WO2021160976A1 - Carbonated beverage container with improved bubbling behaviour - Google Patents

Carbonated beverage container with improved bubbling behaviour Download PDF

Info

Publication number
WO2021160976A1
WO2021160976A1 PCT/FR2021/050261 FR2021050261W WO2021160976A1 WO 2021160976 A1 WO2021160976 A1 WO 2021160976A1 FR 2021050261 W FR2021050261 W FR 2021050261W WO 2021160976 A1 WO2021160976 A1 WO 2021160976A1
Authority
WO
WIPO (PCT)
Prior art keywords
branches
cross
container according
carbonated drink
sealed wall
Prior art date
Application number
PCT/FR2021/050261
Other languages
French (fr)
Inventor
Emilie DEBOUT
Hervé CHARLES
Jean-Marc VANNELLE
Christophe DESGARDIN
Ludovic MARQUANT
Original Assignee
Arc France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arc France filed Critical Arc France
Priority to CN202180014609.2A priority Critical patent/CN115103616A/en
Priority to EP21708728.7A priority patent/EP4103022A1/en
Priority to US17/798,767 priority patent/US20230089369A1/en
Publication of WO2021160976A1 publication Critical patent/WO2021160976A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G19/00Table service
    • A47G19/22Drinking vessels or saucers used for table service
    • A47G19/2205Drinking glasses or vessels
    • A47G19/2227Drinking glasses or vessels with means for amusing or giving information to the user
    • A47G19/2233Drinking glasses or vessels with means for amusing or giving information to the user related to the evolution of bubbles in carbonated beverages
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G2400/00Details not otherwise provided for in A47G19/00-A47G23/16
    • A47G2400/04Influencing taste or nutritional properties
    • A47G2400/045Influencing taste or nutritional properties by releasing wine bouquet

Definitions

  • the invention relates to the field of containers for liquids, and more particularly articles of glassware.
  • the surfaces created are generally made as smooth as possible, in particular to give them good transparency and for aesthetic reasons.
  • the service of a carbonated drink in a container generates effervescent phenomena, or bubbling, and the accumulation of foam on the surface.
  • effervescent phenomena or bubbling
  • foam on the surface.
  • the areas where bubbles are generated in a glass are called nucleation sites.
  • EP 0 703 743 describes a method of supplying material to a surface to create nucleation sites and improve bubbling. A browning of the bottom of the glass has sometimes been observed.
  • FR 2 531 891 describes a process for the ablation of material favoring the appearance of a gas evolution zone. Examples of application are given in WO 2010/048488.
  • Patent FR 3008295 proposes to create nucleation sites inside a beverage container by surface irregularities on the bottom of the container on which a hydrophobic layer is then deposited.
  • FR 3065360 proposes depositing a hydrophobic layer on the bottom of a beverage container and then providing solutions of continuity there by laser shots.
  • FR 3081 304 describes a container whose bottom is provided with a layer of enamel, enamel grains on the surface of and fixed to the enamel layer, and a hydrophobic compound on part of the surface of the grains enamel.
  • FR application n ° 1859699 will be published after the filing date of this document. The Applicant has identified the need to improve the quality of the bubbling.
  • Liger-Belair G. “The physics behind the fizz in champagne and sparkling wines” European Physical Journal: Special Topics 201, 1-88, 2012. Liger-Belair, G. “The physics of champagne bubbles” Annales de Physique ( Paris) 27 (4), 1-106, 2002.
  • the Applicant has sought to better understand the value of bubbling and has identified two main axes.
  • the bubbling offers a pleasant aspect which reinforces the interest of the consumer.
  • the Applicant then sought to increase the duration of the bubbling so that a consumer leaving his glass to rest does not end up with a drink which has exhausted its bubbling gas.
  • the Applicant also had the idea of focusing on the spatial distribution of the bubbling and its effects on the drink. It turns out that the bubbles take on aromatic particles as they rise through the drink.
  • the bubbling therefore has an effect on the taste perceived by the consumer beyond the gradual reduction in the content of dissolved gas.
  • a complex interaction with the shape of the container is also seen. Bubbling appears to be more durable with bubbles starting from one edge rather than the center. From another point of view, the Applicant has realized that although the chemistry and physics of nucleation sites had been the subject of interesting studies, the geography of nucleation sites had been neglected.
  • a carbonated beverage container comprising a sealed wall made of at least one structural material, the sealed wall defining an internal surface having a bottom portion between a bottom of the sealed wall and a zone of maximum diameter and an edge portion located above the bottom part, the sealed wall comprising in the bottom part a plurality of open porosities forming a pattern occupying an area between 0.01 and 5%, preferably between 0 , 10 and 1%, of the area of the bottom part and having an open cross shape. Convective mixing is obtained in the transverse plane and in the horizontal plane.
  • the carbonated beverage container is made of glass
  • the area is between 10 and 40% of the area of the bottom portion.
  • the cross has branches in straight segments.
  • the cross has intersecting segments.
