WO2021161392A1 - ドローン - Google Patents

ドローン Download PDF

Info

Publication number
WO2021161392A1
WO2021161392A1 PCT/JP2020/005180 JP2020005180W WO2021161392A1 WO 2021161392 A1 WO2021161392 A1 WO 2021161392A1 JP 2020005180 W JP2020005180 W JP 2020005180W WO 2021161392 A1 WO2021161392 A1 WO 2021161392A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
battery
cooling plate
main body
sensor
Prior art date
Application number
PCT/JP2020/005180
Other languages
English (en)
French (fr)
Inventor
小山 貴嗣
千大 和氣
洋 柳下
Original Assignee
株式会社ナイルワークス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ナイルワークス filed Critical 株式会社ナイルワークス
Priority to PCT/JP2020/005180 priority Critical patent/WO2021161392A1/ja
Priority to JP2021577738A priority patent/JP7214274B2/ja
Publication of WO2021161392A1 publication Critical patent/WO2021161392A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/70Constructional aspects of the UAV body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/24Coaxial rotors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention of the present application relates to a drone.
  • a second circuit board is arranged in parallel with the first circuit board, a heat-generating component is arranged on the first circuit board, and the second circuit board substantially generates heat.
  • a control unit including a sensor element is disclosed.
  • Patent Document 3 discloses a mounting structure of a printed circuit board in which a plurality of printed circuit boards are laminated.
  • Patent Document 4 describes that heat-generating electronic components and electronic components that generate less heat are mounted on different mounting boards.
  • the drone according to one aspect of the present invention is a drone provided with a plurality of propellers, and comprises a main body on which a control board for controlling the flight of the drone is mounted and a part of the main body, and a high heat generating element is provided.
  • a sensor element that includes a first member to be joined and a second member that is disposed with a gap from the first member, and the output value of the second member fluctuates due to the influence of temperature. Is joined, a drone.
  • the second member may hold a battery or a power supply device that is heavier than the first member.
  • the second member may be a component of a battery or a power supply device that is heavier than the first member.
  • the sensor element may be an angular velocity sensor or an angular acceleration sensor or a velocity sensor or an acceleration sensor.
  • the second member may be arranged below the first member.
  • the second member may be arranged above the first member.
  • the second member may be arranged in the center of the main body, and the first member may form at least a part of the side wall of the main body.
  • An air layer may be provided between the first member and the second member.
  • the weight of the battery may be 2 kg or more and 7 kg or less.
  • the second member may be connected to the outer wall of the main body or the first member so that the battery is held outside the main body.
  • the first member and the second member face each other with a gap, and the first member has a first convex portion protruding toward the second member, and the first member has a convex portion.
  • the member 2 has a second convex portion that protrudes toward the first member and is formed at a position corresponding to the first convex portion, and the second convex portion and the first convex portion.
  • the portions may be connected to each other by a plurality of fastening portions, and the sensor element may be arranged in a region surrounded by the plurality of fastening portions.
  • FIG. 10 It is a schematic vertical sectional view in the direction orthogonal to FIG. 10 which shows the state of the inside of the main body of the machine body. It is a figure which shows the state of the plate member and the cooling plate which the machine body has, is (a) schematic perspective view, (b) top view of the plate member.
  • It is a schematic vertical sectional view of the main body of the machine body in 4th Embodiment of the drone which concerns on this invention.
  • It is a schematic vertical sectional view of the main body of the machine body in 5th Embodiment of the drone which concerns on this invention.
  • the traveling direction of the drone on the horizontal plane is defined as the + x direction
  • the direction orthogonal to the x direction on the horizontal plane from left to right when viewed from the front is defined as the + y direction
  • the vertically upward direction is defined as the + z direction.
  • the drone is regardless of the power means (electric power, prime mover, etc.) and the maneuvering method (wireless or wired, autonomous flight type, manual maneuvering type, etc.). It refers to all air vehicles with multiple rotor blades.
  • the rotor blades 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b are It is a means for flying the Drone 100, and is equipped with eight aircraft (four sets of two-stage rotor blades) in consideration of the balance between flight stability, aircraft size, and power consumption.
  • Each rotor 101 is arranged on all sides of the main body 110 by an arm protruding from the main body 110 of the drone 100 aircraft.
  • the rotors 101-1a and 101-1b are on the left rear side in the direction of travel, the rotor blades 101-2a and 101-2b are on the left front side, the rotor blades 101-3a and 101-3b are on the right rear side, and the rotor blades 101- are on the right front side. 4a and 101-4b are arranged respectively.
  • the drone 100 has the traveling direction facing downward on the paper in FIG.
  • a grid-shaped propeller guard forming a substantially cylindrical shape is provided on the outer circumference of each set of the rotor blade 101 to prevent the rotor blade 101 from interfering with foreign matter.
  • the radial members for supporting the propeller guard have a yagura-like structure rather than a horizontal structure. This is to encourage the member to buckle outside the rotor in the event of a collision and prevent it from interfering with the rotor.
  • Rod-shaped legs 107-1, 107-2, 107-3, 107-4 extend downward from the rotation axis of the rotor 101, respectively.
  • Motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b are rotary blades 101-1a, 101-1b, 101-2a, 101- It is a means to rotate 2b, 101-3a, 101-3b, 101-4a, 101-4b (typically an electric motor, but it may also be a motor, etc.). Has been done.
  • Motor 102 is an example of a propulsion device.
  • the upper and lower rotors (eg, 101-1a and 101-1b) in one set, and their corresponding motors (eg, 102-1a and 102-1b), are used for drone flight stability, etc.
  • the axes are on the same straight line and rotate in opposite directions.
  • Nozzles 103-1, 103-2, 103-3, 103-4 are means for spraying the sprayed material downward and are equipped with four nozzles.
  • the sprayed material generally refers to a liquid or powder sprayed on a field such as a pesticide, a herbicide, a liquid fertilizer, an insecticide, a seed, and water.
  • the tank 104 is a tank for storing the sprayed material, and is provided at a position close to the center of gravity of the drone 100 and at a position lower than the center of gravity from the viewpoint of weight balance.
  • the hoses 105-1, 105-2, 1053, 105-4 are means for connecting the tank 104 and the nozzles 103-1, 103-2, 103-3, 103-4, and are made of a hard material. Therefore, it may also serve as a support for the nozzle.
  • the pump 106 is a means for discharging the sprayed material from the nozzle.
  • FIG. 6 shows an overall conceptual diagram of the flight control system of the drone 100 according to the present invention.
  • This figure is a schematic view, and the scale is not accurate.
  • the drone 100, the actuator 401, the base station 404, and the server 405 are connected to each other via the mobile communication network 400.
  • These connections may be wireless communication by Wi-Fi instead of the mobile communication network 400, or may be partially or wholly connected by wire.
  • the components may have a configuration in which they are directly connected to each other in place of or in addition to the mobile communication network 400.
  • Drone 100 and base station 404 communicate with GNSS positioning satellite 410 such as GPS to acquire drone 100 and base station 404 coordinates. There may be a plurality of positioning satellites 410 with which the drone 100 and the base station 404 communicate.
  • the operator 401 transmits a command to the drone 100 by the operation of the user, and also displays information received from the drone 100 (for example, position, amount of sprayed material, battery level, camera image, etc.). It is a means and may be realized by a portable information device such as a general tablet terminal that runs a computer program.
  • the actuator 401 includes an input unit and a display unit as a user interface device.
  • the drone 100 according to the present invention is controlled to perform autonomous flight, but may be capable of manual operation during basic operations such as takeoff and return, and in an emergency.
  • an emergency operation device (not shown) having a function dedicated to emergency stop may be used.
  • the emergency operation device may be a dedicated device provided with a large emergency stop button or the like so that an emergency response can be taken quickly.
  • the system may include a small mobile terminal capable of displaying a part or all of the information displayed on the operating device 401, for example, a smart phone.
  • the small mobile terminal is connected to, for example, the base station 404, and can receive information and the like from the server 405 via the base station 404.
  • Field 403 is a rice field, field, etc. that is the target of spraying with the drone 100. In reality, the terrain of the field 403 is complicated, and the topographic map may not be available in advance, or the topographic map and the situation at the site may be inconsistent. Field 403 is usually adjacent to houses, hospitals, schools, other crop fields, roads, railroads, etc. In addition, there may be intruders such as buildings and electric wires in the field 403.
  • Base station 404 functions as an RTK-GNSS base station and can provide the exact location of the drone 100. Further, it may be a device that provides a master unit function of Wi-Fi communication. The base unit function of Wi-Fi communication and the RTK-GNSS base station may be independent devices. Further, the base station 404 may be able to communicate with the server 405 by using a mobile communication system such as 3G, 4G, and LTE. The base station 404 and the server 405 constitute a farming cloud.
  • the server 405 is typically a group of computers operated on a cloud service and related software, and may be wirelessly connected to the actuator 401 by a mobile phone line or the like.
  • the server 405 may be configured by a hardware device.
  • the server 405 may analyze the image of the field 403 taken by the drone 100, grasp the growing condition of the crop, and perform a process for determining the flight route.
  • the topographical information of the stored field 403 and the like may be provided to the drone 100.
  • the history of the flight and captured images of the drone 100 may be accumulated and various analysis processes may be performed.
  • the small mobile terminal is, for example, a smart phone.
  • information on the expected operation of the drone 100 more specifically, the scheduled time when the drone 100 will return to the departure / arrival point, the content of the work to be performed by the user at the time of return, etc. Information is displayed as appropriate. Further, the operation of the drone 100 may be changed based on the input from the small mobile terminal.
  • the drone 100 takes off from the departure / arrival point outside the field 403 and returns to the departure / arrival point after spraying the sprayed material on the field 403 or when it becomes necessary to replenish or charge the sprayed material.
  • the flight route (invasion route) from the departure / arrival point to the target field 403 may be stored in advance on the server 405 or the like, or may be input by the user before the start of takeoff.
  • the departure / arrival point may be a virtual point defined by the coordinates stored in the drone 100, or may have a physical departure / arrival point.
  • FIG. 7 shows a block diagram showing a control function of an embodiment of the spraying drone according to the present invention.
  • the flight controller 501 is a component that controls the entire drone, and may be an embedded computer including a CPU, memory, related software, and the like.
  • the flight controller 501 has ESC (Electronic Speed Control) 22a, 22b, 22c, 22d, 22e, 22f, 22g, 22h, etc. based on the input information received from the controller 401 and the input information obtained from various sensors described later.
  • ESC Electronic Speed Control
  • ESC22a to 22h are connected to motors 102-1a to 102-4b, respectively.
  • ESC22a to 22h include, for example, an inverter circuit.
  • the actual rotation speeds of the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b are fed back to the flight controller 501, and normal rotation is performed. It is configured so that it can be monitored.
  • the rotary blade 101 may be provided with an optical sensor or the like so that the rotation of the rotary blade 101 is fed back to the flight controller 501.
  • the software used by the flight controller 501 can be rewritten through a storage medium for function expansion / change, problem correction, etc., or through communication means such as Wi-Fi communication or USB. In this case, protection is performed by encryption, checksum, electronic signature, virus check software, etc. so that rewriting by malicious software is not performed.
  • a part of the calculation process used by the flight controller 501 for control may be executed by another computer located on the controller 401, the server 405, or somewhere else. Due to the high importance of the flight controller 501, some or all of its components may be duplicated.
  • the flight controller 501 communicates with the actuator 401 via the communication device 530 and further via the mobile communication network 400, receives necessary commands from the actuator 401, and transmits necessary information to the actuator 401. Can be sent. In this case, the communication may be encrypted so as to prevent fraudulent acts such as interception, spoofing, and device hijacking.
