WO2021164148A1 - 信号检测方法、装置、设备及存储介质 - Google Patents

信号检测方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2021164148A1
WO2021164148A1 PCT/CN2020/094673 CN2020094673W WO2021164148A1 WO 2021164148 A1 WO2021164148 A1 WO 2021164148A1 CN 2020094673 W CN2020094673 W CN 2020094673W WO 2021164148 A1 WO2021164148 A1 WO 2021164148A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
bluetooth
detection
quality
bluetooth signal
Prior art date
Application number
PCT/CN2020/094673
Other languages
English (en)
French (fr)
Inventor
苏晶晶
罗丽云
Original Assignee
锐迪科微电子(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 锐迪科微电子(上海)有限公司 filed Critical 锐迪科微电子(上海)有限公司
Priority to EP20920376.9A priority Critical patent/EP4109942A4/en
Priority to US17/800,353 priority patent/US20230071506A1/en
Priority to GB2218099.6A priority patent/GB2610961B/en
Publication of WO2021164148A1 publication Critical patent/WO2021164148A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/04Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of bars or wire
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/22Parsing or analysis of headers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/04Speed or phase control by synchronisation signals
    • H04L7/041Speed or phase control by synchronisation signals using special codes as synchronising signal
    • H04L7/042Detectors therefor, e.g. correlators, state machines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communications, in particular to a signal detection method, device, equipment and storage medium.
  • Bluetooth technology is an open global specification for wireless data and voice communication. It is a short-range wireless connection technology based on low-cost short-range wireless connections to establish a communication environment for fixed or mobile devices.
  • the receiver After the receiver receives the Bluetooth signal, the receiver performs automatic gain control (AGC), signal detection, and signal synchronization on the Bluetooth signal.
  • AGC automatic gain control
  • the receiver performs signal detection on the sync word or access address part of the Bluetooth signal within the time period set by the timer to synchronize the Bluetooth signal until the timer is completed.
  • the receiver cannot successfully synchronize the Bluetooth signal, but in this way the receiver will still detect the signal in the synchronization code part or the signal in the access address part within the time set by the timer. Lead to waste of receiver power consumption.
  • the embodiments of the present invention provide a signal detection method, device, equipment and storage medium
  • an embodiment of the present application provides a signal detection method, which includes: receiving a Bluetooth signal, and performing signal detection on the signal of the preamble part of the Bluetooth signal to obtain the detected signal quality; If the quality is not greater than the quality threshold, stop signal detection of the synchronization code part of the Bluetooth signal, or stop signal detection of the signal of the access address part of the Bluetooth signal.
  • the signal quality includes signal energy; the receiving the Bluetooth signal and performing signal detection on the signal in the preamble part of the Bluetooth signal to obtain the detected signal quality includes: receiving the Bluetooth signal, and perform energy detection on the signal in the preamble part of the Bluetooth signal to obtain the signal energy.
  • the signal quality includes a correlation peak
  • the method further includes: signal-correlating a signal in the preamble part of the Bluetooth signal with a local signal to obtain the correlation peak, and the local The signal includes the preamble.
  • the quality threshold includes at least one of an energy threshold or a correlation peak threshold; in the case that the signal quality is lower than the quality threshold, stop checking the signal in the Bluetooth signal Perform signal detection on the signal of the synchronization code part, or stop the signal detection on the signal of the access address part of the Bluetooth signal, including: when the signal energy is not greater than the energy threshold, and/or the correlation peak value is not If it is greater than the correlation peak threshold, stop signal detection of the synchronization code part of the Bluetooth signal, or stop signal detection of the signal of the access address part of the Bluetooth signal.
  • the method further includes: When the signal quality is greater than the quality threshold, signal detection is performed on the signal of the synchronization code part in the Bluetooth signal, or signal detection is performed on the signal of the access address part of the Bluetooth signal.
  • the receiving the Bluetooth signal and performing signal detection on the signal of the preamble part of the Bluetooth signal to obtain the detected signal quality includes: receiving the Bluetooth signal and performing signal detection for the first duration The signal detection of the preamble part of the Bluetooth signal is performed internally to obtain the detected signal quality.
  • an embodiment of the present application provides a signal detection device.
  • the method includes: a detection unit that receives a Bluetooth signal and performs signal detection on the signal of the preamble part of the Bluetooth signal to obtain the detected signal quality; stop; Unit, used to stop signal detection of the synchronization code part of the Bluetooth signal or stop the signal of the access address part of the Bluetooth signal when the signal quality is lower than the quality threshold Perform signal detection.
  • the detection unit is specifically configured to receive the Bluetooth signal, and perform energy detection on the signal in the preamble portion of the Bluetooth signal to obtain the signal energy.
  • the detection unit is further configured to perform signal correlation between the signal of the preamble part of the Bluetooth signal and the local signal to obtain the correlation peak, and the local signal includes the preamble.
  • the stopping unit is specifically configured to stop the pairing when the signal energy is not greater than the energy threshold, and/or the correlation peak is not greater than the correlation peak threshold.
  • the signal detection of the synchronization code part of the Bluetooth signal is performed, or the signal detection of the signal of the access address part of the Bluetooth signal is stopped.
  • the detection unit is further configured to perform signal detection on the signal of the synchronization code part in the Bluetooth signal when the signal quality is greater than the quality threshold, or to perform signal detection on all signals in the synchronization code part of the Bluetooth signal.
  • the signal of the access address part of the Bluetooth signal is used for signal detection.
  • the detection unit is specifically configured to receive the Bluetooth signal, and perform signal detection on the signal of the preamble portion of the Bluetooth signal within the first time period to obtain the detected signal quality.
  • an embodiment of the present application provides an electronic device that includes a receiver and a transmitter, and further includes: a processor, adapted to implement one or more instructions; and, a computer storage medium, where the computer stores The medium stores one or more instructions, and the one or more instructions are suitable for being loaded by the processor and executed by the above-mentioned first aspect and the method of the optional implementation in the above-mentioned first aspect.
  • an embodiment of the present application provides a computer storage medium that stores one or more instructions, and the one or more instructions are suitable for being loaded by a processor and executed as in the first aspect and An optional implementation method in the first aspect described above.
  • the embodiments of the present invention provide a signal detection method, device, equipment, and storage medium.
  • the signal detection is performed on the signal of the preamble part of the Bluetooth signal, and when the detected signal quality is not greater than the quality threshold, the Bluetooth signal is stopped.
  • Signal detection is performed on the signal to reduce the signal detection of the signal of the synchronization code part or the signal of the access address part, and reduce the power consumption.
  • FIG. 1 is a schematic diagram of a data packet format of a basic rate type provided by an embodiment of this application;
  • FIG. 2 is a schematic diagram of a data packet format of an enhanced rate type provided by an embodiment of the application
  • Figure 3 is a schematic diagram of an access code format provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of a Bluetooth low energy data packet format provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of another Bluetooth low energy data packet format provided by an embodiment of the application.
  • FIG. 6 is a flowchart of a signal detection method provided by an embodiment of the application.
  • FIG. 7 is a flowchart of another signal detection method provided by an embodiment of the application.
  • FIG. 8 is a timing diagram of a signal detection provided by an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of a signal detection device provided by an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of an electronic device provided by an embodiment of the application.
  • the embodiment of the present invention provides a signal detection method in order to describe the solution of the present invention more clearly. Let's first introduce some knowledge related to Bluetooth signals.
  • Bluetooth technology is a short-range wireless technology that supports multiple network topologies, including point-to-point, broadcast, and mesh networks. Bluetooth technology brings the convenience of short-distance wireless connection and transmission between electronic devices, and has a stronger connection to our mobile phones, tablets, laptops, cameras and other various digital products. Bluetooth wireless technology is currently divided into two types: basic rate (BR)/enhanced data rate (EDR) and low energy (LE). The BR/EDR type of Bluetooth is used for audio and streaming.
  • BR basic rate
  • EDR enhanced data rate
  • LE low energy
  • LE type Bluetooth is mostly used for battery-operated sensor devices, using point-to-point (one-to-one), broadcast (one-to-many) and grid (many-to-many) ) And many other network topologies.
  • FIG. 1 is a schematic diagram of a BR type data packet format provided by an embodiment of the application.
  • a BR type data packet includes an access code (access code), a header (header), and a payload (payload).