  • the cross has disjointed segments in the center.
  • the cross has a number of branches of between 3 and 10. Said branches can be contiguous or not contiguous.
  • the cross has at least discontinuity. Said at least one discontinuity may be oriented perpendicular to the direction of a segment or at an angle. In one embodiment, the pattern has a plurality of point zones having said porosities.
  • the cross shape can be made of spots, sticks, circles, squares, etc.
  • the sealed wall forms a parison having a diameter at the mouth less than the diameter at mid-height.
  • the sealed wall forms a parison having a height greater than the diameter at mid-height.
  • Stirring by convection is more important for glasses with a high and shallow parison than for glasses with a low and wide parison.
  • a flute-shaped glass generates greater stirring,
  • the radius R of a bubble increases with the distance D traveled in the drink with a relation less than the square root, with k a constant: R ⁇ k (D) 0 5 .
  • the ascent speed of a bubble increases with the square of the radius R. The ascent speed therefore increases with the distance D.
  • the height is greater than the maximum diameter, better still twice the maximum diameter.
  • the radial distribution of the pattern generates central bubbles and wall bubbles.
  • the parietal bubbles reach the surface being smaller in size than the size of the central bubbles.
  • the parison In the case of a cup, the parison forms the bulk of the container. In the case of a stemmed glass, the parison is supported by the stem.
  • said cross has at least two branches extending, in developed length, over more than 90% of the maximum radius of the bottom part.
  • said cross has at least two branches extending, in projection in a plane normal to the axis of the parison, over more than 80% of the maximum radius of the bottom part.
  • said two branches are opposite if the number of branches is even.
  • said two branches are arranged at least 120 ° from each other if the number of branches is odd.
  • the cross is centered on an axis of symmetry of the container. In one embodiment, the cross has branches with a width of between 0.1 and 5 mm, preferably between 0.25 and 0.80 mm.
  • the cross has branches of equal lengths, equal widths, and a discontinuity in the center.
  • the pattern consists of concavities having a depth of between 0.001 and 0.080 mm, preferably between 0.001 and 0.040 mm, more preferably between 0.001 and 0.010 mm.
  • the concavities have a width of between 0.0005 and 0.002 mm.
  • the concavities have a length of between 0.001 and 0.300 mm, preferably between 0.075 and 0.200 mm.
  • the concavities have a length per unit area of between 0.11 rrr 1 and 0.28 nrr 1 .
  • the concavities comprise perforations have a diameter of between 0.050 and 0.300 mm, preferably between 0.100 and 0.200 mm.
  • the perforations have a diameter to depth ratio of between 2 and 4, preferably between 2.5 and 3.5.
  • the perforations are formed by applying a laser beam at points.
  • the points of application of the laser beam cause local cracking of the wall.
  • Said cracks may originate from the points of application. Said cracks form concavities.
  • the laser beam has a power of between 10 and 500 W, a frequency of between 1 and 20 kHz and a displacement speed of between 1 and 10 m / s, for example a power of 100 W, a frequency of 5 kHz and a speed of 5 m / s.
  • the container may further include a glass body.
  • the transparency makes it possible to visualize the appearance and the progression of the bubbles from the nucleation site to the surface of the drink.
  • FIG. 1 is a sectional view of a container according to one aspect of the invention.
  • FIG. 2 is a sectional view of a container according to one aspect of the invention
  • FIG. 3 is a sectional view of a container according to one aspect of the invention
  • FIG. 4 is a sectional photo of a container according to one aspect of the invention.
  • FIG. 5 is a sectional photo of a container according to one aspect of the invention.
  • FIG. 6 is a sectional photo of a container according to one aspect of the invention.
  • CO2 carbon dioxide
  • the frequency of emission of bubbles during a tasting, the enlargement of the bubbles in the container and the number of bubbles likely to form are linked to a certain number of physicochemical parameters of the liquid phase and of the container in which it is tasted.
  • Ci kH Pi
  • kH The constant of proportionality kH is called Henry's constant. It strongly depends on the gas and liquid considered, as well as on the temperature. Under normal atmospheric pressure Po " 1 bar, taking into account the solubility of C02 in a beer at 4 ° C which is kH" 2.6 g / L / bar, said beer is capable of dissolving approximately 2.6 g / L of CO2.
  • the supersaturation coefficient Si As the relative excess of concentration in a liquid of a substance i with respect to the reference concentration, noted co (chosen as the equilibrium concentration of this substance under a partial pressure equal to the pressure prevailing in the liquid PL).
  • the supersaturation coefficient Si in the following form:
  • Si (Ci - CO) / CO
  • Beers do not all have the same dissolved CO2 concentration. Some are lightly loaded at a level of 3-4 g / L, while others are heavily loaded, up to 7-8 g / L. Their respective supersaturation coefficients with respect to dissolved CO2 will therefore not be the same. In the case of an average beer, loaded at about 5 g / L. Its supersaturation coefficient (at 4 ° C) by applying the equation [Math 2]:
  • the medium contains gas microbubbles with radii greater than a critical radius.
