WO2021162021A1 - ポリプロピレンフィルム、金属層一体型ポリプロピレンフィルム及びフィルムコンデンサ - Google Patents

ポリプロピレンフィルム、金属層一体型ポリプロピレンフィルム及びフィルムコンデンサ Download PDF

Info

Publication number
WO2021162021A1
WO2021162021A1 PCT/JP2021/004874 JP2021004874W WO2021162021A1 WO 2021162021 A1 WO2021162021 A1 WO 2021162021A1 JP 2021004874 W JP2021004874 W JP 2021004874W WO 2021162021 A1 WO2021162021 A1 WO 2021162021A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypropylene
less
polypropylene resin
molecular weight
film
Prior art date
Application number
PCT/JP2021/004874
Other languages
English (en)
French (fr)
Inventor
立治 石田
剛史 冨永
忠和 石渡
Original Assignee
王子ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王子ホールディングス株式会社 filed Critical 王子ホールディングス株式会社
Priority to EP21753506.1A priority Critical patent/EP4105281A4/en
Priority to JP2022500436A priority patent/JPWO2021162021A1/ja
Priority to KR1020227026149A priority patent/KR20220140496A/ko
Priority to CN202180013631.5A priority patent/CN115087701A/zh
Publication of WO2021162021A1 publication Critical patent/WO2021162021A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/32Wound capacitors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/02Heterophasic composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/012Form of non-self-supporting electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/015Special provisions for self-healing