  • Fig. 2 is a schematic diagram of an EDR type data packet format provided by an embodiment of the application.
  • EDR type data packets include access code (access code), header (header), guard segment (guard), timing synchronization message (synchronization, SYNC), enhanced data rate payload (enhanced data rate payload) And trailer.
  • the format of the access code (access code) in the BR type data packet and the EDR type data packet is shown in Figure 3.
  • the access code includes a preamble and a sync word.
  • the access code It can also include a trailer.
  • FIG. 4 is a schematic diagram of a low-power Bluetooth data packet format provided by an embodiment of the application, which is a low-power non-encoded physical layer (LE PHY) data packet format in the Bluetooth protocol.
  • the data packet shown in Figure 4 includes a preamble, an access address, a protocol data unit (PDU), and a cyclic redundancy check code (CRC), It may also include optional (CTE, constant tone extension).
  • FIG. 5 is a schematic diagram of another low-power Bluetooth data packet format provided by an embodiment of the application, which is a low-power-encoded physical layer (LE coded PHY) data packet format in the Bluetooth protocol.
  • LE coded PHY low-power-encoded physical layer
  • the data packet shown in Figure 5 includes preamble, access address, characteristic information (CI), protocol data unit (PDU), terminal 1 (TERM1), terminal 1 (TERM1), and terminal 1 (TERM1). 2 (TERM2) and cyclic redundancy check code (CRC).
  • CI characteristic information
  • PDU protocol data unit
  • TERM1 terminal 1
  • TERM1 terminal 1
  • TERM1 terminal 1
  • TERM1 terminal 1
  • TERM1 terminal 1
  • TERM1 terminal 1
  • TERM1 terminal 1
  • TERM1 terminal 1
  • TERM1 terminal 1
  • TERM1 terminal 1
  • TERM1 terminal 1
  • TERM1 terminal 1
  • TERM1 terminal 1
  • TERM1 terminal 1
  • TERM1 terminal 1
  • TERM1 terminal 1
  • TERM1 terminal 1
  • TERM1 terminal 1
  • TERM1 terminal 1
  • TERM1 terminal 1
  • TERM1 terminal 1
  • TERM1 terminal
  • the least significant bit (LSB) of the Bluetooth data packet belongs to the preamble.
  • the transmitter first sends the signal of the preamble part of the Bluetooth signal, and then sends the signal of the synchronization code part of the Bluetooth signal or the signal of the access address part of the Bluetooth signal.
  • the transceiver After the transceiver detects the Bluetooth signal, it will perform AGC adjustment, signal detection and signal synchronization on the Bluetooth signal.
  • the Bluetooth signal is usually adjusted by AGC through the preamble of the Bluetooth signal, and the signal is detected by the access address or synchronization code of the Bluetooth signal to realize the signal synchronization of the Bluetooth signal.
  • the receiver is provided with a timer.
  • the receiver After the timer starts timing, the receiver performs signal detection on the access address or synchronization code until the timing duration of the timer is a preset value.
  • the receiver cannot successfully synchronize the Bluetooth signal through signal detection of the access address or synchronization code, and the receiver still detects the signal or synchronization code part of the access address part of the Bluetooth signal. Signal detection of the signal will consume unnecessary power consumption, resulting in waste of receiver power consumption.
  • FIG. 6 is a flowchart of a signal detection method provided by an embodiment of the application. As shown in Figure 6, the method may include:
  • the receiver in the Bluetooth system receives the Bluetooth signal and performs signal detection on the signal in the preamble part of the Bluetooth signal to obtain the detected signal quality. It can be understood that the detected signal quality is the signal quality of the preamble part of the Bluetooth signal.
  • the receiver in the Bluetooth system is a communication device in the Bluetooth system.
  • the communication device can be used as a receiver to receive Bluetooth signals.
  • the communication device can also be used as a transmitter in the Bluetooth system to send Bluetooth signals.
  • the receiver receives the Bluetooth signal and performs signal detection on the signal in the preamble part of the Bluetooth signal to obtain the detected Bluetooth signal.
  • the receiver determines that there is a Bluetooth signal for transmission after receiving a segment of the carrier. It should be noted that before the signal of the preamble part is received, the receiver will first receive the above-mentioned segment of carrier. After the receiver determines that it has received this segment of the carrier, it starts to receive the signal in the preamble part of the Bluetooth signal.
  • the receiver receives the Bluetooth signal, and performs signal detection on the signal of the preamble part of the Bluetooth signal within the first time period.
  • the receiver receives the Bluetooth signal, and performs signal detection on the signal of the preamble part of the Bluetooth signal within the first time period.
  • the receiver sets a first timer, and the receiver determines that there is a Bluetooth signal. After transmitting the number, the receiver starts the first timer. When the timing duration of the first timer does not exceed the first duration, the receiver receives the Bluetooth signal and performs signal detection on the signal in the preamble part of the Bluetooth signal.
  • the value of the first duration and the unit of measurement can be determined according to the reception duration of the preamble part of the Bluetooth signal, which can be specifically adjusted according to actual conditions, and there is no limitation here.
  • the length of the preamble is different, and the reception time length of the preamble part is different.
  • the receiver receives the signal of the preamble part of the Bluetooth signal, and performs AGC adjustment on the Bluetooth signal through the signal of the preamble part.
  • the receiver determines that the detected signal quality is not greater than the quality threshold, and the receiver stops processing the Bluetooth signal Signal detection is performed on the signal in the sync code part.
  • the receiver determines that the detected signal quality is not greater than the quality threshold, and then stops the signal to the access address part of the Bluetooth signal Perform signal detection.
  • the length of the access address or synchronization code is 2 to 16 times the length of the preamble.
  • the receiver performs signal detection on the signal in the preamble part, and when the detected signal quality is not greater than the quality threshold, it stops detecting the signal in the access address part or the signal in the synchronization code part, and the receiver can save receiving The power consumption of the machine for signal detection in the case of signal detection on the signal of the access address part or the signal of the synchronization code part.
  • the embodiments of the present invention provide a signal detection method, device, equipment, and storage medium.
  • the signal detection is performed on the signal of the preamble part of the Bluetooth signal, and when the detected signal quality is not greater than the quality threshold, the Bluetooth signal is stopped.
  • Signal detection is performed on the signal to reduce the signal detection of the signal of the synchronization code part or the signal of the access address part, and reduce the power consumption.
  • FIG. 7 is a flowchart of a signal detection method provided by an embodiment of the application. This method is a further improvement and refinement of the method shown in FIG. 6, and the method may include:
  • the receiver receives the Bluetooth signal and performs energy detection on the signal in the preamble part of the Bluetooth signal to obtain the signal energy. It is understandable that the signal energy obtained is the signal energy of the preamble part of the Bluetooth signal.
  • the received signal strength indicator (RSSI) of the preamble part satisfies the condition of the first formula.
  • the first formula is:
  • RSSI
  • sig receive is the signal strength of the preamble part received by the receiver
  • sig length is the signal length of the preamble part in the Bluetooth signal.
  • the local signal includes the preamble.
  • the local signal is a signal generated by the receiver to perform correlation operations with the received signal.
  • the correlation peak value in the signal quality is the peak value of multiple correlation values obtained by performing signal correlation between the signal in the preamble part of the Bluetooth signal and the local signal.
  • the local signal is obtained through Gaussian filtering.
  • the local signal sig local satisfies the condition of the second formula.
  • the second formula is:
  • the Gaussian filter coefficient is a Gaussian filter coefficient
  • the local IQ signal is a local in-phase quadrature signal.
  • the second formula indicates that the local signal is the convolution of the local in-phase quadrature signal and the Gaussian filter coefficient.
  • the correlation value R between the local signal and the Bluetooth signal satisfies the condition of the third formula.
  • the third formula is: sig receive is the received Bluetooth signal.
  • the received Bluetooth signal belongs to the signal of the preamble part of the Bluetooth signal.
  • the third formula indicates that the correlation value between the local signal and the Bluetooth signal is the convolution of the local signal and the Bluetooth signal.
  • the signal quality includes at least one of the above-mentioned signal energy or the above-mentioned correlation peak.
  • the quality threshold includes at least one of an energy threshold or a correlation peak threshold.
  • the receiver stops performing signal detection on the synchronization code part of the Bluetooth signal when the signal energy is not greater than the energy threshold, and/or the correlation peak is not greater than the correlation peak threshold, Or stop the signal detection of the signal in the access address part of the Bluetooth signal.
  • the energy threshold and the correlation peak threshold are determined according to the signal energy of the Bluetooth signal and the correlation value with the local signal when the receiver successfully synchronizes the Bluetooth signal. They can be adjusted according to the actual situation and are not specifically limited.
  • the signal quality is greater than the quality threshold, perform signal detection on the signal of the synchronization code part in the Bluetooth signal, or perform signal detection on the signal of the access address part of the Bluetooth signal.