  • Nucleations conventional require very high dissolved gas supersaturation coefficients (> 100), incompatible with carbonated drinks.
  • the critical nucleation radius takes into account the dissolved CO2 concentration of the drink, cf. equations [Math 4] and [Math 5]. However, after service, said concentration is no longer the same as the initial concentration. Service is a critical step. Indeed, pouring into the container generates significant turbulence which accelerates the escape of dissolved carbon dioxide. The colder the drink, the more dissolved carbon dioxide is kept dissolved when served. This is because the drink is more viscous the cold it is. However, the rate of diffusion of dissolved CO2 out of the drink is all the more rapid the lower the viscosity. In addition, the turbulence of pouring is eased the more effectively the viscous the drink is. Consequently, the colder the drink is served, the better the retention of dissolved carbon dioxide during service.
  • the critical radius is influenced by several factors: type of wine, sugar level, composition, etc.
  • the Applicant has carried out tests by using sparkling wine glasses whose bottom is roughened by laser shots on the uncoated glass wall. Glass after a normal finish giving it a smooth surface is treated with a laser beam generating controlled impacts in the back wall from the interior surface.
  • a container 1 is shown in the figures.
  • the container 1 here takes the form of a stemmed glass.
  • the method described below applies to most of the containers for carbonated drinks for which the control of effervescence is of interest.
  • the container 1 comprises, here, a foot 2 and a parison 3.
  • the parison 3 comprises a bottom 4 and an upper wall 5 of substantially cylindrical or frustoconical shape.
  • the container 1 is, here, axisymmetric.
  • the bottom 4 and the parison 3 form a one-piece body.
  • the parison 3 has an inner bottom surface and an inner edge surface.
  • the parison 3 is waterproof. The interior surfaces are intended to be in contact with the drink when using the container 1.
  • the container 1 can be obtained by manufacturing techniques known as such, for example by pressing, blowing and / or by centrifugation. On leaving such manufacturing techniques, the interior of container 1 is substantially smooth and uniform. Container 1 is marketable as is.
  • the smooth container 1 is treated to form blind perforations 6 on the upper surface of the bottom 4 located on the side of the upper wall 5, that is to say the inner bottom surface.
  • the perforations 6 are applied to the bottom of the parison 3 in a cruciform pattern.
  • the motif here is a cross with 4 branches of equal lengths, equal widths and evenly distributed circumferentially.
  • the material of the container 1, here a glass, is the subject of laser shots forming the perforations 6 and thus determining the pattern.
  • the pattern has a length slightly less than the maximum internal diameter of the parison 3, for example greater than 90% of the maximum internal diameter of the parison 3.
  • the cross can have diametral branches of length between 4 and 6 cm.
  • the cross here has an open shape.
  • Crosses comprising closed shapes, lobed crosses, Celtic crosses, are less interesting. Indeed, a Circular pattern would have a length of PI times the diameter while the square cross has a length of 2 times the diameter, resulting in faster fabrication and slow and persistent bubbling while providing a satisfactory appearance and efficient brewing.
  • the branches of the cross may have a width of a few tenths of a millimeter to a few millimeters, for example between 0.025 and 0.080 mm, more generally between between 0.1 and 5 mm.
  • a branch of the cross may be formed of perforations 6 arranged randomly within the pattern or arranged in an orderly manner, for example in one or more rows.
  • the pattern occupies an area between 0.01 and 5%, preferably between 0.10 and 1%. Such a surface allows prolonged bubbling of at least 10 minutes.
  • the cross can have branches of constant or variable width.
  • the cross may have branches in an even number, 4, 6, 8 or 10, passing through the center or interrupted near the center.
  • the cross can have branches in odd number, 3, 5, 7 or 9, passing through the center or interrupted near the center.
  • the interruption in the center allows a more homogeneous distribution of the perforations 6 on the surface of the bottom part.
  • a stemmed glass has a cruciform pattern.
  • the parison 3 has a maximum diameter of between 40 and 45% of its interior height.
  • the parison 3 has an interior height of between 180 and 200% of the maximum diameter.
  • a stemmed glass has a cruciform pattern.
  • the parison 3 has a maximum diameter of between 45 and 50% of its interior height.
  • the parison 3 has an interior height of between 170 and 180% of the maximum diameter.
  • a stemmed glass is provided with a cruciform pattern.
  • the parison 3 has a maximum diameter of between 70 and 80% of its interior height.
  • the parison 3 has an interior height of between 110 and 130% of the maximum diameter.
  • Figure 4 is shown the comparison between two champagne glasses of flute shape, one known in smooth glass on the left and the other, according to the invention, filled with the same champagne under the same operating conditions of pressure, temperature, brightness, etc.
  • Said other glass is provided with perforations 6 close to the center and therefore to the bottom of the glass. The movement of the wine generated by the bubbling is visible and the rotary movement of the brewing is significant.