Definitions

  • the present invention relates to a polypropylene film, a polypropylene film integrated with a metal layer, and a film capacitor.
  • Polypropylene film can be used as a derivative of a capacitor.
  • it can be used as a derivative of a capacitor in an inverter constituting a power control unit of a hybrid vehicle, an electric vehicle, or the like.
  • Capacitors that use polypropylene film as a capacitor derivative are compact, lightweight, and have high capacity from the viewpoint of the above-mentioned usage environment (for example, the environment where the temperature rises in the engine room and the self-heating of the capacitor). It is desirable to have excellent heat resistance at a high temperature of about 120 ° C. (100 ° C. to 120 ° C.). Specifically, the decrease in the capacitance of the capacitor is suppressed even when the capacitor is used for a long time under the high temperature (excellent life performance), and the repetition between the high temperature and the low temperature assuming the inside of the engine room is repeated. In use, it is required that the thermal tightening (deformation) of the capacitor is suppressed (excellent thermal shock resistance).
  • the dielectric breakdown strength dielectric breakdown strength
  • the AC when a DC voltage is applied under the high temperature Excellent dielectric breakdown strength when a voltage is applied, and suppression of thermal shrinkage in the mechanical direction (MD) at temperatures up to about 150 ° C., which exceeds the above high temperature (excellent heat shrinkage). It has been demanded.
  • the polypropylene film described in Patent Document 1 and the capacitor using the same have the above-mentioned excellent life performance and excellent heat-resistant impact resistance as the capacitor performance, and the above-mentioned dielectric breakdown strength and excellent as the film performance.
  • the heat-resistant shrinkage is not comprehensively satisfied, and there is room for further improvement.
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to use a polypropylene film having excellent dielectric breakdown strength and heat shrinkage at high temperature, and the polypropylene film at high temperature. It is an object of the present invention to provide a film capacitor having excellent life performance and excellent thermal shock resistance, and a method for manufacturing the same.
  • Another object of the present invention is to provide a metal layer-integrated polypropylene film having the polypropylene film, a film capacitor having the metal layer-integrated polypropylene film, and a method for producing them.
  • the present inventors diligently studied polypropylene film.
  • the logarithmic molecular weight Log (M) 4 in the molecular weight distribution (Mw / Mn) of the weight average molecular weight Mw and the number average molecular weight Mn, the Z average molecular weight Mz, and the integrated molecular weight distribution curve.
  • Mw / Mn molecular weight distribution of the weight average molecular weight Mw and the number average molecular weight Mn
  • the Z average molecular weight Mz the integrated molecular weight distribution curve.
  • a polypropylene film having a weight fraction w in a specific range when 0.0 has the above-mentioned film performance
  • a polypropylene using the polypropylene film has the above-mentioned capacitor performance
  • the polypropylene of the present invention has been found.
  • the polypropylene film can be suitably produced by a production method including a step of melting the polypropylene resin composition at a specific shear rate.
  • the present invention relates to the following polypropylene films, polypropylene films with integrated metal layers, film capacitors, and methods for manufacturing them.
  • the polypropylene film, the polypropylene resin constituting the polypropylene film is The molecular weight distribution (Mw / Mn) of the weight average molecular weight Mw and the number average molecular weight Mn is 5.0 or more and 6.9 or less.
  • -Z average molecular weight Mz is 655,000 or more and 945,000 or less
  • the polypropylene film according to Item 1 above which is used for a capacitor. 3.
  • Item 2. The polypropylene film according to Item 1 or 2, which is a biaxially stretched film. 4.
  • the temperature was raised from 25 ° C to 155 ° C at a rate of 10 ° C / min under a load of 2.17 N / mm 2 , the horizontal axis was the temperature, and the vertical axis was the dimensional change rate of the film in the mechanical direction (MD).
  • MD mechanical direction
  • Breakdown strength in the DC voltage at 5.120 °C (V DC120 °C) and 120 difference (V DC120 °C -V AC120 °C) of dielectric breakdown strength (V AC120 ° C.) in an alternating current voltage at ° C. is 280 V / [mu] m or more
  • 7. -The molecular weight distribution (Mw / Mn) is 5.0 or more and 6.6 or less. -The Mz is 720,000 or more and 790,000 or less.
  • the weight fraction w is 3.5% or more and 3.7% or less.
  • the polypropylene film according to any one of Items 1 to 6 above. 8.
  • the polypropylene resin contains polypropylene resin A and polypropylene resin B, and the content of the polypropylene resin A in the polypropylene resin is higher than the content of the polypropylene resin B in the polypropylene resin.
  • the Mw of the polypropylene resin A is 275,000 or more and less than 350,000.
  • Mw / Mn molecular weight distribution (Mw / Mn) of the polypropylene resin A is 5.8 or more and 10.0 or less.
  • the melt flow rate (MFR A ) of the polypropylene resin A is 4.8 g / 10 minutes or more and 5.5 g / 10 minutes or less.
  • the polypropylene resin contains polypropylene resin A and polypropylene resin B, and the content of the polypropylene resin A in the polypropylene resin is higher than the content of the polypropylene resin B in the polypropylene resin.
  • the Mw of the polypropylene resin B is 385,000 or more and 550,000 or less.
  • Mw / Mn molecular weight distribution (Mw / Mn) of the polypropylene resin B is 8.4 or more and 11.0 or less.
  • the melt flow rate (MFR B ) of the polypropylene resin B is 0.1 g / 10 minutes or more and 2.2 g / 10 minutes or less.
  • Item 8. The polypropylene film according to Item 8 or 9, wherein the ratio of the mass of the polypropylene resin A to the total mass of the polypropylene resin A and the polypropylene resin B is 65 to 75% by mass.
  • Item 2. The method for producing a polypropylene film according to any one of Items 14 to 16, wherein the ratio of the mass of the polypropylene resin A to the total mass of the polypropylene resin A and the polypropylene resin B is 65 to 75% by mass. 18.
  • a method for producing a polypropylene film integrated with a metal layer which comprises the production method according to any one of Items 14 to 18 and further comprises a step of forming a metal layer on at least one surface of the polypropylene film.
  • Item 9 A method for manufacturing a film capacitor, which comprises the manufacturing method according to Item 19 and further comprises a step of winding the metal layer integrated polypropylene film.
  • the film capacitor of the present invention using the polypropylene film as a capacitor derivative has excellent heat resistance at a high temperature of about 120 ° C. (100 ° C. to 120 ° C.), and specifically, is long at the above high temperature.
  • the polypropylene film of the present invention is suitable for use as a film capacitor.
  • thermomechanical analysis TMA
  • Comparative Example 5 Comparative Example 14
  • the horizontal axis is the temperature
  • the vertical axis is the dimensional change rate of the film in the mechanical direction (MD).
  • MD mechanical direction
  • A is a schematic view showing a case where there is no mold (vertical type) in the circumferential direction having a depth of 0.5 mm or more
  • B is a schematic diagram showing a case where the depth is 0.5 mm or more.
  • the polypropylene film of the present invention the polypropylene film integrated with a metal layer, the film capacitor, and the manufacturing method thereof will be described in detail.
  • polypropylene may be abbreviated as PP
  • polypropylene resin may be abbreviated as PP resin
  • capacitor includes the concepts of “capacitor”, “capacitor element” and “film capacitor”.
  • the directions of the polypropylene film are as follows.
  • the mechanical direction of the film is the same as the machine direction (hereinafter, referred to as "MD direction”).
  • the MD direction may be referred to as a length direction or a flow direction.
  • the lateral direction of the film is the same direction as the Transverse Direction (hereinafter, referred to as "TD direction”).
  • the TD direction is sometimes referred to as the width direction.
  • Polypropylene film In the polypropylene film of the present invention, the polypropylene resin constituting the polypropylene film is used.
  • the molecular weight distribution (Mw / Mn) of the weight average molecular weight Mw and the number average molecular weight Mn is 5.0 or more and 6.9 or less.
  • -Z average molecular weight Mz is 655,000 or more and 945,000 or less
  • Mw molecular weight distribution
  • Mw / Mn molecular weight distribution
  • the film capacitor of the present invention using the polypropylene film as a capacitor derivative has excellent heat resistance at a high temperature of about 120 ° C. (100 ° C. to 120 ° C.), and specifically, is long at the above high temperature.
  • the polypropylene film of the present invention is suitable for use as a film capacitor. Further, the polypropylene film of the present invention is not limited in the presence or absence of stretching, but is preferably a biaxially stretched film in consideration of the above-mentioned uses.
  • Both sides of the polypropylene film in the present invention can be defined as a first side and a second side.
  • the first surface can be a rough surface. If the first surface is a rough surface, wrinkles are unlikely to occur due to element winding in capacitor manufacturing.
  • the second surface may be a rough surface.
  • the thickness of the polypropylene film is preferably 0.8 ⁇ m or more and 6.0 ⁇ m or less from the viewpoint of ensuring miniaturization and high capacity of the capacitor when used for a capacitor. Specifically, 5.5 ⁇ m or less is preferable, 3.5 ⁇ m or less is more preferable, 3.0 ⁇ m or less is further preferable, and 2.4 ⁇ m or less is particularly preferable.
  • the thickness of the polypropylene film is preferably 1.0 ⁇ m or more, more preferably 1.8 ⁇ m or more, and even more preferably 2.2 ⁇ m or more from the viewpoint of manufacturing.
  • the method for measuring the thickness of the polypropylene film in the present specification is the method described in the examples.
  • the density of the polypropylene film is not limited, but it is preferably set to , for example, 919 g / cm 3 or more and 925 g / cm 3 or less in consideration of capacitor use.
  • the method for measuring the density of the polypropylene film in the present specification is the method described in Examples.
  • the polypropylene film of the present invention has a molecular weight distribution (Mw / Mn) of 5.0 or more (after mixing when the polypropylene resin is composed of a mixture of a plurality of resins) constituting the polypropylene film. It is 9 or less.
  • the molecular weight distribution (Mw / Mn) may be 5.0 or more and 6.9 or less, but the lower limit is preferably 5.2 or more, more preferably 5.6 or more, and further preferably 5.8.
  • the above is more preferably 6.0 or more, further preferably 6.2 or more, and even more preferably 6.3 or more.
  • the upper limit is preferably 6.8 or less, more preferably 6.7 or less, and further preferably 6.6 or less.
  • the Mz of the polypropylene resin constituting the polypropylene film (after mixing when the polypropylene resin is composed of a mixture of a plurality of resins) is 655,000 or more and 945,000 or less. ..
  • the Mz may be 655,000 or more and 945,000 or less, but the lower limit is preferably more than 70,000, more preferably 71,000,000 or more, and further preferably 720,000 or more. Is.
  • the upper limit is preferably 920,000 or less, more preferably 850,000 or less, and further preferably 790,000 or less.
  • Mz is within such a range, as an effect of combination with other requirements, a polypropylene film having excellent dielectric breakdown strength at high temperature and particularly suppressing thermal shrinkage in the mechanical direction (MD) can be obtained.
  • Mz which is outside the scope of the present invention, exceeds 945,000, the heat shrinkage of the polypropylene film at high temperatures tends to increase.
  • the weight fraction w may be 2.6% or more and 4.2% or less, but the lower limit is preferably 2.8% or more, more preferably 3.0% or more, and further preferably 3. It is 2% or more, and even more preferably 3.4% or more.
  • the upper limit is preferably 4.1% or less, more preferably 4.0% or less, still more preferably 3.7% or less, and even more preferably 3.6% or less.
  • the film capacitor of the present invention using the polypropylene film as a capacitor derivative suppresses thermal tightening (deformation) of the capacitor in repeated use between high temperature and low temperature. It has excellent thermal shock resistance in that it is used.
  • the polypropylene film of the present invention relates to the polypropylene resin constituting the polypropylene film (when the polypropylene resin is composed of a mixture of a plurality of resins, after mixing).
  • Mw / Mn molecular weight distribution
  • Mz is 720,000 or more and 850,000 or less.
  • weight fraction w is 3.3% or more and 3.7% or less. It can be an embodiment.
  • the polypropylene film of the present invention relates to the polypropylene resin constituting the polypropylene film (when the polypropylene resin is composed of a mixture of a plurality of resins, after mixing).
  • Mw / Mn molecular weight distribution
  • Mz is 720,000 or more and 790,000 or less.
  • weight fraction w is 3.5% or more and 3.7% or less. It can be an embodiment.
  • Mw, Mn, Mz of polypropylene resin B, molecular weight distribution (Mw / Mn), molecular weight distribution (Mz / Mn), differential distribution value when log molecular weight Log (M) 4.5, logarithmic molecular weight Log (M)
  • the polypropylene film of the present invention contains a polypropylene resin.
  • the content of the polypropylene resin is preferably 90% by weight or more, more preferably 95% by weight or more, based on the entire polypropylene film (assuming 100% by weight of the entire polypropylene film).
  • the upper limit of the polypropylene resin content is, for example, 100% by weight, 98% by weight, etc., based on the entire polypropylene film.
  • the total ash content of polypropylene resin is preferably smaller because of its electrical characteristics.
  • the total ash content is preferably 50 ppm or less, more preferably 40 ppm or less, still more preferably 30 ppm or less, based on the polypropylene resin.
  • the lower limit of the total ash content is, for example, 2 ppm or 5 ppm. The smaller the total ash content, the smaller the impurities such as the polymerization catalyst residue.
  • the polypropylene resin may contain one kind of polypropylene resin alone, or may contain two or more kinds of polypropylene resins.
  • the polypropylene resin having the highest content is positioned as the main component in the present specification, and in the present specification, the "polypropylene resin as the main component” or the “base resin” is used. ".
  • the polypropylene resin contained in the polypropylene film is a kind, the polypropylene resin is also positioned as a main component in the present specification, and is referred to as a "main component polypropylene resin" in the present specification.
  • the polypropylene resin contained in the film is two or more types (particularly two types), for example, the following polypropylene resin A (base resin as a main component) and the following polypropylene resin B (blended resin) are used. Can be included.
  • a case where two types of polypropylene resin A (base resin) and polypropylene resin B (blended resin) are used will be exemplified.
  • the content of polypropylene resin A is more than 50% by weight, preferably 55% by weight or more, more preferably 60% by weight or more, still more preferably 65% by weight or more, based on 100% by weight of polypropylene resin.
  • the content of polypropylene resin A is less than 100% by weight, preferably 95% by weight or less, more preferably 90% by weight or less, still more preferably 80% by weight or less, and further, with respect to 100% by weight of polypropylene resin. More preferably, it is 75% by weight or less.
  • the polypropylene resin A include isotactic polypropylene.
  • the weight average molecular weight Mw of the polypropylene resin A is preferably 250,000 or more and less than 350,000, more preferably 28,000 or more and less than 350,000, and further preferably 280,000 or more and 34,000,000 or less. Is. When Mw is 250,000 or more and less than 350,000, the thickness of the cast raw sheet is easily controlled in the polypropylene film manufacturing process, and uneven thickness is unlikely to occur.
  • the number average molecular weight Mn of polypropylene resin A is preferably 30,000 or more and 54,000 or less, more preferably 33,000 or more and 52,000 or less, and further preferably 33,000 or more and 47,000 or less. Is. When Mn is 30,000 or more and 54,000 or less, it is easy to obtain a capacitor element having small thermal shrinkage and good thermal shock resistance.
  • the z average molecular weight Mz of the polypropylene resin A is preferably 700,000 or more and 1.55 million or less, and more preferably 750,000 or more and 1.5 million or less. When Mz is 700,000 or more and 1.55 million or less, a film having high dielectric breakdown strength at high temperature can be easily obtained.
  • the molecular weight distribution (Mw / Mn) of the polypropylene resin A is preferably 5.0 or more, more preferably 5.5 or more, still more preferably 6.0 or more.
  • the Mw / Mn of the polypropylene resin A is preferably 10.0 or less, more preferably 9.5 or less. When Mw / Mn is 5.0 or more and 10.0 or less, the stretchability is improved and a thin film can be easily obtained.
  • the molecular weight distribution (Mz / Mn) of the polypropylene resin A is preferably 10 or more and 70 or less, more preferably 15 or more and 60 or less, and further preferably 15 or more and 50 or less.
  • Mz / Mn is 10 or more and 70 or less, the stretchability is improved and a thin film can be easily obtained.
  • the upper limit is preferably 32.0 or less.
  • the upper limit is preferably 24.0 or less, more preferably 22.0 or less.
  • Typical distribution of components with a molecular weight of 10,000 to 100,000 on the low molecular weight side (hereinafter, also referred to as “low molecular weight components”) based on the Mw value (250,000 or more and less than 350,000) of the polypropylene resin A.
  • the polypropylene resin A according to the present invention has a wide molecular weight distribution, and at the same time, a component having a molecular weight of 10,000 to 100,000 is 8.0% or more and 18.0% or less as compared with a component having a molecular weight of 1 million. It is preferable to contain a large amount in proportion. This is preferable because the crystallite size is reduced and the roughened surface of the polypropylene film can be easily obtained.
  • the lower limit of the weight fraction w of the polypropylene resin A is preferably 3.8% or more, and more preferably 4.0% or more.
  • the upper limit is preferably 4.4% or less, and more preferably 4.2% or less.
  • the weight fraction w of the polypropylene resin A is within the applicable range, and the weight fraction w after mixing the polypropylene resin A and the polypropylene resin B is 2.6% depending on the combination with the weight fraction w of the polypropylene resin B described later. When it is 4.2% or less, it becomes easy to obtain a polypropylene film having excellent insulation breaking strength at high temperature and suppressing thermal shrinkage in the mechanical direction (MD).
  • the melt flow rate (MFR A ) of polypropylene resin A at 230 ° C. is preferably 4.8 g / 10 minutes or more, more preferably 5.0 g / 10 minutes or more, and further preferably 5.5 g / 10 minutes or more. ..
  • the upper limit of MFR A is preferably 10.0 g / 10 minutes or less, more preferably 8.0 g / 10 minutes or less, and even more preferably 6.0 g / 10 minutes or less.
  • the MFR A can be set to 4.8 g / 10 minutes or more and 5.5 g / 10 minutes or less.
  • the method for measuring the melt flow rate (MFR) in the present specification is the method described in Examples. Further, the unit g / 10 minutes of the melt flow rate is also referred to as dg / min.
  • the polypropylene film of the present invention relates to polypropylene resin A.
  • the Mw of the polypropylene resin A is 275,000 or more and less than 350,000.
  • the molecular weight distribution (Mw / Mn) of the polypropylene resin A is 5.8 or more and 10.0 or less.
  • MFR A melt flow rate of the polypropylene resin A is 4.8 g / 10 minutes or more and 5.5 g / 10 minutes or less. It can be an embodiment.
  • the polypropylene film of the present invention relates to polypropylene resin A.
  • the Mw of the polypropylene resin A is 280,000 or more and 300,000 or less.
  • the molecular weight distribution (Mw / Mn) of the polypropylene resin A is 6.0 or more and 6.5 or less.
  • the melt flow rate (MFR A ) of the polypropylene resin A is 5.0 g / 10 minutes or more and 5.5 g / 10 minutes or less. It can be an embodiment.
  • the heptane insoluble content of polypropylene resin A is preferably 97.0% or more.
  • the heptane insoluble content is preferably 98.5% or less.
  • the higher the heptane insoluble content the higher the stereoregularity of the resin.
  • the heptane insoluble content (HI) is 97.0% or more and 98.5% or less, the crystallinity of the polypropylene resin in the polypropylene film is appropriately improved due to the moderately high stereoregularity, and at high temperature. Dielectric breakdown strength is improved.
  • the rate of solidification (crystallization) at the time of molding the cast raw fabric sheet becomes appropriate, and the polypropylene film has an appropriate stretchability.
  • the method for measuring heptane insoluble matter (HI) in the present specification is the method described in Examples.
  • the total ash content of polypropylene resin A is preferably smaller because of its electrical characteristics.
  • the total ash content is preferably 50 ppm or less, more preferably 40 ppm or less, still more preferably 30 ppm or less, based on the polypropylene resin A.
  • the lower limit of the total ash content is, for example, 2 ppm or 5 ppm.
  • the content of polypropylene resin B is particularly preferably less than 50% by weight, preferably 49% by weight or less, more preferably 40% by weight or less, and 35% by weight or less with respect to 100% by weight of polypropylene resin.
  • the content of the polypropylene resin B is, for example, preferably 10% by weight or more, more preferably 15% by weight or more, still more preferably 25% by weight or more, based on 100% by weight of the polypropylene resin.
  • the polypropylene resin B include isotactic polypropylene.
  • the ratio of the mass of the polypropylene resin A to the total mass of the polypropylene resin A and the polypropylene resin B is 65% by mass or more and 75% by mass or less.
  • the Mw of polypropylene resin B is preferably 350,000 or more, more preferably 390,000 or more.
  • the Mw of the polypropylene resin B is preferably 550,000 or less, more preferably 450,000 or less, still more preferably 40,000 or less.
  • Mw is 350,000 or more and 550,000 or less, it is easy to control the thickness of the cast raw sheet in the polypropylene film manufacturing process, and uneven thickness is unlikely to occur.
  • the Mn of the polypropylene resin B is preferably 4,000,000 or more and 54,000 or less, more preferably 42,000 or more and 50,000 or less, and further preferably 44,000 or more and 48,000 or less.
  • Mn is 40,000 or more and 54,000 or less, it is easy to obtain a capacitor element having small heat shrinkage and good thermal shock resistance.
  • the Mz of polypropylene resin B is preferably more than 1.55 million and 2 million or less, more preferably 1.58 million or more and 1.7 million or less. When Mz exceeds 1.55 million and is 2 million or less, it is easy to obtain a film having a high strength of insulation breakage at high temperature.
  • the molecular weight distribution (Mw / Mn) of the polypropylene resin B is preferably 5.0 or more, more preferably 5.5 or more, still more preferably 7.0 or more, and even more preferably 7.5 or more.
  • the upper limit of Mw / Mn in the polypropylene resin B is, for example, 11.0 or less, preferably 10.0 or less, and more preferably 8.5 or less.
  • the molecular weight distribution (Mz / Mn) of polypropylene resin B is preferably 30 or more and 40 or less, and more preferably 33 or more and 36 or less.
  • Mz / Mn is 30 or more and 40 or less, the stretchability is improved and a thin film can be easily obtained.
  • the upper limit is preferably 35.0 or less, more preferably 32.0 or less.
  • the upper limit is preferably 35.0 or less, more preferably 33.0 or less.
  • the polypropylene resin contains the above-mentioned polypropylene resins A and B
  • the differences in the Mw, Mw / Mn, and differential distribution values of the polypropylene resins A and B are different, that is, the composition of the molecular weight distribution is different.
  • the polypropylene film obtained by mixing and molding has a slightly different quantitative relationship between the high molecular weight component and the low molecular weight component, it is preferable that the polypropylene film takes a certain fine mixing (phase separation) state and the crystal size is easily refined. it is conceivable that.
  • the draw ratio is the same, it tends to be highly oriented, and the surface is also considered to be preferable because fine roughness can be obtained.
  • the present invention is considered to exert an excellent effect for the above-mentioned reasons, but the present invention is not limited in any way for such reasons.
  • the lower limit of the weight fraction w of the polypropylene resin B is preferably 2.0% or more, and more preferably 3.0% or more.
  • the upper limit is preferably 5.0% or less, more preferably 4.2% or less.
  • the weight fraction w of the polypropylene resin B is within the applicable range, and the weight fraction w after mixing the polypropylene resin A and the polypropylene resin B is 2.6% depending on the combination with the weight fraction w of the polypropylene resin A described above. When it is 4.2% or less, it becomes easy to obtain a polypropylene film having excellent insulation breaking strength at high temperature and suppressing thermal shrinkage in the mechanical direction (MD).
  • the melt flow rate (MFR B ) at 230 ° C. in polypropylene resin B is preferably 4.5 g / 10 minutes or less, more preferably 4.0 g / 10 minutes or less, still more preferably 3.0 g / 10 minutes or less, and even more. It is preferably 2.1 g / 10 minutes or less.
  • the lower limit of MFR B is preferably 0.1 g / 10 minutes or more, and more preferably 0.5 g / 10 minutes or more. More preferably, 1.5 g / 10 minutes or more.
  • the difference MFR A -MFR B of MFR B of the polypropylene resin B is a MFR A blended resin of a polypropylene resin A as the base resin of the main component is preferably set to more than 1.5 g / 10 min. That is, MFR A is larger than MFR B.
  • the difference MFR A to MFR B is preferably 1.6 g / 10 minutes or more, more preferably 2.0 g / 10 minutes or more, and further preferably 3.0 g / 10 minutes or more.
  • the difference MFR A- MFR B is less than 1.5 g / 10 minutes (the said less than 1.5 g / 10 minutes includes a negative value), at the time of forming the cast raw fabric sheet in the polypropylene film manufacturing process.