  • the receiver when the signal quality is greater than the quality threshold, performs signal detection on the signal of the synchronization code part in the Bluetooth signal, or performs signal detection on the signal of the access address part of the Bluetooth signal, specifically: After the receiver starts to receive the signal of the synchronization code part of the Bluetooth signal or the signal of the access address part of the Bluetooth signal, the receiver starts the second timer. When the timing duration of the second timer does not exceed the second duration, the receiver detects the signal of the synchronization code part in the Bluetooth signal, or detects the signal of the access address part of the Bluetooth signal.
  • the value of the second duration and the unit of measurement can be determined according to the receiving duration of the synchronization code or the access address part of the Bluetooth signal, which can be specifically adjusted according to the actual situation, and there is no limitation here.
  • the Bluetooth signal includes a synchronization code
  • the receiver determines that the detected signal quality is greater than the quality threshold, and the receiver synchronizes the Bluetooth signal
  • the signal of the code part performs signal detection.
  • the receiver determines that the detected signal quality is greater than the quality threshold, and then the access in the Bluetooth signal The signal in the address part performs signal detection.
  • L low energy
  • the receiver when the detected signal quality is equal to the quality threshold, the receiver will also perform signal detection on the signal in the synchronization code part of the Bluetooth signal, or signal detection on the signal in the access address part of the Bluetooth signal .
  • the receiver performs signal detection on the signal of the synchronization code part or the signal of the access address part to obtain the correlation peak value of the received signal and the local signal, and the receiver then performs signal detection based on the correlation peak value of the received signal and the local signal. Synchronize the Bluetooth signal.
  • the received signal includes the signal of the synchronization code part of the Bluetooth signal or the signal of the access address part of the Bluetooth signal, and the local signal also includes the synchronization code or the access address.
  • FIG. 8 is a timing diagram of signal detection provided by an embodiment of the application.
  • the receiver uses the first timer (timer 1) to detect the signal in the preamble part of the Bluetooth signal and perform AGC adjustment within the first time period (t1).
  • the receiver uses the second timer (timer 2) to detect and synchronize the signal in the synchronization code part of the Bluetooth signal or the signal in the access address part in the second time period.
  • the embodiments of the present invention provide a signal detection method, device, equipment, and storage medium.
  • the signal detection is performed on the signal of the preamble part of the Bluetooth signal, and when the detected signal quality is not greater than the quality threshold, the Bluetooth signal is stopped.
  • Signal detection is performed on the signal to reduce the signal detection of the signal of the synchronization code part or the signal of the access address part, and reduce the power consumption.
  • FIG. 9 is a schematic structural diagram of a signal device provided by an embodiment of the application.
  • the signal detection device in FIG. 9 corresponds to the above-mentioned receiver.
  • the signal detection device includes:
  • the detection unit 901 receives the Bluetooth signal, and performs signal detection on the signal in the preamble part of the Bluetooth signal to obtain the detected signal quality;
  • the stopping unit 902 is configured to stop signal detection of the synchronization code part of the Bluetooth signal, or stop signal detection of the signal of the access address part of the Bluetooth signal when the signal quality is lower than the quality threshold.
  • the detection unit 901 is specifically configured to receive a Bluetooth signal, and perform energy detection on the signal in the preamble part of the Bluetooth signal to obtain the signal energy.
  • the detection unit 901 is further configured to perform signal correlation between the signal in the preamble part of the Bluetooth signal and the local signal to obtain a correlation peak, and the local signal includes the preamble.
  • the stopping unit 902 is specifically configured to stop the signal to the synchronization code part of the Bluetooth signal when the signal energy is not greater than the energy threshold, and/or the correlation peak is not greater than the correlation peak threshold. Carry out signal detection, or stop signal detection for the signal of the access address part of the Bluetooth signal.
  • the detection unit 901 is also used to perform signal detection on the synchronization code part of the Bluetooth signal when the signal quality is greater than the quality threshold, or for the access address part of the Bluetooth signal.
  • the signal performs signal detection.
  • the detection unit 901 is specifically configured to receive the Bluetooth signal, and perform signal detection on the signal of the preamble part of the Bluetooth signal within the first time period to obtain the detected signal quality.
  • each module in the above signal detection device is only a division of logical functions, and may be fully or partially integrated into a physical entity during actual implementation, or may be physically separated.
  • the above modules can be separately established processing elements, or they can be integrated into the same chip for implementation.
  • they can also be stored in the storage element of the controller in the form of program code, which is called and combined by a certain processing element of the processor.
  • various modules can be integrated together or implemented independently.
  • the processing element here can be an integrated circuit chip with signal processing capabilities.
  • each step of the above method or each of the above modules can be completed by an integrated logic circuit of hardware in the processor element or instructions in the form of software.
  • the processing element may be a general-purpose processor, such as a central processing unit (English: central processing unit, CPU for short), or one or more integrated circuits configured to implement the above methods, for example: one or more specific integrated circuits Circuit (English: application-specific integrated circuit, abbreviation: ASIC), or, one or more microprocessors (English: digital signal processor, abbreviation: DSP), or, one or more field programmable gate arrays (English: field-programmable gate array, referred to as FPGA), etc.
  • a central processing unit English: central processing unit, CPU for short
  • integrated circuits configured to implement the above methods, for example: one or more specific integrated circuits Circuit (English: application-specific integrated circuit, abbreviation: ASIC), or, one or more microprocessors (English: digital signal processor, abbreviation: DSP), or, one or more field programmable gate arrays (English: field-programmable gate array, referred to as FPGA), etc.
  • ASIC application-specific integrated circuit
  • DSP digital signal processor
  • the electronic device includes:
  • the receiver 1001, the transmitter 1002, the processor 1003, and the memory 1004 (the number of processors 1003 in the electronic device 1000 may be one or more, and one processor is taken as an example in FIG. 10).
  • the receiver 1001, the transmitter 1002, the processor 1003, and the memory 1004 may be connected by a bus or in other ways. In FIG. 10, a bus connection is taken as an example.
  • the memory 1004 may include a read-only memory and a random access memory, and provides instructions and data to the processor 1003. A part of the memory 1004 may also include a non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the memory 1004 stores an operating system and operating instructions, executable modules or data structures, or a subset of them, or an extended set of them.
  • the operating instructions may include various operating instructions for implementing various operations.
  • the operating system may include various system programs for implementing various basic services and processing hardware-based tasks.
  • the processor 1003 controls the operation of the electronic device, and the processor 1003 may also be referred to as a central processing unit (CPU).
  • the various components of the electronic device are coupled together through a bus system, where in addition to the data bus, the bus system may also include a power bus, a control bus, and a status signal bus.
  • bus systems in the figure.
  • the methods disclosed in the foregoing embodiments of the present application may be applied to the processor 1003 or implemented by the processor 1003.
  • the processor 1003 may be an integrated circuit chip with signal processing capability. In the implementation process, the steps of the foregoing method can be completed by an integrated logic circuit of hardware in the processor 1003 or instructions in the form of software.
  • the aforementioned processor 1003 may be a general-purpose processor, a digital signal processing (digital signal processing, DSP), an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or Other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processing
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • Other programmable logic devices discrete gates or transistor logic devices, discrete hardware components.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 1004, and the processor 1003 reads the information in the memory 1004, and completes the steps of the above method in combination with its hardware.
  • the receiver 1001 can be used to receive input digital or character information, and to generate signal input related to the relevant settings and function control of the electronic device.
  • the transmitter 1002 can include display devices such as a display screen.
  • the transmitter 1002 can be used to output numbers through an external interface. Or character information.
  • the processor 1003 is configured to execute the aforementioned signal detection method executed by the receiver.
  • a computer-readable storage medium stores a computer program. Signal detection is performed on the signal to obtain the detected signal quality; in the case that the signal quality is not greater than the quality threshold, stop the signal detection of the synchronization code part of the Bluetooth signal, or stop the signal access to the address part of the Bluetooth signal Signal Detection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Quality & Reliability (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Forging (AREA)

