WO2014139072A1 - D2d发现序列的检测方法、d2d数据的接收方法及装置 - Google Patents

D2d发现序列的检测方法、d2d数据的接收方法及装置 Download PDF

Info

Publication number
WO2014139072A1
WO2014139072A1 PCT/CN2013/072394 CN2013072394W WO2014139072A1 WO 2014139072 A1 WO2014139072 A1 WO 2014139072A1 CN 2013072394 W CN2013072394 W CN 2013072394W WO 2014139072 A1 WO2014139072 A1 WO 2014139072A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
enb
time
discovery sequence
window
Prior art date
Application number
PCT/CN2013/072394
Other languages
English (en)
French (fr)
Inventor
王轶
李宏超
张磊
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2015561881A priority Critical patent/JP2016509455A/ja
Priority to EP13877534.1A priority patent/EP2975889A4/en
Priority to CN201380073110.4A priority patent/CN105191452A/zh
Priority to KR1020157025621A priority patent/KR20150119929A/ko
Priority to PCT/CN2013/072394 priority patent/WO2014139072A1/zh
Publication of WO2014139072A1 publication Critical patent/WO2014139072A1/zh
Priority to US14/843,182 priority patent/US20150382173A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/27Evaluation or update of window size, e.g. using information derived from acknowledged [ACK] packets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/002Mutual synchronization
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a method for detecting a D2D discovery sequence and D2D data when a user (UE, User Equipment) of a device-to-device (D2D) exists in a wireless communication system.
  • UE User Equipment
  • D2D device-to-device
  • eNB enhanced Node B
  • the interference control and resource management in the cell are handled by the eNB.
  • the advantage of such centralized control of the eNB is that the interference control and the radio resource control can be optimized globally.
  • the disadvantage is that the resources cannot be effectively utilized in some scenarios. For example, this type of communication method that must pass through the eNB requires twice the resources compared to direct communication between two very close users. Moreover, in some hotspot scenarios, the load of the service is very large, resulting in a serious overload of the eNB.
  • D2D Device-to-Device
  • D2D Long Term Evolution
  • LTE Long Term Evolution
  • D2D application scenarios There are two types of D2D application scenarios: one is social network, for example, based on geographically similar business/social services, advertising and games; the other is public safety.
  • Social network type D2D research is currently limited to D2D within network coverage, that is, D2D discovery and communication may depend in part on eNB assistance; public security is a type of D2D study, generally due to UE If the UE is in a very bad environment or the network infrastructure is damaged, the UE is outside the network coverage. In this case, it needs to rely on other UEs in the network coverage to act as relay nodes and outside the network coverage.
  • the UE performs direct D2D discovery and D2D communication, or performs direct D2D discovery and D2D communication using radio resources pre-configured before network corruption.
  • D2D communication is generally used between users with similar geographical locations, and the user equipment has the ability to discover other users, and can also be discovered by other users. No matter which type of D2D application scenario, D2D communication The premise is that the UE can discover UEs that are capable of D2D communication around it. In the existing research, how to design the discovery sequence of D2D communication has become a research hotspot, but there are few researches on the clock problem when D2D users receive the discovery sequence.
  • D2D users receiving the D2D discovery sequence are also unable to determine a reasonable reception time window based on their "downlink transmission time". Therefore, it is necessary to design a new transmission timing and reception timing mechanism for users of D2D communication in order to accurately and efficiently demodulate the discovery sequence.
  • An object of the embodiments of the present invention is to provide a method for detecting a D2D discovery sequence and a method and a device for receiving D2D data, so that a user having a D2D function (referred to as a D2D user or a D2D user device) listens to D2D discovery sequences of other users. It can detect the discovery sequence more accurately, efficiently, and correctly, and demodulate the data with higher time precision when receiving data sent by other D2D users.
  • a device-to-device (D2D) discovery sequence detection method includes:
  • the D2D user equipment determines a starting point of a time window for detecting a discovery sequence according to an uplink transmission timing of an uplink of a base station (eNB) of the Long Term Evolution (LTE) system;
  • eNB base station
  • LTE Long Term Evolution
  • the D2D user equipment detects a discovery sequence of other D2D user equipments at the beginning of the determined time window.
  • a method for detecting a D2D discovery sequence is provided, where the method includes:
  • the D2D user equipment determines, according to the uplink transmission timing of the uplink of the eNB with the LTE system and the configuration information of the received reception window, the start and end positions of the time window for detecting the discovery sequence;
  • the D2D user equipment detects a discovery sequence of other D2D user equipments at the start and end positions of the determined time window.
  • a D2D user equipment is provided, where the user equipment includes:
  • a determining unit configured to determine a starting point of a time window for detecting a discovery sequence according to an uplink transmission timing of an uplink of the user equipment and an eNB of the LTE system;
  • a detecting unit that detects a discovery sequence of the other D2D user equipment at a starting point of the time window determined by the determining unit.
  • a D2D user equipment is provided, where the user equipment includes:
  • a first determining unit configured to determine a start and end position of a time window for detecting a discovery sequence according to uplink uplink transmission timing of the user equipment and an eNB of the LTE system, and configuration information of the received reception window; It detects a discovery sequence of other D2D user equipments at the start and end positions of the time window determined by the first determining unit.
  • a method for receiving D2D data includes:
  • the user equipment determines the receiving timing of the D2D data according to the pre-configured receiving reference time or a preset rule
  • the user equipment receives D2D data according to the determined reception timing of the D2D data.
  • a D2D user equipment is provided, where the user equipment includes:
  • a determining unit which determines a receiving timing of the D2D data according to a pre-configured receiving reference time or a preset rule
  • a receiving unit that receives D2D data according to a reception timing of the D2D data determined by the determining unit.
  • a method for configuring a receiving window of a D2D discovery sequence includes:
  • the eNB in the LTE system configures a receiving window for the user equipment performing D2D communication in the coverage area by the high layer signaling or the dynamic signaling of the physical layer, so that the user equipment according to the configuration information of the receiving window and the
  • the uplink transmission timing of the uplink of the eNB determines the start position and the end position of the time window in which the detection discovery sequence is detected.
  • an eNB in an LTE system where the eNB includes:
  • a configuration unit configured to configure a receiving window for the user equipment performing D2D communication in the coverage of the eNB by using high layer signaling or dynamic signaling of the physical layer, so that the user equipment according to the configuration information of the receiving window and the
  • the uplink transmission timing of the uplink of the eNB determines the start position and the end position of the time window in which the detection discovery sequence is detected.
  • a method for configuring a receiving reference time of D2D data includes:
  • the eNB in the LTE system configures the receiving reference time for the user equipment performing D2D communication in the coverage area through the high layer signaling or the dynamic signaling of the physical layer, so that the user equipment determines to receive the D2D according to the configuration information of the receiving reference time.
  • the reception time of the communication data is not limited to the above layer signaling or the dynamic signaling of the physical layer.
  • an eNB in an LTE system where the eNB includes:
  • a configuration unit configured to receive a reference time for the user equipment performing D2D communication in the coverage of the eNB by using high layer signaling or dynamic signaling of the physical layer, so that the user equipment determines to receive according to the configuration information of the received reference time.
  • the receiving time of D2D communication data is configured to transmit a reference time for the user equipment performing D2D communication in the coverage of the eNB by using high layer signaling or dynamic signaling of the physical layer, so that the user equipment determines to receive according to the configuration information of the received reference time.
  • a communication system includes at least one of the user equipments of any one of the third aspect, the fourth aspect, and the sixth aspect, or The eNB of any one of the third aspect, the fourth aspect, the sixth aspect, and the eNB of any of the eighth aspect, the tenth aspect.
  • a computer readable program is provided, wherein when the program is executed in a terminal device, the program causes the computer to execute the first aspect, the second aspect, or any aspect of the second aspect in the terminal device
  • a storage medium storing a computer readable program, wherein the computer readable program causes a computer to execute the D2D of the first aspect, the second aspect, or any aspect of the second aspect, in the terminal device A method of detecting a sequence, or a method of receiving D2D data according to the fifth aspect.
  • a computer readable program wherein when the program is executed in a base station, the program causes a computer to perform a receiving window of the D2D discovery sequence of the seventh aspect in the base station The configuration method of the receiving reference time of the D2D data described in the ninth aspect.
  • a storage medium storing a computer readable program, wherein the computer readable program causes a computer to perform a configuration of a receiving window of a D2D discovery sequence according to the seventh aspect in a terminal device A method of configuring a reception reference time of D2D data according to the ninth aspect.
  • the method of the present invention can reduce the complexity of the user detecting the discovery sequence of other users, shorten the time for the user to detect the discovery sequence of other users, and reduce the user to report the discovery sequence detection information. Signaling.
  • FIG. 1 is a flowchart of a method for detecting a D2D discovery sequence according to Embodiment 1 of the present invention
  • FIG. 2 is a flowchart of a method for detecting a D2D discovery sequence according to Embodiment 2 of the present invention
  • FIG. 3 is a flowchart of a method for configuring a receiving window of a D2D discovery sequence according to Embodiment 3 of the present invention
  • FIG. 4 is a schematic diagram of a user detecting a D2D discovery sequence according to a configured receiving window
  • FIG. 5 is a schematic diagram of a detection algorithm based on a cyclic shift discovery sequence
  • FIG. 6 is a schematic structural diagram of a D2D user equipment according to Embodiment 4 of the present invention.
  • FIG. 7 is a schematic diagram of the composition of a D2D user equipment according to Embodiment 5 of the present invention.
  • FIG. 8 is a schematic diagram showing the composition of an eNB according to Embodiment 6 of the present invention.
  • FIG. 9 is a flowchart of a method for receiving D2D data according to Embodiment 7 of the present invention.
  • FIG. 10 is a flowchart of a method for configuring a receiving reference time of D2D data according to Embodiment 8 of the present invention
  • FIG. 11a to FIG. 1b are schematic diagrams of eNB configuring a receiving reference time for a user located at a cell center
  • FIG. 12a to FIG. FIG. 13 is a schematic diagram of a configuration of a D2D user equipment according to Embodiment 9 of the present invention
  • FIG. 14 is a schematic diagram showing the composition of an eNB according to Embodiment 10 of the present invention. detailed description
  • an embodiment of the present invention uses an LTE system as an example to describe a method for detecting a D2D discovery sequence and a method and apparatus for receiving D2D data according to an embodiment of the present invention.
  • LTE Long Term Evolution
  • the embodiments of the present invention are not limited to the above system, and are applicable to other systems involving D2D communication.
  • Embodiments of the present invention provide a method for detecting a D2D discovery sequence.
  • Figure 1 is a flow chart of the method. Referring to Figure 1, the method includes:
  • Step 101 The D2D user equipment determines a start point of a time window for detecting a discovery sequence according to an uplink transmission timing of an uplink of an eNB of the LTE system.
  • the D2D user equipment may use the uplink uplink transmission timing of the uplink with the eNB of the LTE system as the starting point of the time window for detecting the discovery sequence, or may be related to the uplink uplink transmission timing of the eNB of the LTE system.
  • the preset time offset is used as the starting point of the time window for detecting the discovery sequence.
  • Step 102 The D2D user equipment detects a discovery sequence of other D2D user equipments at a starting point of the determined time window.
  • the uplink uplink transmission timing of the D2D user and the eNB of the LTE system is used as the starting point of the time window in which the D2D user detects the discovery sequence of other D2D users; or the D2D user and the eNB of the LTE system.
  • the uplink transmission timing of the uplink is a reference, and the time of the preset time offset is used as the starting point of the time window for the D2D user to detect the discovery sequence of other D2D users, when the D2D user detects the discovery sequence of other D2D users.
  • the discovery sequence of other D2D users can be detected at the beginning of its determined time window.
  • the foregoing preset time offset may be preset by each D2D user according to the distance from the D2D user to the base station, or may be pre-configured or dynamically configured by the base station according to the distance from the D2D user to the D2D user. It may be that each D2D user is preset in consideration of an uplink timing error, and this embodiment is not limited thereto.
  • the time window for detecting the D2D discovery sequence is defined by the method of the embodiment, thereby reducing the complexity of the user detecting the discovery sequence of other users, and shortening the time for the user to detect the discovery sequence of other users.
  • Embodiments of the present invention provide a method for detecting a D2D discovery sequence.
  • 2 is a flow chart of the method. Referring to FIG. 2, the method includes:
  • Step 201 The D2D user equipment determines, according to the uplink transmission timing of the uplink of the eNB of the LTE system and the configuration information of the received receiving window, the start and end positions of the time window for detecting the discovery sequence.
