所述滤波器将所述光信号分离为所述第一光束和所述第二光束。
  25. 根据权利要求15至23任一项所述的重定向方法,其特征在于,所述输入端口包括第一输入端口和第二输入端口,所述方法还包括:
    通过所述第一输入端口输入所述第一光束;
    通过所述第二输入端口输入所述第二光束,所述第一输入端口和所述第二输入端口沿所述第二方向的位置至少部分重合。
  26. 一种可重构光分插复用器,其特征在于,包括多个光交换装置,不同的所述光交换装置之间通过光纤连接,所述光交换装置如权利要求1至14任一项所示。
PCT/CN2020/137478 2020-02-21 2020-12-18 一种光交换装置、重定向方法以及可重构光分插复用器 WO2021164406A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20919681.5A EP4095576A4 (en) 2020-02-21 2020-12-18 OPTICAL SWITCHING DEVICE, REDIRECTION METHOD AND RECONFIGURABLE OPTICAL INSERT/DROP MULTIPLEXER
JP2022549796A JP7445008B2 (ja) 2020-02-21 2020-12-18 光スイッチング装置、方向転換方法、及び再構成可能な光アドドロップマルチプレクサ
US17/891,853 US20220390681A1 (en) 2020-02-21 2022-08-19 Optical switching apparatus, redirection method, and reconfigurable optical add-drop multiplexer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010108090.1 2020-02-21
CN202010108090.1A CN113296191A (zh) 2020-02-21 2020-02-21 一种光交换装置、重定向方法以及可重构光分插复用器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/891,853 Continuation US20220390681A1 (en) 2020-02-21 2022-08-19 Optical switching apparatus, redirection method, and reconfigurable optical add-drop multiplexer

Publications (1)

Publication Number Publication Date
WO2021164406A1 true WO2021164406A1 (zh) 2021-08-26

Family

ID=77317571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137478 WO2021164406A1 (zh) 2020-02-21 2020-12-18 一种光交换装置、重定向方法以及可重构光分插复用器

Country Status (5)

Country Link
US (1) US20220390681A1 (zh)
EP (1) EP4095576A4 (zh)
JP (1) JP7445008B2 (zh)
CN (1) CN113296191A (zh)
WO (1) WO2021164406A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113740971B (zh) 2020-05-30 2022-10-28 华为技术有限公司 光交换装置、重定向方法、可重构光分插复用器及系统
CN117075266A (zh) * 2022-05-09 2023-11-17 华为技术有限公司 一种wss、roadm、光传输系统和光信号的传输方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7034979B1 (en) * 2001-11-09 2006-04-25 Ezconn Corporation Variable optical attenuator using crystal wedges
CN1936633A (zh) * 2005-08-08 2007-03-28 Jds尤尼弗思公司 带有波长相关损耗补偿的可调式光衰减器
CN105008993A (zh) * 2012-12-07 2015-10-28 日本电信电话株式会社 光输入输出装置
CN108353216A (zh) * 2015-09-23 2018-07-31 ROADMap系统有限公司 光学系统
CN109001865A (zh) * 2017-06-06 2018-12-14 朗美通经营有限责任公司 多路传送的波长选择开关
CN110121678A (zh) * 2016-12-28 2019-08-13 日本电信电话株式会社 光信号处理装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100293921B1 (ko) * 1995-12-26 2001-09-17 윤종용 3차원으로 구성된 반얀망에서의 입력포트 번호부여방법
US6570521B1 (en) * 2001-12-27 2003-05-27 Analog Devices, Inc. Multistage scrambler for a digital to analog converter
US8103137B2 (en) * 2009-04-01 2012-01-24 Fusion-Io, Inc. Optical network for cluster computing
JP5840176B2 (ja) * 2012-09-07 2016-01-06 古河電気工業株式会社 光スイッチ
US9306699B2 (en) 2013-12-31 2016-04-05 Santec Corporation Wavelength-selective switch array
US9706276B2 (en) * 2015-11-05 2017-07-11 Rockley Photonics Limited Optoelectronic switch
US9980021B2 (en) * 2015-10-07 2018-05-22 Ciena Corporation Scalable switch fabric using optical interconnects
WO2018191862A1 (zh) * 2017-04-18 2018-10-25 华为技术有限公司 波长选择方法和波长选择开关
GB2574888B (en) * 2018-06-22 2022-08-10 Huber Suhner Polatis Ltd Multiple wavelength band optical switching unit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7034979B1 (en) * 2001-11-09 2006-04-25 Ezconn Corporation Variable optical attenuator using crystal wedges
CN1936633A (zh) * 2005-08-08 2007-03-28 Jds尤尼弗思公司 带有波长相关损耗补偿的可调式光衰减器
CN105008993A (zh) * 2012-12-07 2015-10-28 日本电信电话株式会社 光输入输出装置
CN108353216A (zh) * 2015-09-23 2018-07-31 ROADMap系统有限公司 光学系统
CN110121678A (zh) * 2016-12-28 2019-08-13 日本电信电话株式会社 光信号处理装置
CN109001865A (zh) * 2017-06-06 2018-12-14 朗美通经营有限责任公司 多路传送的波长选择开关

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4095576A4

Also Published As

Publication number Publication date
CN113296191A (zh) 2021-08-24
EP4095576A1 (en) 2022-11-30
US20220390681A1 (en) 2022-12-08
JP2023515056A (ja) 2023-04-12
JP7445008B2 (ja) 2024-03-06
EP4095576A4 (en) 2023-07-19

Similar Documents

Publication Publication Date Title
US8260099B2 (en) Reconfigurable optical add/drop multiplexer
JP5184637B2 (ja) 波長選択スイッチ
WO2013038713A1 (ja) 光スイッチ
US20220390681A1 (en) Optical switching apparatus, redirection method, and reconfigurable optical add-drop multiplexer
WO2021244107A1 (zh) 光交换装置、重定向方法、可重构光分插复用器及系统
KR20040036929A (ko) 인터리브된 채널들을 갖는 자유공간 파장 라우팅 시스템
JP2014182370A (ja) 波長選択スイッチ
JPH11174250A (ja) 光学的通過帯域フィルタ
WO2020024840A1 (zh) 一种波长交换装置及系统
JP2013125278A (ja) デジタルマイクロミラーデバイス(dmd)を用い、波長依存損失が低減した光学処理デバイス
JP2008224824A (ja) 波長選択スイッチ
CN114545557A (zh) 一种光处理装置及光学系统
US8693818B2 (en) Optical processing device
JP5192501B2 (ja) 波長選択スイッチ
JP2011064721A (ja) 光スイッチ
JP2009217247A (ja) コンパクトな分散システムを備える光学デバイス
WO2022227789A1 (zh) 一种光交换装置、光交换方法、光交换节点以及系统
US7161739B2 (en) Optical system, optical device including the same, and optical device designing method
WO2021000616A1 (zh) 一种波长选择开关以及相关装置
WO2024093330A1 (zh) 光交换装置和光交换方法
TWI823374B (zh) 光學裝置
WO2024001619A1 (zh) 波长选择开关,光束传输方向的调度方法以及光交换节点
EP2570829B1 (en) Optical processing device
CN118112721A (zh) 一种波长选择开关和相关设备
CN117687151A (zh) 单侧自由空间波分多路复用器装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919681

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022549796

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020919681

Country of ref document: EP

Effective date: 20220822

NENP Non-entry into the national phase

Ref country code: DE