  • the sea-island phase separation structure is not formed, or even if it is formed, the size of the islands is very small, so that it may be difficult to finally obtain a polypropylene film having excellent dielectric breakdown strength at high temperatures.
  • MFR A and MFR B are large, if MFR B is larger (when the above difference MFR A- MFR B is negative), the size of the islands in the sea-island phase separation structure is very large. It will be small.
  • the polypropylene film of the present invention has, as a preferred embodiment, the polypropylene resin B.
  • the Mw of the polypropylene resin B is 385,000 or more and 550,000 or less.
  • the molecular weight distribution (Mw / Mn) of the polypropylene resin B is 8.4 or more and 11.0 or less.
  • the melt flow rate (MFR B ) of the polypropylene resin B is 0.1 g / 10 minutes or more and 2.2 g / 10 minutes or less. It can be an embodiment.
  • the polypropylene film of the present invention relates to polypropylene resin B.
  • the Mw of the polypropylene resin B is 390,000 or more and 550,000 or less.
  • the molecular weight distribution (Mw / Mn) of the polypropylene resin B is 8.5 or more and 11.0 or less.
  • the melt flow rate (MFR B ) of the polypropylene resin B is 1.0 g / 10 minutes or more and 2.1 g / 10 minutes or less. It can be an embodiment.
  • the heptane insoluble content of polypropylene resin B is preferably 97.5% or more, more preferably 98.0% or more, still more preferably 98.5% or more, and particularly preferably 98.6% or more.
  • the heptane insoluble content is preferably 99.5% or less, more preferably 99.0% or less.
  • the total ash content of polypropylene resin B is preferably smaller because of its electrical characteristics.
  • the total ash content is preferably 50 ppm or less, more preferably 40 ppm or less, still more preferably 30 ppm or less, based on the polypropylene resin B.
  • the lower limit of the total ash content is, for example, 2 ppm or 5 ppm.
  • the polypropylene film is configured to contain a resin other than polypropylene resin. You can also.
  • the total amount of the polypropylene resin A and the polypropylene resin B can be, for example, 90% by weight or more, 95% by weight or more, and 100% by weight, assuming that the entire resin is 100% by weight. It can also be% by weight.
  • the polypropylene film of the present invention can further contain additives.
  • additives include an antioxidant, a chlorine absorber, an ultraviolet absorber, a lubricant, a plasticizer, a flame retardant, an antistatic agent, a colorant and the like.
  • the polypropylene film of the present invention may be a biaxially stretched film, a uniaxially stretched film, or a non-stretched film, but a biaxially stretched film is preferable.
  • the polypropylene film of the present invention is preferably for a capacitor, and specifically, it can be suitably applied as a dielectric material for a capacitor.
  • the polypropylene film of the present invention can be a polypropylene film integrated with a metal layer having a metal layer laminated on one side or both sides, and the polypropylene film integrated with the metal layer is wound or the metal layer is one.
  • a film capacitor can be manufactured by including a structure in which a plurality of body-shaped polypropylene films are laminated.
  • the polypropylene film of the present invention has the following dielectric breakdown strength and heat-resistant shrinkage characteristics.
  • the dielectric breakdown strength (VAC 100 ° C. ) of the polypropylene film of the present invention at an AC voltage at 100 ° C. is preferably 240 V / ⁇ m or more, more preferably 245 V / ⁇ m or more, still more preferably 250 V / ⁇ m or more.
  • the upper limit of the dielectric breakdown strength at an AC voltage at 100 ° C. is preferably higher, such as 270 V / ⁇ m and 265 V / ⁇ m.
  • the dielectric breakdown strength (VAC 110 ° C.) of the polypropylene film of the present invention at an AC voltage at 110 ° C. is preferably 240 V / ⁇ m or more, more preferably 242 V / ⁇ m or more, still more preferably 244 V / ⁇ m or more.
  • the higher the upper limit of the dielectric breakdown strength at the AC voltage at 110 ° C. is preferable, but it is, for example, 260 V / ⁇ m or 255 V / ⁇ m.
  • the dielectric breakdown strength (VAC 120 ° C.) of the polypropylene film of the present invention at an AC voltage at 120 ° C. is preferably 230 V / ⁇ m or more, more preferably 235 V / ⁇ m or more, still more preferably 238 V / ⁇ m or more.
  • the upper limit of the dielectric breakdown strength at an AC voltage at 120 ° C. is preferably 250 V / ⁇ m, 245 V / ⁇ m, or the like.
  • the dielectric breakdown strength (VDC 120 ° C.) of the polypropylene film of the present invention at a DC voltage at 120 ° C. is preferably 520 V / ⁇ m or more, more preferably 527 V / ⁇ m or more, still more preferably 532 V / ⁇ m or more.
  • the higher the upper limit of the dielectric breakdown strength at the DC voltage at 120 ° C. is preferably, for example, 550 V / ⁇ m or 540 V / ⁇ m.
  • the total value of the V AC 120 ° C. and the V DC 120 ° C. (V AC 120 ° C. + V DC 120 ° C. ) of the polypropylene film of the present invention is preferably 750 V / ⁇ m or more, more preferably 760 V / ⁇ m or more, still more preferably. It is 770 V / ⁇ m or more.
  • the upper limit of the total value of the V AC 120 ° C. and the V DC 120 ° C. is preferably as high as possible, and is, for example, 1000 V / ⁇ m, 900 V / ⁇ m, 850 V / ⁇ m, or the like.
  • V DC 120 ° C. ⁇ V AC 120 ° C. is preferably 300 V / ⁇ m or less.
  • the lower limit of the difference is preferably 280 V / ⁇ m or more, for example, 280 V / ⁇ m or more and 300 V / ⁇ m or less. Can be set.
  • the polypropylene film of the present invention has excellent heat shrinkage.
  • TMA thermomechanical analysis
  • the temperature was raised from 25 ° C. to 155 ° C. at a rate of 10 ° C./min under a load of 2.17 N / mm 2, and the horizontal axis was temperature and the vertical axis was temperature.
  • MD mechanical direction
  • the dimensional change rate is 0% or more in the heating process from 25 ° C. to 155 ° C.
  • the dimensional change rate is 0% or more (that is, not less than 0%)
  • heat shrinkage is not recognized.
  • the method of thermomechanical analysis (TMA) is as described in Examples.
  • FIG. 1 is a diagram showing the results of the thermomechanical analysis of the polypropylene films produced in Example 1, Comparative Example 5 and Comparative Example 14, in which the horizontal axis is the temperature and the vertical axis is the mechanical direction (MD) dimension of the film. This is the result of drawing a heating dimensional change curve as the rate of change.
  • the polypropylene film produced in Example 1 has a dimensional change rate of 0% or more in the mechanical direction of the film in the entire heating process from 25 ° C. to 155 ° C.
  • the polypropylene films produced in Comparative Example 5 and Comparative Example 14 have a temperature region in which the dimensional change rate in the mechanical direction of the film is less than 0% during the heating process from 25 ° C. to 155 ° C.
  • the above-mentioned method for producing a polypropylene film of the present invention is not limited, but the present invention is made by, for example, adopting the following production method (hereinafter referred to as "method for producing a polypropylene film of the present invention").
  • the polypropylene film can be suitably produced.
  • the method for producing a polypropylene film of the present invention is the above-mentioned method for producing a polypropylene film of the present invention. Comprising at least polypropylene resin A and step of a polypropylene resin B and below 270 ° C. temperature of 225 ° C.
  • a polypropylene film having good dielectric breakdown strength can be provided at a high temperature.
  • the reason is believed to be due to the sea-island phase separation structure (particularly the appropriate island size) of the cast raw fabric sheet due to the use of two different types of polypropylene resins.
  • a polypropylene resin composition containing at least polypropylene resin A and polypropylene resin B is used.
  • the fact that the content of the polypropylene resin A in the polypropylene resin composition is larger than the content of the polypropylene resin B in the polypropylene resin composition means that the polypropylene resin A has a relationship with the polypropylene resin B.
  • the main component of the base resin which means that the polypropylene resin B is a blended resin with respect to the base resin.
  • polypropylene resin A and polypropylene resin B in the method for producing a polypropylene film of the present invention correspond to the terms “polypropylene resin A” and “polypropylene resin B” in the above-mentioned polypropylene film item.
  • the method for mixing the resin applied to the production method of the present invention is not particularly limited, but is a method of dry-blending a polymer powder or pellet of a base resin and a blended resin using a mixer or the like, or a method of dry-blending with a base resin. Examples thereof include a method in which a polymer powder or pellets of a blended resin resin are supplied to a kneader and melt-kneaded to obtain a kneaded product.
  • the mixer and the kneader are not particularly limited.
  • the kneader may be a single-screw screw type, a double-screw screw type, or a multi-screw screw type.
  • a screw type with two or more axes either a kneading type that rotates in the same direction or that rotates in a different direction may be used.
  • the kneading temperature is not particularly limited as long as a good kneaded product is obtained.
  • the temperature is in the range of 200 ° C. or higher and 300 ° C. or lower, and from the viewpoint of suppressing deterioration of the resin, 230 ° C. or higher and 270 ° C. or lower is preferable.
  • an inert gas such as nitrogen may be purged into the kneader.
  • the melt-kneaded resin may be pelletized to an appropriate size using a generally known granulator. Thereby, the mixed polypropylene raw material resin pellets can be obtained.
  • the total ash content due to the polymerization catalyst residue and the like contained in the polypropylene raw material resin is as small as possible in order to improve the electrical characteristics.
  • the total ash content is preferably 50 ppm or less, more preferably 40 ppm or less, and particularly preferably 30 ppm or less, based on the polypropylene resin (100 parts by weight).
  • the polypropylene resin may contain additives.
  • the "additive” is an additive generally used for a polypropylene resin, and is not particularly limited as long as a polypropylene film can be obtained.
  • the additive include antioxidants, chlorine absorbers, ultraviolet absorbers, lubricants, plasticizers, flame retardants, antistatic agents and the like.
  • the polypropylene resin may contain the additive in an amount that does not adversely affect the polypropylene film.
  • polypropylene resin pellets In the polypropylene film manufacturing method of the present invention, first, polypropylene resin pellets, dry-mixed polypropylene resin pellets, or mixed polypropylene resin pellets prepared by melt-kneading in advance are supplied to an extruder and heated and melted.
  • the polypropylene resin composition is melted at 225 ° C. or higher and 270 ° C. or lower. Specifically, the extruder set temperature at the time of heating and melting the polypropylene resin composition is set to 225 ° C. or higher and 270 ° C. or lower.
  • the dielectric breakdown strength at high temperature is excellent. A polypropylene film is obtained.
  • the polypropylene resin composition in a state of being below 270 ° C. temperature of 225 ° C. or higher shear rate of 2000s -1 or more 15000S -1 to melt below.
  • a polypropylene film is obtained.
  • the shear rate is less than 2000s-1 , the extrusion rate is not constant, the shape and dimensions of the raw fabric sheet become irregular or fluctuate regularly, and the raw fabric sheet is broken or stretched during transportation. Time breaks are more likely to occur.
  • the shear rate exceeds 15000 s-1 , the unmelted material is extruded in the extruder by a phenomenon called breakup, and a uniform raw sheet cannot be obtained, so that breakage during stretching is likely to occur, or , The heat generated when passing through the chip clearance becomes excessive, and the polypropylene resin composition is significantly deteriorated. Therefore, even if a uniform extruded sheet is obtained, the dielectric breakdown strength of the film obtained by stretching is lowered. It ends up.
  • the shear rate can be adjusted by adjusting the cylinder diameter and screw rotation speed of the extruder and the groove depth of the screw.
  • the shear rate may be 2000s -1 or more and 15000s -1 or less, but is preferably 2000s -1 or more and 10000s -1 or less, and more preferably 2000s -1 or more and 2300s -1 or less.
  • the shear rate is within the applicable range, it becomes easy to obtain a polypropylene film having a weight component w of 2.6% or more and 4.2% or less, and by combining with other requirements, the polypropylene film can be used as a capacitor derivative.
  • excellent thermal shock resistance can be obtained in that thermal tightening (deformation) of the capacitor is suppressed in repeated use between high temperature and low temperature.
  • the surface temperature of the metal drum (the temperature of the metal drum that first comes into contact with the metal drum after extrusion) is preferably 50 ° C. or higher and 105 ° C. or lower, and more preferably 60 ° C. or higher and 100 ° C. or lower.
  • the surface temperature of the metal drum can be determined according to the physical properties of the polypropylene resin used.
  • the thickness of the cast raw sheet is not particularly limited as long as the polypropylene film can be obtained, but is usually preferably 0.05 mm or more and 2 mm or less, and 0.1 mm or more and 1 mm or less. More preferably.
  • the polypropylene film can be produced by subjecting the polypropylene cast raw fabric sheet to a stretching treatment.
  • the stretching is preferably biaxial stretching in which the orientation is biaxially oriented in the vertical and horizontal directions, and the sequential biaxial stretching method is preferable as the stretching method.
  • a sequential biaxial stretching method for example, first, the cast raw sheet is kept at a temperature of 110 ° C. or higher and 170 ° C. or lower (preferably 135 ° C. or higher and 170 ° C. or lower), and is passed between rolls provided with a speed difference in a flow direction. Stretch to.
  • the draw ratio in the flow direction is preferably 3.5 times or more and 5.5 times or less, and more preferably 4.2 times or more and 5.4 times or less.
  • the sheet is guided to the tenter and stretched in the lateral direction.
  • the temperature during stretching in the lateral direction is preferably 150 ° C. or higher and 165 ° C. or lower, and the stretching ratio in the lateral direction is preferably 9 times or higher and 11 times or lower. After that, relaxation and heat fixing are performed twice or more and 10 times or less. From the above, a biaxially stretched polypropylene film can be obtained.
  • the thickness of the polypropylene film is preferably 0.8 ⁇ m or more and 6.0 ⁇ m or less as described above from the viewpoint of ensuring the miniaturization and high capacity of the capacitor when used for the capacitor. Specifically, 5.5 ⁇ m or less is preferable, 3.5 ⁇ m or less is more preferable, 3.0 ⁇ m or less is further preferable, and 2.4 ⁇ m or less is particularly preferable.
  • the thickness of the polypropylene film is preferably 1.0 ⁇ m or more, more preferably 1.8 ⁇ m or more, and even more preferably 2.2 ⁇ m or more from the viewpoint of manufacturing.
  • the polypropylene film may be subjected to a corona discharge treatment online or offline after the stretching and heat fixing steps are completed in order to improve the adhesive properties in a post-process such as a metal vapor deposition processing step.
  • the corona discharge treatment can be performed by using a known method. It is preferable to use air, carbon dioxide gas, nitrogen gas, or a mixed gas thereof as the atmospheric gas.
  • the polypropylene film of the present invention thus obtained is obtained when a DC voltage is applied at a high temperature of about 120 ° C. (100 ° C. to 120 ° C.) even when the film thickness is as thin as 6.0 ⁇ m or less. It has excellent dielectric breakdown strength (dielectric breakdown strength) and dielectric breakdown strength when an AC voltage is applied, and heat shrinkage in the mechanical direction (MD) is suppressed at temperatures up to about 150 ° C., which exceeds the above high temperature. It has excellent heat shrinkage in terms of points. Further, the film capacitor of the present invention using the polypropylene film as a capacitor derivative has excellent heat resistance at a high temperature of about 120 ° C. (100 ° C.
  • the polypropylene film of the present invention is suitable for use as a film capacitor, and can be preferably used as a derivative of a capacitor constituting an inverter in a hybrid vehicle / electric vehicle.
  • Polypropylene film with integrated metal layer Condenser and method for manufacturing the polypropylene film of the present invention is a polypropylene film integrated with a metal layer having a polypropylene film and a metal layer laminated on one side or both sides of the polypropylene film in consideration of processing into a capacitor. It may be a polypropylene film.
  • the metal layer functions as an electrode.
  • the metal used for the metal layer for example, elemental metals such as zinc, lead, silver, chromium, aluminum, copper and nickel, a mixture thereof, alloys thereof and the like can be used. Zinc and aluminum are preferable in consideration of economy and capacitor performance.
  • a vacuum deposition method or a sputtering method can be exemplified.
  • the vacuum vapor deposition method is preferable from the viewpoint of productivity and economy.
  • a pot method, a wire method, or the like can be generally exemplified, but the method is not particularly limited, and the optimum method can be appropriately selected.
  • the margin pattern when laminating metal layers by vapor deposition is not particularly limited, but from the viewpoint of improving characteristics such as the safety of capacitors, a pattern including a so-called special margin such as a fishnet pattern or a T-margin pattern is used. It is preferably applied on one side of the polypropylene film. It is effective in terms of improving security, destroying capacitors, preventing short circuits, and so on.
  • a generally known method such as a tape method or an oil method can be used without any limitation.
  • polypropylene film integrated with a metal layer of the present invention can be laminated or wound by a conventionally known method to form a film capacitor.
  • the film capacitor may have a structure in which a plurality of metal layer integrated polypropylene films are laminated, or may have a wound metal layer integrated polypropylene film.
  • a film capacitor can be suitably used as a capacitor for an inverter power supply device that controls a drive motor of an electric vehicle, a hybrid vehicle, or the like.
  • it can be suitably used for railway vehicles, wind power generation, solar power generation, general household appliances, and the like.
  • PP resin A1 to A6 Made by Prime Polymer Co., Ltd.
  • PP resin B1 Made by Korea Yuka Co., Ltd., S802M type A
  • PP resin B2 Borealis Co., Ltd., HC300BF PP resin B3: manufactured by Korea Yuka Co., Ltd., S800 PP resin B4: manufactured by Samsung TotalEnergies, HU300 PP resin B5: manufactured by Korea Yuka Co., Ltd., HPT-1 type A PP resin B6: manufactured by Korea Yuka Co., Ltd., HPT-1 type B PP resin B7: manufactured by Korea Yuka Co., Ltd., S802M type B PP resin B8: S802M type C manufactured by Korea Yuka Co., Ltd.
  • Calibration curve A calibration curve with a fifth-order approximation curve was created using standard polystyrene manufactured by Tosoh Corporation. However, the molecular weight was converted to the molecular weight of polypropylene using the Q-factor.
  • the molecular weight (logarithmic value) was plotted on the horizontal axis and the integrated value of the concentration fraction was plotted on the vertical axis using the analysis software for the measuring device to obtain an integrated molecular weight distribution curve. ..
  • the differential value (slope of the integrated molecular weight distribution curve) of the integrated molecular weight distribution curve at each molecular weight was obtained, and the molecular weight (logarithmic value) was plotted on the horizontal axis and the differential value was plotted on the vertical axis to obtain the differential molecular weight distribution curve.
  • the number average molecular weight Mn, the weight average molecular weight Mw, and the Z average molecular weight Mz were obtained.
  • melt flow rate (MFR) in the form of the raw material resin pellets used in Examples and Comparative Examples was measured using the melt index of Toyo Seiki Co., Ltd. according to the condition M of JIS K 7210. Specifically, first, a sample weighed to 4 g was inserted into a cylinder having a test temperature of 230 ° C., and preheated for 3.5 minutes under a load of 2.16 kg. Then, the weight of the sample extruded from the bottom hole was measured in 30 seconds, and the MFR (unit: g / 10 minutes or g / 10 min) was determined. The above measurement was repeated 3 times, and the average value was taken as the measured value of MFR.
  • Examples 1 to 14 and Comparative Examples 1 to 18 [Manufacturing of biaxially stretched polypropylene film and its characteristic evaluation] Polypropylene resins A and B were weighed according to Table 2 and mixed at the weight ratios shown in Table 2 to obtain a dry blend resin composition. Next, the dry blend resin composition was supplied to an extruder and melted at the melting temperature and shear rate shown in Table 2. This molten resin was extruded using a T-die, wound around a metal drum whose surface temperature was maintained at 95 ° C., and solidified to prepare a cast raw sheet. The unstretched cast raw sheet was kept at a temperature of 140 ° C., passed between rolls provided with a speed difference, stretched 4.5 times in the flow direction, and immediately cooled to room temperature.
  • the stretched film obtained by stretching in the flow direction was guided to a tenter, stretched 10 times in the width direction at a transverse stretching temperature of 158 ° C., then relaxed and heat-fixed at a relaxation rate of 12% to obtain a width of about 158 ° C.
  • a biaxially stretched polypropylene film having a thickness of 5 m and a thickness of 2.3 ⁇ m was wound around an iron core having a diameter of 400 mm for about 80,000 m under the atmosphere shown in Table 2 and wound as a jumbo roll.
  • the wound biaxially stretched polypropylene film was treated in an atmosphere of 35 ° C. for 24 hours for aging treatment.
  • the voltage applied at the time when the leakage current of the following upper limit reference value was detected during boosting was defined as BDV.
  • the BDV was divided by the film thickness ( ⁇ m), and the average value of 12 points excluding the upper 2 points and the lower 2 points in the 16 measurement results was defined as the dielectric breakdown strength ES (VDC / ⁇ m).
  • Specimen Approximately 150 mm x 150 mm Condition adjustment of test piece: 30 minutes under atmospheric conditions
  • Power supply DC atmosphere: In air, 120 ° C Testing machine: DC withstand voltage / insulation resistance testing machine TOS9213AS manufactured by Kikusui Electronics Co., Ltd.
  • test piece Approximately 150 mm x 150 mm Condition adjustment of test piece: 30 minutes under atmospheric conditions
  • Power supply AC atmosphere: In air, 100 ° C, 110 ° C, 120 ° C
  • Testing machine Withstanding voltage testing machine TOS5051A manufactured by Kikusui Electronics Co., Ltd.
  • Voltage rise rate 100V / s
  • Upper limit reference value 5mA ⁇ Thermomechanical Analysis (TMA) ⁇ Thermomechanical analysis was performed as follows.
  • the appearance of the jumbo roll excluding about 100 mm at both ends after aging was evaluated from the viewpoint of winding quality (wrinkles).
  • the following mold (vertical type) is a defect of a winding shape such as a ribbed metal can that occurs in parallel with the circumferential direction, which is generally called an MD wire or a can shape. Excellent “AA” when there is no type (vertical type) in the circumferential direction with a depth of 0.5 mm or more. Good “A” when there is only one type (vertical type) in the circumferential direction with a depth of 0.5 mm or more.
  • a metal layer is formed by forming a special vapor deposition pattern margin and an insulation margin for imparting film capacitor safety to a biaxially stretched polypropylene film, and applying aluminum vapor deposition so that the surface resistance of the metal film becomes 20 ⁇ / ⁇ .
  • An integral polypropylene film was obtained.
  • two metal-layer-integrated polypropylene films are combined, and a winding speed of 4 m / N2 is used using an automatic winder 3KAW-N2 manufactured by Minato Seisakusho. The number of turns was set so that the element capacitance was 50 ⁇ F at a winding tension of 180 g and a contact roller contact pressure of 260 g for seconds, and the polypropylene film integrated with the metal layer was wound.
  • the leads were soldered to the end face of the element and sealed with epoxy resin to obtain a flat film capacitor.
  • the capacitances of the obtained film capacitors were all 50 ⁇ F ( ⁇ 3 ⁇ F).
  • Capacitance rate of change [(Capacitance after voltage load)-(Initial capacitance)] / (Initial capacitance) x 100 (%)
  • rate of change in capacity after 500 hours was -4% or less, it was regarded as good "A”, when it exceeded -4% and -6% or less was regarded as "B”, and when it exceeded -6%, it was regarded as defective "C”.
  • the tan ⁇ before and after the thermal shock test was measured using an LCR high tester 3522-50 manufactured by Hioki Electric Co., Ltd.
  • the rate of increase in tan ⁇ was calculated by the following formula.
  • a good “A” was given when the rate of increase was 100% or less, a “B” was given when the rate of increase exceeded 100% and 105% or less, and a bad “C” was given when the rate of increase exceeded 105%.
  • the polypropylene resin constituting the film has a molecular weight distribution (Mw / Mn) of a weight average molecular weight Mw and a number average molecular weight Mn, a Z average molecular weight Mz, and an integral.
  • Mw / Mn molecular weight distribution
  • the weight fraction w is within a predetermined range, so that even when the film thickness is as thin as 6.0 ⁇ m or less, it is about 120 ° C. (100 ° C.).
  • insulation break strength insulation break strength
  • insulation break strength insulation break strength
  • insulation break strength insulation break strength
  • insulation break strength insulation break strength
  • insulation break strength insulation break strength
  • insulation break strength insulation break strength
  • insulation break strength insulation break strength
  • insulation break strength insulation break strength
  • insulation break strength insulation break strength
  • insulation break strength insulation break strength
  • insulation break strength insulation break strength
  • insulation break strength insulation break strength
  • insulation break strength electrical break strength
  • insulation break strength insulation break strength
  • insulation break strength insulation break strength when an AC voltage is applied at a high temperature of ⁇ 120 ° C
  • heat shrinkage in the mechanical direction (MD) is suppressed at temperature.
  • the film capacitor produced in the examples has excellent heat resistance at a high temperature of about 120 ° C. (100 ° C. to 120 ° C.), and specifically, the capacitor is a capacitor even when used for a long time at the above high temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