  • Step 202 The D2D The user equipment detects the discovery sequence of the other D2D user equipment at the start and end positions of the determined time window.
  • the eNB configures a receiving window for the D2D user, and the D2D user performs the discovery sequence of other D2D users according to the uplink uplink sending timing of the uplink with the eNB of the LTE system and the receiving window configured by the eNB. Detection.
  • the configuration information of the receiving window may be: using the uplink sending timing as a starting position of the time window, and the total length of the received signal backwards along the time axis direction, that is, the detection signal. Total length.
  • the configuration information of the receiving window may be: using the uplink sending timing as a starting position of the time window, and a maximum offset of a starting point of a received signal backward along a time axis direction, That is The maximum offset of the start of the detection signal relative to the start of the receive window.
  • the configuration information of the receiving window may be configured by the eNB through the high layer signaling, or may be configured by the eNB through the dynamic signaling of the physical layer, which is not limited by this embodiment.
  • the signaling for carrying the configuration information of the receiving window may be user-specific, that is, each user corresponds to one receiving window configuration information; or may be group-specific, that is, each group of users corresponds to one receiving window configuration information. .
  • the D2D user equipment detects the discovery sequence outside the determined time window
  • the D2D user determines the signal of the discovery sequence detected outside the time window according to a predetermined threshold value. Whether the intensity exceeds the predetermined threshold value, if the predetermined threshold value is exceeded, the discovery sequence detected outside the time window is also selected as the selection object, and all the detected sequences are detected (including detection within the time window)
  • the discovery sequence of the selected discovery sequence and the discovery sequence whose signal strength detected outside the time window exceeds a predetermined threshold value is selected to the eNB or the corresponding D2D for the predetermined number (one or more) of the discovery sequence with the strongest signal strength.
  • Another embodiment is that even if the D2D user detects the discovery sequence outside the time window, the sequence is not selected, that is, the information related to the sequence is not reported, and is detected from within the time window. Selecting a predetermined number of discovery sequences with the strongest signal strength among all the discovered sequences to report to the eNB or D2D respective user equipment, thus saving the overhead of unnecessary information reporting.
  • the time window for detecting the D2D discovery sequence is defined by the method of the embodiment, thereby reducing the complexity of detecting the discovery sequence of other users by the user, shortening the time for the user to detect the discovery sequence of other users, and reducing the sequence of the user reporting the discovery. Signaling of detection information.
  • Embodiments of the present invention provide a receiving window configuration method in D2D communication.
  • Figure 3 is a flow chart of the method. Referring to Figure 3, the method includes:
  • Step 301 The eNB in the LTE system configures a receiving window for the user equipment performing D2D communication in the coverage area by the high layer signaling or the dynamic signaling of the physical layer, so that the user equipment according to the configuration information of the receiving window and the The uplink transmission timing of the uplink with the eNB determines the start position and the end position of the time window in which the detection discovery sequence is detected.
  • the configuration information of the receiving window may be user-specific, that is, the eNB configures a receiving window for each user, and the receiving windows of each user may be the same or different; or may be group-specific, That is, the eNB configures one receiving window for each group of users, and the receiving windows of each group of users are the same, and the receiving windows of different groups of users may be the same or different.
  • the configuration information of the receiving window may be the uplink sending timing of the uplink of the user and the eNB as the starting point of the time window, and the total length of the received signal along the time axis;
  • the uplink transmission timing of the uplink of the eNB is the starting point of the time window, and the maximum offset of the start of the signal is received along the time axis.
  • the eNB may simultaneously configure, by the foregoing high layer signal or dynamic signaling of the physical layer, a threshold value for determining, by the user, whether a detected sequence other than the received window is to be selected.
  • the user is configured to receive a window for performing D2D communication by using the method of the embodiment, and the user may determine, according to the configured receiving window and the uplink sending timing of the uplink of the eNB of the LTE system, the time window for detecting the D2D discovery sequence, and The determined time window detects the discovery sequence, thereby reducing the complexity of detecting the discovery sequence of other users by the user, shortening the time for the user to detect the discovery sequence of other users, and reducing the signaling of the detection information of the discovery sequence of the user.
  • the user remains connected to the eNB in the LTE system.
  • the eNB assists the user in establishing a D2D connection, that is, first transmitting or receiving a discovery sequence.
  • the eNB may configure, by higher layer signaling, resources that the user sends or receives D2D discovery sequences, and/or other necessary information for the user to perform D2D communication.
  • the eNB simultaneously configures the user with information about the receiving window when detecting the discovery sequence.
  • the length of the receiving window can be in units of sampling points, or in a predetermined preset step size, or a preset number of window lengths.
  • the eNB may also configure the user with relevant information about the receiving window when detecting the discovery sequence through separate high layer signaling.
  • the eNB may also configure a corresponding detection threshold while configuring the related information of the receiving window by using the foregoing high layer signaling, so that the user determines whether to use the discovery sequence other than the detected time window as the selection target according to the detection threshold.
  • Example two an example in which the eNB configures a receive window for a user through dynamic signaling of the physical layer is given.
  • the user remains connected to the eNB in the LTE system.
  • the eNB assists the user in establishing a D2D connection, that is, first transmitting or receiving a discovery sequence.
  • the eNB may carry, by using the PDCCH/ePDCCH, information about a receiving window of the detection discovery sequence configured for the user.
  • the length of the receiving window can be in units of sampling points, or in a certain preset step size, or a preset number of window lengths.
  • four different window lengths can be preset and dynamically indicated by 2 bits.
  • the eNB may also configure a corresponding detection threshold by using the PDCCH/ePDCCH by configuring the relevant information of the receiving window through the PDCCH/ePDCCH, so that the user determines, according to the detection threshold, whether the discovery sequence other than the detected time window is used as the detection sequence. Select the object.
  • the eNB may carry configuration information of the receiving window on resources in the same PDCCH/ePDCCH.
  • an example of detecting a D2D discovery sequence by the user based on the configured information of the receiving window is given.
  • the time window for detecting the discovery sequence is determined according to the uplink uplink sending timing of the user and the eNB of the LTE system and the configured receiving window. The beginning and end of the line.
  • the signals of sequence 41 and discovery sequence 42 are found to fall within the receive window, and the user can match the signals within the configured receive window to obtain correlation peaks, thereby demodulating the discovery sequence. While the signal of the discovery sequence 43 falls outside the receiving window, according to one embodiment of the present embodiment, the user does not detect the signal outside the receiving window.
  • different D2D discovery sequences are distinguished by different cyclic shifts, it is possible that the user can obtain correlation values of multiple D2D discovery sequences with the same timing and only one correlation. At this point, the user only picks up the relevant values in the configured receive window.
  • different D2D discovery sequences have correlation peaks at different time axis positions within one FFT window length.
  • the correlation peak for each sequence is within the time axis corresponding to its cyclic displacement.
  • the configured receive window start point is the start position of each time axis range, and the end point is the configured receive window length. As shown in FIG.
  • the correlation peaks of the D2D discovery sequence 51 and the D2D discovery sequence 53 are located in the receiving window, and the correlation peaks of the D2D discovery sequence 52 are located.
  • Receive window the user can detect the discovery sequence, the user does not select the discovery sequence or report the related information of the discovery sequence.
  • the user may set a correlation threshold (eg, a threshold of signal strength) of the discovery sequence outside the receiving window, such as setting a threshold ⁇ , if and only if the correlation value of the discovery sequence outside the receiving window exceeds the When the threshold is used, the discovery sequence is sorted, and related information is selected or reported.
  • a correlation threshold eg, a threshold of signal strength
  • the eNB configures a receiving window for detecting a discovery sequence for the user according to the methods of Embodiment 2 and Embodiment 3, and the user sends an uplink according to the receiving window and its uplink with the eNB.
  • the time window of the detection discovery sequence is determined periodically, and the discovery sequence is detected within the time window, and the detection result is selected according to the predetermined measurement. This not only reduces the complexity of the user detecting the discovery sequence of other users, but also shortens the time for the user to detect the discovery sequence of other users, and also reduces the signaling for the user to report the detection information of the discovery sequence.
  • the embodiment of the present invention further provides a D2D user equipment, as described in Embodiment 4 below. Since the D2D user equipment solves the problem, the principle is similar to that of Embodiment 1. Therefore, the specific implementation may refer to Embodiment 1 The implementation of the method, the same content will not be repeated.
  • the embodiment of the invention provides a D2D user equipment.
  • 6 is a schematic diagram of the composition of the D2D user equipment. Referring to FIG. 6, the user equipment includes:
  • a determining unit 61 which determines a starting point of a time window for detecting a discovery sequence according to an uplink sending timing of an uplink of the user equipment and an eNB of the LTE system;
  • the detecting unit 62 detects the discovery sequence of the other D2D user equipment at the beginning of the time window determined by the determining unit 61.
  • the determining unit 61 may use the uplink sending timing as a starting point of the time window, or may combine the uplink sending timing with a preset time offset amount as a starting point of the time window.
  • the D2D user equipment in this embodiment determines the time window for detecting the D2D discovery sequence by using the uplink uplink transmission timing of the uplink of the eNB of the LTE system as a reference, thereby reducing the complexity of the user detecting the discovery sequence of other users, and shortening the complexity. The time at which the user detects the discovery sequence of other users.
  • An embodiment of the present invention further provides a D2D user equipment, as described in Embodiment 5 below, because the D2D
  • the principle of the user equipment is similar to that of the second embodiment. Therefore, the specific implementation may refer to the implementation of the method in the second embodiment.
  • FIG. 7 is a schematic diagram of the composition of the user equipment.
  • the user equipment includes:
  • a first determining unit 71 which determines a start and end position of a time window for detecting a discovery sequence according to uplink uplink transmission timing of the user equipment and an eNB of the LTE system and configuration information of the received receiving window;
  • the detecting unit 72 detects the discovery sequence of the other D2D user equipment at the start and end positions of the time window determined by the first determining unit 71.
  • the configuration information of the receiving window may be: the uplink transmission timing is used as a starting position of the time window, and the total length of the received signal is backward along the time axis direction.
  • the configuration information of the receiving window may be: the uplink transmission timing is used as the starting position of the time window, and the maximum offset amount of the starting point of the received signal in the time axis direction is backward.
  • the configuration information of the receiving window may be configured by the eNB through high layer signaling, or may be configured by the eNB by dynamic signaling of a physical layer.
  • the signaling of the receiving window may be user-specific or group-specific.
  • the user equipment further includes:
  • a second determining unit 73 when the detecting unit 72 detects the discovery sequence outside the time window, determining whether the signal strength of the detected discovery sequence exceeds a predetermined threshold value;
  • the first reporting unit 74 when the detected signal strength of the discovery sequence exceeds a predetermined threshold, selects the detected discovery sequence as a selection object, and selects the strongest signal strength among all the detected sequences that are detected. A predetermined number of discovery sequences are reported to the eNB or the corresponding D2D user equipment.
  • the user equipment sets a threshold value for determining whether to use the discovery sequence other than the detected reception window as the selection target, if and only if the signal strength of the discovery sequence exceeds a preset threshold.
  • the discovery sequence is selected as the object of selection.
  • the user equipment further includes:
  • a second reporting unit 75 which selects a predetermined number of discovery sequences with the strongest signal strength from all the discovery sequences detected within the time window when the detection unit 72 detects the discovery sequence outside the time window Reported to the eNB or the corresponding D2D user equipment.
  • the user equipment even if the user equipment detects the discovery sequence outside the reception window, it does not select it as a selection target, but selects a discovery sequence that needs to be reported from the discovery sequence within the detected reception window, thereby saving Reporting overhead.