Abstract

本申请实施例公开了一种信号检测方法、装置、设备及存储介质,该方法包括:接收蓝牙信号,并对蓝牙信号中前导码部分的信号进行信号检测,得到检测的信号质量;在信号质量不大于质量阈值的情况下,停止对蓝牙信号中的同步码部分的信号进行信号检测,或停止对蓝牙信号中接入地址部分的信号进行信号检测。通过对蓝牙信号中前导码部分的信号进行信号检测,并在检测的信号质量不大于质量阈值的情况下,停止对蓝牙信号进行信号检测,以减少对同步码部分的信号或接入地址部分的信号进行信号检测,降低功耗。

Description

信号检测方法、装置、设备及存储介质 技术领域
本发明涉及通信领域,尤其涉及一种信号检测方法、装置、设备及存储介质。
背景技术
蓝牙技术是一种无线数据和语音通信开放的全球规范,它是基于低成本的近距离无线连接,为固定设备或移动设备建立通信环境的一种近距离无线连接技术。在蓝牙系统中,接收机在接收到蓝牙信号之后,接收机会对蓝牙信号进行自动增益控制(automatic gain control,AGC)、信号检测和信号同步。
目前,接收机在计时器设置的时长内对蓝牙信号中同步码(sync word)或接入地址(access address)部分的信号进行信号检测,以对蓝牙信号进行信号同步,直至计时器计时完成。在蓝牙信号质量较差的情况下,接收机无法成功同步蓝牙信号,但这种方式接收机仍会在计时器设置的时长内对同步码部分的信号或接入地址部分的信号进行信号检测,导致接收机功耗浪费。
发明内容
本发明实施例提供了一种信号检测方法、装置、设备及存储介质,
通过对蓝牙信号中前导码部分的信号进行信号检测,并在检测的信号质量不大于质量阈值的情况下,停止对蓝牙信号进行信号检测,以减少对同步码部分的信号或接入地址部分的信号进行信号检测,降低功耗。
第一方面,本申请实施例提供了一种信号检测方法,该方法包括:接收蓝牙信号,并对所述蓝牙信号中前导码部分的信号进行信号检测,得到检测的信号质量;在所述信号质量不大于质量阈值的情况下,停止对所述蓝牙信号中的同步码部分的信号进行信号检测,或停止对所述蓝牙信号中接入地址部分的信号进行信号检测。
在一个可选的实现方式中,所述信号质量包括信号能量;所述接收蓝牙信号,并对所述蓝牙信号中前导码部分的信号进行信号检测,得到检测的信号质量,包括:接收所述蓝牙信号,并对所述蓝牙信号中前导码部分的信号进行能量检测,得到所述信号能量。
在一个可选的实现方式中,所述信号质量包括相关峰值,所述方法还包括:将所述蓝牙信号中前导码部分的信号与本地信号进行信号相关,得到所述相关峰值,所述本地信号包括前导码。
在一个可选的实现方式中,所述质量阈值包括能量阈值或相关峰值阈值中的至少一个;所述在所述信号质量低于所述质量阈值的情况下,停止对所述蓝牙信号中的同步码部分的信号进行信号检测,或停止对所述蓝牙信号中接入地址部分的信号进行信号检测,包括:在所述信号能量不大于所述能量阈值,和/或,所述相关峰值不大于所述相关峰值阈值的情况下,停止对所述蓝牙信号中的同步码部分的信号进行信号检测,或停止对所述蓝牙信号中接入地址部分的信号进行信号检测。
在一个可选的实现方式中,在所述在接收到蓝牙信号之后,对所述蓝牙信号中前导码部分的信号进行信号检测,得到检测的信号质量之后,所述方法还包括:在所述信号质量大于所述质量阈值的情况下,对所述蓝牙信号中的同步码部分的信号进行信号检测,或对所述蓝牙信号中接入地址部分的信号进行信号检测。
在一个可选的实现方式中,所述接收蓝牙信号,并对所述蓝牙信号中前导码部分的信号进行信号检测,得到检测的信号质量,包括:接收所述蓝牙信号,并在第一时长内对所述蓝牙信号中前导码部分的信号进行信号检测,得到所述检测的信号质量。
第二方面,本申请实施例提供了一种信号检测装置,该方法包括:检测单元,接收蓝牙信号,并对所述蓝牙信号中前导码部分的信号进行信号检测,得到检测的信号质量;停止单元,用于在所述信号质量低于所述质量阈值的情况下,停止对所述蓝牙信号中的同步码部分的信号进行信号检测,或停止对所述蓝牙信号中接入地址部分的信号进行信号检测。
在一个可选的实现方式中,所述检测单元,具体用于接收所述蓝牙信号,并对所述蓝牙信号中前导码部分的信号进行能量检测,得到所述信号能量。
在一个可选的实现方式中,所述检测单元,还用于将所述蓝牙信号中前导码部分的信号与本地信号进行信号相关,得到所述相关峰值,所述本地信号包括前导码。
在一个可选的实现方式中,所述停止单元,具体用于在所述信号能量不大于所述能量阈值,和/或,所述相关峰值不大于所述相关峰值阈值的情况下,停止对所述蓝牙信号中的同步码部分的信号进行信号检测,或停止对所述蓝牙信号中接入地址部分的信号进行信号检测。
在一个可选的实现方式中,所述检测单元,还用于在所述信号质量大于所述质量阈值的情况下,对所述蓝牙信号中的同步码部分的信号进行信号检测,或对所述蓝牙信号中接入地址部分的信号进行信号检测。
在一个可选的实现方式中,所述检测单元,具体用于接收所述蓝牙信号,并在第一时长内对所述蓝牙信号中前导码部分的信号进行信号检测,得到所述检测的信号质量。
第三方面,本申请实施例提供了一种电子设备,该电子设备包括接收器和发送器,还包括:处理器,适于实现一条或多条指令;以及,计算机存储介质,所述计算机存储介质存储有一条或多条指令,所述一条或多条指令适于由所述处理器加载并执行如上述第一方面以及上述第一方面中可选的实现方式的方法。
第四方面,本申请实施例提供了一种计算机存储介质,所述计算机存储介质存储有一条或多条指令,所述一条或多条指令适于由处理器加载并执行如上述第一方面以及上述第一方面中可选的实现方式的方法。
本发明实施例提供了一种信号检测方法、装置、设备及存储介质,通过对蓝牙信号中前导码部分的信号进行信号检测,并在检测的信号质量不大于质量阈值的情况下,停止对蓝牙信号进行信号检测,以减少对同步码部分的信号或接入地址部分的信号进行信号检测,降低功耗。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1为本申请实施例提供的一种基本速率类型的数据包格式示意图;
图2为本申请实施例提供的一种增强速率类型的数据包格式示意图;
图3为本申请实施例提供的一种接入代码格式示意图;
图4为本申请实施例提供的一种低功耗蓝牙的数据包格式示意图;
图5为本申请实施例提供的另一种低功耗蓝牙的数据包格式示意图;
图6为本申请实施例提供的一种信号检测方法的流程图;
图7为本申请实施例提供的另一种信号检测方法的流程图;
图8为本申请实施例提供的一种信号检测时序图;
图9为本申请实施例提供的一种信号检测装置的结构示意图;
图10为本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
本申请的说明书实施例和权利要求书及上述附图中的术语“第一”、“第二”、和“第三”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元。方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。“和/或”用于表示在其所连接的两个对象之间选择一个或全部。例如“A和/或B”表示A、B或A+B。
本发明实施例提供了信号检测方法,为更清楚的描述本发明的方案。下面先介绍一些与蓝牙信号相关的知识。
蓝牙技术是一种短距离无线技术,支持多种网络拓扑结构,包括点对点,广播和网状网络。蓝牙技术带来了电子设备间短距离无线连接和传输的便捷性,给我们的手机、平板、笔记本电脑、相机和其它各种数码产品等设备有了更强的关联性。蓝牙无线技术目前分为基本速率(basic rate,BR)/增强速率 (enhance data rate,EDR)和低功耗(low energy,LE)两种技术类型,其中BR/EDR类型蓝牙用于音频和流媒体应用,是以点对点网络拓扑结构创建一对一设备通信;LE类型蓝牙则多用于靠电池工作的传感器设备,使用点对点(一对一)、广播(一对多)和网格(多对多)等多种网络拓扑结构。