本発明は、高温下での優れた絶縁破壊強度と耐熱収縮性とを具備するポリプロピレンフィルム、前記ポリプロピレンフィルムを用いた、高温下での優れたライフ性能及び優れた耐熱衝撃性を具備するフィルムコンデンサを提供する。 本発明は、具体的には、ポリプロピレンフィルムであって、前記ポリプロピレンフィルムを構成するポリプロピレン樹脂は、 ・重量平均分子量Mwと数平均分子量Mnとの分子量分布(Mw/Mn)が5.0以上6.9以下であり、 ・Z平均分子量Mzが65.0万以上94.5万以下であり、 ・積分分子量分布曲線において対数分子量Log(M)=4.0のときの重量分率wが2.6%以上4.2%以下である、 ことを特徴とする、ポリプロピレンフィルムを提供する。

Description

ポリプロピレンフィルム、金属層一体型ポリプロピレンフィルム及びフィルムコンデンサ
 本発明は、ポリプロピレンフィルム、金属層一体型ポリプロピレンフィルム及びフィルムコンデンサに関する。
 ポリプロピレンフィルムは、コンデンサの誘導体に用いることができる。例えば、ハイブリッド自動車、電気自動車等のパワーコントロールユニットを構成するインバータにおけるコンデンサの誘導体に用いることができる。
国際公開第2018/056404号
 ポリプロピレンフィルムをコンデンサ誘導体として用いたコンデンサは、上述の使用環境(一例として、エンジンルーム内で温度が上昇する環境や、コンデンサの自己発熱など)の観点から、小型・軽量・高容量でありながら、120℃程度(100℃~120℃)の高温下において優れた耐熱性を有することが望ましい。具体的には、上記高温下で長時間使用した場合でもコンデンサの静電容量の低下が抑制されていること(優れたライフ性能)、エンジンルーム内を想定した上記高温と低温との間の繰り返し使用においてコンデンサの熱締まり(変形)が抑制されていること(優れた耐熱衝撃性)等が求められている。
 また、上記コンデンサを作製するためのポリプロピレンフィルムとしては、フィルムの厚さが20μm未満のように薄い場合でも上記高温下において直流電圧を印加させた際の絶縁破壊強度(絶縁破壊強さ)及び交流電圧を印加させた際の絶縁破壊強度に優れること、更には上記高温を超える150℃程度までの温度で機械方向(MD)の熱収縮が抑制されていること(優れた耐熱収縮性)等が求められている。
 しかしながら、前述の特許文献1に記載のポリプロピレンフィルム及びそれを用いたコンデンサは、コンデンサ性能としての上記優れたライフ性能及び優れた耐熱衝撃性、並びに、フィルム性能としての上記優れた絶縁破壊強度及び優れた耐熱収縮性を包括的に満足するものではなく、更に改善の余地がある。
 本発明は、上述した課題に鑑みてなされたものであり、その目的は、高温下での優れた絶縁破壊強度と耐熱収縮性とを具備するポリプロピレンフィルム、前記ポリプロピレンフィルムを用いた、高温下での優れたライフ性能及び優れた耐熱衝撃性を具備するフィルムコンデンサ並びにそれらの製造方法を提供することである。
 本発明の他の目的は、上記ポリプロピレンフィルムを有する金属層一体型ポリプロピレンフィルム、前記金属層一体型ポリプロピレンフィルムを有するフィルムコンデンサ並びにそれらの製造方法を提供することである。
 本発明者らは、ポリプロピレンフィルムについて鋭意検討を行った。その結果、ポリプロピレンフィルムを構成するポリプロピレン樹脂に関して、重量平均分子量Mwと数平均分子量Mnとの分子量分布(Mw/Mn)、Z平均分子量Mz、及び積分分子量分布曲線において対数分子量Log(M)=4.0のときの重量分率wがそれぞれ特定範囲にあるポリプロピレンフィルムが前述のフィルム性能を具備するとともに、前記ポリプロピレンフィルムを用いたコンデンサが前述のコンデンサ性能を具備することを見出し、本発明のポリプロピレンフィルム及びフィルムコンデンサを完成するに至った。また、ポリプロピレン樹脂組成物を特定の剪断速度で溶融させる工程を含む製造方法によれば上記ポリプロピレンフィルムが好適に製造できることも見出した。
 つまり、本発明は下記のポリプロピレンフィルム、金属層一体型ポリプロピレンフィルム及びフィルムコンデンサ並びにそれらの製造方法に関する。
1.ポリプロピレンフィルムであって、前記ポリプロピレンフィルムを構成するポリプロピレン樹脂は、
・重量平均分子量Mwと数平均分子量Mnとの分子量分布(Mw/Mn)が5.0以上6.9以下であり、
・Z平均分子量Mzが65.0万以上94.5万以下であり、
・積分分子量分布曲線において対数分子量Log(M)=4.0のときの重量分率wが2.6%以上4.2%以下である、
ことを特徴とする、ポリプロピレンフィルム。
2.コンデンサ用である、上記項1に記載のポリプロピレンフィルム。
3.二軸延伸フィルムである、上記項1又は2に記載のポリプロピレンフィルム。
4.熱機械分析において2.17N/mmの荷重下で25℃から155℃まで10℃/分の速度で昇温し、横軸を温度、縦軸をフィルムの機械方向(MD)の寸法変化率として加熱寸法変化曲線を描いたとき、前記25℃から155℃までの昇温過程において前記寸法変化率が0%以上である、上記項1~3のいずれかに記載のポリプロピレンフィルム。
5.120℃での直流電圧における絶縁破壊強度(VDC120℃)と120℃での交流電圧における絶縁破壊強度(VAC120℃)との差分(VDC120℃-VAC120℃)が280V/μm以上300V/μm以下である、上記項1~4のいずれかに記載のポリプロピレンフィルム。
6.前記Mzが70.0万超過である、上記項1~5のいずれかに記載のポリプロピレンフィルム。
7.・前記分子量分布(Mw/Mn)が5.0以上6.6以下であり、
・前記Mzが72.0万以上79.0万以下であり、
・前記重量分率wが3.5%以上3.7%以下である、
上記項1~6のいずれかに記載のポリプロピレンフィルム。
8.前記ポリプロピレン樹脂はポリプロピレン樹脂Aとポリプロピレン樹脂Bとを含有し、前記ポリプロピレン樹脂中の前記ポリプロピレン樹脂Aの含有量が、前記ポリプロピレン樹脂中の前記ポリプロピレン樹脂Bの含有量よりも多く、
・前記ポリプロピレン樹脂AのMwが27.5万以上35.0万未満であり、
・前記ポリプロピレン樹脂Aの分子量分布(Mw/Mn)が5.8以上10.0以下であり、
・前記ポリプロピレン樹脂Aのメルトフローレート(MFR)が4.8g/10分以上5.5g/10分以下である、
上記項1~7のいずれかに記載のポリプロピレンフィルム。
9.前記ポリプロピレン樹脂はポリプロピレン樹脂Aとポリプロピレン樹脂Bとを含有し、前記ポリプロピレン樹脂中の前記ポリプロピレン樹脂Aの含有量が、前記ポリプロピレン樹脂中の前記ポリプロピレン樹脂Bの含有量よりも多く、
・前記ポリプロピレン樹脂BのMwが38.5万以上55.0万以下であり、
・前記ポリプロピレン樹脂Bの分子量分布(Mw/Mn)が8.4以上11.0以下であり、
・前記ポリプロピレン樹脂Bのメルトフローレート(MFR)が0.1g/10分以上2.2g/10分以下である、
上記項1~8のいずれかに記載のポリプロピレンフィルム。
10.前記ポリプロピレン樹脂Aと前記ポリプロピレン樹脂Bの合計質量に対する前記ポリプロピレン樹脂Aの質量の割合が65~75質量%である、上記項8又は9に記載のポリプロピレンフィルム。
11.前記ポリプロピレンフィルムの厚さが1.0μm以上6.0μm以下である、上記項1~10のいずれかに記載のポリプロピレンフィルム。
12.上記項1~11のいずれかに記載のポリプロピレンフィルムと、
 前記ポリプロピレンフィルムの片面又は両面に積層された金属層とを有する、
金属層一体型ポリプロピレンフィルム。
13.巻回された上記項12に記載の金属層一体型ポリプロピレンフィルムを有するか、又は、上記項12に記載の金属層一体型ポリプロピレンフィルムが複数積層された構成を有する、
フィルムコンデンサ。
14.上記項1~11のいずれかに記載のポリプロピレンフィルムの製造方法であって、 少なくともポリプロピレン樹脂A及びポリプロピレン樹脂Bを含有するポリプロピレン樹脂組成物を温度225℃以上270℃以下且つ剪断速度2000s-1以上15000s-1以下で溶融させる工程を含み、
 前記ポリプロピレン樹脂AのMFRと前記ポリプロピレン樹脂BのMFRの差分MFR-MFRが、1.5g/10分以上であり、
 前記ポリプロピレン樹脂組成物中の前記ポリプロピレン樹脂Aの含有量が、前記ポリプロピレン樹脂組成物中の前記ポリプロピレン樹脂Bの含有量よりも多い、
ことを特徴とする、ポリプロピレンフィルムの製造方法。
15.前記ポリプロピレンフィルムが、コンデンサ用である、上記項14に記載のポリプロピレンフィルムの製造方法。
16.前記ポリプロピレンフィルムが、二軸延伸フィルムである、上記項14又は15に記載のポリプロピレンフィルムの製造方法。
17.前記ポリプロピレン樹脂Aと前記ポリプロピレン樹脂Bの合計質量に対する前記ポリプロピレン樹脂Aの質量の割合が65~75質量%である、上記項14~16のいずれかに記載のポリプロピレンフィルムの製造方法。
18.前記ポリプロピレンフィルムの厚さが1.0μm以上2.4μm以下である、上記項14~17のいずれかに記載のポリプロピレンフィルムの製造方法。
19.上記項14~18のいずれかに記載の製造方法を含み、更に前記ポリプロピレンフィルムの少なくとも一方の面に金属層を形成する工程を含む、金属層一体型ポリプロピレンフィルムの製造方法。
20.上記項19に記載の製造方法を含み、更に前記金属層一体型ポリプロピレンフィルムを巻回する工程を含む、フィルムコンデンサの製造方法。
 本発明のポリプロピレンフィルムは、前記フィルムを構成するポリプロピレン樹脂が、重量平均分子量Mwと数平均分子量Mnとの分子量分布(Mw/Mn)、Z平均分子量Mz、及び積分分子量分布曲線において対数分子量Log(M)=4.0のときの重量分率wがそれぞれ特定範囲にあることにより、フィルムの厚さが6.0μm以下のように薄い場合でも120℃程度(100℃~120℃)の高温下において直流電圧を印加させた際の絶縁破壊強度(絶縁破壊強さ)及び交流電圧を印加させた際の絶縁破壊強度に優れるとともに、上記高温を超える150℃程度までの温度で機械方向(MD)の熱収縮が抑制されている点で優れた耐熱収縮性を有している。また、前記ポリプロピレンフィルムをコンデンサ誘導体として用いた本発明のフィルムコンデンサは、120℃程度(100℃~120℃)の高温下において優れた耐熱性を有し、具体的には、上記高温下で長時間使用した場合でもコンデンサの静電容量の低下が抑制されている点で優れたライフ性能を有し、エンジンルーム内を想定した上記高温と低温との間の繰り返し使用においてコンデンサの熱締まり(変形)が抑制されている点で優れた耐熱衝撃性も有している。よって、本発明のポリプロピレンフィルムはフィルムコンデンサ用途として好適である。
実施例1、比較例5及び比較例14で作製したポリプロピレンフィルムの熱機械分析(TMA)の結果を示す図であり、横軸を温度、縦軸をフィルムの機械方向(MD)の寸法変化率として加熱寸法変化曲線を描いた結果である。 エージング後の両端約100mmを除いたジャンボロールの外観性状を示す模式図である。図中(A)は深さが0.5mm以上である円周方向の型(縦型)が存在しない場合を示す模式図であり、(B)は深さが0.5mm以上である円周方向の型(縦型)が2本存在する場合を例示的に示す模式図である。
 以下、本発明のポリプロピレンフィルム、金属層一体型ポリプロピレンフィルム及びフィルムコンデンサ並びにそれらの製造方法について詳細に説明する。
 本明細書において、ポリプロピレンをPPと省略する場合があり、ポリプロピレン樹脂をPP樹脂と省略する場合がある。
 本明細書中において、「含有」及び「含む」なる表現は、「含有」、「含む」、「実質的にからなる」及び「のみからなる」という概念を含む。
 本明細書中において、「コンデンサ」なる表現は、「コンデンサ」、「コンデンサ素子」及び「フィルムコンデンサ」という概念を含む。
 本明細書中において、ポリプロピレンフィルムの方向は次の通りである。先ず、フィルムの機械方向は、MachineDirection(以下、「MD方向」という。)と同じ方向である。MD方向は、長さ方向、流れ方向と呼ぶことがある。次に、フィルムの横方向は、TransverseDirection(以下、「TD方向」という。)と同じ方向である。TD方向は、幅方向と呼ぶことがある。
 ポリプロピレンフィルム
 本発明のポリプロピレンフィルムは、前記ポリプロピレンフィルムを構成するポリプロピレン樹脂が、
・重量平均分子量Mwと数平均分子量Mnとの分子量分布(Mw/Mn)が5.0以上6.9以下であり、
・Z平均分子量Mzが65.0万以上94.5万以下であり、
・積分分子量分布曲線において対数分子量Log(M)=4.0のときの重量分率wが2.6%以上4.2%以下である、
ことを特徴とする。以下、「Mw」、「Mn」、「分子量分布(Mw/Mn)」、「Mz」、「重量分率w」などと略記する。
 上記特徴を有する本発明のポリプロピレンフィルムは、前記フィルムを構成するポリプロピレン樹脂が、重量平均分子量Mwと数平均分子量Mnとの分子量分布(Mw/Mn)、Z平均分子量Mz、及び積分分子量分布曲線において対数分子量Log(M)=4.0のときの重量分率wがそれぞれ特定範囲にあることにより、フィルムの厚さが6.0μm以下のように薄い場合でも120℃程度(100℃~120℃)の高温下において直流電圧を印加させた際の絶縁破壊強度(絶縁破壊強さ)及び交流電圧を印加させた際の絶縁破壊強度に優れるとともに、上記高温を超える150℃程度までの温度で機械方向(MD)の熱収縮が抑制されている点で優れた耐熱収縮性を有している。また、前記ポリプロピレンフィルムをコンデンサ誘導体として用いた本発明のフィルムコンデンサは、120℃程度(100℃~120℃)の高温下において優れた耐熱性を有し、具体的には、上記高温下で長時間使用した場合でもコンデンサの静電容量の低下が抑制されている点で優れたライフ性能を有し、エンジンルーム内を想定した上記高温と低温との間の繰り返し使用においてコンデンサの熱締まり(変形)が抑制されている点で優れた耐熱衝撃性も有している。よって、本発明のポリプロピレンフィルムはフィルムコンデンサ用途として好適である。また、本発明のポリプロピレンフィルムは延伸の有無は限定的ではないが、上記用途を考慮する二軸延伸フィルムであることが好ましい。
 本発明におけるポリプロピレンフィルムの両面は、第1面と第2面とで定義できる。第1面は粗面であることができる。第1面が粗面であると、コンデンサ作製における素子巻きでシワが発生し難い。第2面が粗面であることもできる。
 前記ポリプロピレンフィルムの厚さは、コンデンサに使用した場合のコンデンサの小型化及び高容量化を担保する観点から、0.8μm以上6.0μm以下が好ましい。具体的には、5.5μm以下が好ましく、3.5μm以下がより好ましく、3.0μm以下が更に好ましく、2.4μm以下が特に好ましい。また、前記ポリプロピレンフィルムの厚さは、製造上の観点から、1.0μm以上が好ましく、1.8μm以上がより好ましく、2.2μm以上が更に好ましい。本明細書におけるポリプロピレンフィルムの厚さの測定方法は、実施例記載の方法による。
 前記ポリプロピレンフィルムの密度は限定的ではないが、コンデンサ用途を考慮すると、例えば919g/cm以上925g/cm以下に設定することが好ましい。本明細書におけるポリプロピレンフィルムの密度の測定方法は、実施例記載の方法による。
 本発明のポリプロピレンフィルムは、前記ポリプロピレンフィルムを構成するポリプロピレン樹脂(ポリプロピレン樹脂が複数の樹脂の混合から構成される場合には、混合後)の分子量分布(Mw/Mn)が5.0以上6.9以下である。
 分子量分布(Mw/Mn)は5.0以上6.9以下であればよいが、下限値は好ましくは5.2以上であり、より好ましくは5.6以上であり、更に好ましくは5.8以上であり、更に好ましくは6.0以上であり、更に好ましくは6.2以上であり、更に一層好ましくは6.3以上である。また、上限値は好ましくは6.8以下であり、より好ましくは6.7以下であり、更に好ましくは6.6以下である。分子量分布(Mw/Mn)がかかる範囲内であることにより、他の要件との組み合わせの効果として、高温下における絶縁破壊強度に優れるとともに、機械方向(MD)の熱収縮が抑制されているポリプロピレンフィルムが得られる。
 本発明のポリプロピレンフィルムは、前記ポリプロピレンフィルムを構成するポリプロピレン樹脂(ポリプロピレン樹脂が複数の樹脂の混合から構成される場合には、混合後)のMzが65.0万以上94.5万以下である。
 Mzは65.0万以上94.5万以下であればよいが、下限値は好ましくは70.0万超過であり、より好ましくは71.0万以上であり、更に好ましくは72.0万以上である。また、上限値は好ましくは92.0万以下であり、より好ましくは85.0万以下であり、更に好ましくは79.0万以下である。Mzがかかる範囲内であることにより、他の要件との組み合わせの効果として、高温下における絶縁破壊強度に優れるとともに、特に機械方向(MD)の熱収縮が抑制されているポリプロピレンフィルムが得られる。本発明の範囲外であるMzが94.5万超過の場合には高温下でのポリプロピレンフィルムの熱収縮性が増大し易い。
 本発明のポリプロピレンフィルムは、前記ポリプロピレンフィルムを構成するポリプロピレン樹脂(ポリプロピレン樹脂が複数の樹脂の混合から構成される場合には、混合後)の積分分子量分布曲線において対数分子量Log(M)=4.0のときの重量分率wが2.6%以上4.2%以下である。