  • the D2D user equipment of the embodiment determines the time window for detecting the D2D discovery sequence by using the uplink uplink transmission timing of the uplink of the eNB of the LTE system and the configuration information of the received receiving window as a reference, thereby reducing the user detecting other users.
  • the complexity of the discovery sequence shortens the time for the user to detect the discovery sequence of other users, and reduces the overhead of the user reporting the detection information of the discovery sequence.
  • the embodiment of the present invention further provides an eNB in an LTE system, as described in Embodiment 6 below.
  • the principle of the eNB in the LTE system is similar to that of the embodiment 3, and the specific implementation may be referred to.
  • the implementation of the method of Embodiment 3 will not be repeated.
  • FIG. 8 is a schematic diagram of the composition of the eNB.
  • the eNB includes:
  • the configuration unit 81 is configured to configure a receiving window for the user equipment performing D2D communication in the coverage of the eNB by using high layer signaling or dynamic signaling of the physical layer, so that the user equipment according to the configuration information of the receiving window and the The uplink transmission timing of the uplink of the eNB determines the start position and the end position of the time window in which the detection discovery sequence is detected.
  • the eNB of this embodiment configures a receiving window for the user performing D2D communication, and the user can determine the time window for detecting the D2D discovery sequence according to the configured receiving window and the uplink sending timing of the uplink with the eNB of the LTE system. And detecting the discovery sequence in the determined time window, reducing the complexity of the user detecting the discovery sequence of other users, shortening the time for the user to detect the discovery sequence of other users, and reducing the signaling of the detection information of the user reporting the discovery sequence.
  • the embodiment of the invention further provides a method for receiving D2D data.
  • Figure 9 is a flow chart of the method. Referring to Figure 9, the method includes:
  • Step 901 The user equipment determines a receiving timing of the D2D data according to the preset configuration reference time or a preset rule.
  • Step 902 The user equipment receives D2D data according to the determined reception timing of the D2D data.
  • the preset rule may be: the uplink sending timing of the uplink of the user equipment and the eNB of the LTE system is used as the receiving timing of the D2D data, or may be: The downlink transmission timing of the downlink of the eNB of the LTE system is used as the reception timing of the D2D data.
  • the user equipment can determine the time (reception timing) at which the D2D data is received, and can receive the D2D data at the determined time of receiving the D2D data, thereby reducing the complexity of the transmission/reception timing of the user. .
  • the pre-configured receiving reference time may be configured by the eNB or other D2D user equipment through high layer signaling or by the eNB through dynamic signaling of the physical layer, or may be configured by the user equipment. Or other D2D user equipments in the group are configured through high layer signaling or through dynamic signaling of the physical layer.
  • the pre-configured receiving reference time is a predefined reference time or a preset time offset based on a predefined reference time.
  • the predefined reference time may be an uplink transmission timing of the uplink of the user equipment and the eNB or a downlink reception timing of the downlink of the user equipment and the eNB.
  • the complexity of the reception timing of the user can be reduced.
  • the embodiment of the invention further provides a receiving reference time configuration method for D2D data.
  • Figure 10 is a flow chart of the method. Referring to Figure 10, the method includes:
  • Step 1001 The eNB in the LTE system configures a receiving reference time for the user equipment performing D2D communication in the coverage area by using the high layer signaling or the dynamic signaling of the physical layer, so that the user equipment is configured according to the configuration information of the receiving reference time. Determine the reception time of receiving D2D communication data.
  • the configuration information of the receiving reference time may be a predefined reference time or a preset time offset based on a predefined reference time.
  • the time offset here is, for example, a predefined step size, or a predefined number of times.
  • the pre-defined reference time is, for example, an uplink transmission timing of the uplink of the user equipment and the eNB, or a downlink reception timing of the downlink of the user equipment and the eNB.
  • the user of the D2D communication configures the reception reference time by the method of the embodiment, and the user can determine the reception timing of receiving the D2D data according to the configured reception reference time, and receive the D2D data at the determined reception timing, thereby reducing the user. Accept the timing complexity.
  • the methods of Embodiment 7 and Embodiment 8 will be described below with reference to specific examples.
  • an example of the reception reference time at which the eNB configures the D2D data reception timing for the user is given.
  • two D2D users are located in the center of the LTE cellular network and are located on both sides of the base station.
  • the distance between the D2D users is not negligible compared to the distance between the eNB and the D2D user.
  • FIG. 11a and lib it is assumed that the D2D user 2 transmits data to the D2D user 1, and the user 2 uses the uplink uplink transmission time TA2 of the eNB with the LTE system as the transmission timing of the D2D data, then the signal arrives.
  • the time T3 of the D2D user 1 will be between the downlink reception time of the downlink of the D2D user 1 and the eNB of the LTE system and the downlink transmission time of the downlink of the eNB of the LTE system. Therefore, the reception time of the D2D user 1 can be configured as the downlink downlink transmission timing of the eNB of the LTE system assumed by the user, that is, the user 1 receives the D2D data from the eNB downlink transmission timing in the estimated cellular network.
  • the receiving time definition of the D2D user 1 may be configured to refer to the downlink receiving timing of the user receiving the eNB signal as a reference, in advance by a certain amount of time, that is, before the user 1 receives the downlink receiving timing from the eNB in the estimated cellular network.
  • An amount of time begins to receive D2D data, which is configured by the eNB.
  • the foregoing information as the foregoing reference reference time, may be configured by the eNB through high-layer signaling or by the eNB through dynamic signaling configuration of the physical layer or by other users through high-layer signaling or dynamic signaling configuration of the physical layer.
  • an example of the reception reference time at which the eNB configures the D2D data reception timing for the user is given.
  • two D2D users are located at the edge of the LTE cellular network cell.
  • the distance between the user and the eNB is much larger than the distance between the D2D users, as shown in Fig. 12a.
  • the user 2 When the user 2 sends the D2D data to the user 1, the user 2 takes the uplink uplink transmission time TA2 of the user and the eNB of the LTE system as the transmission timing, then the time T3 when the signal arrives at the D2D user 1 will be located at the D2D user 1 After the uplink transmission time TA1 of the LTE system eNB uplink, as shown in FIG. 12b.
  • the reception timing can be configured as the uplink uplink transmission time TA1 of the D2D user 1 and the eNB of the LTE system, that is, the user 1 receives the D2D data from the beginning of the TA1.
  • the user 2 When the user 2 sends the D2D data to the user 3, the user 2 sets the uplink uplink transmission time TA2 of the uplink with the eNB of the LTE system as the transmission timing, then the time T3 when the signal arrives at the D2D user 3 will be located at the D2D user 2 and After the uplink transmission time TA2 of the eNB of the LTE system, as shown in FIG. 12c Shown.
  • the reception timing of the D2D user 3 can be configured as the uplink uplink transmission time TA2 of the D2D user 2 and the eNB of the LTE system, that is, the user 3 starts receiving D2D data from the TA2; or the reception timing of the D2D user 3 It is configured to delay the uplink timing TA3 of the eNB of the user 3 and the LTE system with a certain amount of time, that is, the user 3 starts receiving D2D data after delaying for a certain amount of time from the start of the TA3, and the amount of time is configured by the eNB. .
  • a more reasonable reception timing is different, which can be configured by the eNB for the D2D user.
  • the above configuration time can also be configured by the D2D sending user for the D2D receiving user.
  • the D2D transmission user 2 can be configured for the D2D reception user 1 with reference to the uplink transmission timing TA1 of the uplink of the user 1 and the eNB of the LTE system, with a certain amount of delay being the reception timing.
  • the eNB or the D2D user configures the receiving reference time for determining the receiving timing for the other D2D users by using the methods of the embodiment 7 and the embodiment 8, and the user determines the receiving timing according to the receiving reference time. And receiving D2D data according to the determined reception timing, reducing the complexity of the user's transmission timing and reception timing.
  • the embodiment of the present invention further provides a D2D user equipment, as described in the following embodiment 9.
  • the principle of the D2D user equipment is similar to that of the seventh embodiment. Therefore, the specific implementation may refer to the seventh embodiment. The implementation of the method, the same content will not be repeated.
  • FIG. 13 is a schematic diagram of the composition of the user equipment.
  • the user equipment includes:
  • a determining unit 131 which determines a receiving timing of the D2D data according to a pre-configured receiving reference time or a preset rule
  • the receiving unit 132 receives the D2D data according to the reception timing of the D2D data determined by the determining unit 131.
  • the preset rule is: using an uplink uplink sending timing of the user equipment and an eNB of the LTE system as the receiving timing of the D2D data, or: using the user equipment and an eNB of the LTE system
  • the downlink transmission timing of the downlink is used as the reception timing of the D2D data.
  • the pre-configured receiving reference time is configured by the eNB or other D2D user equipment by using high layer signaling or by the eNB by dynamic signaling of the physical layer, or the pre-configured receiving The reference time is configured by the user equipment to other D2D user equipments in the group or group through high layer signaling or through dynamic signaling of the physical layer.
  • the pre-configured receiving reference time is a predefined reference time or a preset time offset based on a predefined reference time.
  • the pre-defined receiving reference time is an uplink uplink sending timing of the uplink of the user equipment and the eNB or a downlink receiving timing of the downlink of the user equipment and the eNB.
  • the D2D user equipment of the embodiment determines the receiving timing according to the configured receiving reference time or a preset rule, receives the D2D data according to the determined receiving timing, simplifies the D2D data receiving process, and reduces the user sending timing and the receiving timing. the complexity.
  • the embodiment of the present invention further provides an eNB in an LTE system, as described in the following Embodiment 10. Since the principle of the eNB in the LTE system is similar to that of the embodiment 8, the specific implementation may refer to the specific implementation. The implementation of the method of Embodiment 8 will not be repeated.
  • the embodiment of the invention provides an eNB in an LTE system.
  • 14 is a schematic diagram of the composition of the eNB. Referring to FIG. 14, the eNB includes:
  • the configuration unit 141 configures a receiving reference time for the user equipment performing D2D communication in the coverage of the eNB by using the high layer signaling or the dynamic signaling of the physical layer, so that the user equipment determines according to the configuration information of the receiving reference time. Receive time of receiving D2D communication data.
  • the configuration information of the receiving reference time is a predefined reference time or a preset time offset based on a predefined reference time.
  • the pre-defined reference time is an uplink uplink transmission timing of the user equipment and the eNB or a downlink downlink timing of the downlink of the user equipment and the eNB.
  • the eNB of the present embodiment configures the reception reference time for the user, and the user can determine the reception timing according to the reception reference time, and receive the D2D data according to the determined reception timing, thereby reducing the complexity of the transmission timing and the reception timing of the user.
  • the embodiment of the present invention further provides a communication system, wherein the communication system includes at least one of the user equipment of Embodiment 4 or Embodiment 5 or Embodiment 9, or the communication system includes Embodiment 4 or Embodiment 5 or at least one of the user equipment of Embodiment 9 and the eNB described in Embodiment 6 or Embodiment 10.
  • An embodiment of the present invention further provides a computer readable program, wherein the program is executed in a terminal device
  • the program causes the computer to execute the discovery sequence detection method in the D2D communication described in Embodiments 1 and 2 in the terminal device, or to execute the D2D data reception method described in Embodiment 7.
  • the embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes the computer to execute the discovery sequence detection method in the D2D communication described in Embodiments 1 and 2 in the terminal device, or The method of receiving D2D data described in Embodiment 7 is performed.
  • the embodiment of the present invention further provides a computer readable program, wherein when the program is executed in a base station, the program causes the computer to execute the receiving window configuration method in the D2D communication described in Embodiment 3 in the base station, or The reception reference time configuration method of the D2D data described in Embodiment 8 is performed.
  • the embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes the computer to execute the receiving window configuration method in the D2D communication described in Embodiment 3 in the terminal device, or performs the implementation.
  • the above apparatus and method of the present invention may be implemented by hardware, or may be implemented by hardware in combination with software.
  • the present invention relates to a computer readable program that, when executed by a logic component, enables the logic component to implement the apparatus or components described above, or to cause the logic component to implement the various methods described above Or steps.
  • Logic components such as field programmable logic components, microprocessors, processors used in computers, and the like.
  • the present invention also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种D2D发现序列的检测方法和D2D数据的接收方法及装置,其中,所述检测方法包括:D2D用户设备根据其与LTE系统的eNB的上行链路的上行发送定时确定检测发现序列的时间窗的起点;所述D2D用户设备在确定的时间窗的起点检测其他D2D用户设备的发现序列。通过本发明实施例的方法和装置,能够降低D2D用户检测其他D2D用户的发现序列的复杂度,缩短D2D用户检测其它D2D用户的发现序列的时间,减少D2D用户上报发现序列的检测信息的信令。