图1为本申请实施例提供的一种BR类型的数据包格式示意图。如图1所示,BR类型的数据包包括接入代码(access code)、报头(header)和净负荷(payload)。图2为本申请实施例提供的一种EDR类型的数据包格式示意图。如图2所示,EDR类型的数据包包括接入代码(access code)、报头(header)、保护段(guard)、定时同步消息(synchronization,SYNC)、增强速率净负荷(enhanced data rate payload)和尾码(trailer)。其中,BR类型的数据包和EDR类型的数据包中的接入代码(access code)格式都如图3所示,接入代码包括前导码(preamble)和同步码(sync word),接入代码还可包括尾码(trailer)。
图4为本申请实施例提供的一种低功耗蓝牙的数据包格式示意图,为蓝牙协议中低功耗非编码物理层(LE PHY)的数据包格式。如图4所示的数据包包括前导码(preamble)、接入地址(access address),协议数据单元(Protocol Data Unit,PDU)、和循环冗余校验码(cyclic redundancy check code,CRC),还可包括可选项(CTE,constant tone extension)。图5为本申请实施例提供的另一种低功耗蓝牙的数据包格式示意图,为蓝牙协议中低功耗编码物理层(LE coded PHY)的数据包格式。如图5所示的数据包包括前导码(preamble)、接入地址(access address)、特征信息(characteristic information,CI)、协议数据单元(Protocol Data Unit,PDU)、端1(TERM1)、端2(TERM2)和循环冗余校验码(cyclic redundancy check code,CRC)。
如图1-图5所示,蓝牙数据包的最低有效位(least significant bit,LSB)属于前导码。在蓝牙系统中,发送机首先发送蓝牙信号中前导码部分的信号,再发送蓝牙信号中同步码部分的信号或蓝牙信号中接入地址部分的信号。发送接收机检测到蓝牙信号之后,会对蓝牙信号进行AGC调整、信号检测和信号同步。目前,通常通过蓝牙信号的前导码对蓝牙信号进行AGC调整,通过对 蓝牙信号的接入地址或同步码进行信号检测,以实现对蓝牙信号进行信号同步。其中,接收机设置有计时器,在计时器启动计时之后,接收机对接入地址或同步码进行信号检测,直至计时器的计时时长为预设的值。但在蓝牙信号的信号质量较差的情况下,接收机无法通过对接入地址或同步码进行信号检测来成功同步蓝牙信号,接收器仍对蓝牙信号的接入地址部分的信号或同步码部分的信号进行信号检测,会消耗不必要的功耗,导致接收机功耗浪费。
在通信系统中,信号同步非常重要。数据经过长时间传输之后,在接收端需要重新确定数据起始点位置。由于接收端采样时钟和载波频率与发射端的不匹配,在接收端需要对数据进行载波和采样时钟补偿。没有精确的同步不可能对接收数据进行精确的恢复。同步估计有很多种算法。对于利用本地信号进行同步的系统,包括中国数字电视地面标准(GB 20600-2006)接收机同步系统在内,帧同步一般通过对接收信号与本地信号进行信号相关,并从得到的相关值中确定相关峰值。信号接收端通过相关峰值的位置确定数据起始位置并完成采样时钟同步。相关峰值在该同步系统中起到非常重要的作用,其稳定性和可靠性都将决定同步结果性能的优劣。
下面来详细描述本申请实施例提供的信号检测方法。
图6为本申请实施例提供的一种信号检测方法流程图。如图6所示,该方法可包括:
601、接收蓝牙信号,并对蓝牙信号中前导码部分的信号进行信号检测,得到检测的信号质量。
蓝牙系统中的接收机接收蓝牙信号,并对蓝牙信号中前导码部分的信号进行信号检测,得到检测的信号质量。可以理解的是,检测的信号质量为蓝牙信号中前导码部分的信号质量。
需要说明的是蓝牙系统中的接收机为蓝牙系统中的一种通信装置。该通信装置可作为接收机接收蓝牙信号。可选的,该通信装置还可作为蓝牙系统中的发送机发送蓝牙信号。
可选的,接收机在检测到有蓝牙信号进行传输之后,接收该蓝牙信号并对蓝牙信号中前导码部分的信号进行信号检测,得到检测的蓝牙信号。其中,接 收机在接收到一段载波之后,确定有蓝牙信号进行传输。需要说明的是,在前导码部分的信号被接收之前,接收机会先接收到上述的一段载波。接收机确定接收到这段载波之后,开始接收蓝牙信号中前导码部分的信号。
在一种可选的实现方式中,接收机接收蓝牙信号,并在第一时长内对蓝牙信号中前导码部分的信号进行信号检测。在一些实施例中,接收机接收蓝牙信号,并在第一时长内对蓝牙信号中前导码部分的信号进行信号检测,具体为:接收机设置第一计时器,在接收机确定有蓝牙信号进行传输号之后,接收机启动第一计时器。在第一计时器的计时时长不超过第一时长的情况下,接收机接收蓝牙信号,并对蓝牙信号中前导码部分的信号进行信号检测。其中,第一时长的值和计量单位可根据蓝牙信号中前导码部分的接收时长确定,具体可根据实际情况调整,此处不作限制。前导码的长度不同,前导码部分的接收时长不同。
在一些实施例中,接收机接收蓝牙信号中前导码部分的信号,并通过前导码部分的信号对蓝牙信号进行AGC调整。
602、在信号质量不大于质量阈值的情况下,停止对蓝牙信号中的同步码部分的信号进行信号检测,或停止对蓝牙信号中接入地址部分的信号进行信号检测。
在蓝牙信号包括同步码的情况下,例如在蓝牙信号承载BR类型的数据包或EDR类型的数据包的情况下,接收机确定检测得到的信号质量不大于质量阈值,则接收机停止对蓝牙信号中同步码部分的信号进行信号检测。
在蓝牙信号包括接入地址的情况下,例如蓝牙信号承载LE类型的数据包的情况下,接收机确定检测得到的信号质量不大于质量阈值,则停止对蓝牙信号中的接入地址部分的信号进行信号检测。
根据图1-图5所示的蓝牙信号的数据包格式,接入地址或同步码的长度为前导码的长度的2至16倍。接收机通过对前导码部分的信号进行信号检测,在检测得到的信号质量不大于质量阈值的情形下,停止对接入地址部分的信号或同步码部分的信号进行信号检测,接收机可以节省接收机在对接入地址部分的信号或同步码部分的信号进行信号检测的情形下用于信号检测的功耗的至 少一半。
本发明实施例提供了一种信号检测方法、装置、设备及存储介质,通过对蓝牙信号中前导码部分的信号进行信号检测,并在检测的信号质量不大于质量阈值的情况下,停止对蓝牙信号进行信号检测,以减少对同步码部分的信号或接入地址部分的信号进行信号检测,降低功耗。
图7为本申请实施例提供的一种信号检测方法流程图。该方法是对图6所示的方法的进一步完善和细化,该方法可包括:
701、接收蓝牙信号,并对蓝牙信号中前导码部分的信号进行能量检测,得到信号能量。
接收机接收蓝牙信号,并对蓝牙信号中前导码部分的信号进行能量检测,得到信号能量。可以理解的是,得到的信号能量为蓝牙信号中前导码部分信号能量。
可选的,接收到的前导码部分的信号能量(received signal strength indicator,RSSI),满足第一公式的条件。第一公式为:
RSSI=∑|sig receive| 2/sig length-(∑sig receive/sig length) 2
其中,sig receive为接收机接收到前导码部分的信号强度,sig length为蓝牙信号中前导码部分的信号长度。
702、将蓝牙信号中前导码部分的信号与本地信号进行信号相关,得到相关峰值。
其中,本地信号包括前导码。本地信号是接收机生成的用于与接收到的信号进行相关运算的信号。信号质量中的相关峰值为蓝牙信号中前导码部分的信号与本地信号进行信号相关得到的多个相关值的峰值。
可选的,本地信号通过高斯滤波得到。本地信号sig local满足第二公式的条件。第二公式为:
Figure PCTCN2020094673-appb-000001
其中,Gaussian filter coefficient为高斯滤波系数,local IQ signal为本地同相正交信号。第二公式表示本地信号为本地同相正交信号与高斯滤波系数的卷积。
可选的,本地信号与蓝牙信号的相关值R,满足第三公式的条件。
第三公式为:
Figure PCTCN2020094673-appb-000002
sig receive为接收的蓝牙信号。在步骤702中,接收的蓝牙信号属于蓝牙信号中前导码部分的信号。第三公式表示本地信号与蓝牙信号的相关值为本地信号与蓝牙信号的卷积。
703、在信号质量低于质量阈值的情况下,停止对蓝牙信号中的同步码部分的信号进行信号检测,或停止对蓝牙信号中接入地址部分的信号进行信号检测。
