WO2021164104A1 - 一种伺服电机的测试方法、装置、设备及计算机存储介质 - Google Patents

一种伺服电机的测试方法、装置、设备及计算机存储介质 Download PDF

Info

Publication number
WO2021164104A1
WO2021164104A1 PCT/CN2020/082713 CN2020082713W WO2021164104A1 WO 2021164104 A1 WO2021164104 A1 WO 2021164104A1 CN 2020082713 W CN2020082713 W CN 2020082713W WO 2021164104 A1 WO2021164104 A1 WO 2021164104A1
Authority
WO
WIPO (PCT)
Prior art keywords
servo motor
command
sinusoidal
speed command
servo
Prior art date
Application number
PCT/CN2020/082713
Other languages
English (en)
French (fr)
Inventor
童文邹
胡陈
陈建权
Original Assignee
浙江禾川科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江禾川科技股份有限公司 filed Critical 浙江禾川科技股份有限公司
Publication of WO2021164104A1 publication Critical patent/WO2021164104A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines

Definitions

  • the invention relates to the field of servo motor development and testing, in particular to a servo motor testing method, device, equipment and computer storage medium.
  • the servo motor can control the speed and position accuracy very accurately, and can convert the voltage signal into torque and speed to drive the control object.
  • the rotor speed of the servo motor is controlled by the input signal and can respond quickly. It is used as an actuator in an automatic control system, and has the characteristics of small electromechanical time constant, high linearity, and starting voltage. Converted into angular displacement or angular velocity output on the motor shaft, which makes it more and more occupy an important place in the development of high-precision technology.
  • the response bandwidth test of the speed loop is extremely important.
  • the main test method used in the market is to input the servo through the external input sinusoidally varying analog quantity, and the servo motor receives the analog quantity command to perform sinusoidal motion. Gradually increase the frequency of the input analog quantity to test the response frequency limit of the servo.
  • this method has two major problems. One is that the analog signal input from the outside is very susceptible to interference from the surrounding electromagnetic signals, which reduces the accuracy of the measurement results. In addition, with the advancement of technology, more and more servo motors are no longer available. With an external analog signal input port, the universality of the above-mentioned traditional measurement method is also greatly reduced.
  • the purpose of the present invention is to provide a test method, device, equipment and computer storage medium for a servo motor to solve the problem of susceptibility to interference in the test process of the servo motor in the prior art and the existing method is not highly universal.
  • the present invention provides a testing method of a servo motor, including:
  • the method further includes:
  • the preset parameter is at least one of the phase difference between the sinusoidal speed command and the rotation speed curve or the amplitude of the rotation speed curve.
  • the condition for reaching the preset threshold is:
  • the frequency of the corresponding sinusoidal speed command is the frequency bandwidth of the 90-degree phase shift of the servo motor.
  • the condition for reaching the preset threshold is:
  • the frequency of the corresponding sinusoidal speed command is the -3db bandwidth of the servo motor.
  • a test device for a servo motor including:
  • the receiving module is used to receive the sinusoidal speed command generated by the single-chip microcomputer of the servo drive, where the sinusoidal speed command is a command with a gradual increase in frequency;
  • the determining module is used to determine the corresponding drive current command through the sinusoidal speed command
  • a sending module for sending the driver current command to the servo motor
  • the recording module is used to record the corresponding speed curve after the servo motor receives the drive current command, and when the preset parameter of the speed curve reaches a preset threshold, the corresponding performance parameter of the servo motor is obtained.
  • the single-chip microcomputer is an ARM chip.
  • the sending module is specifically configured to:
  • the driver current command is sent to the servo motor through a PWM regulator.
  • a signal processing equipment including:
  • Memory used to store computer programs
  • the processor is used to implement the steps of any one of the above-mentioned servo motor testing methods when executing the computer program.
  • a computer storage medium having a computer program stored on the computer storage medium, and when the computer program is executed by a processor, the steps of any one of the above-mentioned servo motor testing methods are realized.
  • the test method of the servo motor receives a sinusoidal speed command generated by the single-chip microcomputer of the servo drive, the sinusoidal speed command is a command with a gradual increase in frequency; the corresponding drive current command is determined by the sinusoidal speed command; Send the drive current command to the servo motor; record the corresponding speed curve after the servo motor receives the drive current command, and obtain the servo when the preset parameters of the speed curve reach a preset threshold The corresponding performance parameters of the motor.
  • the present invention generates the sinusoidal speed command through the single-chip microcomputer of the servo drive, no external input analog signal is required, and the interference of the analog signal in the external transmission process is greatly reduced, so that the measurement accuracy is greatly improved.
  • the input of an external analog signal is required, so the device no longer needs an analog signal input port, which greatly improves the universality of the technical solution provided by the present invention, and the application environment is more extensive.
  • the present invention also provides a servo motor testing device, equipment and computer storage medium with the above-mentioned beneficial effects.
  • FIG. 1 is a schematic flowchart of a specific implementation of a servo motor testing method provided by the present invention
  • FIG. 2 is a schematic flowchart of another specific implementation of the servo motor testing method provided by the present invention.
  • FIG. 3 is a schematic structural diagram of a specific embodiment of the servo motor testing device provided by the present invention.
  • FIG. 4 is a schematic structural diagram of a specific embodiment of the servo corresponding to the test method of the servo motor provided by the present invention.
  • the core of the present invention is to provide a test method for a servo motor.
  • a schematic diagram of a specific implementation is shown in Fig. 1, which is called specific implementation 1, including:
  • Step S101 Receive a sinusoidal speed command generated by the single-chip microcomputer of the servo drive, where the sinusoidal speed command is a command with a gradual increase in frequency.
  • Step S102 Determine the corresponding driver current command according to the sinusoidal speed command.
  • Step S103 Send the driver current command to the servo motor.
  • Step S104 Record the corresponding rotation speed curve of the servo motor after receiving the driver current command, and obtain the corresponding performance parameter of the servo motor when the preset parameter of the rotation speed curve reaches a preset threshold.
  • the preset parameter is at least one of the phase difference between the sinusoidal speed command and the rotational speed curve or the amplitude of the rotational speed curve;
  • the condition for reaching the preset threshold is:
  • the frequency of the corresponding sinusoidal speed command is the frequency bandwidth of the 90-degree phase shift of the servo motor
  • the condition for reaching the preset threshold is:
  • the frequency of the corresponding sinusoidal speed command is the -3db bandwidth of the servo motor.