Description

D2D发现序列的检测方法、 D2D数据的接收方法及装置 技术领域
本发明涉及无线通信领域, 尤其涉及一种在无线通信系统中存在设备对设备 (Device-to-Device, D2D) 的用户 (UE, User Equipment) 时, 一种 D2D发现序列 的检测方法和 D2D数据的接收方法及装置。 背景技术
目前的蜂窝网络系统中, 用户之间的通信必须要经过基站作为中央控制器, 如, 增强的 Node B (eNB)。 不管通信的用户之间距离很远还是非常相近, 该小区中的干 扰控制和资源管理都是由 eNB去处理的。 这种 eNB集中控制的好处在于能够全局优 化干扰控制和无线资源控制, 坏处在于某些场景下不能有效的资源利用。例如, 相比 于两个距离非常相近的用户之间直接的通信, 这种必须经过 eNB的 UE通信方法需 要消耗两倍的资源。 而且, 在有些热点场景区, 服务的负载量非常大, 从而导致 eNB 出现严重的过载。 此时, 如果能够允许地理位置相近的 UE之间直接通信, 即可缓解 eNB的负载。 因此, 出现了设备对设备 ( Device-to-Device, D2D) 的概念, D2D意 思是距离相近的 UE之间直接的通信。
目前, 3GPP (The 3rd Generation Partnership Project, 第三代合作伙伴计划) 已经 开展了在 LTE (Long Term Evolution, 长期演进)系统中引入 D2D的技术研究。 D2D 的应用场景分为两类: 一种是社交网络, 例如, 基于地理位置相近的商业 /社交服务, 广告和游戏; 另外一种是公共安全。 社交网络这一类型的 D2D研究, 目前一般限定 在网络覆盖范围内的 D2D, 也即 D2D的发现和通信可能会部分依赖于 eNB的辅助; 公共安全这一类型的 D2D研究, 一般来说由于 UE 自身处于非常恶劣的环境或者网 络基础设施的损毁, 此时 UE是在网络覆盖范围之外, 这种情况下, 需要依赖其他处 于网络覆盖范围内的 UE充当中继节点与在网络覆盖范围外的 UE进行直接的 D2D 发现以及 D2D通信, 或者利用在网络损毁之前预先配置的无线资源进行直接的 D2D 发现以及 D2D通信。
D2D 通信一般用于地理位置比较相近的用户之间, 且用户设备具备发现其他用 户的能力, 也能够被其他用户发现。 不管是哪一种类型的 D2D应用场景, D2D通信 的前提就是 UE能够发现其周边能够进行 D2D通信的 UE。在现有研究中, 如何设计 D2D通信的发现序列成为一个研究热点, 但对于 D2D用户在接收发现序列时的时钟 问题, 却鲜有研究提及。
发明人在实现本发明的过程中发现, 与 LTE系统中下行定时不同, D2D用户在 接收发现序列时, 可能需同时检测出多个 D2D用户的发现序列, 而普通用户在检测 eNB的下行同步信号时, 仅需区分出最强的一个下行同步信号并与此建立下行同步。 而与 LTE系统中上行定时也不同, D2D用户在发送 D2D发现序列时, 往往并未与相 应 D2D用户建立 "下行同步", 因此无法基于 "下行定时"而确定相应的 D2D发现 序列发送时间,而接收 D2D发现序列的 D2D用户亦无法根据自己的"下行发送时间" 确定合理的接收时间窗。 因此, 有必要为 D2D通信的用户设计新的发送定时、 接收 定时机制, 以便准确高效的解调发现序列。
另一方面, 当 D2D用户建立连接后, 为保证数据在 D2D用户间的正常发送 /接 收, 也需要相应的发送 /接收定时机制。考虑到 D2D用户间通信信道的鲁棒性及 D2D 用户通信的复杂度, D2D用户间的定时精度可相比 LTE系统的用户上行定时精度稍 有放松, 因此同样有必要研究复杂度适中的发送 /接收定时机制。
应该注意, 上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、 完整的说明, 并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发 明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。 发明内容
本发明实施例的目的在于提供一种 D2D发现序列的检测方法和 D2D数据的接收 方法及装置, 以便具备 D2D功能的用户 (简称为 D2D用户或者 D2D用户设备) 在 监听其他用户的 D2D发现序列时, 能够更为准确的、 高效的、 正确检测出发现序列, 以及在接收其它 D2D用户发送的数据时, 以更高的时间精度对数据进行解调。
根据本发明实施例的第一方面, 提供了一种设备对设备 (D2D) 发现序列的检测 方法, 其中, 所述方法包括:
D2D用户设备根据其与长期演进 (LTE) 系统的基站 (eNB) 的上行链路的上行 发送定时确定检测发现序列的时间窗的起点;
所述 D2D用户设备在确定的时间窗的起点检测其他 D2D用户设备的发现序列。 根据本发明实施例的第二方面, 提供了一种 D2D发现序列的检测方法, 其中, 所述方法包括:
D2D用户设备根据其与 LTE系统的 eNB的上行链路的上行发送定时以及接收到 的接收窗的配置信息确定检测发现序列的时间窗的起始与终止位置;
所述 D2D用户设备在确定的时间窗的起始与终止位置检测其他 D2D用户设备的 发现序列。
根据本发明实施例的第三方面, 提供了一种 D2D用户设备, 其中, 所述用户设 备包括:
确定单元, 其根据所述用户设备与 LTE系统的 eNB的上行链路的上行发送定时 确定检测发现序列的时间窗的起点;
检测单元, 其在所述确定单元所确定的时间窗的起点检测其他 D2D用户设备的 发现序列。
根据本发明实施例的第四方面, 提供了一种 D2D用户设备, 其中, 所述用户设 备包括:
第一确定单元, 其根据所述用户设备与 LTE系统的 eNB的上行链路的上行发送 定时以及接收到的接收窗的配置信息确定检测发现序列的时间窗的起始与终止位置; 检测单元, 其在所述第一确定单元所确定的时间窗的起始与终止位置检测其他 D2D用户设备的发现序列。
根据本发明实施例的第五方面, 提供了一种 D2D数据的接收方法, 其中, 所述 方法包括:
用户设备根据预先配置的接收参考时间或者预设的规则确定 D2D数据的接收定 时;
所述用户设备根据确定的 D2D数据的接收定时接收 D2D数据。
根据本发明实施例的第六方面, 提供了一种 D2D用户设备, 其中, 所述用户设 备包括:
确定单元, 其根据预先配置的接收参考时间或者预设的规则确定 D2D数据的接 收定时;
接收单元, 其根据所述确定单元确定的 D2D数据的接收定时接收 D2D数据。 根据本发明实施例的第七方面, 提供了一种 D2D发现序列的接收窗的配置方法, 其中, 所述方法包括:
LTE系统中的 eNB通过高层信令或者物理层的动态信令为其覆盖范围内的进行 D2D 通信的用户设备配置接收窗, 以便所述用户设备根据所述接收窗的配置信息以 及其与所述 eNB的上行链路的上行发送定时确定其检测发现序列的时间窗的起始位 置和终止位置。
根据本发明实施例的第八方面, 提供了一种 LTE系统中的 eNB,其中, 所述 eNB 包括:
配置单元,其通过高层信令或者物理层的动态信令为所述 eNB覆盖范围内的进行 D2D 通信的用户设备配置接收窗, 以便所述用户设备根据所述接收窗的配置信息以 及其与所述 eNB的上行链路的上行发送定时确定其检测发现序列的时间窗的起始位 置和终止位置。
根据本发明实施例的第九方面, 提供了一种 D2D数据的接收参考时间的配置方 法, 其中, 所述方法包括:
LTE系统中的 eNB通过高层信令或者物理层的动态信令为其覆盖范围内的进行 D2D 通信的用户设备配置接收参考时间, 以便所述用户设备根据所述接收参考时间 的配置信息确定接收 D2D通信数据的接收时间。
根据本发明实施例的第十方面, 提供了一种 LTE系统中的 eNB,其中, 所述 eNB 包括:
配置单元,其通过高层信令或者物理层的动态信令为所述 eNB覆盖范围内的进行 D2D 通信的用户设备配置接收参考时间, 以便所述用户设备根据所述接收参考时间 的配置信息确定接收 D2D通信数据的接收时间。
根据本发明实施例的第十一方面, 提供了一种通信系统, 其中, 所述通信系统包 括第三方面、第四方面、第六方面任一方面所述的用户设备中的至少一个, 或者包括 第三方面、第四方面、第六方面任一方面所述的用户设备中的至少一个以及第八方面、 第十方面任一方面所述的 eNB。
根据本发明实施例的其他方面, 提供了一种计算机可读程序, 其中当在终端设备 中执行该程序时, 该程序使得计算机在所述终端设备中执行第一方面、第二方面任一 方面所述的 D2D发现序列的检测方法,或者执行第五方面所述的 D2D数据的接收方 法。 根据本发明实施例的其他方面, 提供了一种存储有计算机可读程序的存储介质, 其中该计算机可读程序使得计算机在终端设备中执行第一方面、第二方面任一方面所 述的 D2D发现序列的检测方法, 或者执行第五方面所述的 D2D数据的接收方法。
根据本发明实施例的其他方面, 提供了一种计算机可读程序, 其中当在基站中执 行该程序时, 该程序使得计算机在所述基站中执行第七方面所述的 D2D发现序列的 接收窗的配置方法,或者执行第九方面所述的 D2D数据的接收参考时间的配置方法。
根据本发明实施例的其他方面, 提供了一种存储有计算机可读程序的存储介质, 其中该计算机可读程序使得计算机在终端设备中执行第七方面所述的 D2D发现序列 的接收窗的配置方法, 或者执行第九方面所述的 D2D数据的接收参考时间的配置方 法。
本发明实施例的有益效果在于: 通过本发明实施例的方法和装置, 能够降低用户 检测其他用户的发现序列的复杂度,缩短用户检测其他用户的发现序列的时间,减少 用户上报发现序列检测信息的信令。
参照后文的说明和附图,详细公开了本发明的特定实施方式, 指明了本发明的原 理可以被采用的方式。应该理解, 本发明的实施方式在范围上并不因而受到限制。在 所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和 /或示出的特征可以以相同或类似的方式在一个或更多 个其它实施方式中使用, 与其它实施方式中的特征相组合, 或替代其它实施方式中的 特征。
应该强调, 术语"包括 /包含"在本文使用时指特征、 整件、 步骤或组件的存在, 但并不排除一个或更多个其它特征、 整件、 步骤或组件的存在或附加。 附图说明
参照以下的附图可以更好地理解本发明的很多方面。附图中的部件不是成比例绘 制的, 而只是为了示出本发明的原理。 为了便于示出和描述本发明的一些部分, 附图 中对应部分可能被放大或缩小。在本发明的一个附图或一种实施方式中描述的元素和 特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在 附图中, 类似的标号表示几个附图中对应的部件, 并可用于指示多于一种实施方式中 使用的对应部件。 在附图中: 图 1是本发明实施例 1的 D2D发现序列的检测方法的流程图; 图 2是本发明实施例 2的 D2D发现序列的检测方法的流程图;
图 3是本发明实施例 3的 D2D发现序列的接收窗的配置方法的流程图; 图 4是用户根据配置的接收窗检测 D2D发现序列的示意图;
图 5是基于循环移位发现序列的检测算法的示意图;
图 6是本发明实施例 4的 D2D用户设备的组成示意图;
图 7是本发明实施例 5的 D2D用户设备的组成示意图;
图 8是本发明实施例 6的 eNB的组成示意图;
图 9是本发明实施例 7的 D2D数据的接收方法的流程图;
图 10是本发明实施例 8的 D2D数据的接收参考时间配置方法的流程图; 图 11a-图 l ib是 eNB为位于小区中心的用户配置接收参考时间的示意图; 图 12a-图 12c是 eNB为位于小区边缘的用户配置接收参考时间的示意图; 图 13是本发明实施例 9的 D2D用户设备的组成示意图;
图 14是本发明实施例 10的 eNB的组成示意图。 具体实施方式
参照附图, 通过下面的说明书, 本发明实施例的前述以及其它特征将变得明显。 这些实施方式只是示例性的, 不是对本发明的限制。为了使本领域的技术人员能够容 易地理解本发明的原理和实施方式, 本发明的实施方式以 LTE系统为例对本发明实 施例的 D2D发现序列的检测方法和 D2D数据的接收方法和装置进行说明,但可以理 解, 本发明实施例并不限于上述系统, 对于涉及 D2D通信的其他系统均适用。
实施例 1
本发明实施例提供了一种 D2D发现序列的检测方法。 图 1是该方法的流程图, 请参照图 1, 该方法包括:
步骤 101 : D2D用户设备根据其与 LTE系统的 eNB的上行链路的上行发送定时 确定检测发现序列的时间窗的起点;
其中,该 D2D用户设备可以将其与 LTE系统的 eNB的上行链路的上行发送定时 作为检测发现序列的时间窗的起点, 也可以将其与 LTE系统的 eNB的上行链路的上 行发送定时的预设的时间偏移量作为检测发现序列的时间窗的起点。 步骤 102: 所述 D2D用户设备在确定的时间窗的起点检测其他 D2D用户设备的 发现序列。