其中,信号质量包括上述信号能量或上述相关峰值的至少一个。质量阈值包括能量阈值或相关峰值阈值中的至少一个。
在一种可选的实现方式中,接收机在信号能量不大于能量阈值,和/或,相关峰值不大于相关峰值阈值的情况下,停止对蓝牙信号中的同步码部分的信号进行信号检测,或停止对蓝牙信号中接入地址部分的信号进行信号检测。
能量阈值和相关峰值阈值,根据在接收机成功同步蓝牙信号的情况下蓝牙信号的信号能量和与本地信号的相关值确定,可根据实际情况进行调整,具体不作限制。
704、在信号质量大于质量阈值的情况下,对蓝牙信号中的同步码部分的信号进行信号检测,或对蓝牙信号中接入地址部分的信号进行信号检测。
在一些实施例中,接收机在信号质量大于质量阈值的情况下,对蓝牙信号中的同步码部分的信号进行信号检测,或对蓝牙信号中接入地址部分的信号进行信号检测,具体为:在接收机开始接收蓝牙信号中同步码部分的信号或蓝牙信号中接入地址部分的信号之后,接收机启动第二计时器。在第二计时器的计时时长未超过第二时长的情况下,接收机对蓝牙信号中同步码部分的信号进行检测,或对蓝牙信号中接入地址部分的信号进行信号检测。其中,第二时长的值和计量单位可根据蓝牙信号中同步码或接入地址部分的接收时长确定,具体可根据实际情况调整,此处不做限制。
在蓝牙信号包括同步码的情况下,例如在蓝牙信号承载BR类型的数据包或EDR类型的数据包的情况下,接收机确定检测得到的信号质量大于质量阈值,则接收机对蓝牙信号中同步码部分的信号进行信号检测。
在蓝牙信号包括接入地址的情况下,例如在蓝牙信号承载低功耗(LE)类 型的数据包的情况下,接收机确定检测得到的信号质量大于质量阈值,则对蓝牙信号中的接入地址部分的信号进行信号检测。
在一些实施例中,在检测得到的信号质量等于质量阈值的情况下,接收机也会对蓝牙信号中同步码部分的信号进行信号检测,或对蓝牙信号中接入地址部分的信号进行信号检测。
在一个可选的实现方式中,接收机对同步码部分的信号或接入地址部分的信号进行信号检测,得到接收信号与本地信号的相关峰值,接收机再根据接收信号与本地信号的相关峰值对蓝牙信号进行信号同步。在该实现方式中,接收信号包括蓝牙信号中同步码部分的信号或蓝牙信号中接入地址部分的信号,本地信号还包括同步码或接入地址。
图8为本申请实施例提供的一种信号检测时序图。在如图8所示的时序图中,接收机通过第一计时器(计时器1),在第一时长(t1)内,对蓝牙信号中前导码部分的信号进行信号检测以及进行AGC调整。接收机通过第二计时器(计时器2),在第二时长内,对蓝牙信号中同步码部分的信号或接入地址部分的信号进行信号检测以及进行信号同步。
本发明实施例提供了一种信号检测方法、装置、设备及存储介质,通过对蓝牙信号中前导码部分的信号进行信号检测,并在检测的信号质量不大于质量阈值的情况下,停止对蓝牙信号进行信号检测,以减少对同步码部分的信号或接入地址部分的信号进行信号检测,降低功耗。
图9为本申请实施例提供的一种信号装置的结构示意图。图9中的信号检测装置对应于上述接收机。如图9所示,该信号检测装置包括:
检测单元901,接收蓝牙信号,并对蓝牙信号中前导码部分的信号进行信号检测,得到检测的信号质量;
停止单元902,用于在信号质量低于质量阈值的情况下,停止对蓝牙信号中的同步码部分的信号进行信号检测,或停止对蓝牙信号中接入地址部分的信号进行信号检测。
在一个可选的实现方式中,检测单元901,具体用于接收蓝牙信号,并对蓝牙信号中前导码部分的信号进行能量检测,得到信号能量。
在一个可选的实现方式中,检测单元901,还用于将蓝牙信号中前导码部分的信号与本地信号进行信号相关,得到相关峰值,本地信号包括前导码。
在一个可选的实现方式中,停止单元902,具体用于在信号能量不大于能量阈值,和/或,相关峰值不大于相关峰值阈值的情况下,停止对蓝牙信号中的同步码部分的信号进行信号检测,或停止对蓝牙信号中接入地址部分的信号进行信号检测。
在一个可选的实现方式中,检测单元901,还用于在信号质量大于质量阈值的情况下,对蓝牙信号中的同步码部分的信号进行信号检测,或对蓝牙信号中接入地址部分的信号进行信号检测。
在一个可选的实现方式中,检测单元901,具体用于接收蓝牙信号,并在第一时长内对蓝牙信号中前导码部分的信号进行信号检测,得到检测的信号质量。
应理解以上信号检测装置中的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。例如,以上各个模块可以为单独设立的处理元件,也可以集成同一个芯片中实现,此外,也可以以程序代码的形式存储于控制器的存储元件中,由处理器的某一个处理元件调用并执行以上各个模块的功能。此外各个模块可以集成在一起,也可以独立实现。这里的处理元件可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。该处理元件可以是通用处理器,例如中央处理器(英文:central processing unit,简称:CPU),还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(英文:application-specific integrated circuit,简称:ASIC),或,一个或多个微处理器(英文:digital signal processor,简称:DSP),或,一个或者多个现场可编程门阵列(英文:field-programmable gate array,简称:FPGA)等。
接下来介绍本申请实施例提供的一种电子设备,请参阅图10所示,电子设备包括:
接收器1001、发射器1002、处理器1003和存储器1004(其中电子设备1000中的处理器1003的数量可以一个或多个,图10中以一个处理器为例)。在本申请的一些实施例中,接收器1001、发射器1002、处理器1003和存储器1004可通过总线或其它方式连接,其中,图10中以通过总线连接为例。
存储器1004可以包括只读存储器和随机存取存储器,并向处理器1003提供指令和数据。存储器1004的一部分还可以包括非易失性随机存取存储器(non-volatile random access memory,NVRAM)。存储器1004存储有操作系统和操作指令、可执行模块或者数据结构,或者它们的子集,或者它们的扩展集,其中,操作指令可包括各种操作指令,用于实现各种操作。操作系统可包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
处理器1003控制电子设备的操作,处理器1003还可以称为中央处理单元(central processing unit,CPU)。具体的应用中,电子设备的各个组件通过总线系统耦合在一起,其中总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都称为总线系统。
上述本申请实施例揭示的方法可以应用于处理器1003中,或者由处理器1003实现。处理器1003可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1003中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1003可以是通用处理器、数字信号处理器(digital signal processing,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存 储器1004,处理器1003读取存储器1004中的信息,结合其硬件完成上述方法的步骤。
接收器1001可用于接收输入的数字或字符信息,以及产生与电子设备的相关设置以及功能控制有关的信号输入,发射器1002可包括显示屏等显示设备,发射器1002可用于通过外接接口输出数字或字符信息。
本申请实施例中,处理器1003,用于执行前述接收机执行的信号检测方法。
在本发明的实施例中提供一种计算机可读存储介质,上述计算机可读存储介质存储有计算机程序,上述计算机程序被处理器执行时实现:接收蓝牙信号,并对蓝牙信号中前导码部分的信号进行信号检测,得到检测的信号质量;在信号质量不大于质量阈值的情况下,停止对蓝牙信号中的同步码部分的信号进行信号检测,或停止对蓝牙信号中接入地址部分的信号进行信号检测。
上述仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (9)