  • Figure 5 a glass filled with champagne, according to the invention, with a cruciform pattern as in Figures 1 to 3. A curtain of bubbles is visible and causes significant stirring with slow and stable degassing.
  • Figure 6 there is shown a glass filled with champagne, according to the invention, with a cruciform pattern as in Figures 1 to 3. After 10 minutes of bubbling the glass kept motionless, a curtain of bubbles remains visible and maintains brewing.

Abstract

Carbonated beverage container 1, in particular a glass, comprising a sealed wall made of at least one structural material, the sealed wall defining an internal surface having a bottom portion between a bottom 4 of the sealed wall and a region of maximum diameter and an edge portion located above the bottom portion, the sealed wall comprising, in the bottom portion, a plurality of open pores 6 forming a pattern occupying an area of between 0.01 and 5%, preferably between 0.10 and 1%, of the area of the bottom portion and having an open cross shape.

Description

CONTENANT A BOISSON GAZEUSE A BULLAGE AMELIORE IMPROVED BULLAGE SOFT DRINK CONTAINER
L'invention relève du domaine des récipients pour liquide, et plus particulièrement des articles de gobeleterie. The invention relates to the field of containers for liquids, and more particularly articles of glassware.
Lors de la fabrication de récipients pour boissons tels que des gobelets en verre, les surfaces créées sont généralement rendues les plus lisses possibles, notamment pour leur conférer une bonne transparence et pour des raisons esthétiques. When manufacturing beverage containers such as glass cups, the surfaces created are generally made as smooth as possible, in particular to give them good transparency and for aesthetic reasons.
Le service d'une boisson gazeuse dans un récipient génère des phénomènes effervescents, ou du bullage, et l'accumulation de mousse à la surface. Pour le service de la bière ou du vin mousseux par exemple, il est souhaitable de générer et d'entretenir de l'effervescence. Les zones de genèse des bulles dans un verre sont appelées sites de nucléation. The service of a carbonated drink in a container generates effervescent phenomena, or bubbling, and the accumulation of foam on the surface. For the service of beer or sparkling wine for example, it is desirable to generate and maintain effervescence. The areas where bubbles are generated in a glass are called nucleation sites.
Il a été constaté que la présence d'irrégularités dans les surfaces de récipient au contact de boisson gazeuse favorise l’apparition de bulles à partir du gaz dissous dans ladite boisson gazeuse. Pour favoriser le bullage, des surfaces intérieures présentant un relief rugueux ont donc été créées dans des contenants. Lors du remplissage du contenant avec un liquide carbonaté tel qu'une boisson gazeuse, des anfractuosités de la surface intérieure emprisonnent des poches d'air. Les interfaces entre le liquide et les poches d'air permettent de meilleurs échanges gazeux. Les anfractuosités forment alors des zones de nucléation. It has been found that the presence of irregularities in the container surfaces in contact with carbonated drink promotes the appearance of bubbles from the gas dissolved in said carbonated drink. To promote bubbling, interior surfaces with rough relief have therefore been created in containers. When filling the container with a carbonated liquid such as a carbonated drink, crevices in the interior surface trap air pockets. The interfaces between the liquid and the air pockets allow better gas exchanges. The crevices then form nucleation zones.
EP 0 703 743 décrit un procédé d'apport de matière sur une surface pour créer des sites de nucléation et améliorer le bullage. Il a été parfois constaté un brunissement du fond du verre. FR 2 531 891 décrit un procédé d'ablation de matière favorisant l'apparition de zone de dégagement gazeux. Des exemples d'application sont donnés dans WO 2010/048488. EP 0 703 743 describes a method of supplying material to a surface to create nucleation sites and improve bubbling. A browning of the bottom of the glass has sometimes been observed. FR 2 531 891 describes a process for the ablation of material favoring the appearance of a gas evolution zone. Examples of application are given in WO 2010/048488.
Le brevet FR 3008295 propose de créer des sites de nucléation à l'intérieur d'un récipient pour boisson par des irrégularités de surface sur le fond du récipient sur lequel on dépose ensuite une couche hydrophobe. FR 3065360 propose de déposer une couche hydrophobe sur le fond d’un récipient à boisson puis d’y ménager des solutions de continuité par des tirs laser. FR 3081 304 décrit un contenant dont le fond est muni d’une couche d’émail, de grains d’émail en surface de et fixés à la couche d’émail, et d’une composé hydrophobe sur une partie de la surface des grains d’émail. La demande FR n° 1859699 sera publiée postérieurement à la date de dépôt de la présente. La Demanderesse a identifié le besoin d’améliorer la qualité du bullage. Patent FR 3008295 proposes to create nucleation sites inside a beverage container by surface irregularities on the bottom of the container on which a hydrophobic layer is then deposited. FR 3065360 proposes depositing a hydrophobic layer on the bottom of a beverage container and then providing solutions of continuity there by laser shots. FR 3081 304 describes a container whose bottom is provided with a layer of enamel, enamel grains on the surface of and fixed to the enamel layer, and a hydrophobic compound on part of the surface of the grains enamel. FR application n ° 1859699 will be published after the filing date of this document. The Applicant has identified the need to improve the quality of the bubbling.