  • the base station 404 also has an RTK-GPS base station function in addition to a communication function via the mobile communication network 400. By combining the signal of the RTK base station 404 and the signal from the positioning satellite 410 such as GPS, the flight controller 501 can measure the absolute position of the drone 100 with an accuracy of about several centimeters. Flight controllers 501 are so important that they may be duplicated and multiplexed, and each redundant flight controller 501 should use a different satellite to handle the failure of a particular GPS satellite. It may be controlled.
  • the 6-axis gyro sensor 505 is a means for measuring the acceleration of the drone body in three directions orthogonal to each other, and further, a means for calculating the velocity by integrating the acceleration.
  • the 6-axis gyro sensor 505 is a means for measuring the change in the attitude angle of the drone aircraft in the above-mentioned three directions, that is, the angular velocity.
  • the geomagnetic sensor 506 is a means for measuring the direction of the drone body by measuring the geomagnetism.
  • the barometric pressure sensor 507 is a means for measuring barometric pressure, and can also indirectly measure the altitude of the drone.
  • the laser sensor 508 is a means for measuring the distance between the drone body and the ground surface by utilizing the reflection of the laser light, and may be an IR (infrared) laser.
  • the sonar 509 is a means for measuring the distance between the drone aircraft and the ground surface by utilizing the reflection of sound waves such as ultrasonic waves. These sensors may be selected according to the cost target and performance requirements of the drone. In addition, a gyro sensor (angular velocity sensor) for measuring the inclination of the aircraft, a wind power sensor for measuring wind power, and the like may be added. Further, these sensors may be duplicated or multiplexed.
  • the flight controller 501 may use only one of them, and if it fails, it may switch to an alternative sensor for use. Alternatively, a plurality of sensors may be used at the same time, and if the measurement results do not match, it may be considered that a failure has occurred.
  • the flow rate sensor 510 is a means for measuring the flow rate of the sprayed material, and is provided at a plurality of locations on the path from the tank 104 to the nozzle 103.
  • the liquid drainage sensor 511 is a sensor that detects that the amount of sprayed material has fallen below a predetermined amount.
  • Drone 100 is equipped with a camera module 522.
  • the camera module 522 has, for example, the functions of a growth diagnosis camera 512a, a pathology diagnosis camera 512b, and an obstacle detection camera 513.
  • the growth diagnosis camera 512a is a means for photographing the field 403 and acquiring data for the growth diagnosis.
  • the growth diagnostic camera 512a is, for example, a multispectral camera and receives a plurality of light rays having different wavelengths from each other.
  • the plurality of light rays are, for example, red light (wavelength of about 650 nm) and near-infrared light (wavelength of about 774 nm).
  • the growth diagnosis camera 512a may be a camera that receives visible light.
  • the pathological diagnosis camera 512b is a means for photographing the crops growing in the field 403 and acquiring the data for the pathological diagnosis.
  • the pathological diagnosis camera 512b is, for example, a red light camera.
  • the red light camera is a camera that detects the amount of light in the frequency band corresponding to the absorption spectrum of chlorophyll contained in the plant, and detects, for example, the amount of light in the band around 650 nm.
  • the pathological diagnosis camera 512b may detect the amount of light in the frequency bands of red light and near-infrared light.
  • the pathological diagnosis camera 512b may include both a red light camera and a visible light camera such as an RGB camera that detects the amount of light having at least three wavelengths in the visible light band.
  • the pathological diagnosis camera 512b may be a multispectral camera, and may detect the amount of light in the band having a wavelength of 650 nm to 680 nm.
  • the growth diagnosis camera 512a and the pathology diagnosis camera 512b may be realized by one hardware configuration.
  • the obstacle detection camera 513 is a camera for detecting a drone intruder, and since the image characteristics and the orientation of the lens are different from the growth diagnosis camera 512a and the pathological diagnosis camera 512b, what are the growth diagnosis camera 512a and the pathological diagnosis camera 512b? Another device.
  • the switch 514 is a means for the user 402 of the drone 100 to make various settings.
  • the obstacle contact sensor 515 is a sensor for detecting that the drone 100, in particular, its rotor or propeller guard part, has come into contact with an intruder such as an electric wire, a building, a human body, a standing tree, a bird, or another drone. ..
  • the obstacle contact sensor 515 may be replaced by a 6-axis gyro sensor 505.
  • the cover sensor 516 is a sensor that detects that the operation panel of the drone 100 and the cover for internal maintenance are in the open state.
  • the inlet sensor 517 is a sensor that detects that the inlet of the tank 104 is
  • sensors may be selected according to the cost target and performance requirements of the drone, and may be duplicated / multiplexed.
  • a sensor may be provided at the base station 404, the actuator 401, or some other place outside the drone 100, and the read information may be transmitted to the drone.
  • the base station 404 may be provided with a wind sensor to transmit information on wind power and wind direction to the drone 100 via the mobile communication network 400 or Wi-Fi communication.
  • the flight controller 501 sends a control signal to the pump 106 to adjust the discharge amount and stop the discharge.
  • the current status of the pump 106 (for example, the number of revolutions) is fed back to the flight controller 501.
  • the LED107 is a display means for notifying the drone operator of the drone status.
  • Display means such as a liquid crystal display may be used in place of or in addition to the LED.
  • the buzzer is an output means for notifying the state of the drone (particularly the error state) by an audio signal.
  • the communication device 530 is connected to a mobile communication network 400 such as 3G, 4G, and LTE, and can communicate with a farming cloud composed of a base station and a server and an operator via the mobile communication network 400. Will be done.
  • other wireless communication means such as Wi-Fi, infrared communication, Bluetooth (registered trademark), ZigBee (registered trademark), NFC, or wired communication means such as USB connection. You may use it.
  • the speaker 520 is an output means for notifying the state of the drone (particularly the error state) by means of recorded human voice, synthetic voice, or the like. Depending on the weather conditions, it may be difficult to see the visual display of the drone 100 in flight. In such cases, voice communication is effective.
  • the warning light 521 is a display means such as a strobe light for notifying the state of the drone (particularly the error state). These input / output means may be selected according to the cost target and performance requirements of the drone, and may be duplicated or multiplexed.
  • a circuit board for driving the drone 100 is arranged inside the main body 110 of the drone 100 aircraft.
  • the circuit board receives power supplied from the camera board 21 that drives the camera module 522, the ESC 22a to 22h, the main control board 23 that constitutes the flight controller 501 function, and the battery 502 (see FIGS. 7 and 9).
  • ESC22a to 22h and the power supply board 24 that distributes power to the main control board 23.
  • the camera board 21, ESC 22a to 22h, and the power supply board 24 are examples of boards on which high heat generating elements are mounted.
  • the main control board 23 is an example of a board on which a low heat generation element having a smaller heat generation amount than a high heat generation element is mounted.
  • the camera board 21, ESC22a to 22h, the main control board 23, and the power supply board 24 are arranged on the cooling plate 20.
  • the cooling plate 20 is a thin plate extending in a substantially xy plane.
  • the cooling plate 20 constitutes at least a part of the housing of the main body 110, and holds the camera board 21, the ESC 22a to 22h, the main control board 23, and the power supply board 24 on a substantially xy plane.
  • the cooling plate 20 has a shape in which a partial circle is connected to one side of a rectangle in a top view, and constitutes the bottom surface of the main body 110.
  • the cooling plate 20 may be rectangular in top view.
  • the cooling plate 20 is made of a material having high thermal conductivity, for example, metal. More specifically, the cooling plate 20 uses, for example, aluminum as a main raw material. According to the structure in which the cooling plate 20 is mainly made of aluminum, it is lightweight, so that the energy consumption of the drone 100 can be saved.
  • the cooling plate 20 is an example of the first member.
  • the cooling plate 20 is composed of a base portion 20e on which a heat generating element is arranged and rising portions 20a and 20b formed by bending the end portion of the base portion 20e upward.
  • the rising portions 20a and 20b are composed of members equivalent to the base portion 20e of the cooling plate 20.
  • the rising portions 20a and 20b may be prepared as separate members and connected to both ends of the base portion 20e.
  • the base portion 20e constitutes the bottom surface of the main body 110, and the rising portions 20a and 20b form a part of the side wall surfaces on the front surface and the rear surface of the main body 110. According to this configuration, the rigidity of the cooling plate can be increased as compared with the flat cooling plate.
  • the rising portion As for the rising portion, the left and right sides of the cooling plate in the traveling direction may be raised. According to this configuration, the rigidity of the cooling plate in the longitudinal direction can be increased. Further, the rising portion may be formed over the entire outer edge of the cooling plate and may have a tray shape.
  • the outer surface of the cooling plate 20 is open. That is, there is a gap between the tank 104 and the cooling plate 20. According to this configuration, since the outside air comes into contact with the outer surface of the cooling plate 20, the heat dissipation efficiency of the cooling plate 20 is good.
  • the camera board 21 is arranged in front of the cooling plate 20 in the traveling direction.
  • the camera board 21 is arranged in front of the main control board 23 in the traveling direction. Since the camera module 522 is arranged at the front portion of the main body 110 in the traveling direction, the wiring can be shortened by arranging the camera board 21 at a position corresponding to the camera module 522. By shortening the wiring, it is possible to reduce the cost of wiring, the risk of noise generation, and the risk of failure.
  • ESC22a to ESC22h are arranged on the left and right sides of the main control board 23 on the cooling plate 20.
  • the ESCs 22a to 22d connected to the motors 102-1a to 102-2b are provided on the + y side of the main control board 23 along the x direction.
  • the ESCs 22e to 22h connected to the motors 102-3a to 102-4b, respectively, are provided on the ⁇ y side of the main control board 23 along the x direction.
  • the motors 102-1a to 102-2b are provided on the + y side of the main body 110
  • the motors 102-3a to 102-4b are provided on the ⁇ y side of the main body 110, so that the wiring can be shortened. ..
  • the power supply board 24 is arranged on the cooling plate 20 behind the main control board 23 in the traveling direction.
  • the battery 502 is arranged inside the main body 110 and above the cooling plate 20.
  • the battery 502 is an example of a power source and may be a primary battery. Instead of the battery 502, a power supply device such as a supercapacitor (also referred to as an ultracapacitor or an electric double layer capacitor) may be provided.
  • the battery 502 is located above the power supply board 24. According to this configuration, the distance between the power supply board 24 and the battery 502 is short, and the wiring can be shortened. Further, by forming the cooling plate 20 and the battery 502 into a two-layer structure, the main body 110 can be compactly configured.
  • the first battery 502a and the second battery 502b are arranged side by side.
  • the plate member 30 is a member arranged with a gap from the cooling plate 20, and is plate-shaped in the present embodiment.
  • the plate member 30 is housed inside the main body 110 and is arranged above the cooling plate 20 in the vertical direction.
  • the plate member 30 is an example of the second member.
  • a gyro sensor 505 is joined to the plate member 30.
  • the gyro sensor 505 is an example of a sensor element.
  • the gyro sensor 505 is substantially in the center of the plate member 30 and is joined to the antipodal surface of the surface on which the battery 502 is held.
  • the drive board of the gyro sensor 505 may be joined to the plate member 30 together. Since the gain and offset of the gyro sensor 505 change due to the influence of temperature, the output value fluctuates. That is, the temperature change causes a measurement error.
  • the gyro sensor 505 is joined to a member different from the cooling plate 20 to which the high heat generating element is joined, it is possible to suppress the temperature rise of the gyro sensor 505. Further, according to the configuration in which the cooling plate 20 and the plate member 30 are laminated, the cooling plate 20 is smaller than the configuration in which the high heat generating element and the gyro sensor 505 are arranged on the cooling plate 20 so as to be sufficiently long. And the main body 110 can be made smaller.