  1. 一种信号检测方法,其特征在于,包括:
    接收蓝牙信号,并对所述蓝牙信号中前导码部分的信号进行信号检测,得到检测的信号质量;
    在所述信号质量不大于质量阈值的情况下,停止对所述蓝牙信号中的同步码部分的信号进行信号检测,或停止对所述蓝牙信号中接入地址部分的信号进行信号检测。
  2. 根据权利要求1所述的方法,其特征在于,所述信号质量包括信号能量;所述接收蓝牙信号,并对所述蓝牙信号中前导码部分的信号进行信号检测,得到检测的信号质量,包括:
    接收所述蓝牙信号,并对所述蓝牙信号中前导码部分的信号进行能量检测,得到所述信号能量。
  3. 根据权利要求1或2所述的方法,其特征在于,所述信号质量包括相关峰值,所述方法还包括:
    将所述蓝牙信号中前导码部分的信号与本地信号进行信号相关,得到所述相关峰值,所述本地信号包括前导码。
  4. 根据权利要求2或3所述的方法,其特征在于,所述质量阈值包括能量阈值或相关峰值阈值中的至少一个;
    所述在所述信号质量低于所述质量阈值的情况下,停止对所述蓝牙信号中的同步码部分的信号进行信号检测,或停止对所述蓝牙信号中接入地址部分的信号进行信号检测,包括:
    在所述信号能量不大于所述能量阈值,和/或,所述相关峰值不大于所述相关峰值阈值的情况下,停止对所述蓝牙信号中的同步码部分的信号进行信号检测,或停止对所述蓝牙信号中接入地址部分的信号进行信号检测。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,在所述在接收到蓝牙信号之后,对所述蓝牙信号中前导码部分的信号进行信号检测,得到检 测的信号质量之后,所述方法还包括:
    在所述信号质量大于所述质量阈值的情况下,对所述蓝牙信号中的同步码部分的信号进行信号检测,或对所述蓝牙信号中接入地址部分的信号进行信号检测。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述接收蓝牙信号,并对所述蓝牙信号中前导码部分的信号进行信号检测,得到检测的信号质量,包括:
    接收所述蓝牙信号,并在第一时长内对所述蓝牙信号中前导码部分的信号进行信号检测,得到所述检测的信号质量。
  7. 一种信号检测装置,其特征在于,包括:
    检测单元,接收蓝牙信号,并对所述蓝牙信号中前导码部分的信号进行信号检测,得到检测的信号质量;
    停止单元,用于在所述信号质量低于所述质量阈值的情况下,停止对所述蓝牙信号中的同步码部分的信号进行信号检测,或停止对所述蓝牙信号中接入地址部分的信号进行信号检测。
  8. 一种电子设备,包括接收器和发送器,其特征在于,还包括:
    处理器,适于实现一条或多条指令;以及,
    计算机存储介质,所述计算机存储介质存储有一条或多条指令,所述一条或多条指令适于由所述处理器加载并执行如权利要求1至6任一项所述的方法。
  9. 一种计算机存储介质,其特征在于,所述计算机存储介质存储有一条或多条指令,所述一条或多条指令适于由处理器加载并执行如权利要求1至6任一项所述的方法。
PCT/CN2020/094673 2020-02-19 2020-06-05 信号检测方法、装置、设备及存储介质 WO2021164148A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20920376.9A EP4109942A4 (en) 2020-02-19 2020-06-05 SIGNAL MEASUREMENT METHOD AND DEVICE, DEVICE AND STORAGE MEDIUM
US17/800,353 US20230071506A1 (en) 2020-02-19 2020-06-05 Method for signal detection, electronic device, and storage medium
GB2218099.6A GB2610961B (en) 2020-02-19 2020-06-05 A method for preparing biomedical magnesium alloy wires