 重量分率wは2.6%以上4.2%以下であればよいが、下限値は好ましくは2.8%以上であり、より好ましくは3.0%以上であり、更に好ましくは3.2%以上であり、更に一層好ましくは3.4%以上である。また、上限値は好ましくは4.1%以下であり、より好ましくは4.0%以下であり、更に好ましくは3.7%以下であり、更に一層好ましくは3.6%以下である。重量分率wがかかる範囲内であることにより、他の要件との組み合わせの効果として、高温下における絶縁破壊強度に優れるとともに、機械方向(MD)の熱収縮が抑制されているポリプロピレンフィルムが得られる。また、重量分率wがかかる範囲内であることにより、前記ポリプロピレンフィルムをコンデンサ誘導体として用いた本発明のフィルムコンデンサは、高温と低温との間の繰り返し使用においてコンデンサの熱締まり(変形)が抑制されている点で優れた耐熱衝撃性を有する。
 本発明のポリプロピレンフィルムは、好適な実施態様として、前記ポリプロピレンフィルムを構成するポリプロピレン樹脂(ポリプロピレン樹脂が複数の樹脂の混合から構成される場合には、混合後)について、
・前記分子量分布(Mw/Mn)が5.0以上6.6以下であり、
・前記Mzが72.0万以上85.0万以下であり、
・前記重量分率wが3.3%以上3.7%以下である、
態様とすることができる。このような物性のポリプロピレン樹脂を用いることにより、高温下における絶縁破壊強度に優れるとともに、機械方向(MD)の熱収縮が抑制されているポリプロピレンフィルムが得られ易くなる。
 本発明のポリプロピレンフィルムは、より好適な実施態様として、前記ポリプロピレンフィルムを構成するポリプロピレン樹脂(ポリプロピレン樹脂が複数の樹脂の混合から構成される場合には、混合後)について、
・前記分子量分布(Mw/Mn)が5.0以上6.6以下であり、
・前記Mzが72.0万以上79.0万以下であり、
・前記重量分率wが3.5%以上3.7%以下である、
態様とすることができる。このような物性のポリプロピレン樹脂を用いることにより、高温下における絶縁破壊強度に優れるとともに、機械方向(MD)の熱収縮が抑制されているポリプロピレンフィルムが得られ易くなる。
 本明細書におけるポリプロピレンフィルムを構成するポリプロピレン樹脂のMw、Mn、Mz、分子量分布(Mw/Mn)、及び重量分率w、並びに、前記ポリプロピレン樹脂が複数の樹脂から構成される場合におけるポリプロピレン樹脂A及びポリプロピレン樹脂BのMw、Mn、Mz、分子量分布(Mw/Mn)、分子量分布(Mz/Mn)、対数分子量Log(M)=4.5のときの微分分布値、対数分子量Log(M)=6.0のときの微分分布値、分子量微分分布値差(D)、及び重量分率wの測定方法は、実施例記載の方法による。
 本発明のポリプロピレンフィルムはポリプロピレン樹脂を含む。ポリプロピレン樹脂の含有量は、ポリプロピレンフィルム全体に対して(ポリプロピレンフィルム全体を100重量%としたときに)、好ましくは90重量%以上、より好ましくは95重量%以上である。ポリプロピレン樹脂の含有量の上限は、ポリプロピレンフィルム全体に対して、例えば、100重量%、98重量%などである。
 ポリプロピレン樹脂の総灰分は、電気特性のために少ないほど好ましい。総灰分は、ポリプロピレン樹脂を基準として、好ましくは50ppm以下、より好ましくは40ppm以下、さらに好ましくは30ppm以下である。総灰分の下限は、例えば2ppm、5ppmなどである。総灰分は、少ないほど、重合触媒残渣などの不純物が少ないことを意味する。
 ポリプロピレン樹脂は、一種のポリプロピレン樹脂を単独で含むものであってもよく、二種以上のポリプロピレン樹脂を含むものであってもよい。
 本発明のポリプロピレンフィルムに含まれるポリプロピレン樹脂が二種以上である場合、最も含有量が多いポリプロピレン樹脂を本明細書では主成分に位置づけ、本明細書では「主成分のポリプロピレン樹脂」又は「ベース樹脂」という。また、前記ポリプロピレンフィルムに含まれるポリプロピレン樹脂が一種である場合、当該ポリプロピレン樹脂も、本明細書では主成分に位置づけ、本明細書では、「主成分のポリプロピレン樹脂」という。
 本発明のポリプロピレンフィルムは、当該フィルムに含まれるポリプロピレン樹脂が二種以上(特に二種)である場合、例えば、下記ポリプロピレン樹脂A(主成分であるベース樹脂)とともに下記ポリプロピレン樹脂B(ブレンド樹脂)を含むことができる。以下、ポリプロピレン樹脂A(ベース樹脂)とポリプロピレン樹脂B(ブレンド樹脂)の二種を用いる場合について例示的に説明する。
 ポリプロピレン樹脂Aの含有量は、ポリプロピレン樹脂100重量%に対して、50重量%超過、好ましくは55重量%以上、より好ましくは60重量%以上、更に好ましくは65重量%以上である。ポリプロピレン樹脂Aの含有量は、上限に関しては、ポリプロピレン樹脂100重量%に対して、100重量%未満、好ましくは95重量%以下、より好ましくは90重量%以下、更に好ましくは80重量%以下、更に一層好ましくは75重量%以下である。ポリプロピレン樹脂Aとして、例えばアイソタクチックポリプロピレンを挙げることができる。
 ポリプロピレン樹脂Aの重量平均分子量Mwは、好ましくは25.0万以上35.0万未満、より好ましくは28.0万以上35.0万未満、更に好ましくは28.0万以上34.0万以下である。Mwが25.0万以上35.0万未満であると、ポリプロピレンフィルムの製造工程において、キャスト原反シートの厚さの制御が容易であり、厚みムラが発生し難い。
 ポリプロピレン樹脂Aの数平均分子量Mnは、好ましくは3.0万以上5.4万以下、より好ましくは3.3万以上5.2万以下、更に好ましくは3.3万以上4.7万以下である。Mnが3.0万以上5.4万以下であると、熱収縮が小さく、良好な耐熱衝撃性を有するコンデンサ素子が得られ易い。
 ポリプロピレン樹脂Aのz平均分子量Mzは、好ましくは70万以上155万以下、より好ましくは75万以上150万以下である。Mzが70万以上155万以下であると、高温での絶縁破壊の強さの高いフィルムが得られやすい。
 ポリプロピレン樹脂Aの分子量分布(Mw/Mn)は、好ましくは5.0以上、より好ましくは5.5以上、更に好ましくは6.0以上である。ポリプロピレン樹脂AのMw/Mnは、10.0以下が好ましく、9.5以下がより好ましい。Mw/Mnが5.0以上10.0以下であると、延伸性が向上し、薄いフィルムが得られ易い。
 ポリプロピレン樹脂Aの分子量分布(Mz/Mn)は、10以上70以下であることが好ましく、15以上60以下であることがより好ましく、15以上50以下であることがさらに好ましい。Mz/Mnが10以上70以下であると、延伸性が向上し、薄いフィルムが得られ易い。
 ポリプロピレン樹脂Aの分子量分布曲線において、対数分子量Log(M)=4.5のときの微分分布値は、好ましくは28.0以上である。上限値は、好ましくは32.0以下である。また、対数分子量Log(M)=6.0のときの微分分布値は、好ましくは17.0以上、より好ましくは20.0以上である。上限値は、好ましくは24.0以下、より好ましくは22.0以下である。更に、対数分子量Log(M)=4.5のときの微分分布値から対数分子量Log(M)=6.0のときの微分分布値を引いた差(分子量微分分布値差(D))は、好ましくは8.0以上18.0以下であり、より好ましくは8.0以上11.0以下であり、更に好ましくは8.2以上10.0以下であり、更に一層好ましくは8.4以上8.8以下である。
 ポリプロピレン樹脂Aの有するMwの値(25.0万以上35.0万未満)より、低分子量側の分子量1万から10万の成分(以下、「低分子量成分」ともいう)の代表的な分布値として、対数分子量Log(M)=4.5の成分を、高分子量側の分子量100万前後の成分(以下、「高分子量成分」ともいう)の代表的な分布値として、Log(M)=6.0前後の成分と比較すると、低分子量成分の方が8.0%以上18.0%以下の割合で多いことが理解される。
 つまり、分子量分布Mw/Mnが5.0~10.0であるといっても単に分子量分布幅の広さを表しているに過ぎず、その中の高分子量成分、低分子量成分の量的な関係までは分からない。そこで、本発明に係るポリプロピレン樹脂Aは、広い分子量分布を有すると同時に、分子量1万から10万の成分を、分子量100万の成分と比較して、8.0%以上18.0%以下の割合で多く含むことが好ましい。これにより、結晶子サイズが小さくなり、ポリプロピレンフィルムの粗化された表面が得られ易くなり好ましい。
 ポリプロピレン樹脂Aの重量分率wは、下限値は好ましくは3.8%以上であり、より好ましくは4.0%以上である。また、上限値は好ましくは4.4%以下であり、より好ましくは4.2%以下である。ポリプロピレン樹脂Aの重量分率wがかかる範囲内であり、後述するポリプロピレン樹脂Bの重量分率wとの組み合わせによってポリプロピレン樹脂Aとポリプロピレン樹脂Bとの混合後の重量分率wが2.6%以上4.2%以下となることにより、高温下における絶縁破壊強度に優れるとともに、機械方向(MD)の熱収縮が抑制されているポリプロピレンフィルムが得られ易くなる。
 ポリプロピレン樹脂Aの230℃でのメルトフローレート(MFR)は、好ましくは4.8g/10分以上、より好ましくは5.0g/10分以上、更に好ましくは5.5g/10分以上である。また、MFRの上限は、10.0g/10分以下が好ましく、8.0g/10分以下がより好ましく、6.0g/10分以下が更に好ましい。なお、MFRは、4.8g/10分以上5.5g/10分以下と設定することもできる。本明細書におけるメルトフローレート(MFR)の測定方法は、実施例記載の方法による。また、前記メルトフローレートの単位g/10分は、dg/minともいう。
 本発明のポリプロピレンフィルムは、好適な実施態様として、ポリプロピレン樹脂Aについて、
・前記ポリプロピレン樹脂AのMwが27.5万以上35.0万未満であり、
・前記ポリプロピレン樹脂Aの分子量分布(Mw/Mn)が5.8以上10.0以下であり、
・前記ポリプロピレン樹脂Aのメルトフローレート(MFR)が4.8g/10分以上5.5g/10分以下である、
態様とすることができる。このような物性のポリプロピレン樹脂Aを用いることにより、押出機によるキャストシート(延伸前駆体)の成形が容易に行い易くなる。
 また、本発明のポリプロピレンフィルムは、より好適な実施態様として、ポリプロピレン樹脂Aについて、
・前記ポリプロピレン樹脂AのMwが28.0万以上30.0万以下であり、
・前記ポリプロピレン樹脂Aの分子量分布(Mw/Mn)が6.0以上6.5以下であり、
・前記ポリプロピレン樹脂Aのメルトフローレート(MFR)が5.0g/10分以上5.5g/10分以下である、
態様とすることができる。
 ポリプロピレン樹脂Aのヘプタン不溶分は、好ましくは97.0%以上である。ヘプタン不溶分は、好ましくは98.5%以下である。ヘプタン不溶分は、多いほど樹脂の立体規則性が高いことを示す。前記ヘプタン不溶分(HI)が、97.0%以上98.5%以下であると、適度に高い立体規則性により、ポリプロピレンフィルム中でのポリプロピレン樹脂の結晶性が適度に向上し、高温下での絶縁破壊強度が向上する。更に、ポリプロピレンフィルムの製造工程において、キャスト原反シート成形の際の固化(結晶化)の速度が適度となり、適度の延伸性を有する。本明細書におけるヘプタン不溶分(HI)の測定方法は、実施例記載の方法による。
 ポリプロピレン樹脂Aの総灰分は、電気特性のために少ないほど好ましい。総灰分は、ポリプロピレン樹脂Aを基準として、好ましくは50ppm以下、より好ましくは40ppm以下、さらに好ましくは30ppm以下である。総灰分の下限は、例えば2ppm、5ppmなどである。
 ポリプロピレン樹脂Bの含有量は、ポリプロピレン樹脂100重量%に対して、50重量%未満、好ましくは49重量%以下、より好ましくは40重量%以下、35重量%以下が特に好ましい。また、ポリプロピレン樹脂Bの含有量は、下限に関しては、例えば、ポリプロピレン樹脂100重量%に対して好ましくは10重量%以上、より好ましくは15重量%以上、更に好ましくは25重量%以上である。ポリプロピレン樹脂Bとして、例えばアイソタクチックポリプロピレンを挙げることができる。なお、本発明では、ポリプロピレン樹脂Aとポリプロピレン樹脂Bの合計質量に対するポリプロピレン樹脂Aの質量の割合が65質量%以上75質量%以下である態様が特に好ましい。
 ポリプロピレン樹脂BのMwは好ましくは35.0万以上、より好ましくは39.0万以上である。ポリプロピレン樹脂BにおけるMwは、好ましくは55.0万以下、より好ましくは45.0万以下、更に好ましくは40.0万以下である。Mwが35.0万以上55.0万以下であると、ポリプロピレンフィルムの製造工程において、キャスト原反シートの厚さの制御が容易であり、厚みムラが発生し難い。
 ポリプロピレン樹脂BのMnは、好ましくは4.0万以上5.4万以下、より好ましくは4.2万以上5.0万以下、更に好ましくは4.4万以上4.8万以下である。Mnが4.0万以上5.4万以下であると、熱収縮が小さく、良好な耐熱衝撃性を有するコンデンサ素子が得られ易い。
 ポリプロピレン樹脂BのMzは、好ましくは155万超過200万以下、より好ましくは158万以上170万以下である。Mzが155万超過200万以下であると、高温での絶縁破壊の強さの高いフィルムが得られ易い。
 ポリプロピレン樹脂Bの分子量分布(Mw/Mn)は、好ましくは5.0以上、より好ましくは5.5以上、更に好ましくは7.0以上、更に一層好ましくは7.5以上である。ポリプロピレン樹脂BにおけるMw/Mnの上限は、例えば11.0以下、好ましくは10.0以下、より好ましくは8.5以下である。Mw/Mnが5.0以上11.0以下であると、延伸性が向上し、薄いフィルムが得られ易い。
 ポリプロピレン樹脂Bの分子量分布(Mz/Mn)は、好ましくは30以上40以下、より好ましくは33以上36以下である。Mz/Mnが30以上40以下であると、延伸性が向上し、薄いフィルムが得られ易い。
 ポリプロピレン樹脂Bの分子量分布曲線において、対数分子量Log(M)=4.5のときの微分分布値は、好ましくは24.0以上、より好ましくは27.0以上である。上限値は、好ましくは35.0以下、より好ましくは32.0以下である。また、対数分子量Log(M)=6.0のときの微分分布値は、好ましくは28.0以上、より好ましくは30.0以上である。上限値は、好ましくは35.0以下、より好ましくは33.0以下である。更に、対数分子量Log(M)=4.5のときの微分分布値から対数分子量Log(M)=6.0のときの微分分布値を引いた差(分子量微分分布値差(D))は、好ましくは-11.0以上7.0以下であり、より好ましくは-6.0以上0.0以下であり、更に好ましくは-4.0以上-2.0以下である。
 ポリプロピレン樹脂が、上述のポリプロピレン樹脂A及びBを含む場合、ポリプロピレン樹脂AとBのMw、Mw/Mn、及び微分分布値の差がそれぞれ異なる、つまり、分子量分布の構成に相違があることによって、混合し成形して得られたポリプロピレンフィルムは、高分子量成分と低分子量成分の量的な関係が微妙に異なるため、ある種の微細混合(相分離)状態をとり、結晶サイズが微細化し易く好ましいと考えられる。更には、同じ延伸倍率であっても高配向化し易い傾向に有り、表面も微細な粗化を得られ易く好ましいと考えられる。ポリプロピレン樹脂が、ポリプロピン樹脂A及びBを含む場合、前述した理由で本発明は優れた効果を奏すると考えられるが、このような理由によって、本発明は何ら制限されることはない。
 ポリプロピレン樹脂Bの重量分率wは、下限値は好ましくは2.0%以上であり、より好ましくは3.0%以上である。また、上限値は好ましくは5.0%以下であり、より好ましくは4.2%以下である。ポリプロピレン樹脂Bの重量分率wがかかる範囲内であり、前述したポリプロピレン樹脂Aの重量分率wとの組み合わせによってポリプロピレン樹脂Aとポリプロピレン樹脂Bとの混合後の重量分率wが2.6%以上4.2%以下となることにより、高温下における絶縁破壊強度に優れるとともに、機械方向(MD)の熱収縮が抑制されているポリプロピレンフィルムが得られ易くなる。
 ポリプロピレン樹脂Bにおける230℃のメルトフローレート(MFR)は、好ましくは4.5g/10分以下、より好ましくは4.0g/10分以下、更に好ましくは3.0g/10分以下、更に一層好ましくは2.1g/10分以下である。また、MFRの下限は、0.1g/10分以上が好ましく、0.5g/10分以上がより好ましく。1.5g/10分以上が更に好ましい。
 なお、主成分のベース樹脂としてのポリプロピレン樹脂AのMFRとブレンド樹脂であるポリプロピレン樹脂BのMFRの差分MFR-MFRは、1.5g/10分以上に設定することが好ましい。つまり、MFRはMFRよりも大きい。上記差分MFR-MFRは、1.6g/10分以上が好ましく、2.0g/10分以上がより好ましく、3.0g/10分以上が更に好ましい。上記差分MFR-MFRが1.5g/10分未満(当該1.5g/10分未満は、マイナスの値も包含する)である場合、ポリプロピレンフィルムの製造工程において、キャスト原反シート成形時点での海-島相分離構造が形成されないか、又は形成されるにしても島のサイズが非常に小さいため、最終的に、高温での絶縁破壊強度に優れたポリプロピレンフィルムが得られ難くなるおそれがある。特に、MFRとMFRとの差が大きくても、MFRの方が大きい場合(上記差分MFR-MFRがマイナスとなる場合)、海-島相分離構造の島のサイズが非常に小さいものとなる。
 本発明のポリプロピレンフィルムは、好適な実施態様として、ポリプロピレン樹脂Bについて、
・前記ポリプロピレン樹脂BのMwが38.5万以上55.0万以下であり、
・前記ポリプロピレン樹脂Bの分子量分布(Mw/Mn)が8.4以上11.0以下であり、