  • the test method of the servo motor receives a sinusoidal speed command generated by the single-chip microcomputer of the servo drive, the sinusoidal speed command is a command with a gradual increase in frequency; the corresponding drive current command is determined by the sinusoidal speed command; Send the drive current command to the servo motor; record the corresponding speed curve after the servo motor receives the drive current command, and obtain the servo when the preset parameters of the speed curve reach a preset threshold The corresponding performance parameters of the motor.
  • the present invention generates the sinusoidal speed command through the single-chip microcomputer of the servo drive, no external input analog signal is required, and the interference of the analog signal in the external transmission process is greatly reduced, so that the measurement accuracy is greatly improved.
  • the input of an external analog signal is required, so the device no longer needs an analog signal input port, which greatly improves the universality of the technical solution provided by the present invention, and the application environment is more extensive.
  • the schematic flow chart of the second embodiment is shown in FIG. 2 and includes:
  • Step S201 Receive a sinusoidal speed command generated by the single-chip microcomputer of the servo drive, where the sinusoidal speed command is a command with a gradual increase in frequency.
  • Step S202 Determine the corresponding driver current command according to the sinusoidal speed command.
  • Step S203 Send the driver current command to the servo motor.
  • Step S204 Record the corresponding speed curve of the servo motor after receiving the drive current command, and when the preset parameters of the speed curve reach a preset threshold, obtain the corresponding performance parameters of the servo motor, and send it to the preset
  • the address or reservation device sends out a reminder signal.
  • the function of sending reminders is added to prevent staff from missing data during the detection process, and can quickly start the next measurement to improve work efficiency.
  • the reminder signal can be a light signal or a sound signal.
  • the predetermined address or the predetermined device may be a staff terminal.
  • test method and device of the servo motor provided by the embodiment of the present invention will be introduced below.
  • the test method and device of the servo motor described below and the test method of the servo motor described above can be referred to each other.
  • Fig. 3 is a structural block diagram of a test method device for a servo motor provided by an embodiment of the present invention, which is referred to as the third embodiment.
  • the test device for a servo motor may include:
  • the receiving module 100 is configured to receive a sinusoidal speed command generated by the single-chip microcomputer of the servo drive, where the sinusoidal speed command is a command with a gradual increase in frequency;
  • the determining module 200 is configured to determine the corresponding driver current command through the sinusoidal speed command
  • the sending module 300 is used to send the driver current command to the servo motor
  • the recording module 400 is used to record the corresponding rotational speed curve of the servo motor after receiving the drive current command, and obtain the corresponding performance parameter of the servo motor when the preset parameter of the rotational speed curve reaches a preset threshold.
  • the recording module 400 is also used for:
  • the single-chip microcomputer is an ARM chip; the ARM chip is a low-power-cost RISC microprocessor.
  • the ARM chip is not used, and other chips are also within the protection scope of the present invention according to actual conditions.
  • the sending module is specifically used for:
  • the driver current command is sent to the servo motor through a PWM regulator.
  • the single-chip microcomputer (ARM in the figure) in the servo drive generates the sinusoidal speed command, sends it to the PWM regulator for output, and reaches the servo motor via the IGBT inverter.
  • the sinusoidal speed command generator of is not necessarily a separate entity, but can also be realized by a program.
  • the figure is only an example of the functional module.
  • the test method of the servo motor includes a receiving module 100 for receiving a sinusoidal speed command generated by the single-chip microcomputer of the servo drive.
  • the sinusoidal speed command is a command with a gradual increase in frequency;
  • a determining module 200 is used for passing The sinusoidal speed command determines the corresponding drive current command;
  • the sending module 300 is used to send the drive current command to the servo motor;
  • the recording module 400 is used to record after the servo motor receives the drive current command Corresponding to the rotational speed curve, when the preset parameters of the rotational speed curve reach a preset threshold, the corresponding performance parameters of the servo motor are obtained.
  • the present invention generates the sinusoidal speed command through the single-chip microcomputer of the servo drive, no external input analog signal is required, and the interference of the analog signal in the external transmission process is greatly reduced, so that the measurement accuracy is greatly improved.
  • the input of an external analog signal is required, so the device no longer needs an analog signal input port, which greatly improves the universality of the technical solution provided by the present invention, and the application environment is more extensive.
  • the test method device of the servo motor of this embodiment is used to implement the aforementioned test method of the servo motor. Therefore, the specific implementation of the test method device of the servo motor can be seen in the example part of the test method of the servo motor in the foregoing, for example, receiving
  • the module 100, the determining module 200, the sending module 300, and the recording module 400 are respectively used to implement steps S101, S102, S103, and S104 in the above-mentioned servo motor test method. Therefore, the specific implementation can refer to the corresponding parts of the embodiment The description will not be repeated here.
  • the present invention also provides a device in which the various components in the device can work together to execute the test method of the servo motor introduced in any of the foregoing embodiments.
  • the rest of the content can refer to the prior art, and the detailed description will not be given here.
  • the present invention additionally provides a computer storage medium.
  • the computer storage medium stores a computer program, and when the computer program is executed by a processor, the servo motor testing method introduced in any of the above embodiments of the invention is implemented.
  • the rest of the content can refer to the prior art, and will not be further described here.
  • the steps of the method or algorithm described in the embodiments disclosed in this document can be directly implemented by hardware, a software module executed by a processor, or a combination of the two.
  • the software module can be placed in random access memory (RAM), internal memory, read-only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disks, removable disks, CD-ROMs, or all areas in the technical field. Any other known storage media.
  • test method, device, equipment, and computer storage medium and device of the servo motor provided by the present invention have been introduced in detail above. Specific examples are used in this article to illustrate the principle and implementation of the present invention. The description of the above examples is only used to help understand the method and core idea of the present invention. It should be pointed out that for those of ordinary skill in the art, without departing from the principle of the present invention, several improvements and modifications can be made to the present invention, and these improvements and modifications also fall within the protection scope of the claims of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