在本实施例中,将 D2D用户与 LTE系统的 eNB的上行链路的上行发送定时作为 该 D2D用户检测其他 D2D用户的发现序列的时间窗的起点; 或者以该 D2D用户与 LTE系统的 eNB的上行链路的上行发送定时为参考, 结合预先设定的时间偏移量的 时间作为该 D2D用户检测其他 D2D用户的发现序列的时间窗的起点, 当该 D2D用 户检测其他 D2D用户的发现序列时,可以在其确定的时间窗的起点检测其他 D2D用 户的发现序列。
其中, 上述预先设定的时间偏移量可以是各个 D2D用户根据自己到基站的距离 预先设定的, 也可以是基站根据其到该 D2D用户的距离通过信令预先配置或者动态 配置的, 还可以是各个 D2D用户考虑到上行定时误差而预先设定的, 本实施例并不 以此作为限制。
通过本实施例的方法定义了检测 D2D发现序列的时间窗, 由此降低了用户检测 其他用户的发现序列的复杂度, 缩短了用户检测其他用户的发现序列的时间。
实施例 2
本发明实施例提供了一种 D2D发现序列的检测方法。 图 2是该方法的流程图, 请参照图 2, 该方法包括:
步骤 201 : D2D用户设备根据其与 LTE系统的 eNB的上行链路的上行发送定时 以及接收到的接收窗的配置信息确定检测发现序列的时间窗的起始与终止位置; 步骤 202: 所述 D2D用户设备在确定的时间窗的起始与终止位置检测其他 D2D 用户设备的发现序列。
在本实施例中, eNB为 D2D用户配置了接收窗, D2D用户根据其与 LTE系统的 eNB的上行链路的上行发送定时以及 eNB为其配置的该接收窗,对其它 D2D用户的 发现序列进行检测。
在一个实施方式中, 该接收窗的配置信息可以为: 以所述上行发送定时作为所述 时间窗的起始位置,沿着时间轴方向向后的接收信号的总长度, 也即检测信号的总长 度。
在另外一个实施方式中, 该接收窗的配置信息可以为: 以所述上行发送定时作为 所述时间窗的起始位置,沿着时间轴方向向后的接收信号的起点的最大偏移量, 也即 检测信号的起点相对于接收窗起点的最大偏移量。
在本实施例中, 该接收窗的配置信息可以由 eNB通过高层信令配置, 也可以由 eNB通过物理层的动态信令配置, 本实施例并不以此作为限制。另外, 承载该接收窗 的配置信息的信令可以是用户专用的, 也即每个用户对应一个接收窗的配置信息; 也 可以是组专用的, 也即每组用户对应一个接收窗的配置信息。
在本实施例中, 如果该 D2D用户设备在确定的时间窗以外检测到发现序列, 则 一个实施方式为, 该 D2D用户根据预定的门限值确定在时间窗以外检测到的该发现 序列的信号强度是否超过该预定的门限值, 如果超过该预定的门限值, 则将在时间窗 以外检测到的该发现序列也作为选择对象, 从检测到的所有发现序列(包含在时间窗 以内检测到的发现序列以及在上述时间窗以外检测到的信号强度超过预定的门限值 的发现序列)中选择信号强度最强的预定数量(一个或多个)的发现序列上报给 eNB 或者相应的 D2D用户设备; 另一个实施方式为, 即使该 D2D用户在时间窗以外检测 到发现序列, 也不将该序列作为选择对象, 也即, 不上报与该序列相关的信息, 从在 时间窗以内检测到的所有发现序列中选择信号强度最强的预定数量的发现序列上报 给 eNB或者相应的 D2D用户设备, 由此节省了无用信息的上报开销。
通过本实施例的方法定义了检测 D2D发现序列的时间窗, 由此降低了用户检测 其他用户的发现序列的复杂度, 缩短了用户检测其他用户的发现序列的时间, 并减少 了用户上报发现序列的检测信息的信令。
实施例 3
本发明实施例提供了一种 D2D通信中的接收窗配置方法。 图 3是该方法的流程 图, 请参照图 3, 该方法包括:
步骤 301 : LTE系统中的 eNB通过高层信令或者物理层的动态信令为其覆盖范围 内的进行 D2D通信的用户设备配置接收窗, 以便所述用户设备根据所述接收窗的配 置信息以及其与所述 eNB的上行链路的上行发送定时确定其检测发现序列的时间窗 的起始位置和终止位置。
在本实施例中, 该接收窗的配置信息可以是用户专用的, 也即该 eNB为每个用 户配置一个接收窗, 各用户的接收窗可以相同也可以不同; 也可以是组专用的, 也即 该 eNB为每组用户配置一个接收窗, 每组用户的接收窗都相同, 不同组用户的接收 窗可以相同也可以不同。 在本实施例中, 该接收窗的配置信息可以是以用户与 eNB的上行链路的上行发 送定时作为时间窗的起点, 沿着时间轴向后接收信号的总长度; 也可以是以用户与 eNB的上行链路的上行发送定时作为时间窗的起点,沿着时间轴向后接收信号起点的 最大偏移量。
在本实施例中, 该 eNB可以同时通过上述高层信号或者所述物理层的动态信令 为所述用户配置用于确定是否将检测到的接收窗以外发现序列作为选择对象的门限 值。
通过本实施例的方法为进行 D2D通信的用户配置接收窗, 该用户可以根据配置 的接收窗和其与 LTE系统的 eNB的上行链路的上行发送定时确定检测 D2D发现序列 的时间窗, 并在确定的时间窗检测发现序列, 由此降低了用户检测其他用户的发现序 列的复杂度,缩短了用户检测其他用户的发现序列的时间, 并减少了用户上报发现序 列的检测信息的信令。
为了使实施例 2和实施例 3的方法更加清楚易懂, 以下结合具体示例对实施例 2 和实施例 3的方法进行说明。
示例一
在本示例中, 给出了 eNB通过高层信令为用户配置接收窗的示例。
用户在 LTE系统中, 与 eNB保持连接。 当该用户出现 D2D通信需求时(该需求 可以是由该用户发起的,也可以是由其它用户发起的),该 eNB协助该用户建立 D2D 连接, 即首先进行发现序列的发送或接收。
其中,该 eNB可通过高层信令配置该用户进行 D2D发现序列发送或接收的资源, 和 /或用户进行 D2D通信的其它必要信息。在本实施例中,该 eNB同时为该用户配置 检测发现序列时的接收窗的相关信息。 例如, 该接收窗的长度, 可以采样点为单位, 或以一定的预先设定的步长为单位, 或预设的几种窗长。
其中, 该 eNB也可通过单独的高层信令为该用户配置检测发现序列时的接收窗 的相关信息。
其中, 该 eNB也可以在通过上述高层信令配置接收窗的相关信息的同时配置相 应的检测门限,以便用户根据该检测门限确定是否将检测到的时间窗以外的发现序列 作为选择对象。
示例二 在本示例中, 给出了 eNB通过物理层的动态信令为用户配置接收窗的示例。 用户在 LTE系统中, 与 eNB保持连接。 当该用户出现 D2D通信需求时(该需求 可以是由该用户发起的,也可以是由其它用户发起的),该 eNB协助该用户建立 D2D 连接, 即首先进行发现序列的发送或接收。
其中, 该 eNB可通过 PDCCH/ePDCCH承载为该用户配置的检测发现序列的接 收窗的相关信息。 例如, 该接收窗的长度, 可以采样点为单位, 或以一定的预先设定 的步长为单位, 或预设的几种窗长。 优选的, 可预先设定 4种不同的窗长, 并通过 2 比特来动态指示。
其中, 该 eNB也可以在通过上述 PDCCH/ePDCCH配置接收窗的相关信息的同 时通过该 PDCCH/ePDCCH配置相应的检测门限, 以便用户根据该检测门限确定是否 将检测到的时间窗以外的发现序列作为选择对象。
其中, 如果该 eNB通过 PDCCH/ePDCCH中的某些资源承载了其它的 D2D建立 必须的信息, 则该 eNB可以在同一 PDCCH/ePDCCH中的资源上承载上述接收窗的 配置信息。
示例三
在本示例中, 给出了用户根据配置的接收窗的相关信息检测 D2D发现序列的示 例。 当该用户接收到 eNB配置的接收窗的相关信息后, 在检测 D2D发现序列时, 根 据该用户与 LTE系统的 eNB的上行链路的上行发送定时与配置的接收窗确定检测发 现序列的时间窗的起始与终点。
如图 4所示, 发现序列 41和发现序列 42的信号落入在接收窗内,用户可在配置 的接收窗内对信号进行匹配, 获得相关峰值, 从而解调发现序列。 而发现序列 43的 信号落入在接收窗外,根据本实施例的一个实施方式,用户不会检测接收窗外的信号。
在本实施例的另外一个实施方式中, 如果不同的 D2D发现序列是通过不同的循 环位移区分, 则可能用户以同一个定时, 仅需一次相关, 即可获得多个 D2D发现序 列的相关值。 此时, 用户仅挑选出配置的接收窗内的相关值。 如图 5 所示, 不同的 D2D发现序列在一个 FFT窗长度内, 在不同的时间轴位置出现相关峰值。 每个序列 的相关峰值位于与其循环位移对应的时间轴范围内。所配置的接收窗起点为每个时间 轴范围的起始位置, 终点为配置的接收窗长度。 如图 5所示, D2D发现序列 51 和 D2D发现序列 53的相关峰值位于接收窗内, 而 D2D发现序列 52的相关峰值则位于 接收窗外。在一个实施方式中, 用户虽能检测到该发现序列, 但用户并不选中该发现 序列或将该发现序列的相关信息上报。在另一个实施方式中,用户可以设置接收窗外 的发现序列的相关值门限 (例如信号强度的门限值), 例如设置门限值 θ, 当且仅当 接收窗外的发现序列的相关值超过该门限值时,才将该发现序列进行排序,选择或上 报相关信息。 以上只是举例说明, 本发明实施例并不以此作为限制, 对于其它的发现 序列, 例如采用 Μ序列或者 Gold序列, 若采用快速算法, 如 FFT算法, 原理也是类 似的, 在此不再赘述。
通过示例一到示例三的说明可知,通过实施例 2和实施例 3的方法, eNB为用户 配置用于检测发现序列的接收窗, 用户根据该接收窗以及其与 eNB的上行链路的上 行发送定时确定检测发现序列的时间窗, 并在该时间窗内检测发现序列,根据预定测 量选择检测结果上报。 由此不但降低了用户检测其他用户的发现序列的复杂度,缩短 了用户检测其他用户的发现序列的时间,还减少了用户上报发现序列的检测信息的信 令。
本发明实施例还提供了一种 D2D用户设备,如下面的实施例 4所述,由于该 D2D 用户设备解决问题的原理与实施例 1的方法类似,因此其具体的实施可以参照实施例 1的方法的实施, 内容相同之处不再重复说明。
实施例 4
本发明实施例提供了一种 D2D用户设备。图 6是该 D2D用户设备的组成示意图, 请参照图 6, 该用户设备包括:
确定单元 61,其根据所述用户设备与 LTE系统的 eNB的上行链路的上行发送定 时确定检测发现序列的时间窗的起点;
检测单元 62, 其在所述确定单元 61所确定的时间窗的起点检测其他 D2D用户 设备的发现序列。
其中, 该确定单元 61可以将所述上行发送定时作为所述时间窗的起点, 也可以 将所述上行发送定时结合了预设的时间偏移量的时间作为所述时间窗的起点。
本实施例的 D2D用户设备以其与 LTE系统的 eNB的上行链路的上行发送定时作 为参考确定检测 D2D发现序列的时间窗, 由此降低了用户检测其他用户的发现序列 的复杂度, 缩短了用户检测其他用户的发现序列的时间。
本发明实施例还提供了一种 D2D用户设备,如下面的实施例 5所述,由于该 D2D 用户设备解决问题的原理与实施例 2的方法类似,因此其具体的实施可以参照实施例 2的方法的实施, 内容相同之处不再重复说明。
实施例 5
本发明实施例提供了一种 D2D用户设备。 图 7是该用户设备的组成示意图, 请 参照图 7, 该用户设备包括:
第一确定单元 71,其根据所述用户设备与 LTE系统的 eNB的上行链路的上行发 送定时以及接收到的接收窗的配置信息确定检测发现序列的时间窗的起始与终止位 置;
检测单元 72, 其在所述第一确定单元 71所确定的时间窗的起始与终止位置检测 其他 D2D用户设备的发现序列。
其中,所述接收窗的配置信息可以为: 以所述上行发送定时作为所述时间窗的起 始位置, 沿着时间轴方向向后的接收信号的总长度。其中, 所述接收窗的配置信息也 可以为: 以所述上行发送定时作为所述时间窗的起始位置,沿着时间轴方向向后的接 收信号的起点的最大偏移量。
其中, 所述接收窗的配置信息可以由所述 eNB通过高层信令配置, 也可以由所 述 eNB通过物理层的动态信令配置。
其中, 所述接收窗的信令可以是用户专用的, 也可以是组专用的。
在一个实施方式中, 所述用户设备还包括:
第二确定单元 73, 其在所述检测单元 72在所述时间窗以外检测到发现序列时, 确定检测到的发现序列的信号强度是否超过预定的门限值;
第一上报单元 74, 其在检测到的发现序列的信号强度超过预定的门限值时, 将 所述检测到的发现序列作为选择对象,从检测到的所有发现序列中选择信号强度最强 的预定数量的发现序列上报给 eNB或者相应的 D2D用户设备。
在本实施方式中,用户设备设定了用于确定是否将检测到的接收窗以外的发现序 列作为选择对象的门限值, 当且仅当上述发现序列的信号强度超出预设门限时,才将 该发现序列作为选择对象。
在另外一个实施方式中, 所述用户设备还包括:
第二上报单元 75, 其在所述检测单元 72在所述时间窗以外检测到发现序列时, 从在时间窗以内检测到的所有发现序列中选择信号强度最强的预定数量的发现序列 上报给 eNB或者相应的 D2D用户设备。