  • the sensor element may be any of an angular velocity sensor, an angular acceleration sensor, a velocity sensor, and an acceleration sensor.
  • a temperature sensor 505a is installed in the vicinity of the gyro sensor 505.
  • the temperature sensor 505a may be mounted on the drive board of the gyro sensor 505.
  • a calculation formula or table for associating the temperature with the fluctuation amount of the output value is stored in advance on the main control board 23, and the output value of the gyro sensor 505 is corrected based on the measurement result by the temperature sensor 505a.
  • An air layer 40 is provided between the cooling plate 20 and the plate member 30. According to this configuration, heat is less likely to be transferred and the temperature rise of the gyro sensor 505 arranged on the plate member 30 can be reduced as compared with the configuration in which the cooling plate 20 and the plate member 30 are in contact with each other. can.
  • the plate member 30 includes a battery holding portion 31 and holds the battery 502 detachably.
  • the battery holding portion 31 is a frame body that covers a part of the battery 502, and the lower surface of the frame is fixed to the plate member 30.
  • the shape of the battery holding portion 31 is arbitrary.
  • the plate member 30 may be a member that constitutes a part of the battery 502 or the power supply device.
  • Battery 502 is composed of two batteries 502a and 502b, each of which is a long and thin rectangular parallelepiped member, and is mounted in parallel so that the long side follows the traveling direction in the connected state.
  • the number of batteries 502 is arbitrary. Both ends of the battery 502 in the longitudinal direction are held by the battery holding portion 31. More specifically, the front surface of the battery 502a in the traveling direction is held by the battery holding portion 31a-1, and the rear surface in the traveling direction is held by the battery holding portion 31a-2. The front surface of the battery 502b in the traveling direction is held by the battery holding unit 31b-1, and the rear surface in the traveling direction is held by the battery holding unit 31b-2. In other words, the battery 502 is fixed to the plate member 30 by the battery holding portions 31 at both ends of the long side.
  • the battery 502 is provided with output terminals on at least one of both ends of the long side, and is electrically connected to the terminals of the plate member 30 in the connected state.
  • the terminals of the plate member 30 are electrically connected to each substrate on the gyro sensor 505 and the cooling plate 20, and electric power is supplied to each configuration through the terminals.
  • the battery 502 is provided with an output terminal on the front surface in the traveling direction in the connected state. According to the configuration in which the arrangement surface of the output terminal is held by the battery holding unit 31, the electrical connection of the output terminal is firmly maintained even when the drone 100 crashes or collides.
  • Battery 502 has a slower temperature change rate than the high heat generating element bonded to the cooling plate 20. That is, the change in the measurement error of the gyro sensor 505 due to the temperature change becomes gradual. According to this configuration, the value measured by the temperature sensor 505a more accurately reflects the temperature of the gyro sensor 505. That is, the output value of the gyro sensor 505 can be corrected more accurately than the configuration in which the temperature change of the gyro sensor 505 is rapid.
  • the high heat generating element on the cooling plate 20 operates and stops intermittently during the operation of the drone 100, the temperature rises and falls repeatedly, and the temperature change mode is complicated, while the temperature of the battery 502 is a voltage. Increases monotonically when is being pulled. Therefore, according to the configuration in which the gyro sensor 505 is connected to the plate member 30 like the battery 502, the temperature change of the gyro sensor 505 becomes monotonous, and the output value of the gyro sensor 505 can be corrected more accurately.
  • the plate member 30 may be made of a material having a lower thermal conductivity than the cooling plate 20.
  • Battery 502 is heavier than cooling plate 20. According to this configuration, since the plate member 30 suppresses high-frequency vibration as compared with the cooling plate 20, noise to the gyro sensor 505 can be reduced.
  • the weight of the cooling plate 20 is 300 g
  • the weight of the battery 502 is preferably 2 kg or more and 7 kg or less, and particularly preferably 5000 g.
  • the battery 502 may weigh 2500 g, or 2.5 kg.
  • the plate member 30 is a plate-shaped member, but the shape of the plate member 30 is arbitrary as long as the battery 502 and the gyro sensor 505 can be held.
  • the plate member 30 may be a case that covers the outer periphery of the battery 502 and houses the battery 502, for example.
  • the cooling plate 20 and the plate member 30 are fixed to each other by a plurality of fastening portions 40a, 40b, 40c, and 40d at least at both ends in the longitudinal direction of the battery 502.
  • the fastening portions 40a to 40d are, for example, bolts, and the cooling plate 20 and the plate member 30 are provided with through holes through which the fastening portions 40a to 40d are inserted.
  • the fastening portions 40a to 40d are longer than the total thickness of the cooling plate 20 and the plate member 30, and maintain a distance from each other so that the cooling plate 20 and the plate member 30 face each other with a gap.
  • the configuration in which the fastening portions 40a to 40d maintain the distance between the cooling plate 20 and the plate member 30 may be appropriate. For example, a spacer is inserted into the fastening portions 40a to 40d between the cooling plate 20 and the plate member 30. You may.
  • nuts may be fastened to the fastening portions 40a to 40d, respectively, and the cooling plate 20 and the plate member 30 may be positioned by the nuts.
  • the structure may be such that a part of the through hole of the cooling plate 20 and the plate member 30 is threaded and a bolt is screwed into the side wall of the through hole.
  • the gyro sensor 505 is arranged in a region surrounded by a plurality of fastening portions 40a to 40d on the plane of the plate member 30. According to this configuration, the rigidity at the arrangement position of the gyro sensor 505 is increased and the deflection is also reduced, so that vibration is suppressed. Therefore, the noise of the gyro sensor 505 can be reduced.
  • the cooling plate 20 has cooling plate convex portions 20p and 20q protruding from the plane thereof. Further, the plate member 30 has plate member convex portions 30p and 30q protruding from the plane thereof.
  • the cooling plate convex portions 20p and 20q are examples of the first convex portion
  • the plate member convex portions 30p and 30q are examples of the second convex portion.
  • the cooling plate convex portions 20p and 20q and the plate member convex portions 30p and 30q are elongated grooves provided along the longitudinal direction of the battery 502.
  • the cooling plate convex portions 20p and 20q and the plate member convex portions 30p and 30q are formed by bending the cooling plate 20 and the plate member 30. According to this configuration, it can be configured more simply and lightly than in the case where another member is joined to form a convex portion.
  • the plate member convex portions 30p and 30q are formed to have a length corresponding to at least the long side of the battery 502.
  • the plate member convex portions 30p and 30q may be formed up to the end portion of the plate member 30, or may be formed by a length corresponding to the long side of the battery 502.
  • the cooling plate convex portions 20p and 20q and the plate member convex portions 30p and 30q are each two, but may be one or three or more. Even if the cooling plate convex portions 20p and 20q and the plate member convex portions 30p and 30q project vertically upward with respect to the horizontal plane when the cooling plate 20 and the plate member 30 are placed along the horizontal plane, respectively. Alternatively, it may protrude downward in the vertical direction, that is, it may be recessed. Further, the cooling plate convex portions 20p and 20q and the plate member convex portions 30p and 30q may project in the same direction or in opposite directions. Further, the plurality of cooling plate protrusions 20p and 20q may include those protruding in different directions from each other. Similarly, the plurality of plate member protrusions 30p and 30q may include those protruding in different directions from each other. That is, at least a part of the cooling plate 20 and the plate member 30 may be bellows-shaped.
  • the longitudinal direction of the battery 502 of the plate member 30 The strength in the battery increases, and it is difficult to bend in that direction. Therefore, even if the drone 100 crashes or collides, the battery 502 does not easily come off from the battery holding portion 31, and the power supply can be continued. As a result, even when a large impact such as a crash or a collision is applied to the drone 100, it is possible to reliably execute a safe operation for safely retracting the drone 100.
  • the safe operation is, for example, an operation of stopping the discharge of the drug from the tank 104 or an operation of stopping the rotation of the rotary blade 101. Further, the safe operation may include an operation of landing on the spot and an operation of returning to a predetermined departure / arrival point in a state where the flight can be continued.
  • the cooling plate convex portions 20p and 20q project toward the plate member 30, and the plate member convex portions 30p and 30q project toward the cooling plate 20.
  • the plate member convex portions 30p and 30q are formed at least on both sides of the battery 502, and the cooling plate convex portions 20p and 20q are formed at positions corresponding to at least the plate member convex portions 30p and 30q.
  • the fastening portions 40a to 40d may be connected to the cooling plate 20 and the plate member 30 at the cooling plate convex portions 20p and 20q and the plate member convex portions 30p and 30q.
  • holes may be formed in the curved surfaces constituting the cooling plate convex portions 20p and 20q and the plate member convex portions 30p and 30q through which the fastening portions 40a to 40d are inserted.
  • the lengths of the fastening portions 40a to 40d can be shortened as compared with the configuration in which the cooling plate 20 and the plate member 30 are connected at the flat plate portion.
  • the moment of inertia of area and the rigidity of the plate member 30 can be further increased while ensuring the distance between the cooling plate 20 and the plate member 30.
  • the power supply from the battery 502 can be continued.
  • the rigidity of the plate member 30 is increased, the noise of the gyro sensor 505 mounted on the plate member 30 can be further reduced.
  • the cooling plate 20 constitutes the upper surface of the housing of the main body 110, and the plate member 30 is arranged vertically below the cooling plate 20. You may. Further, in the drone 100 and the drone 100b, the cooling plate 20 and the plate member 30 are arranged so as to face each other and substantially parallel to each other, but the angle formed by the cooling plate 20 and the plate member 30 is arbitrary.
  • the cooling plate 20 and the plate member 30 may be substantially orthogonal to each other as in the drone 100c according to the third embodiment shown in FIG.
  • the cooling plate 20 constitutes the bottom surface of the main body 110 housing and is arranged so as to be substantially horizontal in the landing state of the drone 100.
  • the plate member 30 is provided along the vertical direction at right angles to the cooling plate 20.
  • the cooling plate 20 and the plate member 30 may be arranged side by side with a gap between them along the vertical direction. Further, at this time, the plate member 30 is arranged in the center of the main body 110, and the cooling plate 20 forms at least a part of the wall on the side in the traveling direction of the main body 110. This configuration also facilitates cooling of the cooling plate 20 and the substrate joined to the cooling plate 20.
  • the cooling plate 20 constitutes at least a part of the bottom surface of the main body 110 housing, and the plate member 30 is erected with a gap from the cooling plate 20 to form the cooling plate 20. It differs from the above-described embodiment in that the tank 104d is connected to the plate member 30. An air layer 140 may be present together with the tank 104d between the cooling plate 20 and the plate member 30. According to this configuration, the heat from the camera boards 21, ESC22a to 22h, and the power supply board 24 on the cooling plate 20 is not easily transferred to the gyro sensor 505, and the temperature rise of the gyro sensor 505 can be reduced.
  • the tank 104d may be detachable from the main body 110, and can be removed from the main body 110 by pulling it upward, for example. Further, when the tank 104d is inserted into the main body 110, the outflow hole provided in the tank 104d is connected to an appropriate flow rate control device such as a hose and an on-off valve, and the chemical can be sprayed under the control of the main control board 23.
  • an appropriate flow rate control device such as a hose and an on-off valve
  • the cooling plate 20 constitutes the bottom surface of the main body 110 housing, and the plate member 30e is attached to the outer wall of the main body 110 so that the battery 502 is held outside the main body 110. It is connected.
  • the plate member 30e constitutes a case that covers the battery 502.
  • a gyro sensor 505 is arranged between the outer wall of the main body 110 and the plate member 30e. According to this configuration, since the cooling plate 20 and the gyro sensor 505 are sufficiently separated from each other, they are not affected by the heat of the cooling plate 20. Further, since the gyro sensor 505 is close to the outer wall of the main body 110, it is sufficiently cooled by the heat conduction of the outer wall, and the temperature rise of the gyro sensor 505 can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