一种伺服电机的测试方法、装置、设备及计算机存储介质,通过接收由伺服驱动器的单片机产生的正弦速度指令,所述正弦速度指令为频率逐渐升高的指令;通过所述正弦速度指令确定对应的驱动器电流指令;将所述驱动器电流指令发送至所述伺服电机;记录所述伺服电机接收到所述驱动器电流指令后对应转速曲线,当所述转速曲线的预设参数的达到预设阈值时,得到所述伺服电机的对应的性能参数。本发明通过所述伺服驱动器的单片机生成所述正弦速度指令,降低了模拟信号外部传输时受到的干扰,使测量精度大幅提升,同时不再需要设备有模拟信号输入口,应用环境更加广泛。

Description

一种伺服电机的测试方法、装置、设备及计算机存储介质
本申请要求于2020年02月17日提交中国专利局、申请号为202010097429.2、发明名称为“一种伺服电机的测试方法、装置、设备及计算机存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及伺服电机开发测试领域,特别是涉及一种伺服电机的测试方法、装置、设备及计算机存储介质。
背景技术
伺服电机可使控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。伺服电机转子转速受输入信号控制,并能快速反应,在自动控制系统中,用作执行元件,且具有机电时间常数小、线性度高、始动电压等特性,可把所收到的电信号转换成电动机轴上的角位移或角速度输出,这使得它越来越多的在高精尖技术的发展中占据重要的一席之地。
在进行伺服电机性能测试环节中,速度环的响应带宽测试是极为重要的,目前市场上主要使用的测试方法是通过外部输入正弦变化的模拟量输入伺服,伺服电机接收模拟量指令进行正弦运动,逐渐提高输入模拟量的频率,从而测试出伺服的响应频率极限。但这种方法有两大问题,一是从外部输入的模拟信号极易受周边电磁信号的干扰,使测量结果准确性下降,另外,随着技术的进步,越来越多的伺服电机不再具备外接的模拟信号输入口,因此上述的传统测量法的普适性也大大下降。
因此,如何提高测试方法的普适性,并减小测试过程中的信号干扰,是本领域技术人员亟待解决的问题。
发明内容
本发明的目的是提供一种伺服电机的测试方法、装置、设备及计算机存储介质,以解决现有技术中伺服电机测试过程中易受干扰且现有方法普 适性不高的问题。
为解决上述技术问题,本发明提供一种伺服电机的测试方法,包括:
接收由伺服驱动器的单片机产生的正弦速度指令,所述正弦速度指令为频率逐渐升高的指令;
通过所述正弦速度指令确定对应的驱动器电流指令;
将所述驱动器电流指令发送至所述伺服电机;
记录所述伺服电机接收到所述驱动器电流指令后对应转速曲线,当所述转速曲线的预设参数的达到预设阈值时,得到所述伺服电机的对应的性能参数。
可选地,在所述的伺服电机的测试方法中,当所述转速曲线的预设参数的达到预设阈值时,还包括:
向预定地址或者预定设备发出提醒信号。
可选地,在所述的伺服电机的测试方法中,所述预设参数为所述正弦速度指令与所述转速曲线的相位差或所述转速曲线的幅值中至少一种。
可选地,在所述的伺服电机的测试方法中,当所述预设参数为所述正弦速度指令与所述转速曲线的相位差时,达到所述预设阈值的条件为:
当所述转速曲线相对于所述正弦速度指令的相位滞后达到90度时,对应的所述正弦速度指令的频率为所述伺服电机的90度相移的频带宽度。
可选地,在所述的伺服电机的测试方法中,当所述预设参数为所述转速曲线的幅值时,达到所述预设阈值的条件为:
当所述幅值减小至所述正弦速度指令对应的理想幅值的1/√2时,对应的所述正弦速度指令的频率为所述伺服电机的-3db的频带宽度。
一种伺服电机的测试装置,包括:
接收模块,用于接收由伺服驱动器的单片机产生的正弦速度指令,所述正弦速度指令为频率逐渐升高的指令;
确定模块,用于通过所述正弦速度指令确定对应的驱动器电流指令;
发送模块,用于将所述驱动器电流指令发送至所述伺服电机;
记录模块,用于记录所述伺服电机接收到所述驱动器电流指令后对应转速曲线,当所述转速曲线的预设参数的达到预设阈值时,得到所述伺服电机的对应的性能参数。
可选地,在所述的伺服电机的测试装置中,所述单片机为ARM芯片。
可选地,在所述的伺服电机的测试装置中,所述发送模块具体用于:
通过PWM调节器将所述驱动器电流指令发送至所述伺服电机。
一种信号处理的设备,包括:
存储器,用于存储计算机程序;
处理器,用于执行所述计算机程序时实现如上述任一种所述的伺服电机的测试方法的步骤。
一种计算机存储介质,所述计算机存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上述任一种所述的伺服电机的测试方法的步骤。
本发明所提供的伺服电机的测试方法,通过接收由伺服驱动器的单片机产生的正弦速度指令,所述正弦速度指令为频率逐渐升高的指令;通过所述正弦速度指令确定对应的驱动器电流指令;将所述驱动器电流指令发送至所述伺服电机;记录所述伺服电机接收到所述驱动器电流指令后对应转速曲线,当所述转速曲线的预设参数的达到预设阈值时,得到所述伺服电机的对应的性能参数。本发明通过所述伺服驱动器的单片机生成所述正弦速度指令,不再需要外部输入模拟信号,也大大降低了模拟信号在外部传输过程中受到的干扰,使测量精度大幅提升,同时,由于不再需要外部模拟信号的输入,因此不再需要设备有模拟信号输入口,大大提升了本发明提供技术方案的普适性,应用环境更加广泛。本发明同时还提供了一种具有上述有益效果的伺服电机的测试装置、设备及计算机存储介质。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明提供的伺服电机的测试方法的一种具体实施方式的流程示意图;
图2为本发明提供的伺服电机的测试方法的另一种具体实施方式的流程示意图;
图3为本发明提供的伺服电机的测试装置的一种具体实施方式的结构示意图;
图4为本发明提供的伺服电机的测试方法对应的伺服的一种具体实施方式的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的核心是提供一种伺服电机的测试方法,其一种具体实施方式的示意图如图1所示,称其为具体实施方式一,包括:
步骤S101:接收由伺服驱动器的单片机产生的正弦速度指令,所述正弦速度指令为频率逐渐升高的指令。
步骤S102:通过所述正弦速度指令确定对应的驱动器电流指令。
步骤S103:将所述驱动器电流指令发送至所述伺服电机。
步骤S104:记录所述伺服电机接收到所述驱动器电流指令后对应转速曲线,当所述转速曲线的预设参数的达到预设阈值时,得到所述伺服电机的对应的性能参数。
特别的,所述预设参数为所述正弦速度指令与所述转速曲线的相位差或所述转速曲线的幅值中至少一种;
当所述预设参数为所述正弦速度指令与所述转速曲线的相位差时,达到所述预设阈值的条件为:
当所述转速曲线相对于所述正弦速度指令的相位滞后达到90度时,对应的所述正弦速度指令的频率为所述伺服电机的90度相移的频带宽度;
当所述预设参数为所述转速曲线的幅值时,达到所述预设阈值的条件为:
当所述幅值减小至所述正弦速度指令对应的理想幅值的1/√2时,对应的所述正弦速度指令的频率为所述伺服电机的-3db的频带宽度。
本发明所提供的伺服电机的测试方法,通过接收由伺服驱动器的单片 机产生的正弦速度指令,所述正弦速度指令为频率逐渐升高的指令;通过所述正弦速度指令确定对应的驱动器电流指令;将所述驱动器电流指令发送至所述伺服电机;记录所述伺服电机接收到所述驱动器电流指令后对应转速曲线,当所述转速曲线的预设参数的达到预设阈值时,得到所述伺服电机的对应的性能参数。本发明通过所述伺服驱动器的单片机生成所述正弦速度指令,不再需要外部输入模拟信号,也大大降低了模拟信号在外部传输过程中受到的干扰,使测量精度大幅提升,同时,由于不再需要外部模拟信号的输入,因此不再需要设备有模拟信号输入口,大大提升了本发明提供技术方案的普适性,应用环境更加广泛。
在具体实施方式一的基础上,进一步对所述转速曲线的预设参数的达到预设阈值时的操作做限定,得到具体实施方式二,其流程示意图如图2所示包括:
步骤S201:接收由伺服驱动器的单片机产生的正弦速度指令,所述正弦速度指令为频率逐渐升高的指令。
步骤S202:通过所述正弦速度指令确定对应的驱动器电流指令。
步骤S203:将所述驱动器电流指令发送至所述伺服电机。