在本实施方式中, 即使用户设备在接收窗以外检测到发现序列, 也不将其作为选 择对象, 而是从检测到的接收窗以内的发现序列中选择需要上报的发现序列, 由此节 省了上报开销。
本实施例的 D2D用户设备以其与 LTE系统的 eNB的上行链路的上行发送定时和 接收到的接收窗的配置信息作为参考确定检测 D2D发现序列的时间窗, 由此降低了 用户检测其他用户的发现序列的复杂度, 缩短了用户检测其他用户的发现序列的时 间, 并减少了用户上报发现序列的检测信息的开销。
本发明实施例还提供了一种 LTE系统中的 eNB, 如下面的实施例 6所述, 由于 该 LTE系统中的 eNB解决问题的原理与实施例 3的方法类似, 因此其具体的实施可 以参照实施例 3的方法的实施, 内容相同之处不再重复说明。
实施例 6
本发明实施例提供了一种 LTE系统中的 eNB。 图 8是该 eNB的组成示意图, 请 参照图 8, 该 eNB包括:
配置单元 81, 其通过高层信令或者物理层的动态信令为所述 eNB覆盖范围内的 进行 D2D通信的用户设备配置接收窗, 以便所述用户设备根据所述接收窗的配置信 息以及其与所述 eNB的上行链路的上行发送定时确定其检测发现序列的时间窗的起 始位置和终止位置。
本实施例的 eNB为进行 D2D通信的用户配置了接收窗, 由此, 该用户可以根据 配置的接收窗和其与 LTE系统的 eNB的上行链路的上行发送定时确定检测 D2D发现 序列的时间窗, 并在确定的时间窗检测发现序列, 降低了用户检测其他用户的发现序 列的复杂度,缩短了用户检测其他用户的发现序列的时间, 并减少了用户上报发现序 列的检测信息的信令。
实施例 7
本发明实施例还提供了一种 D2D数据的接收方法。 图 9是该方法的流程图, 请 参照图 9, 该方法包括:
步骤 901 : 用户设备根据预先配置的接收参考时间或者预设的规则确定 D2D数 据的接收定时;
步骤 902: 所述用户设备根据确定的 D2D数据的接收定时接收 D2D数据。 在本实施例中, 预设的规则可以是: 以所述用户设备与 LTE系统的 eNB的上行 链路的上行发送定时作为所述 D2D数据的接收定时, 也可以是: 以所述用户设备与 LTE系统的 eNB的下行链路的下行发送定时作为所述 D2D数据的接收定时。根据上 述预设的规则, 用户设备可以确定其接收 D2D数据的时间(接收定时), 在该确定的 接收 D2D数据的时间即可接收 D2D数据, 由此能够降低用户的发送 /接收定时的复 杂度。
在本实施例中, 预先配置的接收参考时间可以由所述 eNB或其他 D2D用户设备 通过高层信令配置或者由所述 eNB通过物理层的动态信令配置, 也可以由所述用户 设备对群或组中的其他 D2D用户设备通过高层信令配置或者通过物理层的动态信令 配置。
其中,该预先配置的接收参考时间为预先定义的参考时间或者为基于预先定义的 参考时间的预设时间偏移量。例如,该预先定义的参考时间可以为该用户设备与 eNB 的上行链路的上行发送定时或者该用户设备与 eNB的下行链路的下行接收定时。
通过本实施例的方法设定 D2D数据的接收定时, 能够降低用户的接收定时的复 杂度。
实施例 8
本发明实施例还提供了一种 D2D数据的接收参考时间配置方法。图 10是该方法 的流程图, 请参照图 10, 该方法包括:
步骤 1001 : LTE系统中的 eNB通过高层信令或者物理层的动态信令为其覆盖范 围内的进行 D2D通信的用户设备配置接收参考时间, 以便所述用户设备根据所述接 收参考时间的配置信息确定接收 D2D通信数据的接收时间。
其中,所述接收参考时间的配置信息可以为预先定义的参考时间或者为基于预先 定义的参考时间的预设时间偏移量。这里的时间偏移量例如为预定义的步长, 或者预 定义的几种时间。
其中, 所述预先定义的参考时间例如为所述用户设备与所述 eNB的上行链路的 上行发送定时, 或者所述用户设备与所述 eNB的下行链路的下行接收定时。
通过本实施例的方法为进行 D2D通信的用户配置接收参考时间, 该用户可以根 据配置的接收参考时间确定其接收 D2D数据的接收定时, 并在确定的接收定时接收 D2D数据, 由此降低了用户的接受定时的复杂度。 为了使实施例 7和实施例 8的方法更加清楚易懂, 以下结合具体示例对实施例 7 和实施例 8的方法进行说明。
示例四
在本示例中,给出了 eNB为用户配置 D2D数据接收定时的接收参考时间的示例。 在本示例中, 两个 D2D用户位于 LTE蜂窝网络小区中心, 且分别位于基站的两侧。 此时, D2D用户间的距离相比于 eNB与 D2D用户间的距离是不可忽视的。 如图 11a 和图 lib所示,假设 D2D用户 2向 D2D用户 1发送数据,用户 2以其与 LTE系统的 eNB的上行链路的上行发送时间 TA2作为 D2D数据的发送定时, 那么, 该信号到达 D2D用户 1的时间 T3将位于 D2D用户 1与 LTE系统的 eNB的下行链路的下行接收 时间和 LTE系统的 eNB的下行链路的下行发送时间之间。 因此, 可将 D2D用户 1 的接收时间配置为用户假设的 LTE系统的 eNB的下行链路的下行发送定时, 也即用 户 1从其估计的蜂窝网络中 eNB下行发送定时开始接收 D2D数据。 或者更精细的, 可将 D2D用户 1的接收时间定义配置为以用户接收 eNB信号的下行接收定时为参考, 提前一定时间量, 也即用户 1从其估计的蜂窝网络中 eNB下行接收定时前的一个时 间量开始接收 D2D数据, 所述时间量由 eNB配置。 其中, 上述信息作为前述接收参 考时间可以由 eNB通过高层信令配置或者由 eNB通过物理层的动态信令配置或者由 其他用户通过高层信令或者物理层的动态信令配置等等。
示例五
在本示例中,给出了 eNB为用户配置 D2D数据接收定时的接收参考时间的示例。 在本示例中, 两个 D2D用户位于 LTE蜂窝网络小区边缘, 此时, 用户与 eNB的距离 远大于 D2D用户间的距离, 如图 12a所示。
当用户 2向用户 1发送 D2D数据时,用户 2将该用户与 LTE系统的 eNB的上行 链路的上行发送时间 TA2作为发送定时, 那么, 该信号到达 D2D用户 1 的时间 T3 将位于 D2D用户 1与 LTE系统 eNB上行链路的上行发送时间 TA1之后, 如图 12b 所示。此时, 可将接收定时配置为 D2D用户 1与 LTE系统的 eNB的上行链路的上行 发送时间 TA1, 也即用户 1从 TA1的起点开始接收 D2D数据。
当用户 2向用户 3发送 D2D数据时,用户 2将其与 LTE系统的 eNB的上行链路 的上行发送时间 TA2作为发送定时, 那么, 该信号到达 D2D用户 3的时间 T3将位 于 D2D用户 2与 LTE系统的 eNB的上行链路的上行发送时间 TA2之后, 如图 12c 所示。 此时, 可将 D2D用户 3的接收定时配置为 D2D用户 2与 LTE系统的 eNB的 上行链路的上行发送时间 TA2, 也即用户 3从 TA2开始接收 D2D数据; 或将 D2D 用户 3的接收定时配置为以用户 3与 LTE系统的 eNB的上行链路定时 TA3为参考, 延迟一定的时间量, 也即用户 3从 TA3的起点开始延迟一定时间量后开始接收 D2D 数据, 该时间量由 eNB配置。
由图 12b和图 12c的示例可以看出, 在不同的情况下, 更合理的接收定时不同, 可通过 eNB为 D2D用户配置。
在本示例中, 上述配置时间也可由 D2D发送用户为 D2D接收用户配置。例如图 12b的情况,可由 D2D发送用户 2为 D2D接收用户 1配置以用户 1与 LTE系统的 eNB 的上行链路的上行发送定时 TA1为参考, 延迟一定的时间量为接收定时。
通过示例四和示例五的说明可知, 通过实施例 7和实施例 8的方法, eNB或者 D2D用户为其他 D2D用户配置用于确定接收定时的接收参考时间, 用户根据该接收 参考时间确定接收定时, 并根据确定的接收定时接收 D2D数据, 降低了用户的发送 定时和接收定时的复杂度。
本发明实施例还提供了一种 D2D用户设备,如下面的实施例 9所述,由于该 D2D 用户设备解决问题的原理与实施例 7的方法类似,因此其具体的实施可以参照实施例 7的方法的实施, 内容相同之处不再重复说明。
实施例 9
本发明实施例提供了一种 D2D用户设备。 图 13是该用户设备的组成示意图, 请 参照图 13, 该用户设备包括:
确定单元 131, 其根据预先配置的接收参考时间或者预设的规则确定 D2D数据 的接收定时;
接收单元 132, 其根据所述确定单元 131确定的 D2D数据的接收定时接收 D2D 数据。
其中, 所述预设的规则为: 以所述用户设备与 LTE系统的 eNB的上行链路的上 行发送定时作为所述 D2D数据的接收定时, 或者为: 以所述用户设备与 LTE系统的 eNB的下行链路的下行发送定时作为所述 D2D数据的接收定时。
其中, 所述预先配置的接收参考时间由所述 eNB或其他 D2D用户设备通过高层 信令配置或者由所述 eNB通过物理层的动态信令配置, 或者, 所述预先配置的接收 参考时间由所述用户设备对群或组中的其他 D2D用户设备通过高层信令配置或者通 过物理层的动态信令配置。
其中,所述预先配置的接收参考时间为预先定义的参考时间或者为基于预先定义 的参考时间的预设时间偏移量。
其中, 所述预先定义的接收参考时间为所述用户设备与所述 eNB的上行链路的 上行发送定时或者所述用户设备与所述 eNB的下行链路的下行接收定时。
通过本实施例的 D2D用户设备, 根据配置的接收参考时间或者预设的规则确定 接收定时, 根据确定的接收定时接收 D2D数据, 简化了 D2D数据的接收过程, 降低 了用户发送定时和接收定时的复杂度。
本发明实施例还提供了一种 LTE系统中的 eNB, 如下面的实施例 10所述, 由于 该 LTE系统中的 eNB解决问题的原理与实施例 8的方法类似, 因此其具体的实施可 以参照实施例 8的方法的实施, 内容相同之处不再重复说明。
实施例 10
本发明实施例提供了一种 LTE系统中的 eNB。 图 14是该 eNB的组成示意图, 请参照图 14, 该 eNB包括:
配置单元 141,其通过高层信令或者物理层的动态信令为所述 eNB覆盖范围内的 进行 D2D通信的用户设备配置接收参考时间, 以便所述用户设备根据所述接收参考 时间的配置信息确定接收 D2D通信数据的接收时间。
其中,所述接收参考时间的配置信息为预先定义的参考时间或者为基于预先定义 的参考时间的预设时间偏移量。
其中, 所述预先定义的参考时间为所述用户设备与所述 eNB的上行链路的上行 发送定时或者所述用户设备与所述 eNB的下行链路的下行接收定时。
通过本实施例的 eNB为用户配置接收参考时间, 用户可以根据该接收参考时间 确定其接收定时, 并根据确定的接收定时接收 D2D数据, 降低了用户的发送定时和 接收定时的复杂度。
本发明实施例还提供了一种通信系统,其中,所述通信系统包括实施例 4或实施 例 5或实施例 9的用户设备中的至少一个,或者所述通信系统包括实施例 4或实施例 5或实施例 9的用户设备中的至少一个以及实施例 6或实施例 10所述的 eNB。
本发明实施例还提供了一种计算机可读程序, 其中当在终端设备中执行该程序 时, 该程序使得计算机在所述终端设备中执行实施例 1、 2所述的 D2D通信中的发现 序列检测方法, 或者执行实施例 7所述的 D2D数据的接收方法。
本发明实施例还提供了一种存储有计算机可读程序的存储介质,其中该计算机可 读程序使得计算机在终端设备中执行实施例 1、 2所述的 D2D通信中的发现序列检测 方法, 或者执行实施例 7所述的 D2D数据的接收方法。
本发明实施例还提供了一种计算机可读程序,其中当在基站中执行该程序时, 该 程序使得计算机在所述基站中执行实施例 3所述的 D2D通信中的接收窗配置方法, 或者执行实施例 8所述的 D2D数据的接收参考时间配置方法。
本发明实施例还提供了一种存储有计算机可读程序的存储介质,其中该计算机可 读程序使得计算机在终端设备中执行实施例 3所述的 D2D通信中的接收窗配置方法, 或者执行实施例 8所述的 D2D数据的接收参考时间配置方法。
本发明以上的装置和方法可以由硬件实现, 也可以由硬件结合软件实现。本发明 涉及这样的计算机可读程序, 当该程序被逻辑部件所执行时, 能够使该逻辑部件实现 上文所述的装置或构成部件, 或使该逻辑部件实现上文所述的各种方法或步骤。逻辑 部件例如现场可编程逻辑部件、微处理器、计算机中使用的处理器等。本发明还涉及 用于存储以上程序的存储介质, 如硬盘、 磁盘、 光盘、 DVD、 flash存储器等。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这 些描述都是示例性的, 并不是对本发明保护范围的限制。本领域技术人员可以根据本 发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围 内。