【課題】 ドローンに搭載されるセンサ素子の温度上昇を軽減する。 【解決手段】 複数のプロペラ101を備えたドローン100であって、ドローンの飛行を制御する制御基板23を搭載する本体と、本体の一部を構成し、高発熱素子21、22、24が接合される第1の部材20と、第1の部材と隙間を空けて配設される第2の部材30と、を備え、第2の部材に、温度の影響により出力値が変動するセンサ素子505が接合される。

Description

ドローン
 本願発明は、ドローンに関する。
 一般にドローンと呼ばれる小型ヘリコプター(マルチコプター)の応用が進んでいる。
 特許文献1および2には、第1の回路基板と平行に第2の回路基板が配置され、第1の回路基板には発熱性部品が配置され、第2の回路基板は実質的に熱を発生しない電子的部品の他、センサ素子を備える制御ユニットが開示されている。
 特許文献3には、複数のプリント回路基板が積層されて構成されるプリント回路基板の実装構造が開示されている。特許文献4には、発熱電子部品と発熱の少ない電子部品とを互いに異なる実装基板に実装することが記載されている。
特表2018-517284号公報 特表2018-513561号公報 実全昭61-65791号公報 特開1997-283886号公報
 ドローンに搭載されるセンサ素子の温度上昇を軽減する。
 本発明の一の観点に係るドローンは、複数のプロペラを備えたドローンであって、前記ドローンの飛行を制御する制御基板を搭載する本体と、前記本体の一部を構成し、高発熱素子が接合される第1の部材と、前記第1の部材と隙間を空けて配設される第2の部材と、を備え、前記第2の部材に、温度の影響により出力値が変動するセンサ素子が接合される、ドローン。
 前記第2の部材には、前記第1の部材よりも重量が大きいバッテリ又は電源装置が保持されるものとしてもよい。
 前記第2の部材は、前記第1の部材よりも重量が大きいバッテリ又は電源装置の構成部材であるものとしてもよい。
 前記センサ素子は、角速度センサ又は角加速度センサ又は速度センサ又は加速度センサであるものとしてもよい。
 前記第2の部材は前記第1の部材の下方に配置されているものとしてもよい。
 前記第2の部材は前記第1の部材の上方に配置されているものとしてもよい。
 前記第2の部材は前記本体の中央に配置され、前記第1の部材は前記本体の側壁の少なくとも一部を構成しているものとしてもよい。
 前記第1の部材と前記第2の部材との間には空気層が設けられているものとしてもよい。
 前記バッテリの重量は2kg以上7kg以下であるものとしてもよい。
 前記第2の部材は、前記バッテリが前記本体の外部に保持されるように、前記本体の外壁又は前記第1の部材に連結されているものとしてもよい。
 前記第1の部材および前記第2の部材は、間を空けて互いに対向しており、前記第1の部材は前記第2の部材に向かって突出する第1の凸部を有し、前記第2の部材は前記第1の部材に向かって突出し、前記第1の凸部と対応する位置に形成されている第2の凸部を有し、前記第2の凸部と前記第1の凸部とは複数の締結部で互いに連結されていて、前記センサ素子は前記複数の締結部に囲われた領域に配設されているものとしてもよい。
 ドローンに搭載されるセンサ素子の温度上昇を軽減する。
本願発明に係るドローンの平面図である。 上記ドローンの正面図である。 上記ドローンの右側面図である。 上記ドローンの背面図である。 上記ドローンの斜視図である。 上記ドローンの飛行制御システムの全体概念図である。 上記ドローンが有する機能ブロック図である。 上記ドローンが有する機体本体の内部の様子を示す概略部分拡大横断面図である。 上記機体本体の内部であって、図8とは異なる階層の様子を示す概略部分拡大横断面図である。 上記機体本体の内部の様子を示す概略縦断面図である。 上記機体本体の内部の様子を示す、図10と直交する方向の概略縦断面図である。 上記機体本体が有する板部材および冷却板の様子を示す図であって、(a)概略斜視図、(b)板部材の上面図である。 本発明にかかるドローンの第2実施形態における、機体本体の概略縦断面図である。 本発明にかかるドローンの第3実施形態における、機体本体の概略縦断面図である。 本発明にかかるドローンの第4実施形態における、機体本体の概略縦断面図である。 本発明にかかるドローンの第5実施形態における、機体本体の概略縦断面図である。 本発明にかかるドローンの第6実施形態における、機体本体の概略縦断面図である。
 以下、図を参照しながら、本願発明を実施するための形態について説明する。図はすべて例示である。以下の詳細な説明では、説明のために、開示された実施形態の完全な理解を促すために、ある特定の詳細について述べられている。しかしながら、実施形態は、これらの特定の詳細に限られない。また、図面を単純化するために、周知の構造および装置については概略的に示されている。なお、以降の説明において、水平面上におけるドローンの進行方向を+x方向、水平面上においてx方向に直交する、正面からみて左から右に向かう方向を+y方向、鉛直上向きの方向を+z方向とする。
 まず、本発明にかかるドローンの構成について説明する。本願明細書において、ドローンとは、動力手段(電力、原動機等)、操縦方式(無線であるか有線であるか、および、自律飛行型であるか手動操縦型であるか等)を問わず、複数の回転翼を有する飛行体全般を指すこととする。
 図1乃至図5に示すように、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4b(ローターとも呼ばれる)は、ドローン100を飛行させるための手段であり、飛行の安定性、機体サイズ、および、電力消費量のバランスを考慮し、8機(2段構成の回転翼が4セット)備えられている。各回転翼101は、ドローン100機体の本体110からのび出たアームにより本体110の四方に配置されている。すなわち、進行方向左後方に回転翼101-1a、101-1b、左前方に回転翼101-2a、101-2b、右後方に回転翼101-3a、101-3b、右前方に回転翼101-4a、101-4bがそれぞれ配置されている。なお、ドローン100は図1における紙面下向きを進行方向とする。
 回転翼101の各セットの外周には、略円筒形を形成する格子状のプロペラガードが設けられ、回転翼101が異物と干渉しづらくなるようにしている。図2および図3に示されるように、プロペラガードを支えるための放射状の部材は水平ではなくやぐら状の構造である。衝突時に当該部材が回転翼の外側に座屈することを促し、ローターと干渉することを防ぐためである。
 回転翼101の回転軸から下方には、それぞれ棒状の足107-1,107-2,107-3,107-4が伸び出ている。
 モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、102-4a、102-4bは、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4bを回転させる手段(典型的には電動機だが発動機等であってもよい)であり、一つの回転翼に対して1機設けられている。モーター102は、推進器の例である。1セット内の上下の回転翼(たとえば、101-1aと101-1b)、および、それらに対応するモーター(たとえば、102-1aと102-1b)は、ドローンの飛行の安定性等のために軸が同一直線上にあり、かつ、互いに反対方向に回転する。
 ノズル103-1、103-2、103-3、103-4は、散布物を下方に向けて散布するための手段であり4機備えられている。なお、本願明細書において、散布物とは、農薬、除草剤、液肥、殺虫剤、種、および、水などの圃場に散布される液体または粉体を一般的に指すこととする。
 タンク104は散布物を保管するためのタンクであり、重量バランスの観点からドローン100の重心に近い位置でかつ重心より低い位置に設けられている。ホース105-1、105-2、105-3、105-4は、タンク104と各ノズル103-1、103-2、103-3、103-4とを接続する手段であり、硬質の素材から成り、当該ノズルを支持する役割を兼ねていてもよい。ポンプ106は、散布物をノズルから吐出するための手段である。
 図6に本願発明に係るドローン100の飛行制御システムの全体概念図を示す。本図は模式図であって、縮尺は正確ではない。同図において、ドローン100、操作器401、基地局404およびサーバ405が移動体通信網400を介して互いに接続されている。これらの接続は、移動体通信網400に代えてWi-Fiによる無線通信を行ってもよいし、一部又は全部が有線接続されていてもよい。また、構成要素間において、移動体通信網400に代えて、又は加えて、直接接続する構成を有していてもよい。
 ドローン100および基地局404は、GPS等のGNSSの測位衛星410と通信を行い、ドローン100および基地局404座標を取得する。ドローン100および基地局404が通信する測位衛星410は複数あってもよい。
 操作器401は、使用者の操作によりドローン100に指令を送信し、また、ドローン100から受信した情報(たとえば、位置、散布物の貯留量、電池残量、カメラ映像等)を表示するための手段であり、コンピューター・プログラムを稼働する一般的なタブレット端末等の携帯情報機器によって実現されてよい。操作器401は、ユーザインターフェース装置としての入力部および表示部を備える。本願発明に係るドローン100は自律飛行を行なうよう制御されるが、離陸や帰還などの基本操作時、および、緊急時にはマニュアル操作が行なえるようになっていてもよい。携帯情報機器に加えて、緊急停止専用の機能を有する非常用操作器(図示していない)を使用してもよい。非常用操作器は緊急時に迅速に対応が取れるよう大型の緊急停止ボタン等を備えた専用機器であってもよい。さらに、操作器401とは別に、操作器401に表示される情報の一部又は全部を表示可能な小型携帯端末、例えばスマートホンがシステムに含まれていてもよい。小型携帯端末は、例えば基地局404と接続されていて、基地局404を介してサーバ405からの情報等を受信可能である。