・前記ポリプロピレン樹脂Bのメルトフローレート(MFR)が0.1g/10分以上2.2g/10分以下である、
態様とすることができる。このような物性のポリプロピレン樹脂Bを用いることにより、押出機によるキャストシート(延伸前駆体)の成形が容易に行い易くなる。
 本発明のポリプロピレンフィルムは、より好適な実施態様として、ポリプロピレン樹脂Bについて、
・前記ポリプロピレン樹脂BのMwが39.0万以上55.0万以下であり、
・前記ポリプロピレン樹脂Bの分子量分布(Mw/Mn)が8.5以上11.0以下であり、
・前記ポリプロピレン樹脂Bのメルトフローレート(MFR)が1.0g/10分以上2.1g/10分以下である、
態様とすることができる。
 ポリプロピレン樹脂Bのヘプタン不溶分は、好ましくは97.5%以上、より好ましくは98.0%以上、更に好ましくは98.5%超過、特に好ましくは98.6%以上である。また、ヘプタン不溶分は、好ましくは99.5%以下であり、より好ましくは99.0%以下である。
 ポリプロピレン樹脂Bの総灰分は、電気特性のために少ないほど好ましい。総灰分は、ポリプロピレン樹脂Bを基準として、好ましくは50ppm以下、より好ましくは40ppm以下、更に好ましくは30ppm以下である。総灰分の下限は、例えば2ppm、5ppmなどである。
 以上、ポリプロピレン樹脂A(ベース樹脂)とポリプロピレン樹脂B(ブレンド樹脂)の二種を用いる場合について例示的に説明したが、本発明では、ポリプロピレンフィルムはポリプロピレン樹脂以外の樹脂を含有する構成とすることもできる。その場合には、ポリプロピレン樹脂Aとポリプロピレン樹脂Bとの合計量は、樹脂全体を100重量%とした場合、例えば90重量%以上であることができ、95重量%以上であることもでき、100重量%であることもできる。
 本発明のポリプロピレンフィルムは、添加剤を更に含むことができる。添加剤として、例えば、酸化防止剤、塩素吸収剤、紫外線吸収剤、滑剤、可塑剤、難燃化剤、帯電防止剤、着色剤などを挙げることができる。
 本発明のポリプロピレンフィルムは、二軸延伸フィルムであってもよく、一軸延伸フィルムであってもよく、無延伸フィルムであってもよいが、二軸延伸フィルムであることが好ましい。
 本発明のポリプロピレンフィルムはコンデンサ用であることが好ましく、具体的にはコンデンサの誘電体として好適に適用できる。後述する通り、本発明のポリプロピレンフィルムは片面又は両面に積層された金属層とを有する金属層一体型ポリプロピレンフィルムとすることができ、この金属層一体型ポリプロピレンフィルムを巻回するか、金属層一体型ポリプロピレンフィルムを複数積層する構成を含むようにすることによりフィルムコンデンサを作製することができる。
 上記コンデンサ用の用途を考慮し、本発明のポリプロピレンフィルムは下記の絶縁破壊強度及び耐熱収縮性の特性を有することが望ましい。
 本発明のポリプロピレンフィルムの100℃での交流電圧における絶縁破壊強度(VAC100℃)は、好ましくは240V/μm以上、より好ましくは245V/μm以上、更に好ましくは250V/μm以上である。100℃での交流電圧における絶縁破壊強度の上限は、高いほど好ましいが、例えば270V/μm、265V/μmなどである。
 本発明のポリプロピレンフィルムの110℃での交流電圧における絶縁破壊強度(VAC110℃)は、好ましくは240V/μm以上、より好ましくは242V/μm以上、更に好ましくは244V/μm以上である。110℃での交流電圧における絶縁破壊強度の上限は、高いほど好ましいが、例えば260V/μm、255V/μmなどである。
 本発明のポリプロピレンフィルムの120℃での交流電圧における絶縁破壊強度(VAC120℃)は、好ましくは230V/μm以上、より好ましくは235V/μm以上、更に好ましくは238V/μm以上である。120℃での交流電圧における絶縁破壊強度の上限は、高いほど好ましいが、例えば250V/μm、245V/μmなどである。
 本発明のポリプロピレンフィルムの120℃での直流電圧における絶縁破壊強度(VDC120℃)は、好ましくは520V/μm以上、より好ましくは527V/μm以上、更に好ましくは532V/μm以上である。120℃での直流電圧における絶縁破壊強度の上限は、高いほど好ましいが、例えば550V/μm、540V/μmなどである。
 本発明のポリプロピレンフィルムの前記VAC120℃と前記VDC120℃の合計値(VAC120℃+VDC120℃)は、好ましくは750V/μm以上であり、より好ましくは760V/μm以上であり、さらに好ましくは770V/μm以上である。前記VAC120℃と前記VDC120℃の合計値の上限は、高いほど好ましいが、例えば1000V/μm、900V/μm、850V/μmなどである。
 本発明のポリプロピレンフィルムの前記VDC120℃と前記VAC120℃との差分(VDC120℃-VAC120℃は300V/μm以下であることが好ましい。このように差分が比較的小さいことにより重畳電流(直流と交流が重なった電流)に対しても絶縁破壊がし難いという利点がある。なお、前記差分の下限値は280V/μm以上とすることが好ましく、例えば280V/μm以上300V/μm以下と設定できる。
 本発明のポリプロピレンフィルムは耐熱収縮性に優れている。具体的には、ポリプロピレンフィルムの熱機械分析(TMA)において2.17N/mmの荷重下で25℃から155℃まで10℃/分の速度で昇温し、横軸を温度、縦軸をフィルムの機械方向(MD)の寸法変化率として加熱寸法変化曲線を描いたとき、前記25℃から155℃までの昇温過程において前記寸法変化率が0%以上であることが望ましい。ここで、寸法変化率が0%以上である(つまり0%を下回らない)ことは、熱収縮が認められないことを意味する。熱機械分析(TMA)の方法については実施例記載の方法による。
 図1は、実施例1、比較例5及び比較例14で作製したポリプロピレンフィルムの上記熱機械分析の結果を示す図であり、横軸を温度、縦軸をフィルムの機械方向(MD)の寸法変化率として加熱寸法変化曲線を描いた結果である。図1から分かる通り、実施例1で作製したポリプロピレンフィルムは前記25℃から155℃までの昇温過程全体においてフィルムの機械方向の寸法変化率が0%以上である。他方、比較例5及び比較例14で作製したポリプロピレンフィルムは前記25℃から155℃までの昇温過程中にフィルムの機械方向の寸法変化率が0%未満となっている温度領域がある。
 ポリプロピレンフィルムの製造方法
 前述の本発明のポリプロピレンフィルムの製造方法は限定的ではないが、例えば下記の製造方法(以下「本発明のポリプロピレンフィルムの製造方法」と称する)を採用することにより本発明のポリプロピレンフィルムは好適に製造することができる。
 本発明のポリプロピレンフィルムの製造方法は、前述の本発明のポリプロピレンフィルムを製造する方法であって、
 少なくともポリプロピレン樹脂A及びポリプロピレン樹脂Bを含有するポリプロピレン樹脂組成物を温度225℃以上270℃以下且つ剪断速度2000s-1以上15000s-1以下で溶融させる工程を含み、
 前記ポリプロピレン樹脂Aのメルトフローレート(MFR)と前記ポリプロピレン樹脂Bの(MFR)の差分MFR-MFRが、1.5g/10分以上であり、
 前記ポリプロピレン樹脂組成物中の前記ポリプロピレン樹脂Aの含有量が、前記ポリプロピレン樹脂組成物中の前記ポリプロピレン樹脂Bの含有量よりも多い、
ことを特徴とする。
 当該製造方法によれば、高温下において、良好な絶縁破壊強度を有するポリプロピレンフィルムを提供することができる。その理由は、特定の、異なる2種のポリプロピレン樹脂を使用したことによるキャスト原反シートの海-島相分離構造(特に、適切な島のサイズ)によるものと考えられている。
 本発明のポリプロピレンフィルムの製造方法では、少なくともポリプロピレン樹脂A及びポリプロピレン樹脂Bを含有するポリプロピレン樹脂組成物を用いる。ここで、ポリプロピレン樹脂組成物中のポリプロピレン樹脂Aの含有量が、ポリプロピレン樹脂組成物中のポリプロピレン樹脂Bの含有量よりも多いことは、ポリプロピレン樹脂Aとポリプロピレン樹脂Bとの関係において、ポリプロピレン樹脂Aが主成分のベース樹脂であり、ポリプロピレン樹脂Bがベース樹脂に対するブレンド樹脂であることを意味する。なお、本発明のポリプロピレンフィルムの製造方法における「ポリプロピレン樹脂A」、「ポリプロピレン樹脂B」の用語は、前述のポリプロピレンフィルムの項目における「ポリプロピレン樹脂A」、「ポリプロピレン樹脂B」の用語と対応しており、各樹脂のMw、Mn、Mz、分子量分布(Mw/Mn)、分子量分布(Mz/Mn)、対数分子量Log(M)=4.5のときの微分分布値、対数分子量Log(M)=6.0のときの微分分布値、分子量微分分布値差(D)、重量分率w、及びMFRの説明については、前述の通りであるが、本発明のポリプロピレン樹脂の製造方法では特にMFRとMFRの差分MFR-MFRが1.5g/10分以上であるものを用いる。
 本発明の製造方法に適用する樹脂を混合する方法としては、特に制限はないが、ベース樹脂とブレンド樹脂の重合粉、又は、ペレットを、ミキサー等を用いてドライブレンドする方法や、ベース樹脂とブレンド樹脂樹脂の重合粉、又は、ペレットを、混練機に供給し、溶融混練して混練物を得る方法が挙げられる。
 前記ミキサーや前記混練機は、特に制限されない。前記混練機は、1軸スクリュータイプ、2軸スクリュータイプ、それ以上の多軸スクリュータイプの何れでもよい。2軸以上のスクリュータイプの場合、同方向回転、異方向回転のどちらの混練タイプでも構わない。
 溶融混練による混練の場合は、良好な混練物が得られれば、混練温度は特に制限されない。一般的には、200℃以上300℃以下の範囲であり、樹脂の劣化を抑制する観点から、230℃以上270℃以下が好ましい。また、樹脂の混練混合の際の劣化を抑制するため、混練機に窒素などの不活性ガスをパージしても構わない。溶融混練された樹脂は、一般的に公知の造粒機を用いて、適当な大きさにペレタイズしてもよい。これにより、混合ポリプロピレン原料樹脂ペレットを得ることができる。
 ポリプロピレン原料樹脂中に含まれる重合触媒残渣等に起因する総灰分は、電気特性を向上させるために可能な限り少ないことが好ましい。総灰分は、ポリプロピレン樹脂を基準(100重量部)として、50ppm以下であることが好ましく、40ppm以下であることがより好ましく、30ppm以下であることが特に好ましい。
 前記ポリプロピレン樹脂は、添加剤を含んでいてもよい。「添加剤」とは、一般的に、ポリプロピレン樹脂に使用される添加剤であって、ポリプロピレンフィルムを得ることができる限り特に制限されない。前記添加剤としては、例えば、酸化防止剤、塩素吸収剤、紫外線吸収剤、滑剤、可塑剤、難燃化剤、帯電防止剤等が挙げられる。前記ポリプロピレン樹脂は、前記添加剤を、前記ポリプロピレンフィルムに悪影響を与えない量で含めてもよい。
 本発明のポリプロピレンフィルムの製造方法では、先ずポリプロピレン樹脂ペレット、ドライ混合されたポリプロピレン樹脂ペレット、又は、予め溶融混練して作製した混合ポリプロピレン樹脂ペレットを押出機に供給して、加熱溶融する。
 前記ポリプロピレン樹脂組成物は、225℃以上270℃以下で溶融させるようにする。具体的には、ポリプロピレン樹脂組成物の加熱溶融時の押出機設定温度を、225℃以上270℃以下とする。これにより、上記特定のポリプロピレン樹脂組成物を使用するという前提で、後述するキャスト原反シート成形時点での海-島相分離構造が形成され、最終的に、高温での絶縁破壊強度に優れたポリプロピレンフィルムが得られる。
 ポリプロピレン樹脂組成物を温度225℃以上270℃以下にした状態で剪断速度2000s-1以上15000s-1以下で溶融させる。これにより、上記特定のポリプロピレン樹脂組成物を使用するという前提で、後述するキャスト原反シート成形時点での海-島相分離構造が形成され、最終的に、高温での絶縁破壊強度に優れたポリプロピレンフィルムが得られる。剪断速度が2000s-1を下回ると、押出量が一定せず、原反シートの形状や寸法が不規則になったり、又は規則的に変動するようになり、原反シート搬送時の破断や延伸時の破断が発生しやすくなる。
 また、剪断速度が15000s-1を上回ると、押出機内でブレークアップと呼ばれる現象により未溶融物が押出され、均一な原反シートが得られなくなることで延伸時の破断が発生しやすくなる、又は、チップクリアランスを通過する際の発熱が過多となり、ポリプロピレン樹脂組成物の劣化が著しくなることで、均一な現反シートが得られたとしても、延伸により得られるフィルムの絶縁破壊強さが低下してしまう。剪断速度は、押出機のシリンダ直径及びスクリュー回転数、スクリューの溝深さで調整できる。
 上記剪断速度は2000s-1以上15000s-1以下であればよいが、好ましくは2000s-1以上10000s-1以下、より好ましくは2000s-1以上2300s-1以下である。剪断速度がかかる範囲内であることにより、重量分率wが2.6%以上4.2%以下であるポリプロピレンフィルムが得られ易くなり、他の要件との組み合わせにより、ポリプロピレンフィルムをコンデンサ誘導体として用いたフィルムコンデンサにおいて、高温と低温との間の繰り返し使用においてコンデンサの熱締まり(変形)が抑制されている点で優れた耐熱衝撃性が得られる。
 次に、Tダイを用いて溶融された前記樹脂組成物をシート状に押し出し、少なくとも1個以上の金属ドラムで、冷却、固化させることで、未延伸のキャスト原反シートを成形する。また、前記金属ドラムの表面温度(押し出し後、最初に接触する金属ドラムの温度)は、50℃以上105℃以下であることが好ましく、より好ましくは、60℃以上100℃以下である。前記金属ドラムの表面温度は、使用するポリプロピレン樹脂の物性等に応じて決定することができる。金属ドラムの表面温度が50℃を著しく下回ると、原反シートの良好なシート成形性が得られにくいため、延伸製膜時に延伸むらや破断をすることなくポリプロピレンフィルムを良好に得る、ということが困難となる。
 前記キャスト原反シートの厚さは、前記ポリプロピレンフィルムを得ることができる限り、特に制限されることはないが、通常、0.05mm以上2mm以下であることが好ましく、0.1mm以上1mm以下であることがより好ましい。
 前記ポリプロピレンフィルムは、前記ポリプロピレンキャスト原反シートに延伸処理を行って製造することができる。延伸は、縦及び横に二軸に配向させる二軸延伸が好ましく、延伸方法としては逐次二軸延伸方法が好ましい。逐次二軸延伸方法としては、例えば、まず、キャスト原反シートを110℃以上170℃以下の温度(好ましくは135℃以上170℃以下)に保ち、速度差を設けたロール間に通して流れ方向に延伸する。流れ方向の延伸倍率は3.5倍以上5.5倍以下が好ましく、4.2倍以上5.4倍以下がより好ましい。引き続き、当該シートをテンターに導いて、横方向に延伸する。横方向の延伸時の温度は150℃以上165℃以下が好ましく、横方向の延伸倍率は9倍以上11倍以下が好ましい。その後、2倍以上10倍以下に緩和、熱固定を施す。以上により、二軸延伸ポリプロピレンフィルムが得られる。
 前記ポリプロピレンフィルムの厚さは、コンデンサに使用した場合のコンデンサの小型化及び高容量化を担保する観点から、前述の通り0.8μm以上6.0μm以下が好ましい。具体的には、5.5μm以下が好ましく、3.5μm以下がより好ましく、3.0μm以下が更に好ましく、2.4μm以下が特に好ましい。また、前記ポリプロピレンフィルムの厚さは、製造上の観点から、1.0μm以上が好ましく、1.8μm以上がより好ましく、2.2μm以上が更に好ましい。
 前記ポリプロピレンフィルムには、金属蒸着加工工程などの後工程において、接着特性を高める目的で、延伸及び熱固定工程終了後に、オンライン又はオフラインにてコロナ放電処理を行ってもよい。コロナ放電処理は、公知の方法を用いて行うことができる。雰囲気ガスとして空気、炭酸ガス、窒素ガス、又は、これらの混合ガスを用いて行うことが好ましい。
 このようにして得られた本発明のポリプロピレンフィルムは、フィルムの厚さが6.0μm以下のように薄い場合でも120℃程度(100℃~120℃)の高温下において直流電圧を印加させた際の絶縁破壊強度(絶縁破壊強さ)及び交流電圧を印加させた際の絶縁破壊強度に優れるとともに、上記高温を超える150℃程度までの温度で機械方向(MD)の熱収縮が抑制されている点で優れた耐熱収縮性を有している。また、前記ポリプロピレンフィルムをコンデンサ誘導体として用いた本発明のフィルムコンデンサは、120℃程度(100℃~120℃)の高温下において優れた耐熱性を有し、具体的には、上記高温下で長時間使用した場合でもコンデンサの静電容量の低下が抑制されている点で優れたライフ性能を有し、エンジンルーム内を想定した上記高温と低温との間の繰り返し使用においてコンデンサの熱締まり(変形)が抑制されている点で優れた耐熱衝撃性も有している。よって、本発明のポリプロピレンフィルムはフィルムコンデンサ用途として好適であり、好ましくは、ハイブリッド自動車・電気自動車におけるインバータを構成するコンデンサの誘導体に用いることができる。
 金属層一体型ポリプロピレンフィルムコンデンサ及びそれらの製造方法
 本発明のポリプロピレンフィルムは、コンデンサへの加工を考慮し、ポリプロピレンフィルムと、ポリプロピレンフィルムの片面又は両面に積層された金属層とを有する金属層一体型ポリプロピレンフィルムとしてもよい。
 金属層は、電極として機能する。金属層に用いられる金属としては、例えば、亜鉛、鉛、銀、クロム、アルミニウム、銅、ニッケルなどの金属単体、それらの複数種の混合物、それらの合金などを使用することができるが、環境、経済性及びコンデンサ性能などを考慮すると、亜鉛、アルミニウムが好ましい。