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010102949.8A CN111372227B (zh) 2020-02-19 2020-02-19 信号检测方法、装置、设备及存储介质
CN202010102949.8 2020-02-19

Publications (1)

Publication Number Publication Date
WO2021164148A1 true WO2021164148A1 (zh) 2021-08-26

Family

ID=71211521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094673 WO2021164148A1 (zh) 2020-02-19 2020-06-05 信号检测方法、装置、设备及存储介质

Country Status (5)

Country Link
US (1) US20230071506A1 (zh)
EP (1) EP4109942A4 (zh)
CN (1) CN111372227B (zh)
GB (1) GB2610961B (zh)
WO (1) WO2021164148A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112969195B (zh) * 2021-02-23 2023-01-20 深圳市汇顶科技股份有限公司 信号质量检测方法及相关设备
US20220295431A1 (en) * 2021-03-12 2022-09-15 Apple Inc. Synchronization estimation based on ultra-wideband connections
CN114003542B (zh) * 2021-11-09 2024-05-31 合肥联宝信息技术有限公司 信号调节器、信号调节方法、电子设备和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020075974A1 (en) * 2000-12-20 2002-06-20 Agilent Technologies, Inc. Detecting preambles of data packets
CN107454555A (zh) * 2017-06-30 2017-12-08 建荣半导体(深圳)有限公司 锁相环参数调整方法、蓝牙模组、蓝牙从设备以及蓝牙系统
CN109474920A (zh) * 2018-11-02 2019-03-15 上海华虹集成电路有限责任公司 一种低功耗蓝牙数据包的检测方法
US20190190765A1 (en) * 2017-12-15 2019-06-20 Redpine Signals, Inc. Controller for detection of Bluetooth Low Energy Packets
US20190364504A1 (en) * 2017-12-15 2019-11-28 Redpine Signals, Inc. Power-save system for detection of Bluetooth Long Range Packets

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100376084C (zh) * 2006-05-19 2008-03-19 宁波中科集成电路设计中心有限公司 一种曼彻斯特编码的解码方法及应用装置
CN101355383B (zh) * 2008-09-10 2012-05-23 中兴通讯股份有限公司 一种随机接入信道的信号检测方法
CN103184397A (zh) * 2013-04-25 2013-07-03 东南大学 基于剧烈塑性变形的镁合金丝材制备方法
EP3375227B1 (en) * 2015-11-12 2020-02-12 Greenpeak Technologies B.V. Concurrent multi-radio receiver
TW201803289A (zh) * 2016-07-11 2018-01-16 原相科技股份有限公司 可利用較小電路面積並同時考量節能省電以偵測空氣中之干擾訊號之功率來控制放大器之增益值的無線收發機裝置及方法
CN106521250B (zh) * 2016-12-05 2018-03-20 合肥工业大学 一种大载流耐热铝合金导线的制备方法
CN106917022B (zh) * 2017-03-17 2018-11-09 扬州大学 一种生物医用镁合金丝的制备方法
CN107231225B (zh) * 2017-05-22 2020-04-28 江苏沁恒股份有限公司 一种前导符序列检测方法及装置
CN107181540B (zh) * 2017-05-31 2021-01-22 珠海市杰理科技股份有限公司 蓝牙信号处理装置及蓝牙数据帧检测方法
CN107707270B (zh) * 2017-06-22 2019-07-26 深圳市锐能微科技股份有限公司 一种蓝牙信号增益方法、装置及终端设备
CN108683625A (zh) * 2018-07-27 2018-10-19 上海华虹集成电路有限责任公司 一种低功耗蓝牙LE Coded PHY的数据包检测方法
CN110144534B (zh) * 2019-05-27 2020-11-27 四川镁合医疗器械有限责任公司 一种表面纳米化镁合金吻合钉的制备方法
CN111298550A (zh) * 2020-02-27 2020-06-19 萍乡市华星环保工程技术有限公司 VOCs尾气治理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020075974A1 (en) * 2000-12-20 2002-06-20 Agilent Technologies, Inc. Detecting preambles of data packets
CN107454555A (zh) * 2017-06-30 2017-12-08 建荣半导体(深圳)有限公司 锁相环参数调整方法、蓝牙模组、蓝牙从设备以及蓝牙系统
US20190190765A1 (en) * 2017-12-15 2019-06-20 Redpine Signals, Inc. Controller for detection of Bluetooth Low Energy Packets
US20190364504A1 (en) * 2017-12-15 2019-11-28 Redpine Signals, Inc. Power-save system for detection of Bluetooth Long Range Packets
CN109474920A (zh) * 2018-11-02 2019-03-15 上海华虹集成电路有限责任公司 一种低功耗蓝牙数据包的检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4109942A4 *

Also Published As

Publication number Publication date
US20230071506A1 (en) 2023-03-09
CN111372227A (zh) 2020-07-03
EP4109942A1 (en) 2022-12-28
EP4109942A4 (en) 2023-07-26
GB2610961B (en) 2024-06-05
CN111372227B (zh) 2021-10-26
GB2610961A (en) 2023-03-22
GB202218099D0 (en) 2023-01-18

Similar Documents

Publication Publication Date Title
WO2021164148A1 (zh) 信号检测方法、装置、设备及存储介质
EP2922261B1 (en) A method and technical equipment for short range data transmission
EP3499977B1 (en) Method and device for sending and receiving wur frame
JP6009716B2 (ja) シリアル通信のためのシステムおよび方法
JP2016027727A (ja) 複数のデバイスからの通信を確認応答するためのシステムおよび方法
WO2015081561A1 (zh) D2d发现信号的发送方法、装置以及通信系统
US9197467B2 (en) Multiple protocol receiver
WO2014139072A1 (zh) D2d发现序列的检测方法、d2d数据的接收方法及装置
TW201822515A (zh) 解調
WO2019157748A1 (zh) 通信方法和设备
WO2020083388A1 (zh) 非授权频谱中无线链路检测的方法和通信装置
WO2013181969A1 (zh) 一种终端与终端d2d通信方法及终端、系统
WO2021018068A1 (zh) 一种无线链路监测方法和通信设备
US11134443B2 (en) Systems and methods for generating and transmitting short low power wake-up request (WUR) frames in a wireless communication system
WO2022156802A1 (zh) 参考信号传输时机有效性的指示方法和用户设备
WO2021068173A1 (zh) 一种信号传输方法及装置、终端设备
WO2020088477A1 (zh) 一种通信方法及设备
WO2021062784A1 (zh) 指示信息的发送方法和装置
US11425656B2 (en) Method and device for handling wake-up signals
WO2018086311A1 (zh) 通信接口的唤醒方法及设备、辅助唤醒接口的标识配置方法及设备
TWI517598B (zh) 無線信號接收器及其信號處理方法
CN113167854B (zh) 蓝牙定位方法和蓝牙设备
WO2019120304A1 (zh) 无线唤醒包发送与接收方法与装置
JP3439724B2 (ja) ディジタル無線通信システム用送受信回路
WO2021212282A1 (zh) 无线链路监测方法及装置、终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020920376

Country of ref document: EP

Effective date: 20220919