 圃場403は、ドローン100による散布の対象となる田圃や畑等である。実際には、圃場403の地形は複雑であり、事前に地形図が入手できない場合、あるいは、地形図と現場の状況が食い違っている場合がある。通常、圃場403は家屋、病院、学校、他の作物圃場、道路、鉄道等と隣接している。また、圃場403内に、建築物や電線等の侵入者が存在する場合もある。
 基地局404は、RTK-GNSS基地局として機能し、ドローン100の正確な位置を提供できるようになっている。また、Wi-Fi通信の親機機能等を提供する装置であってもよい。Wi-Fi通信の親機機能とRTK-GNSS基地局が独立した装置であってもよい。また、基地局404は、3G、4G、およびLTE等の移動通信システムを用いて、サーバ405と互いに通信可能であってもよい。基地局404およびサーバ405は、営農クラウドを構成する。
 サーバ405は、典型的にはクラウドサービス上で運営されているコンピュータ群と関連ソフトウェアであり、操作器401と携帯電話回線等で無線接続されていてもよい。サーバ405は、ハードウェア装置により構成されていてもよい。サーバ405は、ドローン100が撮影した圃場403の画像を分析し、作物の生育状況を把握して、飛行ルートを決定するための処理を行ってよい。また、保存していた圃場403の地形情報等をドローン100に提供してよい。加えて、ドローン100の飛行および撮影映像の履歴を蓄積し、様々な分析処理を行ってもよい。
 小型携帯端末は例えばスマートホン等である。小型携帯端末の表示部には、ドローン100の運転に関し予測される動作の情報、より具体的にはドローン100が発着地点に帰還する予定時刻や、帰還時に使用者が行うべき作業の内容等の情報が適宜表示される。また、小型携帯端末からの入力に基づいて、ドローン100の動作を変更してもよい。
 通常、ドローン100は圃場403の外部にある発着地点から離陸し、圃場403に散布物を散布した後に、あるいは、散布物の補充や充電等が必要になった時に発着地点に帰還する。発着地点から目的の圃場403に至るまでの飛行経路(侵入経路)は、サーバ405等で事前に保存されていてもよいし、使用者が離陸開始前に入力してもよい。発着地点は、ドローン100に記憶されている座標により規定される仮想の地点であってもよいし、物理的な発着台があってもよい。
 図7に本願発明に係る散布用ドローンの実施例の制御機能を表したブロック図を示す。フライトコントローラー501は、ドローン全体の制御を司る構成要素であり、具体的にはCPU、メモリー、関連ソフトウェア等を含む組み込み型コンピュータであってよい。フライトコントローラー501は、操作器401から受信した入力情報、および、後述の各種センサーから得た入力情報に基づき、ESC(Electronic Speed Control)22a、22b、22c、22d、22e、22f、22g、22h等のモータ制御装置を介して、モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、102-4a、102-4bの回転数を制御することで、ドローン100の飛行を制御する。ESC22a乃至22hは、モーター102-1a乃至102-4bにそれぞれ接続されている。ESC22a乃至22hは、例えばインバーター回路を含む。モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、102-4a、102-4bの実際の回転数はフライトコントローラー501にフィードバックされ、正常な回転が行なわれているかを監視できる構成になっている。あるいは、回転翼101に光学センサー等を設けて回転翼101の回転がフライトコントローラー501にフィードバックされる構成でもよい。
 フライトコントローラー501が使用するソフトウェアは、機能拡張・変更、問題修正等のために記憶媒体等を通じて、または、Wi-Fi通信やUSB等の通信手段を通じて書き換え可能になっている。この場合において、不正なソフトウェアによる書き換えが行なわれないように、暗号化、チェックサム、電子署名、ウィルスチェックソフト等による保護が行われている。また、フライトコントローラー501が制御に使用する計算処理の一部が、操作器401上、または、サーバ405上や他の場所に存在する別のコンピュータによって実行されてもよい。フライトコントローラー501は重要性が高いため、その構成要素の一部または全部が二重化されていてもよい。
 フライトコントローラー501は、通信機530を介して、さらに、移動体通信網400を介して操作器401とやり取りを行ない、必要な指令を操作器401から受信すると共に、必要な情報を操作器401に送信できる。この場合に、通信には暗号化を施し、傍受、成り済まし、機器の乗っ取り等の不正行為を防止できるようにしておいてもよい。基地局404は、移動体通信網400を介した通信機能に加えて、RTK-GPS基地局の機能も備えている。RTK基地局404の信号とGPS等の測位衛星410からの信号を組み合わせることで、フライトコントローラー501により、ドローン100の絶対位置を数センチメートル程度の精度で測定可能となる。フライトコントローラー501は重要性が高いため、二重化・多重化されていてもよく、また、特定のGPS衛星の障害に対応するため、冗長化されたそれぞれのフライトコントローラー501は別の衛星を使用するよう制御されていてもよい。
 6軸ジャイロセンサー505はドローン機体の互いに直交する3方向の加速度を測定する手段であり、さらに、加速度の積分により速度を計算する手段である。6軸ジャイロセンサー505は、上述の3方向におけるドローン機体の姿勢角の変化、すなわち角速度を測定する手段である。地磁気センサー506は、地磁気の測定によりドローン機体の方向を測定する手段である。気圧センサー507は、気圧を測定する手段であり、間接的にドローンの高度も測定することもできる。レーザーセンサー508は、レーザー光の反射を利用してドローン機体と地表との距離を測定する手段であり、IR(赤外線)レーザーであってもよい。ソナー509は、超音波等の音波の反射を利用してドローン機体と地表との距離を測定する手段である。これらのセンサー類は、ドローンのコスト目標や性能要件に応じて取捨選択してよい。また、機体の傾きを測定するためのジャイロセンサー(角速度センサー)、風力を測定するための風力センサーなどが追加されていてもよい。また、これらのセンサー類は、二重化または多重化されていてもよい。同一目的複数のセンサーが存在する場合には、フライトコントローラー501はそのうちの一つのみを使用し、それが障害を起こした際には、代替のセンサーに切り替えて使用するようにしてもよい。あるいは、複数のセンサーを同時に使用し、それぞれの測定結果が一致しない場合には障害が発生したと見なすようにしてもよい。
 流量センサー510は散布物の流量を測定するための手段であり、タンク104からノズル103に至る経路の複数の場所に設けられている。液切れセンサー511は散布物の量が所定の量以下になったことを検知するセンサーである。
 ドローン100は、カメラモジュール522を備える。カメラモジュール522は、例えば、生育診断カメラ512a、病理診断カメラ512bおよび障害物検知カメラ513の各機能を有している。
 生育診断カメラ512aは、圃場403を撮影し、生育診断のためのデータを取得する手段である。生育診断カメラ512aは例えばマルチスペクトルカメラであり、互いに波長の異なる複数の光線を受信する。当該複数の光線は、例えば赤色光(波長約650nm)と近赤外光(波長約774nm)である。また、生育診断カメラ512aは、可視光線を受光するカメラであってもよい。
 病理診断カメラ512bは、圃場403に生育する作物を撮影し、病理診断のためのデータを取得する手段である。病理診断カメラ512bは、例えば赤色光カメラである。赤色光カメラは、植物に含有されるクロロフィルの吸収スペクトルに対応する周波数帯域の光量を検出するカメラであり、例えば波長650nm付近の帯域の光量を検出する。病理診断カメラ512bは、赤色光と近赤外光の周波数帯域の光量を検出してもよい。また、病理診断カメラ512bとして、赤色光カメラおよびRGBカメラ等の可視光帯域の少なくとも3波長の光量を検出する可視光カメラの両方を備えていてもよい。なお、病理診断カメラ512bはマルチスペクトルカメラであってもよく、波長650nm乃至680nm付近の帯域の光量を検出するものとしてもよい。
 なお、生育診断カメラ512aおよび病理診断カメラ512bは、1個のハードウェア構成により実現されていてもよい。
 障害物検知カメラ513はドローン侵入者を検知するためのカメラであり、画像特性とレンズの向きが生育診断カメラ512aおよび病理診断カメラ512bとは異なるため、生育診断カメラ512aおよび病理診断カメラ512bとは別の機器である。スイッチ514はドローン100の使用者402が様々な設定を行なうための手段である。障害物接触センサー515はドローン100、特に、そのローターやプロペラガード部分が電線、建築物、人体、立木、鳥、または、他のドローン等の侵入者に接触したことを検知するためのセンサーである。なお、障害物接触センサー515は、6軸ジャイロセンサー505で代用してもよい。カバーセンサー516は、ドローン100の操作パネルや内部保守用のカバーが開放状態であることを検知するセンサーである。注入口センサー517はタンク104の注入口が開放状態であることを検知するセンサーである。
 これらのセンサー類はドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。また、ドローン100外部の基地局404、操作器401、または、その他の場所にセンサーを設けて、読み取った情報をドローンに送信してもよい。たとえば、基地局404に風力センサーを設け、風力・風向に関する情報を移動体通信網400経由又はWi-Fi通信経由でドローン100に送信するようにしてもよい。
 フライトコントローラー501はポンプ106に対して制御信号を送信し、吐出量の調整や吐出の停止を行なう。ポンプ106の現時点の状況(たとえば、回転数等)は、フライトコントローラー501にフィードバックされる構成となっている。