步骤S204:记录所述伺服电机接收到所述驱动器电流指令后对应转速曲线,当所述转速曲线的预设参数的达到预设阈值时,得到所述伺服电机的对应的性能参数,并向预定地址或者预定设备发出提醒信号。
本具体实施方式与上述具体实施方式的不同之处在于,本具体实施方式中添加了提醒步骤,其余情况均与上述具体实施方式相同,在此不再展开赘述。
本具体实施方式中,增加了发送提醒的功能,防止工作人员在检测过程中漏记数据,并能快速开始下一次测量,提高工作效率,所述提醒信号可为光信号或声音信号,所述预定地址或预定设备可为工作人员的终端。
下面对本发明实施例提供的伺服电机的测试方法装置进行介绍,下文描述的伺服电机的测试方法装置与上文描述的伺服电机的测试方法可相互对应参照。
图3为本发明实施例提供的伺服电机的测试方法装置的结构框图,称其为具体实施方式三,参照图3伺服电机的测试装置可以包括:
接收模块100,用于接收由伺服驱动器的单片机产生的正弦速度指令,所述正弦速度指令为频率逐渐升高的指令;
确定模块200,用于通过所述正弦速度指令确定对应的驱动器电流指令;
发送模块300,用于将所述驱动器电流指令发送至所述伺服电机;
记录模块400,用于记录所述伺服电机接收到所述驱动器电流指令后对应转速曲线,当所述转速曲线的预设参数的达到预设阈值时,得到所述伺服电机的对应的性能参数。
作为一种优选实施方式,所述记录模块400还用于:
向预定地址或者预定设备发出提醒信号。
另外,所述单片机为ARM芯片;所述ARM芯片是一种低功耗成本的RISC微处理器,当然,不采用ARM芯片,根据实际情况采用其他芯片也在本发明保护范围之内。
特别的,所述发送模块具体用于:
通过PWM调节器将所述驱动器电流指令发送至所述伺服电机。
如图4所示,所述伺服驱动器中的单片机(图中为ARM)生成所述正弦速度指令,发送至PWM调节器进行输出,经IGBT逆变器到达伺服电机,需要注意的是,图示的正弦速度指令产生器不一定为一单独实体,也可以通过程序实现,图中仅为示例发的功能模块。
本发明所提供的伺服电机的测试方法,包括接收模块100,用于接收由伺服驱动器的单片机产生的正弦速度指令,所述正弦速度指令为频率逐渐升高的指令;确定模块200,用于通过所述正弦速度指令确定对应的驱动器电流指令;发送模块300,用于将所述驱动器电流指令发送至所述伺服电机;记录模块400,用于记录所述伺服电机接收到所述驱动器电流指令后对应转速曲线,当所述转速曲线的预设参数的达到预设阈值时,得到所述伺服电机的对应的性能参数。本发明通过所述伺服驱动器的单片机生成所述正弦速度指令,不再需要外部输入模拟信号,也大大降低了模拟信号在外部传输过程中受到的干扰,使测量精度大幅提升,同时,由于不再 需要外部模拟信号的输入,因此不再需要设备有模拟信号输入口,大大提升了本发明提供技术方案的普适性,应用环境更加广泛。
本实施例的伺服电机的测试方法装置用于实现前述的伺服电机的测试方法,因此伺服电机的测试方法装置中的具体实施方式可见前文中的伺服电机的测试方法的实施例部分,例如,接收模块100,确定模块200,发送模块300,记录模块400,分别用于实现上述伺服电机的测试方法中步骤S101,S102,S103和S104,所以,其具体实施方式可以参照相应的各个部分实施例的描述,在此不再赘述。
本发明还提供了一种设备,上述设备内各组成部分可分工协作执行上述任一实施方式中所介绍的伺服电机的测试方法。其余内容可参照现有技术,在此不再进行展开描述。
本发明另外提供了一种计算机存储介质,上述计算机存储介质上存储有计算机程序,上述计算机程序被处理器执行时实现上述任一发明实施方式中所介绍的伺服电机的测试方法。其余内容可以参照现有技术,在此不再进行展开描述。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
需要说明的是,在本说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一 个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
以上对本发明所提供的伺服电机的测试方法、装置、设备及计算机存储介质以及装置进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (10)