Claims

权 利 要 求 书
1、 一种设备对设备 (D2D) 发现序列的检测方法, 其中, 所述方法包括:
D2D用户设备根据其与长期演进 (LTE) 系统的基站 (eNB) 的上行链路的上行 发送定时确定检测发现序列的时间窗的起点;
所述 D2D用户设备在确定的时间窗的起点检测其他 D2D用户设备的发现序列。
2、 根据权利要求 1所述的方法, 其中,
所述 D2D用户设备将所述上行发送定时作为所述时间窗的起点; 或者 所述 D2D用户设备将所述上行发送定时的预设的时间偏移量作为所述时间窗的 起点。
3、 一种 D2D发现序列的检测方法, 其中, 所述方法包括:
D2D用户设备根据其与 LTE系统的 eNB的上行链路的上行发送定时以及接收到 的接收窗的配置信息确定检测发现序列的时间窗的起始与终止位置;
所述 D2D用户设备在确定的时间窗的起始与终止位置检测其他 D2D用户设备的 发现序列。
4、 根据权利要求 3所述的方法, 其中, 所述接收窗的配置信息为:
以所述上行发送定时作为所述时间窗的起始位置, 沿着时间轴方向向后的接收信 号的总长度; 或者
以所述上行发送定时作为所述时间窗的起始位置, 沿着时间轴方向向后的接收信 号的起点的最大偏移量。
5、 根据权利要求 3所述的方法, 其中, 所述接收窗的配置信息由所述 eNB通过 高层信令配置或者由所述 eNB通过物理层的动态信令配置。
6、 根据权利要求 5所述的方法, 其中, 所述接收窗的信令是用户专用的或者组 专用的。
7、 根据权利要求 3所述的方法, 其中, 如果所述 D2D用户设备在所述时间窗以 外检测到发现序列, 则所述方法还包括:
确定检测到的发现序列的信号强度是否超过预定的门限值;
如果超过预定的门限值, 则将所述检测到的发现序列作为选择对象, 从检测到的 所有发现序列中选择信号强度最强的预定数量的发现序列上报给 eNB 或者相应的 D2D用户设备。
8、 根据权利要求 3所述的方法, 其中, 如果所述 D2D用户设备在所述时间窗以 外检测到发现序列, 则所述方法还包括:
从在时间窗以内检测到的所有发现序列中选择信号强度最强的预定数量的发现 序列上报给 eNB或者相应的 D2D用户设备。
9、 一种 D2D用户设备, 其中, 所述用户设备包括:
确定单元, 其根据所述用户设备与 LTE系统的 eNB的上行链路的上行发送定时 确定检测发现序列的时间窗的起点;
检测单元, 其在所述确定单元所确定的时间窗的起点检测其他 D2D用户设备的 发现序列。
10、 根据权利要求 9所述的用户设备, 其中,
所述确定单元将所述上行发送定时作为所述时间窗的起点; 或者
所述确定单元将所述上行发送定时的预设的时间偏移量作为所述时间窗的起点。
11、 一种 D2D用户设备, 其中, 所述用户设备包括:
第一确定单元, 其根据所述用户设备与 LTE系统的 eNB的上行链路的上行发送 定时以及接收到的接收窗的配置信息确定检测发现序列的时间窗的起始与终止位置; 检测单元, 其在所述第一确定单元所确定的时间窗的起始与终止位置检测其他 D2D用户设备的发现序列。
12、 根据权利要求 11所述的用户设备, 其中, 所述接收窗的配置信息为: 以所述上行发送定时作为所述时间窗的起始位置, 沿着时间轴方向向后的接收信 号的总长度; 或者
以所述上行发送定时作为所述时间窗的起始位置, 沿着时间轴方向向后的接收信 号的起点的最大偏移量。
13、根据权利要求 11所述的用户设备,其中,所述接收窗的配置信息由所述 eNB 通过高层信令配置或者由所述 eNB通过物理层的动态信令配置。
14、 根据权利要求 13所述的用户设备, 其中, 所述接收窗的信令是用户专用的 或者组专用的。
15、 根据权利要求 11所述的用户设备, 其中, 所述用户设备还包括: 第二确定单元, 其在所述检测单元在所述时间窗以外检测到发现序列时, 确定检 测到的发现序列的信号强度是否超过预定的门限值;
第一上报单元, 其在检测到的发现序列的信号强度超过预定的门限值时, 将所述 检测到的发现序列作为选择对象,从检测到的所有发现序列中选择信号强度最强的预 定数量的发现序列上报给 eNB或者相应的 D2D用户设备。
16、 根据权利要求 11所述的用户设备, 其中, 所述用户设备还包括: 第二上报单元, 其在所述检测单元在所述时间窗以外检测到发现序列时, 从在时 间窗以内检测到的所有发现序列中选择信号强度最强的预定数量的发现序列上报给 eNB或者相应的 D2D用户设备。
17、 一种 D2D数据的接收方法, 其中, 所述方法包括:
用户设备根据预先配置的接收参考时间或者预设的规则确定 D2D数据的接收定 时;
所述用户设备根据确定的 D2D数据的接收定时接收 D2D数据。
18、 根据权利要求 17所述的方法, 其中, 所述预设的规则为: 以所述用户设备 与 LTE系统的 eNB的上行链路的上行发送定时作为所述 D2D数据的接收定时,或者 为:以所述用户设备与 LTE系统的 eNB的下行链路的下行发送定时作为所述 D2D数 据的接收定时。
19、 根据权利要求 17所述的方法, 其中, 所述预先配置的接收参考时间由所述 eNB或其他 D2D用户设备通过高层信令配置或者由所述 eNB通过物理层的动态信令 配置, 或者, 所述预先配置的接收参考时间由所述用户设备对群或组中的其他 D2D 用户设备通过高层信令配置或者通过物理层的动态信令配置。
20、 根据权利要求 19所述的方法, 其中, 所述预先配置的接收参考时间为预先 定义的参考时间或者为基于预先定义的参考时间的预设时间偏移量。
21、 根据权利要求 20所述的方法, 其中, 所述预先定义的参考时间为所述用户 设备与所述 eNB的上行链路的上行发送定时或者所述用户设备与所述 eNB的下行链 路的下行接收定时。
22、 一种 D2D用户设备, 其中, 所述用户设备包括:
确定单元, 其根据预先配置的接收参考时间或者预设的规则确定 D2D数据的接 收定时;
接收单元, 其根据所述确定单元确定的 D2D数据的接收定时接收 D2D数据。
23、 根据权利要求 22所述的用户设备, 其中, 所述预设的规则为: 以所述用户 设备与 LTE系统的 eNB的上行链路的上行发送定时作为所述 D2D数据的接收定时, 或者为: 以所述用户设备与 LTE 系统的 eNB 的下行链路的下行发送定时作为所述 D2D数据的接收定时。
24、 根据权利要求 22所述的用户设备, 其中, 所述预先配置的接收参考时间由 所述 eNB或其他 D2D用户设备通过高层信令配置或者由所述 eNB通过物理层的动态 信令配置, 或者, 所述预先配置的接收参考时间由所述用户设备对群或组中的其他 D2D用户设备通过高层信令配置或者通过物理层的动态信令配置。
25、 根据权利要求 24所述的用户设备, 其中, 所述预先配置的接收参考时间为 预先定义的参考时间或者为基于预先定义的参考时间的预设时间偏移量。
26、 根据权利要求 25所述的用户设备, 其中, 所述预先定义的接收参考时间为 所述用户设备与所述 eNB的上行链路的上行发送定时或者所述用户设备与所述 eNB 的下行链路的下行接收定时。
27、 一种 D2D发现序列的接收窗的配置方法, 其中, 所述方法包括:
LTE系统中的 eNB通过高层信令或者物理层的动态信令为其覆盖范围内的进行
D2D 通信的用户设备配置接收窗, 以便所述用户设备根据所述接收窗的配置信息以 及其与所述 eNB的上行链路的上行发送定时确定其检测发现序列的时间窗的起始位 置和终止位置。
28、 根据权利要求 27所述的方法, 其中, 所述接收窗的配置信息是用户专用的 或者组专用的。
29、 一种 LTE系统中的 eNB, 其中, 所述 eNB包括:
配置单元,其通过高层信令或者物理层的动态信令为所述 eNB覆盖范围内的进行 D2D 通信的用户设备配置接收窗, 以便所述用户设备根据所述接收窗的配置信息以 及其与所述 eNB的上行链路的上行发送定时确定其检测发现序列的时间窗的起始位 置和终止位置。
30、 根据权利要求 29所述的 eNB, 其中, 所述接收窗的配置信息是用户专用的 或者组专用的。
31、 一种 D2D数据的接收参考时间的配置方法, 其中, 所述方法包括:
LTE系统中的 eNB通过高层信令或者物理层的动态信令为其覆盖范围内的进行 D2D 通信的用户设备配置接收参考时间, 以便所述用户设备根据所述接收参考时间 的配置信息确定接收 D2D通信数据的接收时间。
32、 根据权利要求 31 所述的方法, 其中, 所述接收参考时间的配置信息为预先 定义的参考时间或者为基于预先定义的参考时间的预设时间偏移量。
33、 根据权利要求 32所述的方法, 其中, 所述预先定义的参考时间为所述用户 设备与所述 eNB的上行链路的上行发送定时或者所述用户设备与所述 eNB的下行链 路的下行接收定时。
34、 一种 LTE系统中的 eNB, 其中, 所述 eNB包括:
配置单元,其通过高层信令或者物理层的动态信令为所述 eNB覆盖范围内的进行 D2D 通信的用户设备配置接收参考时间, 以便所述用户设备根据所述接收参考时间 的配置信息确定接收 D2D通信数据的接收时间。
35、 根据权利要求 34所述的 eNB, 其中, 所述接收参考时间的配置信息为预先 定义的参考时间或者为基于预先定义的参考时间的预设时间偏移量。
36、 根据权利要求 35所述的 eNB, 其中, 所述预先定义的参考时间为所述用户 设备与所述 eNB的上行链路的上行发送定时或者所述用户设备与所述 eNB的下行链 路的下行接收定时。
37、 一种通信系统, 其中, 所述通信系统包括权利要求 9-16、 22-26任一项所述 的用户设备中的至少一个, 或者包括权利要求 9-16、 22-26任一项所述的用户设备中 的至少一个以及权利要求 29-30、 34-36任一项所述的 eNB。
38、 一种计算机可读程序, 其中当在终端设备中执行该程序时, 该程序使得计算 机在所述终端设备中执行权利要求 1-8任一项所述的 D2D发现序列的检测方法, 或 者执行权利要求 17-21任一项所述的 D2D数据的接收方法。
39、 一种存储有计算机可读程序的存储介质, 其中该计算机可读程序使得计算机 在终端设备中执行权利要求 1-8任一项所述的 D2D发现序列的检测方法, 或者执行 权利要求 17-21任一项所述的 D2D数据的接收方法。
40、 一种计算机可读程序, 其中当在基站中执行该程序时, 该程序使得计算机在 所述基站中执行权利要求 27-28任一项所述的 D2D发现序列的接收窗的配置方法, 或者执行权利要求 31-33任一项所述的 D2D数据的接收参考时间的配置方法。
41、 一种存储有计算机可读程序的存储介质, 其中该计算机可读程序使得计算机 在终端设备中执行权利要求 27-28任一项所述的 D2D发现序列的接收窗的配置方法, 或者执行权利要求 31-33任一项所述的 D2D数据的接收参考时间的配置方法。
PCT/CN2013/072394 2013-03-11 2013-03-11 D2d发现序列的检测方法、d2d数据的接收方法及装置 WO2014139072A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2015561881A JP2016509455A (ja) 2013-03-11 2013-03-11 D2d発見シーケンスの検出方法及び検出装置、並びにd2dデータの受信方法及び受信装置
EP13877534.1A EP2975889A4 (en) 2013-03-11 2013-03-11 D2D DISCOVERY SEQUENCE DETECTING METHOD AND D2D DATA RECEIVING METHOD AND DEVICE
CN201380073110.4A CN105191452A (zh) 2013-03-11 2013-03-11 D2d发现序列的检测方法、d2d数据的接收方法及装置
KR1020157025621A KR20150119929A (ko) 2013-03-11 2013-03-11 D2d 탐색 시퀀스들을 감지하기 위한 방법 및 장치, d2d 데이터를 수신하기 위한 방법 및 장치
PCT/CN2013/072394 WO2014139072A1 (zh) 2013-03-11 2013-03-11 D2d发现序列的检测方法、d2d数据的接收方法及装置
US14/843,182 US20150382173A1 (en) 2013-03-11 2015-09-02 Method and Apparatus for Detecting D2D Discovery Sequences, Method and Apparatus for Receiving D2D Data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/072394 WO2014139072A1 (zh) 2013-03-11 2013-03-11 D2d发现序列的检测方法、d2d数据的接收方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/843,182 Continuation US20150382173A1 (en) 2013-03-11 2015-09-02 Method and Apparatus for Detecting D2D Discovery Sequences, Method and Apparatus for Receiving D2D Data