 LED107は、ドローンの操作者に対して、ドローンの状態を知らせるための表示手段である。LEDに替えて、または、それに加えて液晶ディスプレイ等の表示手段を使用してもよい。ブザーは、音声信号によりドローンの状態(特にエラー状態)を知らせるための出力手段である。通信機530は、3G、4G、およびLTE等の移動体通信網400と接続されており、移動体通信網400を介して基地局、サーバで構成される営農クラウド、操作器と通信可能に接続される。通信機に替えて、または、それに加えて、Wi‐Fi、赤外線通信、Bluetooth(登録商標)、ZigBee(登録商標)、NFC等の他の無線通信手段、または、USB接続などの有線通信手段を使用してもよい。スピーカー520は、録音した人声や合成音声等により、ドローンの状態(特にエラー状態)を知らせる出力手段である。天候状態によっては飛行中のドローン100の視覚的表示が見にくいことがあるため、そのような場合には音声による状況伝達が有効である。警告灯521はドローンの状態(特にエラー状態)を知らせるストロボライト等の表示手段である。これらの入出力手段は、ドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。
●ドローン(1)
 図8に示すように、ドローン100機体の本体110内部には、ドローン100を駆動するための回路基板が配置されている。回路基板は、カメラモジュール522を駆動するカメラ基板21、ESC22a乃至22h、フライトコントローラ501機能を構成する主制御基板23、ならびにバッテリ502(図7および図9参照)から供給される電力をカメラ基板21、ESC22a乃至22hおよび主制御基板23に分電する電源基板24に大別される。カメラ基板21、ESC22a乃至22hおよび電源基板24は、高発熱素子が実装された基板の例である。主制御基板23は、高発熱素子よりも発熱量の小さい低発熱素子が実装された基板の例である。
 カメラ基板21、ESC22a乃至22h、主制御基板23および電源基板24は、冷却板20上に配置されている。冷却板20は、略xy平面に広がる薄板である。冷却板20は、本体110の筐体の少なくとも一部を構成し、略xy平面上において、カメラ基板21、ESC22a乃至22h、主制御基板23および電源基板24を保持している。図8においては、冷却板20は、上面視において矩形の1辺に部分円を連結させたような形状であり、本体110の底面を構成している。冷却板20は、上面視において矩形であってもよい。
 冷却板20は、熱伝導率の高い材料、例えば金属で構成されている。より具体的には、冷却板20は、例えばアルミニウムを主原料とする。冷却板20がアルミニウムを主原料とする構成によれば、軽量であるため、ドローン100のエネルギー消費量を節約することができる。冷却板20は、第1の部材の例である。
 図10に示すように、冷却板20は、発熱素子が配置される基部20eと、基部20eの端部を上方に屈曲させてなる立ち上がり部20a、20bとにより構成されている。立ち上がり部20a、20bは、冷却板20の基部20eと同等の部材で構成される。なお、立ち上がり部20a、20bを別途の部材で用意し、基部20eの両端部に連結させてなる構成であってもよい。本実施形態では、基部20eは本体110の底面を構成し、立ち上がり部20a、20bは、本体110の前面および後面の側壁の一部を構成する。この構成によれば、平板の冷却板に比べて、冷却板の剛性を大きくすることができる。
 立ち上がり部は、冷却板の進行方向左右側部が立ち上がっていてもよい。この構成によれば、冷却板の長手方向の剛性を大きくできる。さらに、立ち上がり部は冷却板の外縁全周に渡って形成され、トレイ状になっていてもよい。
 また、冷却板20の外表面は開放されている。すなわち、タンク104と冷却板20との間には隙間が空いている。この構成によれば、冷却板20の外表面に外気が触れるため、冷却板20の放熱効率が良い。
 カメラ基板21は、冷却板20の進行方向前部に配置されている。言い換えれば、カメラ基板21は主制御基板23の進行方向前方に配置されている。カメラモジュール522は本体110の進行方向前部に配置されているため、カメラ基板21がカメラモジュール522に対応する位置に配置されていることで、配線を短くすることができる。配線を短くすることで、配線にかかるコスト、ノイズの発生リスクおよび故障リスクを軽減することができる。
 また、ESC22a乃至ESC22hは、冷却板20上において主制御基板23の左右側方に配置されている。具体的には、モーター102-1a乃至102-2bにそれぞれ接続されるESC22a乃至22dは、主制御基板23の+y側に、x方向に沿って併設されている。モーター102-3a乃至102-4bにそれぞれ接続されるESC22e乃至22hは、主制御基板23の-y側に、x方向に沿って併設されている。この構成によれば、モーター102-1a乃至102-2bは本体110の+y側、モーター102-3a乃至102-4bは本体110の-y側に設けられているため、配線を短くすることができる。
 電源基板24は、冷却板20上において主制御基板23の進行方向後方に配置されている。図9および図10に示すように、本体110内部であって冷却板20の上方には、バッテリ502が配設されている。バッテリ502は電力源の例であり、1次電池であってもよい。なお、バッテリ502に代えて、スーパーキャパシタ(ウルトラキャパシタ、電気二重層コンデンサとも言う。)等の電源装置を備えていてもよい。バッテリ502は電源基板24の上方に配置されている。この構成によれば、電源基板24とバッテリ502との距離が短く、配線を短くすることができる。また、冷却板20とバッテリ502とを2層構造にすることにより、本体110をコンパクトに構成できる。バッテリ502は、第1バッテリ502aおよび第2バッテリ502bが横方向に併設されている。
 板部材30は、冷却板20と隙間を空けて配設されている部材であり、本実施形態においては板状である。本実施形態においては、板部材30は、本体110内部に収容され、冷却板20の鉛直方向上方に配置されている。板部材30は、第2の部材の例である。
 図11に示すように、板部材30にはジャイロセンサ505が接合されている。ジャイロセンサ505は、センサ素子の例である。本実施形態においては、ジャイロセンサ505は、板部材30の略中央であって、バッテリ502が保持される面の対蹠面に接合されている。板部材30には、ジャイロセンサ505の駆動基板が合わせて接合されていてもよい。ジャイロセンサ505は、温度の影響によりゲインおよびオフセットが変化するため、出力値が変動する。すなわち、温度変化は、計測誤差の要因となる。本構成によれば、ジャイロセンサ505が、高発熱素子の接合されている冷却板20とは別の部材に接合されているため、ジャイロセンサ505の温度上昇を抑えることができる。また、冷却板20および板部材30を積層する構成によれば、冷却板20上において高発熱素子とジャイロセンサ505との距離が十分遠くなるように配置する構成に比べて、冷却板20を小さくすることができ、本体110を小さくできる。なお、センサ素子は、角速度センサ、角加速度センサ、速度センサおよび加速度センサのいずれかであってもよい。
 また、ジャイロセンサ505に近接して、温度センサ505aが設けられる。温度センサ505aは、ジャイロセンサ505の駆動基板に実装されていてもよい。ジャイロセンサ505の温度と出力値の変動量との間には相関関係がある。主制御基板23には温度と出力値の変動量とを対応付ける計算式又はテーブルがあらかじめ記憶されていて、ジャイロセンサ505の出力値は、温度センサ505aによる計測結果に基づいて補正される。
 冷却板20と板部材30との間には空気層40が設けられている。この構成によれば、冷却板20および板部材30が互いに接触している構成に比べて、熱が伝わりにくくなり、板部材30に配設されているジャイロセンサ505の温度上昇を軽減することができる。
 板部材30は、バッテリ保持部31を備え、バッテリ502を着脱可能に保持している。バッテリ保持部31は、本実施形態においては、バッテリ502の一部を覆う枠体であり、当該枠の下面が板部材30に固定されている。なお、バッテリ保持部31の形状は任意である。
 なお、板部材30は、バッテリ502又は電源装置の一部を構成する部材であってもよい。
 バッテリ502は2個のバッテリ502a、502bにより構成され、それぞれ長細い略直方体状の部材であり、連結状態において長辺が進行方向に沿うように並列して搭載されている。なお、バッテリ502の個数は任意である。バッテリ502の長手方向両端部は、バッテリ保持部31により保持されている。より具体的には、バッテリ502aは、進行方向前面がバッテリ保持部31a-1に保持され、進行方向後面がバッテリ保持部31a-2により保持される。バッテリ502bは、進行方向前面がバッテリ保持部31b-1により保持され、進行方向後面がバッテリ保持部31b-2により保持されている。言い換えれば、バッテリ502は、長辺両端部においてバッテリ保持部31により板部材30に固定されている。
 また、バッテリ502は、長辺両端部の少なくとも一方に出力端子を備え、連結状態において板部材30の端子と電気的に接続されている。板部材30の端子は、ジャイロセンサ505および冷却板20上の各基板に電気的に接続され、当該端子を介して各構成に電力が供給される。本実施形態においては、バッテリ502は、連結状態における進行方向前面に出力端子を備える。出力端子の配置面がバッテリ保持部31により保持されている構成によれば、ドローン100が墜落や衝突した場合にも、出力端子の電気的接続が強固に維持される。
 バッテリ502は、冷却板20に接合される高発熱素子と比較して、温度の変化速度が緩やかである。すなわち、温度変化に起因するジャイロセンサ505の計測誤差の変化が緩やかになる。この構成によれば、温度センサ505aによる計測値がジャイロセンサ505の温度をより正確に反映するものとなる。すなわち、ジャイロセンサ505の温度変化が急激である構成に比べて、ジャイロセンサ505の出力値をより正確に補正できる。