  1. 一种伺服电机的测试方法,其特征在于,包括:
    接收由伺服驱动器的单片机产生的正弦速度指令,所述正弦速度指令为频率逐渐升高的指令;
    通过所述正弦速度指令确定对应的驱动器电流指令;
    将所述驱动器电流指令发送至所述伺服电机;
    记录所述伺服电机接收到所述驱动器电流指令后对应转速曲线,当所述转速曲线的预设参数的达到预设阈值时,得到所述伺服电机的对应的性能参数。
  2. 如权利要求1所述的伺服电机的测试方法,其特征在于,当所述转速曲线的预设参数的达到预设阈值时,还包括:
    向预定地址或者预定设备发出提醒信号。
  3. 如权利要求1所述的伺服电机的测试方法,其特征在于,所述预设参数为所述正弦速度指令与所述转速曲线的相位差或所述转速曲线的幅值中至少一种。
  4. 如权利要求3所述的伺服电机的测试方法,其特征在于,当所述预设参数为所述正弦速度指令与所述转速曲线的相位差时,达到所述预设阈值的条件为:
    当所述转速曲线相对于所述正弦速度指令的相位滞后达到90度时,对应的所述正弦速度指令的频率为所述伺服电机的90度相移的频带宽度。
  5. 如权利要求3所述的伺服电机的测试方法,其特征在于,当所述预设参数为所述转速曲线的幅值时,达到所述预设阈值的条件为:
    当所述幅值减小至所述正弦速度指令对应的理想幅值的1/√2时,对应的所述正弦速度指令的频率为所述伺服电机的-3db的频带宽度。
  6. 一种伺服电机的测试装置,其特征在于,包括:
    接收模块,用于接收由伺服驱动器的单片机产生的正弦速度指令,所述正弦速度指令为频率逐渐升高的指令;
    确定模块,用于通过所述正弦速度指令确定对应的驱动器电流指令;
    发送模块,用于将所述驱动器电流指令发送至所述伺服电机;
    记录模块,用于记录所述伺服电机接收到所述驱动器电流指令后对应 转速曲线,当所述转速曲线的预设参数的达到预设阈值时,得到所述伺服电机的对应的性能参数。
  7. 如权利要求6所述的伺服电机的测试装置,其特征在于,所述单片机为ARM芯片。
  8. 如权利要求6所述的伺服电机的测试装置,其特征在于,所述发送模块具体用于:
    通过PWM调节器将所述驱动器电流指令发送至所述伺服电机。
  9. 一种信号处理的设备,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于执行所述计算机程序时实现如权利要求1至5任一项所述的伺服电机的测试方法的步骤。
  10. 一种计算机存储介质,其特征在于,所述计算机存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至5任一项所述的伺服电机的测试方法的步骤。
PCT/CN2020/082713 2020-02-17 2020-04-01 一种伺服电机的测试方法、装置、设备及计算机存储介质 WO2021164104A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010097429.2A CN111308339A (zh) 2020-02-17 2020-02-17 一种伺服电机的测试方法、装置、设备及计算机存储介质
CN202010097429.2 2020-02-17