Le Pr. Liger-Belair et son équipe de l’UMR CNRS 7331 - Université de Reims Champagne-Ardenne ont publié sur l’effervescence : Prof. Liger-Belair and his team from UMR CNRS 7331 - University of Reims Champagne-Ardenne have published on the effervescence:
Liger-Belair, G. “The physics behind the fizz in champagne and sparkling wines” European Physical Journal: Spécial Topics 201, 1-88, 2012. Liger-Belair, G. “La physique des bulles de champagne” Annales de Physique (Paris) 27 (4), 1-106, 2002. Liger-Belair, G. “The physics behind the fizz in champagne and sparkling wines” European Physical Journal: Special Topics 201, 1-88, 2012. Liger-Belair, G. “The physics of champagne bubbles” Annales de Physique ( Paris) 27 (4), 1-106, 2002.
Liger-Belair, G.; Conreux, A.; Villaume, S.; Cilindre, C. “Monitoring the losses of dissolved carbon dioxide from laser-etched champagne glasses” Food Research International, 54, 516-522, 2013. Liger-Belair, G.; Voisin, C.; Jeandet, P. “Modeling non-classical heterogeneous bubble nucléation from cellulose fibers: Application to bubbling in carbonated beverages” Journal of Physical Chemistry B 109, 14573-14580, 2005. Liger-Belair, G .; Conreux, A .; Villaume, S .; Cilindre, C. “Monitoring the losses of dissolved carbon dioxide from laser-etched champagne glasses” Food Research International, 54, 516-522, 2013. Liger-Belair, G .; Voisin, C .; Jeandet, P. “Modeling non-classical heterogeneous bubble nucleation from cellulose fibers: Application to bubbling in carbonated beverages” Journal of Physical Chemistry B 109, 14573-14580, 2005.
Liger-Belair, G.; Parmentier, M.; Jeandet, P. “Modeling the kinetics of bubble nucléation in champagne and carbonated beverages” Journal of Physical Chemistry B110, 21145-21151 , 2006. Liger-Belair, G .; Parmentier, M .; Jeandet, P. “Modeling the kinetics of bubble nucleation in champagne and carbonated beverages” Journal of Physical Chemistry B110, 21145-21151, 2006.
Liger-Belair, G. “How many bubbles in your glass of bubbly?” Journal of Physical Chemistry B 118, 3156-3163, 2014. Liger-Belair, G. “How many bubbles in your glass of bubbly?” Journal of Physical Chemistry B 118, 3156-3163, 2014.
Liger-Belair, G.; Bourget, M.; Villaume, S.; Jeandet, P.; Pron, H.; Polidori, G. “On the losses of dissolved C02 during champagne serving” Journal of Agricultural and Food Chemistry 58, 8768-8775, 2010. Liger-Belair, G .; Bourget, M .; Villaume, S .; Jeandet, P .; Pron, H .; Polidori, G. “On the losses of dissolved C02 during champagne serving” Journal of Agricultural and Food Chemistry 58, 8768-8775, 2010.
La Demanderesse a cherché à mieux comprendre l’intérêt du bullage et a identifié deux axes principaux. Le bullage offre un aspect plaisant qui renforce l’intérêt du consommateur. La Demanderesse a alors cherché à augmenter la durée du bullage afin qu’un consommateur laissant reposer son verre ne se retrouve pas avec une boisson ayant épuisé son gaz de bullage. La Demanderesse a aussi eu l’idée de s’intéresser à la répartition spatiale du bullage et à ses effets sur la boisson. Il s’avère que les bulles se chargent de particules aromatiques en remontant à travers la boisson. Le bullage a donc un effet sur le goût perçu par le consommateur au-delà de la diminution progressive de la teneur en gaz dissous. Une interaction complexe avec la forme du contenant est aussi entr’aperçue. Le bullage semble plus durable avec des bulles partant d’un bord plutôt que du centre. D’un autre point de vue, la Demanderesse s’est rendue compte que si la chimie et la physique des sites de nucléation avait fait l’objet d’approfondissements intéressants, la géographie des sites de nucléation avait été délaissée. The Applicant has sought to better understand the value of bubbling and has identified two main axes. The bubbling offers a pleasant aspect which reinforces the interest of the consumer. The Applicant then sought to increase the duration of the bubbling so that a consumer leaving his glass to rest does not end up with a drink which has exhausted its bubbling gas. The Applicant also had the idea of focusing on the spatial distribution of the bubbling and its effects on the drink. It turns out that the bubbles take on aromatic particles as they rise through the drink. The bubbling therefore has an effect on the taste perceived by the consumer beyond the gradual reduction in the content of dissolved gas. A complex interaction with the shape of the container is also seen. Bubbling appears to be more durable with bubbles starting from one edge rather than the center. From another point of view, the Applicant has realized that although the chemistry and physics of nucleation sites had been the subject of interesting studies, the geography of nucleation sites had been neglected.