 また、冷却板20上の高発熱素子はドローン100の動作中に動作および静止を断続的に行うため、温度上昇および下降を繰り返し、温度変化モードが複雑である一方、バッテリ502の温度は、電圧が引かれている状態において単調増加する。したがって、ジャイロセンサ505がバッテリ502と同様に板部材30に連結されている構成によれば、ジャイロセンサ505の温度変化が単調になり、より正確にジャイロセンサ505の出力値を補正できる。なお、バッテリ502からの熱の影響を軽減するため、板部材30は冷却板20よりも熱伝導率の低い材質で構成されていてもよい。
 バッテリ502は、冷却板20よりも重量が大きい。この構成によれば、板部材30は冷却板20に比べて高周波の振動が抑えられるので、ジャイロセンサ505に対するノイズを軽減できる。特に、冷却板20の重量が300gであるとき、バッテリ502の重量は2kg以上7kg以下が好ましく、特に5000gが好ましい。例えば、バッテリ502は、2500g、すなわち2.5kgであってもよい。
 なお、本実施形態においては、板部材30は板状の部材としたが、バッテリ502およびジャイロセンサ505が保持可能であれば、板部材30の形状は任意である。板部材30は、例えばバッテリ502の外周を覆い、バッテリ502を収容するケースであってもよい。
 図12(a)に示すように、冷却板20および板部材30は、少なくともバッテリ502の長手方向の両端において複数の締結部40a、40b、40c、40dにより互いに固定されている。本実施形態においては、締結部40a乃至40dは4個であり、バッテリ502が保持される領域の四隅近傍にそれぞれ連結される。
 締結部40a乃至40dは、例えばボルトであり、冷却板20および板部材30には締結部40a乃至40dが挿通される貫通孔が穿設されている。締結部40a乃至40dは、冷却板20および板部材30の厚さの総計よりも長く、冷却板20と板部材30とが隙間を空けて対向するように、互いの距離を保持する。締結部40a乃至40dが冷却板20と板部材30との距離を保持する構成は適宜のものであってよく、例えば、冷却板20および板部材30間において締結部40a乃至40dにスペーサを挿通してもよい。また、締結部40a乃至40dにナットをそれぞれ締結し、当該ナットにより冷却板20および板部材30の位置決めがなされていてもよい。冷却板20および板部材30の貫通孔の一部にネジを切り、ボルトを当該貫通孔の側壁に螺合させるような構成であってもよい。
 図12(b)に示すように、ジャイロセンサ505は、板部材30の平面上において複数の締結部40a乃至40dに囲われた領域に配設されている。この構成によれば、ジャイロセンサ505の配置位置における剛性が大きくなり、たわみも小さくなるため、振動が抑制される。したがって、ジャイロセンサ505のノイズを軽減できる。
 冷却板20は、その平面から突出する冷却板凸部20p、20qを有する。また、板部材30は、その平面から突出する板部材凸部30p、30qを有する。冷却板凸部20p、20qは第1の凸部の例、板部材凸部30p、30qは第2の凸部の例である。冷却板凸部20p、20qおよび板部材凸部30p、30qは、バッテリ502の長手方向に沿って設けられる細長い溝である。冷却板凸部20p、20qおよび板部材凸部30p、30qは、冷却板20および板部材30を湾曲させて構成されている。この構成によれば、別の部材を接合して凸部を形成する場合に比べて、簡易かつ軽量に構成できる。
 板部材凸部30p、30qは、少なくともバッテリ502の長辺に対応する長さに形成されている。板部材凸部30p、30qは板部材30の端部まで形成されていてもよいし、バッテリ502の長辺に対応する長さだけ形成されていてもよい。
 実施形態においては、冷却板凸部20p、20qおよび板部材凸部30p、30qはそれぞれ2個であるが、1個であっても3個以上であってもよい。冷却板凸部20p、20qおよび板部材凸部30p、30qは、冷却板20及び板部材30がそれぞれ水平面に沿って載置されている場合において、水平面に対して鉛直方向上方に突出していてもよいし、鉛直方向下方に突出、すなわち窪んでいてもよい。また、冷却板凸部20p、20qおよび板部材凸部30p、30qは、互いに同方向に突出していてもよいし、反対方向に突出していてもよい。さらに、複数の冷却板凸部20p、20qは、互いに異なる方向に突出するものを含んでいてもよい。同様に、複数の板部材凸部30p、30qは、互いに異なる方向に突出するものを含んでいてもよい。すなわち、冷却板20および板部材30は、少なくとも一部が蛇腹状になっていてもよい。
 バッテリ502が長手方向の一方側と他端側により固定され、板部材凸部30p、30qがバッテリ502の長手方向に沿って形成されている構成によれば、板部材30のバッテリ502の長手方向における強度が大きくなり、当該方向において湾曲しづらい。したがって、ドローン100が墜落や衝突をした場合であっても、バッテリ502がバッテリ保持部31から外れにくく、電源供給を継続することができる。ひいては、墜落や衝突時といった大きな衝撃がドローン100に加わった際にも、ドローン100を安全に退避させる安全動作を確実に実行することができる。なお、安全動作とは、例えば、タンク104からの薬剤の吐出を停止する動作や、回転翼101の回転を停止する動作である。また、安全動作は、飛行が継続可能な状態においては、その場に着陸する動作や、所定の発着地点に帰還する動作を含んでもよい。
 本実施形態においては、冷却板凸部20p、20qは、板部材30に向かって突出し、板部材凸部30p、30qは、冷却板20に向かって突出している。板部材凸部30p、30qは、少なくともバッテリ502の両側方に形成されていて、冷却板凸部20p、20qは、少なくとも板部材凸部30p、30qに対応する位置に形成されている。このとき、締結部40a乃至40dは、冷却板凸部20p、20qおよび板部材凸部30p、30qにおいて冷却板20および板部材30と連結されていてもよい。例えば、冷却板凸部20p、20qおよび板部材凸部30p、30qを構成する湾曲面に締結部40a乃至40dが挿通される孔が形成されていてもよい。
 この構成によれば、冷却板20および板部材30が平板部分において連結される構成に比べて、締結部40a乃至40dのそれぞれの長さを短くすることができる。その結果、冷却板20および板部材30の間の距離を確保しつつ、板部材30の断面二次モーメントおよび剛性をより大きくできる。ひいては、ドローン100に大きな衝撃が加わった際にも、バッテリ502からの電源供給を継続できる。また、板部材30の剛性が大きくなることで、板部材30に搭載されるジャイロセンサ505のノイズをより軽減できる。
●ドローン(2)
 図13に示す第2の実施形態に係るドローン100bのように、冷却板20は、本体110の筐体上面を構成しており、板部材30は、冷却板20の鉛直方向下方に配置されていてもよい。また、ドローン100およびドローン100bにおいては、冷却板20および板部材30は、互いに対向して略平行に配設されていたが、冷却板20および板部材30の互いに成す角は任意である。
●ドローン(3)
図14に示す第3の実施形態に係るドローン100cのように、冷却板20および板部材30が略直交していてもよい。第3実施形態においては、冷却板20は本体110筐体の底面を構成し、ドローン100の着陸状態において略水平になるように配設されている。板部材30は冷却板20に対し直交して、鉛直方向に沿って設けられている。
●ドローン(4)
 図15に示す第4の実施形態に係るドローン100dのように、冷却板20および板部材30がそれぞれ鉛直方向に沿って、互いに隙間を空けて並設されていてもよい。また、このとき、板部材30は本体110の中央に配置され、冷却板20は本体110の進行方向側方の壁の少なくとも一部を形成している。この構成によっても、冷却板20および冷却板20に接合される基板の冷却を促進できる。
●ドローン(5)
 図16を用いて、ドローン本体内部の構成に関する第5の実施形態について説明する。第5の実施形態に係るドローン100dは、冷却板20が本体110筐体の底面の少なくとも一部を構成し、板部材30が冷却板20と隙間を空けて立設されて、冷却板20と板部材30との間にタンク104dが連結されている点で、先に説明した実施形態と異なる。冷却板20と板部材30との間には、空気層140がタンク104dと共に存在していてもよい。この構成によれば、冷却板20上のカメラ基板21、ESC22a乃至22h、および電源基板24からの熱がジャイロセンサ505に伝わりにくく、ジャイロセンサ505の温度上昇を軽減することができる。
 なお、タンク104dは本体110から着脱可能であってもよく、例えば上方へ向かって引き抜くことで、本体110から取り外すことができる。また、タンク104dを本体110に挿入すると、タンク104dに備え付けられた流出孔がホースおよび開閉バルブ等適宜の流量制御装置に接続され、主制御基板23の制御により薬剤を散布可能になる。
●ドローン(6)
 図17を用いて、ドローンの第6の実施形態について説明する。同図に示すように、ドローン100eにおいては、冷却板20は本体110筐体の底面を構成し、板部材30eは、バッテリ502が本体110の外部に保持されるように、本体110の外壁に連結されている。板部材30eは、バッテリ502を覆うケースを構成している。本体110の外壁と板部材30eとの間にはジャイロセンサ505が配設されている。この構成によれば、冷却板20とジャイロセンサ505とが十分離れているため、冷却板20の熱の影響を受けることがない。また、ジャイロセンサ505が本体110の外壁に近接しているため、外壁の熱伝導により十分冷却され、ジャイロセンサ505の温度上昇を軽減できる。
(本願発明による技術的に顕著な効果)
 本発明に係るドローンによれば、ドローンに搭載されるセンサ素子の温度上昇を軽減することができる。