Publications (1)

Publication Number Publication Date
WO2021164104A1 true WO2021164104A1 (zh) 2021-08-26

Family

ID=71145693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082713 WO2021164104A1 (zh) 2020-02-17 2020-04-01 一种伺服电机的测试方法、装置、设备及计算机存储介质

Country Status (2)

Country Link
CN (1) CN111308339A (zh)
WO (1) WO2021164104A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113900412A (zh) * 2021-10-12 2022-01-07 武汉逸飞激光股份有限公司 同步轴校零方法、装置、控制单元及可读存储介质
CN114035042A (zh) * 2021-10-08 2022-02-11 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 伺服系统寿命试验方法、装置、计算机设备和存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112051830B (zh) * 2020-08-27 2021-08-24 深圳市显控科技股份有限公司 伺服驱动器老化测试方法、系统、装置和存储介质
CN113325902B (zh) * 2021-05-08 2023-03-21 东风柳州汽车有限公司 智能调节出胶量的方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104483582A (zh) * 2014-12-29 2015-04-01 宁波海得工业控制系统有限公司 一种伺服驱动器带宽测试平台及其测试方法
US20150145543A1 (en) * 2013-11-26 2015-05-28 Freescale Semiconductor, Inc. Mems device positioning apparatus, test system, and test method
CN107219428A (zh) * 2017-06-30 2017-09-29 珠海格力节能环保制冷技术研究中心有限公司 一种伺服驱动器带宽测试装置和方法
CN109976300A (zh) * 2017-12-28 2019-07-05 上海铼钠克数控科技股份有限公司 伺服系统的性能指标检测方法及计算机存储介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108761331A (zh) * 2018-03-29 2018-11-06 广州视源电子科技股份有限公司 一种伺服系统的测试装置及测试方法
CN110297180A (zh) * 2019-05-30 2019-10-01 河北工业大学 一种伺服电机可靠性测试装置及测试方法
CN110702282B (zh) * 2019-10-28 2021-05-04 上海宝协新能源科技有限公司 一种伺服电机测试台