Il est proposé un contenant à boisson gazeuse, notamment verre à vin effervescent, comprenant une paroi étanche réalisée en au moins un matériau structurel, la paroi étanche définissant une surface interne présentant une partie de fond comprise entre un fond de la paroi étanche et une zone de diamètre maximal et une partie de bord située au-dessus de la partie de fond, la paroi étanche comprenant dans la partie de fond une pluralité de porosités ouvertes formant un motif occupant une aire comprise entre 0,01 et 5%, préférablement entre 0,10 et 1 %, de l’aire de la partie de fond et présentant une forme ouverte de croix. Un brassage convectif est obtenu dans le plan transversal et dans le plan horizontal. A carbonated beverage container is proposed, in particular an effervescent wine glass, comprising a sealed wall made of at least one structural material, the sealed wall defining an internal surface having a bottom portion between a bottom of the sealed wall and a zone of maximum diameter and an edge portion located above the bottom part, the sealed wall comprising in the bottom part a plurality of open porosities forming a pattern occupying an area between 0.01 and 5%, preferably between 0 , 10 and 1%, of the area of the bottom part and having an open cross shape. Convective mixing is obtained in the transverse plane and in the horizontal plane.
Dans un mode de réalisation, le contenant à boisson gazeuse est en verre,In one embodiment, the carbonated beverage container is made of glass,
Dans un mode de réalisation, l’aire est comprise entre 10 et 40% de l’aire de la partie de fond. In one embodiment, the area is between 10 and 40% of the area of the bottom portion.
Dans un mode de réalisation, la croix présente des branches en segments de droite. In one embodiment, the cross has branches in straight segments.
Dans un mode de réalisation, la croix présente des segments en intersection.In one embodiment, the cross has intersecting segments.
Dans un mode de réalisation, la croix présente des segments disjoints au centre.In one embodiment, the cross has disjointed segments in the center.
Dans un mode de réalisation, la croix présente un nombre de branches compris entre 3 et 10. Lesdites branches peuvent être jointives ou non jointives. In one embodiment, the cross has a number of branches of between 3 and 10. Said branches can be contiguous or not contiguous.
Dans un mode de réalisation, la croix présente au moins discontinuité. Ladite au moins une discontinuité peut être orientée perpendiculairement à la direction d’un segment ou de biais. Dans un mode de réalisation, le motif présente une pluralité de zones ponctuelles présentant lesdites porosités. La forme de croix peut être constituée de taches, de bâtonnets, de cercles, de carrés, etc. In one embodiment, the cross has at least discontinuity. Said at least one discontinuity may be oriented perpendicular to the direction of a segment or at an angle. In one embodiment, the pattern has a plurality of point zones having said porosities. The cross shape can be made of spots, sticks, circles, squares, etc.
Dans un mode de réalisation, la paroi étanche forme une paraison présentant un diamètre à l’embouchure inférieur au diamètre à mi-hauteur. In one embodiment, the sealed wall forms a parison having a diameter at the mouth less than the diameter at mid-height.
Dans un mode de réalisation, la paroi étanche forme une paraison présentant une hauteur supérieure au diamètre à mi-hauteur. Le brassage par convection est plus important pour des verres à paraison haute et peu large que pour des verres à paraison basse et large. Un verre de forme flûte génère un brassage plus important, Le rayon R d’une bulle augmente avec la distance D parcourue dans la boisson avec une relation inférieure à la racine carrée, avec k une constante : R<k (D)0·5. La vitesse de remontée d’une bulle augmente avec le carré du rayon R. La vitesse de remontée augmente donc avec la distance D. Préférablement, la hauteur est supérieure au diamètre maximal, mieux encore à deux fois le diamètre maximal.In one embodiment, the sealed wall forms a parison having a height greater than the diameter at mid-height. Stirring by convection is more important for glasses with a high and shallow parison than for glasses with a low and wide parison. A flute-shaped glass generates greater stirring, The radius R of a bubble increases with the distance D traveled in the drink with a relation less than the square root, with k a constant: R <k (D) 0 5 . The ascent speed of a bubble increases with the square of the radius R. The ascent speed therefore increases with the distance D. Preferably, the height is greater than the maximum diameter, better still twice the maximum diameter.
Pour un tel contenant, la répartition radiale du motif génère des bulles centrales et des bulles pariétales. Les bulles pariétales atteignent la surface en étant de dimension inférieure à la dimension des bulles centrales. For such a container, the radial distribution of the pattern generates central bubbles and wall bubbles. The parietal bubbles reach the surface being smaller in size than the size of the central bubbles.
Dans le cas d’un gobelet, la paraison forme l’essentiel du contenant. Dans le cas d’un verre à pied, la paraison est supportée par le pied. In the case of a cup, the parison forms the bulk of the container. In the case of a stemmed glass, the parison is supported by the stem.