 ポリプロピレンフィルムの片面又は両面に金属層を積層する方法としては、例えば、真空蒸着法やスパッタリング法を例示することができる。生産性及び経済性などの観点から、真空蒸着法が好ましい。真空蒸着法として、一般的にるつぼ法式やワイヤー方式などを例示することができるが、特に限定されることはなく、適宜最適なものを選択することができる。
 蒸着により金属層を積層する際のマージンパターンも特に限定されるものではないが、コンデンサの保安性などの特性を向上させる点から、フィッシュネットパターンないしはTマージンパターンといった、いわゆる特殊マージンを含むパターンをポリプロピレンフィルムの片方の面上に施すことが好ましい。保安性が高まり、コンデンサの破壊、ショートの防止、などの点からも効果的である。
 マージンを形成する方法はテープ法、オイル法など、一般に公知の方法が、何ら制限無く使用することができる。
 また、本発明の金属層一体型ポリプロピレンフィルムは、従来公知の方法で積層するか、巻回してフィルムコンデンサとすることができる。
 すなわち、前記フィルムコンデンサは、金属層一体型ポリプロピレンフィルムが複数積層された構成を有していてもよいし、巻回された金属層一体型ポリプロピレンフィルムを有していてもよい。このようなフィルムコンデンサは、電気自動車やハイブリッド自動車などの駆動モーターを制御するインバータ電源機器用コンデンサなどに好適に使用できる。このほか、鉄道車両用、風力発電用、太陽光発電用、一般家電用などにおいても好適に使用できる。
 以下に実施例及び比較例を示して本発明を具体的に説明する。但し、本発明は実施例に限定されない。
≪樹 脂≫
 実施例及び比較例で使用した樹脂(PP樹脂A1~A6、及びPP樹脂B1~B8)の詳細について、以下表1にまとめるとともに各物性の測定方法について記載する。
Figure JPOXMLDOC01-appb-T000001
 PP樹脂A1~A6:プライムポリマー株式会社製
 PP樹脂B1   :大韓油化株式会社製,S802MタイプA
 PP樹脂B2   :ボレアリス株式会社製,HC300BF
 PP樹脂B3   :大韓油化株式会社製,S800
 PP樹脂B4   :サムスントタル株式会社製,HU300
 PP樹脂B5   :大韓油化株式会社製,HPT-1タイプA
 PP樹脂B6   :大韓油化株式会社製,HPT-1タイプB
 PP樹脂B7   :大韓油化株式会社製,S802MタイプB
 PP樹脂B8   :大韓油化株式会社製,S802MタイプC。
 ≪ポリプロピレン樹脂の数平均分子量(Mn)、重量平均分子量(Mw)、z平均分子量(Mz)、分子量分布(Mw/Mn)、分子量分布(Mz/Mn)、及び重量分率wの測定≫
 先ず、SEC(サイズ排除クロマトグラフィー)を用い、以下の条件で、各ポリプロピレン樹脂の平均分子量及び分子量分布を測定した。
装置:HLC-8321GPC/HT(検出器:示差屈折計(RI))(東ソー株式会社製)
カラム:TSKgel guardcolumnHHR(30)HT(7.5mmI.D.×7.5cm)×1本 + TSKgel GMHHR-H(20)HT(7.8mmI.D.×30cm)×3本 (東ソー株式会社製)
溶離液:1,2,4-トリクロロベンゼン(富士フィルム和光純薬製GPC用)+BHT(0.05%)
流速:1.0mL/分
検出条件:polarity-(-)
注入量:0.3mL
カラム温度:140℃
システム温度:40℃
試料濃度:1mg/mL
試料前処理:試料を秤量し、溶媒(0.1%のBHTを添加した1,2,4-トリクロロベンゼン)を加えて140℃で1時間振盪溶解させた。その後0.5μmの焼結フィルターで加熱濾過した。
検量線:東ソー株式会社製の標準ポリスチレンを用いた5次近似曲線の検量線を作成した。但し、分子量はQ-ファクターを用いてポリプロピレンの分子量へ換算した。
 得られた検量線及びSECクロマトグラムより、測定装置用の解析ソフトウェアを用いて、横軸に分子量(対数値)、縦軸に濃度分率の積分値をプロットし、積分分子量分布曲線を得た。各分子量における積分分子量分布曲線の微分値(積分分子量分布曲線の傾き)を求め、横軸に分子量(対数値)、縦軸に微分値をプロットし、微分分子量分布曲線を得た。
 これらの曲線から、数平均分子量Mn、重量平均分子量Mw、及びZ平均分子量Mzを得た。このMwとMnの値を用いて分子量分布(Mw/Mn)を得た。また、積分分子量分布曲線において対数分子量Log(M)=4.0のときの値を重量分率wとした。この重量分率wは、対数分子量Log(M)=4.0、すなわち分子量10,000以下である分子の重量分率を示す。
 ≪対数分子量Log(M)=4.5のときの微分分布値、対数分子量Log(M)=6.0のときの微分分布値、及び、分子量微分分布値差(D)の測定≫
 また、各ポリプロピレン樹脂について、対数分子量Log(M)=4.5のときの微分分布値、対数分子量Log(M)=6.0のときの微分分布値を、次のような方法で得た。まず、RI検出計を用いて検出される強度分布の時間曲線(溶出曲線)を、上記標準ポリスチレンを用いて作製した検量線を用いて標準ポリスチレンの分子量M(Log(M))に対する分布曲線に変換した。次に、分布曲線の全面積を100%とした場合のLog(M)に対する積分分布曲線を得た後、この積分分布曲線をLog(M)で、微分することによってLog(M)に対する微分分布曲線を得た。この微分分布曲線から、Log(M)=4.5及びLog(M)=6.0のときの微分分布値を読んだ。また、Log(M)=4.5のときの微分分布値とLog(M)=6.0のときの微分分布値との差を分子量微分分布値差(D)とした。なお、微分分布曲線を得るまでの一連の操作は、使用したGPC測定装置に内蔵されている解析ソフトウェアを用いて行った。
 ≪ヘプタン不溶分(HI)の測定≫
 各ポリプロピレン樹脂について、10mm×35mm×0.3mmにプレス成形して約3gの測定用サンプルを作製した。次に、ヘプタン約150mLを加えてソックスレー抽出を8時間行った。抽出前後の試料質量よりヘプタン不溶分を算出した。
 ≪メルトフローレート(MFR)の測定≫
 実施例、比較例で使用した原料樹脂ペレットの形態でのメルトフローレート(MFR)を、東洋精機株式会社のメルトインデックスを用いてJIS K 7210の条件Mに準じて測定した。具体的には、まず、試験温度230℃にしたシリンダ内に、4gに秤りとった試料を挿入し、2.16kgの荷重下で3.5分予熱した。その後、30秒間で底穴より押出された試料の重量を測定し、MFR(単位:g/10分又はg/10min)を求めた。上記の測定を3回繰り返し、その平均値をMFRの測定値とした。
 実施例1~14及び比較例1~18
〔二軸延伸ポリプロピレンフィルムの製造、及びその特性評価〕
 表2に従って、ポリプロピレン樹脂A及びBを計量し、表2に記載の重量比で混合することによってドライブレンド樹脂組成物を得た。次に、前記ドライブレンド樹脂組成物を押出機へ供給し、表2の溶融温度及び剪断速度で溶融した。この溶融樹脂をTダイを用いて押出し、表面温度を95℃に保持した金属ドラムに巻きつけて固化させてキャスト原反シートを作製した。未延伸のキャスト原反シートを140℃の温度に保ち、速度差を設けたロール間に通して流れ方向に4.5倍に延伸し、直ちに室温に冷却した。引き続き、流れ方向に延伸して得られた延伸フィルムをテンターに導いて、横延伸温度158℃で幅方向に10倍に延伸した後、緩和率12%で緩和、熱固定を施して、幅約5m、厚み2.3μmの二軸延伸ポリプロピレンフィルムを表2の雰囲気下で直径400mmの鉄芯へ約8万m巻き付けてジャンボロールとして巻き取った。巻き取られた前記二軸延伸ポリプロピレンフィルムは、35℃の雰囲気で24時間処理することでエージング処理とした。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 
 各実施例及び比較例で得られた二軸延伸ポリプロピレンフィルムの厚み、密度及び絶縁破壊強度の測定方法、熱機械分析(TMA)の実施方法、並びに、ジャンボロールのエージング中の巻取品位(しわ)の評価方法について以下に示す。また、各測定及び評価の結果を表2に併せて示す。
 ≪ポリプロピレンフィルム厚みの測定≫
 温度23±2℃、湿度50±5%RHの環境下で、シチズンセイミツ株式会社製 紙厚測定器 MEI-11(測定圧100kPa、降下速度3mm/秒、測定端子φ=16mm、測定力20.1N)を用いた。サンプルは10枚以上重ねたままロールより切り出し、切り出しの際にフィルムにシワや空気が入らないように取り扱った。10枚重ねのサンプルに対し、5回測定を行い、5回の平均値を10で除して、厚みを算出した。
 ≪ポリプロピレンフィルム密度の測定≫
 JIS K7112(1999)D法によりポリプロピレンフィルムの密度を測定した。
測定装置:株式会社柴山科学器械製作所製 密度勾配管式比重測定装置 A型
勾配液:エタノール水溶液
測定温度:23±0.5℃
測定数:n=3
 ≪ポリプロピレンフィルムの絶縁破壊強度の測定:直流(DC)≫
 JIS C2151(2006)17.2.2(平板電極法)記載の電極構成にて、下記の試験条件で実施例及び比較例に係るポリプロピレンフィルムの絶縁破壊電圧(BDV)を16回測定した。なお、昇圧中に下記の上限基準値の漏れ電流を検知した時点での印加電圧をBDVとした。BDVを、フィルムの厚み(μm)で割り、16回の測定結果中の上位2点および下位2点を除いた12点の平均値を、絶縁破壊の強さES(VDC/μm)とした。
試験片:約150mm×150mm
試験片の状態調節:雰囲気条件にて30分
電源:直流
雰囲気:空気中、120℃
試験機:菊水電子工業社製 DC耐電圧/絶縁抵抗試験機TOS9213AS
電圧上昇速度:100V/s
電流検出応答速度:MID
上限基準値:5mA
 ≪ポリプロピレンフィルムの絶縁破壊強度の測定:交流(AC)≫
 JIS C2151(2006)17.2.2(平板電極法)記載の電極構成にて、下記の試験条件で実施例および比較例に係るフィルムの絶縁破壊電圧(BDV)を12回測定した。なお、昇圧中に下記の上限基準値の漏れ電流を検知した時点での印加電圧をBDVとした。BDVを、フィルムの厚み(μm)で割り、12回の測定結果中の上位2点および下位2点を除いた8点の平均値を、絶縁破壊の強さES(VAC/μm)とした。試験片:約150mm×150mm
試験片の状態調節:雰囲気条件にて30分
電源:交流
雰囲気:空気中、100℃,110℃,120℃
試験機:菊水電子工業社製 耐電圧試験機TOS5051A
電圧上昇速度:100V/s
上限基準値:5mA
 ≪熱機械分析(TMA)≫
 熱機械分析は下記の通り行った。
装置:セイコーインスツルメンツ社製EXSTAR6000及びTMA/SS6000フィルム幅:4mm
チャック間距離:15mm
荷重:2.17N/mm
測定温度領域:25℃~155℃
昇温速度:10℃/分
 横軸を温度、縦軸をフィルムの機械方向(MD)の寸法変化率として加熱寸法変化曲線を描いたとき、25℃から155℃までの昇温過程において寸法変化率が0%以上である場合を合格「A」、0%未満である場合を不合格「C」とした。
 ≪ジャンボロールのエージング後の巻取品位(しわ)≫
 エージング後の両端約100mmを除いたジャンボロールの外観を巻取品位(しわ)の観点で評価した。なお、下記の型(縦型)とは、一般にMD線または缶形状と呼ばれる、円周方向と平行に発生する、リブ付き金属缶のような巻取形状の欠陥である。
深さが0.5mm以上である円周方向の型(縦型)が存在しない場合を優「AA」
深さが0.5mm以上である円周方向の型(縦型)が1本のみ存在する場合を良「A」
深さが0.5mm以上である円周方向の型(縦型)が2本又は3本存在する場合を並「B」
深さが0.5mm以上である円周方向の型(縦型)が4本以上存在する場合を不良「C」とした。前記優「AA」の場合、円周方向の型(縦型)が存在したとしても、深さが0.5mm未満であり、且つ幅方向でほぼ均等に存在する状態ともいえる。ここで、優「AA」及び良「A」が合格(許容範囲)であり、並「B」及び不良「C」は不合格である。
〔フィルムコンデンサの作製、及びその特性評価〕
 各実施例及び比較例で得られた二軸延伸ポリプロピレンフィルムを用いて、下記の手順によりフィルムコンデンサを作製した。
 二軸延伸ポリプロピレンフィルムに、フィルムコンデンサ保安性を付与するための特殊蒸着パターンマージン、絶縁マージンを形成し、金属膜の表面抵抗率が20Ω/□になるようにアルミニウム蒸着を施すことにより、金属層一体型ポリプロピレンフィルムを得た。次に、金属層一体型ポリプロピレンフィルムを任意の幅にスリットした後、2枚の金属層一体型ポリプロピレンフィルムを組合せて、皆藤製作所製自動巻取機3KAW-N2型を用い、巻取り速度4m/秒、巻取り張力180g、コンタクトローラー接圧260gにて、素子静電容量が50μFになるようターン数を設定し、金属層一体型ポリプロピレンフィルムの巻回を行った。
 素子巻きした素子は、プレス処理を行い扁平化させた後、プレス荷重を加えたまま、素子端面に亜鉛金属を溶射し電極取り出し部を形成、120℃にて15時間の加熱処理を施し、熱硬化させた。
 熱硬化後、素子端面にリードをはんだ付けし、エポキシ樹脂で封止を行うことで、扁平型フィルムコンデンサを得た。得られたフィルムコンデンサの静電容量は、全て50μF(±3μF)であった。
 各実施例及び比較例で得られたフィルムコンデンサの作製過程での蒸着加工性、素子巻き加工性、及びフィルムコンデンサの寿命(ライフ)特性及び耐熱衝撃性の評価方法について以下に示す。また、各評価の結果を表2に併せて示す。
 ≪蒸着加工性≫
 蒸着後のフィルムにおいて熱変形によるしわの発生率が5%未満の場合を「A」、5%以上の場合を「C」とした。
 ≪素子巻き加工性評価≫
 蒸着・スリットにより得られた小巻取をのうち、左マージンの巻取リールと右マージンの巻取リールを用い、幅方向に蒸着部分がマージン部よりもはみ出すように2枚重ね合わせて巻回した(素子巻き加工)。巻回は、株式会社皆藤製作所製、自動巻取機 3KAW-N2型を用い、巻き取り張力200gにて、1360ターン行った。その際、巻き始めから巻き終わりまでを目視で観察し、しわやずれが発生したものを不合格とし、不合格となったものの数の製造数全体に対する割合を百分率で示し加工性の指標とした(以下素子巻収率と称する)。素子巻収率は高いほど好ましい。95%以上を良好「A」、95%未満を不良「C」として評価した。
 ≪寿命(ライフ)特性(静電容量の変化率))≫
 得られたコンデンサの試験前の初期静電容量を、日置電機株式会社製LCRハイテスター3522-50を用いて測定した。次に、115℃の高温槽中にて、コンデンサに800V(348V/μm)の直流電圧を500時間負荷し続けた。500時間経過後のコンデンサの静電容量を同様に測定し、電圧負荷前後の容量変化率を、次の式により算出した。試験は2個のサンプルで行い、その平均値により評価した。
 (静電容量の変化率)=[(電圧負荷後の静電容量)-(初期静電容量)]/(初期静電容量)×100(%)
500時間経過後の容量変化率が-4%以内を良好「A」、-4%を超え-6%以下を「B」-6%を超えたときを不良「C」とした。
 ≪耐熱衝撃性(tanδの変化率)≫
 得られたコンデンサを、冷熱衝撃試験装置(エスペックTSA-101S-W)に入れ、下限温度-40℃と上限温度105℃の間で急昇降温のサイクルを500回繰り返した。具体的には、-40℃で50分保持と105℃で50分保持とを1セットとして500回繰り返した。なお、温度の切り替えは、設定温度の空気を送風して、強制的に入れ替えした。また、温度切り替え時間も、50分保持の時間に含めた。
 熱衝撃試験前と熱衝撃試験後のtanδを、日置電機株式会社製LCRハイテスター3522-50を用いて測定した。tanδの増加率を、次の式により算出した。
 (tanδの増加率)=[(熱衝撃試験後のtanδ)-(熱衝撃試験前のtanδ)]/(熱衝撃試験前のtanδ)×100(%)
 試験は3個のサンプルで行い、その平均値により評価した。
 増加率が100%以下を良好「A」とし、100%を超え105%以下を「B」とし、105%を超えたときを不良「C」とした。
 ≪考 察≫
 実施例1~14で製造した本発明のポリプロピレンフィルムは、前記フィルムを構成するポリプロピレン樹脂が、重量平均分子量Mwと数平均分子量Mnとの分子量分布(Mw/Mn)、Z平均分子量Mz、及び積分分子量分布曲線において対数分子量Log(M)=4.0のときの重量分率wが所定範囲にあることにより、フィルムの厚さが6.0μm以下のように薄い場合でも120℃程度(100℃~120℃)の高温下において直流電圧を印加させた際の絶縁破壊強度(絶縁破壊強さ)及び交流電圧を印加させた際の絶縁破壊強度に優れるとともに、上記高温を超える150℃程度までの温度で機械方向(MD)の熱収縮が抑制されている点で優れた耐熱収縮性を有している。また、実施例で作製されたフィルムコンデンサは、120℃程度(100℃~120℃)の高温下において優れた耐熱性を有し、具体的には、上記高温下で長時間使用した場合でもコンデンサの静電容量の低下が抑制されている点で優れたライフ性能を有し、エンジンルーム内を想定した上記高温と低温との間の繰り返し使用においてコンデンサの熱締まり(変形)が抑制されている点で優れた耐熱衝撃性も有している。また、本発明のポリプロピレンフィルムによれば、ジャンボロールのエージング後の外観(巻取り品位(しわ))、コンデンサ作製時の蒸着加工性及び素子巻加工性の点でも良好な評価結果が得られている。