 

Claims (11)

  1.  複数のプロペラを備えたドローンであって、
     前記ドローンの飛行を制御する制御基板を搭載する本体と、
     前記本体の一部を構成し、高発熱素子が接合される第1の部材と、
     前記第1の部材と隙間を空けて配設される第2の部材と、
    を備え、
     前記第2の部材に、温度の影響により出力値が変動するセンサ素子が接合される、
    ドローン。
     
  2.  前記センサ素子は、角速度センサ又は角加速度センサ又は速度センサ又は加速度センサである、
    請求項1記載のドローン。
     
  3.  前記第2の部材は前記第1の部材の下方に配置されている、
    請求項1又は2に記載のドローン。
     
  4.  前記第2の部材は前記第1の部材の上方に配置されている、
    請求項1又は2に記載のドローン。
     
  5.  前記第2の部材は前記本体の中央に配置され、前記第1の部材は前記本体の側壁の少なくとも一部を構成している、
    請求項1又は2に記載のドローン。
     
  6.  前記第1の部材と前記第2の部材との間には空気層が設けられている、
    請求項1又は2に記載のドローン。
     
  7.  前記第2の部材には、前記第1の部材よりも重量が大きいバッテリ又は電源装置が保持される、
    請求項1乃至6のいずれかに記載のドローン。
     
  8.  前記第2の部材は、前記第1の部材よりも重量が大きいバッテリ又は電源装置の構成部材である、
    請求項1乃至6のいずれかに記載のドローン。
     
  9.  前記バッテリの重量は2kg以上7kg以下である、
    請求項7又は8に記載のドローン。
     
  10.  前記第2の部材は、前記バッテリが前記本体の外部に保持されるように、前記本体の外壁又は前記第1の部材に連結されている、
    請求項7乃至9のいずれかに記載のドローン。
     
  11.  前記第1の部材および前記第2の部材は、間を空けて互いに対向しており、
     前記第1の部材は前記第2の部材に向かって突出する第1の凸部を有し、
     前記第2の部材は前記第1の部材に向かって突出し、前記第1の凸部と対応する位置に形成されている第2の凸部を有し、
     前記第2の凸部と前記第1の凸部とは複数の締結部で互いに連結されていて、
     前記センサ素子は前記複数の締結部に囲われた領域に配設されている、
    請求項1乃至10のいずれかに記載のドローン。
     

     
PCT/JP2020/005180 2020-02-10 2020-02-10 ドローン WO2021161392A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/005180 WO2021161392A1 (ja) 2020-02-10 2020-02-10 ドローン
JP2021577738A JP7214274B2 (ja) 2020-02-10 2020-02-10 ドローン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/005180 WO2021161392A1 (ja) 2020-02-10 2020-02-10 ドローン

Publications (1)

Publication Number Publication Date
WO2021161392A1 true WO2021161392A1 (ja) 2021-08-19

Family

ID=77292146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005180 WO2021161392A1 (ja) 2020-02-10 2020-02-10 ドローン

Country Status (2)

Country Link
JP (1) JP7214274B2 (ja)
WO (1) WO2021161392A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012051545A (ja) * 2010-09-02 2012-03-15 Dream Space World Corp プリント回路基板を用いた無人飛行体
JP2019085006A (ja) * 2017-11-08 2019-06-06 株式会社イームズラボ 移動体の筐体及び移動体の筐体用の壁部材
WO2019225607A1 (ja) * 2018-05-23 2019-11-28 株式会社ナイルワークス 飛行体および飛行体のフレーム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012051545A (ja) * 2010-09-02 2012-03-15 Dream Space World Corp プリント回路基板を用いた無人飛行体
JP2019085006A (ja) * 2017-11-08 2019-06-06 株式会社イームズラボ 移動体の筐体及び移動体の筐体用の壁部材
WO2019225607A1 (ja) * 2018-05-23 2019-11-28 株式会社ナイルワークス 飛行体および飛行体のフレーム

Also Published As

Publication number Publication date
JPWO2021161392A1 (ja) 2021-08-19
JP7214274B2 (ja) 2023-01-30

Similar Documents

Publication Publication Date Title
JP6727525B2 (ja) ドローン、ドローンの制御方法、および、ドローン制御プログラム
WO2019168042A1 (ja) ドローン、その制御方法、および、プログラム
JP6727498B2 (ja) フールプルーフ性を向上した農業用ドローン
JP6733948B2 (ja) ドローン、その制御方法、および、制御プログラム
JP6745519B2 (ja) ドローン、ドローンの制御方法、および、ドローン制御プログラム
WO2019168079A1 (ja) 安全性を向上した農業用ドローン
WO2020137554A1 (ja) ドローン、ドローンの制御方法、および、ドローン制御プログラム
JP6744615B2 (ja) 飛行体
JP6913979B2 (ja) ドローン
JP6811976B2 (ja) 飛行体
JPWO2019189929A1 (ja) 薬剤散布用無人マルチコプター、ならびにその制御方法および制御プログラム
WO2021166140A1 (ja) ドローン
WO2019168052A1 (ja) ドローン、その制御方法、および、プログラム
WO2021161392A1 (ja) ドローン
WO2021161393A1 (ja) ドローン
JPWO2020022259A1 (ja) 圃場撮影用カメラ
JP6888219B2 (ja) ドローン
JP6806403B2 (ja) ドローン、ドローンの制御方法、および、ドローン制御プログラム
JP6979729B2 (ja) 飛行体
JP7333947B2 (ja) ドローン、ドローンの制御方法、および、ドローンの制御プログラム
JP7285557B2 (ja) 運転経路生成システム、運転経路生成方法、運転経路生成プログラム、およびドローン
WO2020090671A1 (ja) ドローン、ドローンの制御方法、および、ドローン制御プログラム
JP7359489B2 (ja) 測位システム、移動体、速度推定システム、測位方法、および速度推定方法
JP7412038B2 (ja) 再測量要否判定装置、測量システム、ドローンシステム、および再測量要否判定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918425

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021577738

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20918425

Country of ref document: EP

Kind code of ref document: A1