Dans un mode de réalisation, ladite croix présente au moins deux branches s’étendant, en longueur développée, sur plus de 90% du rayon maximal de la partie de fond. In one embodiment, said cross has at least two branches extending, in developed length, over more than 90% of the maximum radius of the bottom part.
Dans un mode de réalisation, ladite croix présente au moins deux branches s’étendant, en projection dans un plan normal à l’axe de la paraison, sur plus de 80% du rayon maximal de la partie de fond. In one embodiment, said cross has at least two branches extending, in projection in a plane normal to the axis of the parison, over more than 80% of the maximum radius of the bottom part.
Dans un mode de réalisation, lesdites deux branches sont opposées si le nombre de branches est pair. In one embodiment, said two branches are opposite if the number of branches is even.
Dans un mode de réalisation, lesdites deux branches sont disposées à au moins 120° l’une de l’autre si le nombre de branches est impair. In one embodiment, said two branches are arranged at least 120 ° from each other if the number of branches is odd.
Dans un mode de réalisation, la croix est centrée sur un axe de symétrie du contenant. Dans un mode de réalisation, la croix présente des branches de largeur comprise entre 0,1 et 5 mm, préférablement entre 0,25 et 0,80 mm. In one embodiment, the cross is centered on an axis of symmetry of the container. In one embodiment, the cross has branches with a width of between 0.1 and 5 mm, preferably between 0.25 and 0.80 mm.
Dans un mode de réalisation, la croix présente des branches de longueurs égales, de largeurs égales, et une discontinuité au centre. In one embodiment, the cross has branches of equal lengths, equal widths, and a discontinuity in the center.
Dans un mode de réalisation, le motif consiste en des concavités présentent une profondeur comprise entre 0,001 et 0,080 mm, préférentiellement entre 0,001 et 0,040 mm, plus préférentiellement entre 0,001 et 0,010 mm. In one embodiment, the pattern consists of concavities having a depth of between 0.001 and 0.080 mm, preferably between 0.001 and 0.040 mm, more preferably between 0.001 and 0.010 mm.
Dans un mode de réalisation, les concavités présentent une largeur comprise entre 0,0005 et 0,002 mm. In one embodiment, the concavities have a width of between 0.0005 and 0.002 mm.
Dans un mode de réalisation, les concavités présentent une longueur comprise entre 0,001 et 0,300 mm, préférentiellement entre 0,075 et 0,200 mm. In one embodiment, the concavities have a length of between 0.001 and 0.300 mm, preferably between 0.075 and 0.200 mm.
Dans un mode de réalisation, les concavités présentent une longueur par unité de surface comprise entre 0,11 rrr1 et 0,28 nrr1. In one embodiment, the concavities have a length per unit area of between 0.11 rrr 1 and 0.28 nrr 1 .
Dans un mode de réalisation, les concavités comprennent des perforations présentent un diamètre compris entre 0,050 et 0,300 mm, préférentiellement entre 0,100 et 0,200 mm. In one embodiment, the concavities comprise perforations have a diameter of between 0.050 and 0.300 mm, preferably between 0.100 and 0.200 mm.
Dans un mode de réalisation, les perforations présentent un rapport diamètre sur profondeur compris entre 2 et 4, préférentiellement entre 2,5 et 3,5. In one embodiment, the perforations have a diameter to depth ratio of between 2 and 4, preferably between 2.5 and 3.5.
Dans un mode de réalisation, les perforations sont formées par application d’un faisceau laser par points. Les points d’application du faisceau laser provoquent une fissuration locale de la paroi. Lesdites fissures peuvent être issues des points d’application. Lesdites fissures forment des concavités. In one embodiment, the perforations are formed by applying a laser beam at points. The points of application of the laser beam cause local cracking of the wall. Said cracks may originate from the points of application. Said cracks form concavities.
Dans un mode de réalisation, le faisceau laser présente une puissance comprise entre 10 et 500 W, une fréquence comprise entre 1 et 20 kHz et une vitesse de déplacement comprise entre 1 et 10 m/s, par exemple une puissance de 100 W, une fréquence de 5 kHz et une vitesse de 5 m/s. In one embodiment, the laser beam has a power of between 10 and 500 W, a frequency of between 1 and 20 kHz and a displacement speed of between 1 and 10 m / s, for example a power of 100 W, a frequency of 5 kHz and a speed of 5 m / s.