Claims (13)

  1.  ポリプロピレンフィルムであって、前記ポリプロピレンフィルムを構成するポリプロピレン樹脂は、
    ・重量平均分子量Mwと数平均分子量Mnとの分子量分布(Mw/Mn)が5.0以上6.9以下であり、
    ・Z平均分子量Mzが65.0万以上94.5万以下であり、
    ・積分分子量分布曲線において対数分子量Log(M)=4.0のときの重量分率wが2.6%以上4.2%以下である、
    ことを特徴とする、ポリプロピレンフィルム。
  2.  コンデンサ用である、請求項1に記載のポリプロピレンフィルム。
  3.  二軸延伸フィルムである、請求項1又は2に記載のポリプロピレンフィルム。
  4.  熱機械分析において2.17N/mmの荷重下で25℃から155℃まで10℃/分の速度で昇温し、横軸を温度、縦軸をフィルムの機械方向(MD)の寸法変化率として加熱寸法変化曲線を描いたとき、前記25℃から155℃までの昇温過程において前記寸法変化率が0%以上である、請求項1~3のいずれかに記載のポリプロピレンフィルム。
  5.  120℃での直流電圧における絶縁破壊強度(VDC120℃)と120℃での交流電圧における絶縁破壊強度(VAC120℃)との差分(VDC120℃-VAC120℃)が280V/μm以上300V/μm以下である、請求項1~4のいずれかに記載のポリプロピレンフィルム。
  6.  前記Mzが70.0万超過である、請求項1~5のいずれかに記載のポリプロピレンフィルム。
  7. ・前記分子量分布(Mw/Mn)が5.0以上6.6以下であり、
    ・前記Mzが72.0万以上79.0万以下であり、
    ・前記重量分率wが3.5%以上3.7%以下である、
    請求項1~6のいずれかに記載のポリプロピレンフィルム。
  8.  前記ポリプロピレン樹脂はポリプロピレン樹脂Aとポリプロピレン樹脂Bとを含有し、前記ポリプロピレン樹脂中の前記ポリプロピレン樹脂Aの含有量が、前記ポリプロピレン樹脂中の前記ポリプロピレン樹脂Bの含有量よりも多く、
    ・前記ポリプロピレン樹脂AのMwが27.5万以上35.0万未満であり、
    ・前記ポリプロピレン樹脂Aの分子量分布(Mw/Mn)が5.8以上10.0以下であり、
    ・前記ポリプロピレン樹脂Aのメルトフローレート(MFR)が4.8g/10分以上5.5g/10分以下である、
    請求項1~7のいずれかに記載のポリプロピレンフィルム。
  9.  前記ポリプロピレン樹脂はポリプロピレン樹脂Aとポリプロピレン樹脂Bとを含有し、前記ポリプロピレン樹脂中の前記ポリプロピレン樹脂Aの含有量が、前記ポリプロピレン樹脂中の前記ポリプロピレン樹脂Bの含有量よりも多く、
    ・前記ポリプロピレン樹脂BのMwが38.5万以上55.0万以下であり、
    ・前記ポリプロピレン樹脂Bの分子量分布(Mw/Mn)が8.4以上11.0以下であり、
    ・前記ポリプロピレン樹脂Bのメルトフローレート(MFR)が0.1g/10分以上2.2g/10分以下である、
    請求項1~8のいずれかに記載のポリプロピレンフィルム。
  10.  前記ポリプロピレン樹脂Aと前記ポリプロピレン樹脂Bの合計質量に対する前記ポリプロピレン樹脂Aの質量の割合が65~75質量%である、請求項8又は9に記載のポリプロピレンフィルム。
  11.  前記ポリプロピレンフィルムの厚さが1.0μm以上6.0μm以下である、請求項1~10のいずれかに記載のポリプロピレンフィルム。
  12.  請求項1~11のいずれかに記載のポリプロピレンフィルムと、
     前記ポリプロピレンフィルムの片面又は両面に積層された金属層とを有する、
    金属層一体型ポリプロピレンフィルム。
  13.  巻回された請求項12に記載の金属層一体型ポリプロピレンフィルムを有するか、又は、請求項12に記載の金属層一体型ポリプロピレンフィルムが複数積層された構成を有する、
    フィルムコンデンサ。
PCT/JP2021/004874 2020-02-12 2021-02-10 ポリプロピレンフィルム、金属層一体型ポリプロピレンフィルム及びフィルムコンデンサ WO2021162021A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21753506.1A EP4105281A4 (en) 2020-02-12 2021-02-10 POLYPROPYLENE FILM, POLYPROPYLENE FILM INTEGRATED WITH METAL LAYER AND FILM CAPACITOR
JP2022500436A JPWO2021162021A1 (ja) 2020-02-12 2021-02-10
KR1020227026149A KR20220140496A (ko) 2020-02-12 2021-02-10 폴리프로필렌 필름, 금속층 일체형 폴리프로필렌 필름, 및 필름 콘덴서
CN202180013631.5A CN115087701A (zh) 2020-02-12 2021-02-10 聚丙烯薄膜、金属层一体型聚丙烯薄膜和薄膜电容器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-021942 2020-02-12
JP2020021942 2020-02-12

Publications (1)

Publication Number Publication Date
WO2021162021A1 true WO2021162021A1 (ja) 2021-08-19

Family

ID=77291560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/004874 WO2021162021A1 (ja) 2020-02-12 2021-02-10 ポリプロピレンフィルム、金属層一体型ポリプロピレンフィルム及びフィルムコンデンサ

Country Status (5)

Country Link
EP (1) EP4105281A4 (ja)
JP (1) JPWO2021162021A1 (ja)
KR (1) KR20220140496A (ja)
CN (1) CN115087701A (ja)
WO (1) WO2021162021A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022220248A1 (ja) * 2021-04-12 2022-10-20 王子ホールディングス株式会社 金属化ポリプロピレンフィルム
JP2022162462A (ja) * 2021-04-12 2022-10-24 王子ホールディングス株式会社 金属層一体型ポリプロピレンフィルム
WO2023162557A1 (ja) * 2022-02-25 2023-08-31 王子ホールディングス株式会社 二軸延伸ポリプロピレンフィルム、金属化フィルム、及び、コンデンサ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060944A1 (ja) * 2007-11-07 2009-05-14 Oji Paper Co., Ltd. コンデンサー用二軸延伸ポリプロピレンフィルムおよびそれを用いた蒸着フィルム並びにコンデンサー
WO2013105552A1 (ja) * 2012-01-11 2013-07-18 王子ホールディングス株式会社 コンデンサー用2軸延伸ポリプロピレンフィルム
JP2017101229A (ja) * 2015-11-24 2017-06-08 日本ポリプロ株式会社 二軸延伸ポリプロピレンシート
WO2019022004A1 (ja) * 2017-07-24 2019-01-31 出光興産株式会社 ポリプロピレン系樹脂組成物並びにそれを用いた繊維及び不織布
JP2019167512A (ja) * 2017-03-31 2019-10-03 王子ホールディングス株式会社 ポリプロピレンフィルム、金属層一体型ポリプロピレンフィルム、及び、フィルムコンデンサ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130260302A1 (en) * 2012-03-29 2013-10-03 Hisashi Nakajima Toner for forming image, image forming method, and image forming apparatus
WO2017159103A1 (ja) * 2016-03-17 2017-09-21 東レ株式会社 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
KR102184883B1 (ko) * 2016-09-23 2020-12-01 오지 홀딩스 가부시키가이샤 2축 연신 폴리프로필렌 필름, 콘덴서용 금속화 필름 및 콘덴서

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060944A1 (ja) * 2007-11-07 2009-05-14 Oji Paper Co., Ltd. コンデンサー用二軸延伸ポリプロピレンフィルムおよびそれを用いた蒸着フィルム並びにコンデンサー
WO2013105552A1 (ja) * 2012-01-11 2013-07-18 王子ホールディングス株式会社 コンデンサー用2軸延伸ポリプロピレンフィルム
JP2017101229A (ja) * 2015-11-24 2017-06-08 日本ポリプロ株式会社 二軸延伸ポリプロピレンシート
JP2019167512A (ja) * 2017-03-31 2019-10-03 王子ホールディングス株式会社 ポリプロピレンフィルム、金属層一体型ポリプロピレンフィルム、及び、フィルムコンデンサ
WO2019022004A1 (ja) * 2017-07-24 2019-01-31 出光興産株式会社 ポリプロピレン系樹脂組成物並びにそれを用いた繊維及び不織布

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4105281A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022220248A1 (ja) * 2021-04-12 2022-10-20 王子ホールディングス株式会社 金属化ポリプロピレンフィルム
JP2022162462A (ja) * 2021-04-12 2022-10-24 王子ホールディングス株式会社 金属層一体型ポリプロピレンフィルム
WO2023162557A1 (ja) * 2022-02-25 2023-08-31 王子ホールディングス株式会社 二軸延伸ポリプロピレンフィルム、金属化フィルム、及び、コンデンサ

Also Published As

Publication number Publication date
EP4105281A4 (en) 2024-03-06
JPWO2021162021A1 (ja) 2021-08-19
EP4105281A1 (en) 2022-12-21
CN115087701A (zh) 2022-09-20
KR20220140496A (ko) 2022-10-18

Similar Documents

Publication Publication Date Title
WO2021162021A1 (ja) ポリプロピレンフィルム、金属層一体型ポリプロピレンフィルム及びフィルムコンデンサ
CN106103553B (zh) 双轴取向聚丙烯膜
WO1998006776A1 (fr) Film de polypropylene et condensateur dans lequel ledit film est utilise en tant que dielectrique
JP6658953B1 (ja) ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ
WO2017159103A1 (ja) 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
JP6314509B2 (ja) コンデンサ素子の製造方法
JP2008127460A (ja) コンデンサー用二軸配向ポリプロピレンフィルム、それを用いてなる金属化フィルムおよびコンデンサー
US12020871B2 (en) Polypropylene film, metal layer laminated film using same, and film capacitor
WO2016158590A1 (ja) コンデンサ用二軸配向ポリプロピレンフィルム、金属積層フィルムおよびフィルムコンデンサ
JP2018197342A (ja) 二軸延伸ポリプロピレンフィルム、金属化フィルム及びコンデンサ
JP2022088132A (ja) 二軸延伸ポリプロピレンフィルム、金属層一体型ポリプロピレンフィルム、フィルムコンデンサ、及びフィルムロール
JP7367769B2 (ja) コンデンサ用二軸延伸ポリプロピレンフィルム
JP6885484B2 (ja) ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ
WO2022107706A1 (ja) ポリプロピレンフィルム、金属層一体型ポリプロピレンフィルム及びフィルムコンデンサ
WO2020045523A1 (ja) 二軸延伸ポリプロピレンフィルム、金属化フィルム、金属化フィルムロールおよびフィルムコンデンサ
JP7524840B2 (ja) コンデンサ用二軸延伸ポリプロピレンフィルム、金属層一体型コンデンサ用ポリプロピレンフィルム、フィルムコンデンサ、及びフィルムロール
JP2020132884A (ja) ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ
US20240181749A1 (en) Metallized polypropylene film
WO2024135552A1 (ja) ポリプロピレンフィルム
WO2024058078A1 (ja) 二軸延伸ポリプロピレンフィルム、金属化フィルム、及び、コンデンサ
JP2006066615A (ja) コンデンサ用ポリプロピレンフィルム及びそれからなるコンデンサ
WO2022168658A1 (ja) ポリプロピレンフィルム、金属層一体型ポリプロピレンフィルムおよびコンデンサ
JP2022140278A (ja) 二軸配向ポリプロピレンフィルム
JP2020124906A (ja) 金属層一体型ポリプロピレンフィルム、フィルムコンデンサ、及び、金属層一体型ポリプロピレンフィルムの製造方法
JP2020132883A (ja) ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21753506

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022500436

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021753506

Country of ref document: EP

Effective date: 20220912