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150145543A1 (en) * 2013-11-26 2015-05-28 Freescale Semiconductor, Inc. Mems device positioning apparatus, test system, and test method
CN104483582A (zh) * 2014-12-29 2015-04-01 宁波海得工业控制系统有限公司 一种伺服驱动器带宽测试平台及其测试方法
CN107219428A (zh) * 2017-06-30 2017-09-29 珠海格力节能环保制冷技术研究中心有限公司 一种伺服驱动器带宽测试装置和方法
CN109976300A (zh) * 2017-12-28 2019-07-05 上海铼钠克数控科技股份有限公司 伺服系统的性能指标检测方法及计算机存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIANG, ZHAOYING: "Design of sine-wave signal generator of frequency conversion based on STM32", ELECTRONIC DESIGN ENGINEERING, vol. 24, no. 5, 31 March 2016 (2016-03-31), pages 190 - 193, XP055839452, ISSN: 1674-6236 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114035042A (zh) * 2021-10-08 2022-02-11 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 伺服系统寿命试验方法、装置、计算机设备和存储介质
CN113900412A (zh) * 2021-10-12 2022-01-07 武汉逸飞激光股份有限公司 同步轴校零方法、装置、控制单元及可读存储介质

Also Published As

Publication number Publication date
CN111308339A (zh) 2020-06-19

Similar Documents

Publication Publication Date Title
WO2021164104A1 (zh) 一种伺服电机的测试方法、装置、设备及计算机存储介质
JP2020018168A (ja) モータモジュールおよびモータ認証方法
CN109870177B (zh) 磁编码器及其校准方法和校准装置、电机以及无人飞行器
KR20080097060A (ko) 스텝 모터 위치 오차 보정 방법 및 시스템
JP2012042411A (ja) センサ誤差補正装置、センサ誤差補正方法、及びセンサ誤差補正用プログラム
CN110943670A (zh) 一种电机转子位置获取方法及系统
WO2023116626A1 (zh) 位置偏差标定方法、电机驱动方法、系统和设备
CN113691182B (zh) 永磁同步电机的电阻辨识方法、系统、介质及终端
WO2024060683A1 (zh) 储能换流器控制系统稳定性验证方法
CN111380499A (zh) 转动角度的检测方法及装置
CN111089610B (zh) 一种编码器的信号处理方法、装置及相关组件
CN114487813A (zh) 电机零位检测方法、装置、电机控制器及存储介质
CN115811260A (zh) 一种电机的旋变零点辨识方法、装置及计算机存储介质
JPH11317006A (ja) アンバランスディスクのリード方法
JP2001336951A (ja) 回転位置検出装置及び方法
CN113063345B (zh) 一种电机零位角度标定方法、装置及计算机存储介质
JP5251768B2 (ja) 試験装置および試験方法
CN115378315A (zh) 步进电机反向间隙误差补偿方法、装置及家用电器、介质
CN110336508B (zh) 一种pmsm的定子磁链辨识方法及装置
CN115021641A (zh) 一种电动车驱动电机输出扭矩的估算方法及装置
CN112762623A (zh) 用于步进电机的方法、装置、恒温阀及热水器
CN115296588B (zh) 一种伺服电机动态参数适配方法
CN116683823A (zh) 永磁同步电机mtpa标定方法、装置、设备及介质
CN111865163A (zh) 电机零位检测装置、方法及矢量控制系统和存储介质
CN113726250B (zh) 同步电机齿槽转矩标定的方法、装置及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919422

Country of ref document: EP

Kind code of ref document: A1