Publications (1)

Publication Number Publication Date
WO2014139072A1 true WO2014139072A1 (zh) 2014-09-18

Family

ID=51535773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/072394 WO2014139072A1 (zh) 2013-03-11 2013-03-11 D2d发现序列的检测方法、d2d数据的接收方法及装置

Country Status (6)

Country Link
US (1) US20150382173A1 (zh)
EP (1) EP2975889A4 (zh)
JP (1) JP2016509455A (zh)
KR (1) KR20150119929A (zh)
CN (1) CN105191452A (zh)
WO (1) WO2014139072A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018038070A (ja) * 2017-11-01 2018-03-08 京セラ株式会社 基地局、ユーザ端末、プロセッサ、及び方法
US9986369B2 (en) 2013-05-29 2018-05-29 Kyocera Corporation Base station, user terminal, and processor
TWI680685B (zh) * 2014-10-16 2019-12-21 日商新力股份有限公司 資訊處理裝置、通訊系統、資訊處理方法及程式

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9854506B2 (en) * 2013-08-08 2017-12-26 Qualcomm Incorporated Timing synchronization for device-to-device discovery for asynchronous LTE deployments
US9813910B2 (en) * 2014-03-19 2017-11-07 Qualcomm Incorporated Prevention of replay attack in long term evolution device-to-device discovery
US20160302246A1 (en) * 2015-04-09 2016-10-13 Intel Corporation Device-to-device receive window selection for inter-cell operation
WO2017043897A1 (ko) * 2015-09-09 2017-03-16 엘지전자 주식회사 무선 통신 시스템에서 단말 간의 직접 통신 방법 및 이를 위한 장치
WO2017156790A1 (zh) * 2016-03-18 2017-09-21 广东欧珀移动通信有限公司 用于d2d通信的方法和d2d设备
US10420146B2 (en) 2016-08-09 2019-09-17 Telefonaktiebolaget Lm Ericsson (Publ) Bidirectional full duplex aware detection of transmission activity

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120294163A1 (en) * 2011-05-19 2012-11-22 Renesas Mobile Corporation Apparatus and Method for Direct Device-to-Device Communication in a Mobile Communication System
WO2013002688A1 (en) * 2011-06-29 2013-01-03 Telefonaktiebolaget L M Ericsson (Publ) A method and a user equipment for peer-to-peer communication
GB2494134A (en) * 2011-08-30 2013-03-06 Renesas Mobile Corp Method and apparatus for allocating device-to-device discovery portion

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8601156B2 (en) * 2007-07-06 2013-12-03 Qualcomm Incorporated Methods and apparatus related to peer discovery and/or paging in peer to peer wireless communications
US7961708B2 (en) * 2007-07-10 2011-06-14 Qualcomm Incorporated Coding methods of communicating identifiers in peer discovery in a peer-to-peer network
US8520704B2 (en) * 2007-07-10 2013-08-27 Qualcomm Incorporated Coding methods of communicating identifiers in peer discovery in a peer-to-peer network
US8493887B2 (en) * 2008-12-30 2013-07-23 Qualcomm Incorporated Centralized control of peer discovery pilot transmission
US9485069B2 (en) * 2010-04-15 2016-11-01 Qualcomm Incorporated Transmission and reception of proximity detection signal for peer discovery
US10250678B2 (en) * 2010-07-07 2019-04-02 Qualcomm Incorporated Hybrid modes for peer discovery
US10038993B2 (en) * 2011-08-30 2018-07-31 Lg Electronics Inc. Method for supporting device-to-device communication in a cellular network, and apparatus for same
EP2946630B1 (en) * 2013-01-16 2020-05-27 Interdigital Patent Holdings, Inc. Discovery signal generation and reception

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120294163A1 (en) * 2011-05-19 2012-11-22 Renesas Mobile Corporation Apparatus and Method for Direct Device-to-Device Communication in a Mobile Communication System
WO2013002688A1 (en) * 2011-06-29 2013-01-03 Telefonaktiebolaget L M Ericsson (Publ) A method and a user equipment for peer-to-peer communication
GB2494134A (en) * 2011-08-30 2013-03-06 Renesas Mobile Corp Method and apparatus for allocating device-to-device discovery portion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2975889A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9986369B2 (en) 2013-05-29 2018-05-29 Kyocera Corporation Base station, user terminal, and processor
TWI680685B (zh) * 2014-10-16 2019-12-21 日商新力股份有限公司 資訊處理裝置、通訊系統、資訊處理方法及程式
JP2018038070A (ja) * 2017-11-01 2018-03-08 京セラ株式会社 基地局、ユーザ端末、プロセッサ、及び方法

Also Published As

Publication number Publication date
JP2016509455A (ja) 2016-03-24
EP2975889A4 (en) 2016-08-24
CN105191452A (zh) 2015-12-23
US20150382173A1 (en) 2015-12-31
KR20150119929A (ko) 2015-10-26
EP2975889A1 (en) 2016-01-20

Similar Documents

Publication Publication Date Title
US10652939B2 (en) Method and apparatus for device-to-device communication
US10925107B2 (en) Fast activation of multi-connectivity utilizing uplink signals
JP7433488B2 (ja) 無線アクセスネットワーク通知エリア(rna)更新の拒否時の構成を処理するための方法および装置
WO2014139072A1 (zh) D2d发现序列的检测方法、d2d数据的接收方法及装置
US10334422B2 (en) Methods and apparatus for wireless discovery location and ranging within a neighborhood aware network
US20200260246A1 (en) Method for resource selection in d2d communication and terminal device
TWI779165B (zh) 一種資源預留方法及裝置、終端
WO2018228468A1 (zh) 一种无线链路监控方法和装置
CN112740577B (zh) 针对新空口未许可操作的无线电链路监测和失败
EP3791618B1 (en) Radio link monitoring (rlm) procedure for a wireless device configured to operate using first and second operational modes within an overlapping time in a first cell
WO2016045341A1 (zh) 一种随机接入信令的发送方法及装置
WO2022135035A1 (en) Method and apparatus for relay selection
KR102378980B1 (ko) 신호 전송의 방법, 네트워크 장치와 단말 장치
WO2017028046A1 (zh) 间隙Gap选择方法及装置
US10003952B2 (en) Device to-device (D2D) discovery
WO2021093203A1 (en) Method and device for sidelink communication
KR20190139208A (ko) 고정식 송신 포인트와 이동식 송신 포인트 사이의 이동성 관리를 위한 방법 및 장치
JP2017507580A (ja) 無線リソース制御接続の再確立手順のための構成条件
WO2018171626A1 (zh) 随机接入响应的方法和设备以及随机接入的方法和设备
WO2021051364A1 (zh) 一种通信方法、装置及设备
CN114424666B (zh) 一种通信方法及装置
WO2018014666A1 (zh) 一种上行参考信号的传输方法和装置
CN112544107A (zh) 无sib1的nr小区的cgi报告过程
CN111357210B (zh) 一种处理设备及其方法
WO2020063484A1 (zh) 一种链路检测方法及装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380073110.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13877534

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013877534

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015561881

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157025621

Country of ref document: KR

Kind code of ref document: A