Le contenant peut en outre comprendre un corps en verre. La transparence permet de visualiser l'apparition et le cheminement des bulles depuis le site de nucléation jusqu'à la surface de la boisson. D'autres caractéristiques, détails et avantages de l'invention apparaîtront à la lecture de la description détaillée ci-après, et des dessins annexés, sur lesquels : The container may further include a glass body. The transparency makes it possible to visualize the appearance and the progression of the bubbles from the nucleation site to the surface of the drink. Other characteristics, details and advantages of the invention will become apparent on reading the detailed description below, and the appended drawings, in which:
[Fig. 1] est une vue en coupe d'un contenant selon un aspect de l’invention,[Fig. 1] is a sectional view of a container according to one aspect of the invention,
[Fig. 2] est une vue en coupe d'un contenant selon un aspect de l’invention, [Fig. 3] est une vue en coupe d'un contenant selon un aspect de l’invention,[Fig. 2] is a sectional view of a container according to one aspect of the invention, [Fig. 3] is a sectional view of a container according to one aspect of the invention,
[Fig. 4] est une photo en coupe d'un contenant selon un aspect de l’invention,[Fig. 4] is a sectional photo of a container according to one aspect of the invention,
[Fig. 5] est une photo en coupe d'un contenant selon un aspect de l’invention,[Fig. 5] is a sectional photo of a container according to one aspect of the invention,
[Fig. 6] est une photo en coupe d'un contenant selon un aspect de l’invention,[Fig. 6] is a sectional photo of a container according to one aspect of the invention,
Les dessins et la description ci-après contiennent, pour l'essentiel, des éléments de caractère certain. Ils pourront donc non seulement servir à mieux faire comprendre la présente invention, mais aussi contribuer à sa définition, le cas échéant. The drawings and the description below essentially contain elements of a certain nature. They can therefore not only serve to better understand the present invention, but also contribute to its definition, if necessary.
Dans un liquide alimentaire, le dioxyde de carbone (CO2) dissous en phase liquide est le gaz vecteur du phénomène d’effervescence. La fréquence d’émission des bulles lors d’une dégustation, le grossissement des bulles dans le contenant et le nombre de bulles susceptibles de se former sont reliés à un certain nombre de paramètres physico-chimiques de la phase liquide et du contenant dans lequel on déguste. In a liquid food, carbon dioxide (CO2) dissolved in the liquid phase is the vector gas for the phenomenon of effervescence. The frequency of emission of bubbles during a tasting, the enlargement of the bubbles in the container and the number of bubbles likely to form are linked to a certain number of physicochemical parameters of the liquid phase and of the container in which it is tasted.
Lorsqu'un gaz est mis en contact avec un liquide, une partie de ce gaz se dissout dans le liquide. Différents facteurs influencent la solubilité du gaz dans le liquide, en particulier la température et la pression. A l’équilibre, il existe une proportionnalité entre la concentration dans la phase liquide d’une espèce chimique i, notée Ci, et sa pression partielle en phase gazeuse Pi. La loi de Henry s’écrit : [Math 1] When a gas is brought into contact with a liquid, part of this gas dissolves in the liquid. Different factors influence the solubility of gas in liquid, in particular temperature and pressure. At equilibrium, there is a proportionality between the concentration in the liquid phase of a chemical species i, denoted Ci, and its partial pressure in the gas phase Pi. Henry's law is written: [Math 1]
Ci = kH Pi Ci = kH Pi
La constante de proportionnalité kH s’appelle la constante de Henry. Elle dépend fortement du gaz et du liquide considérés, ainsi que de la température. Sous la pression atmosphérique normale Po « 1 bar, compte tenu de la solubilité du C02dans une bière à 4 °C qui vaut kH« 2,6 g/L/bar, ladite bière est susceptible de dissoudre environ 2,6 g/L de CO2. The constant of proportionality kH is called Henry's constant. It strongly depends on the gas and liquid considered, as well as on the temperature. Under normal atmospheric pressure Po " 1 bar, taking into account the solubility of C02 in a beer at 4 ° C which is kH" 2.6 g / L / bar, said beer is capable of dissolving approximately 2.6 g / L of CO2.
Lorsqu’une substance chimique i est à l’équilibre de part et d’autre d’une interface gaz/liquide, sa concentration dans le liquide vérifie la loi de Henry. On dit alors que le liquide est saturé vis-à-vis de cette substance. En l’occurrence, saturation signifie équilibre. When chemical i is in equilibrium across a gas / liquid interface, its concentration in the liquid satisfies Henry's Law. The liquid is then said to be saturated with respect to this substance. In this case, saturation means balance.
Lorsque la concentration CL en une substance chimique i dans un liquide est supérieure à ce qui est prévu par la loi de Henry, le liquide est sursaturé vis-à-vis de cette substance. Pour quantifier cette situation hors équilibre, on définit le coefficient de sursaturation Si comme l’excès relatif de concentration dans un liquide en une substance i par rapport à la concentration de référence, notée co (choisie comme la concentration d’équilibre de cette substance sous une pression partielle égale à la pression qui règne dans le liquide PL). On définit donc le coefficient de sursaturation Si sous la forme suivante : When the LC concentration of a chemical i in a liquid is higher than expected by Henry's law, the liquid is supersaturated with that substance. To quantify this out-of-equilibrium situation, we define the supersaturation coefficient Si as the relative excess of concentration in a liquid of a substance i with respect to the reference concentration, noted co (chosen as the equilibrium concentration of this substance under a partial pressure equal to the pressure prevailing in the liquid PL). We therefore define the supersaturation coefficient Si in the following form:
[Math 2] [Math 2]
Si = (Ci — CO) / CO Si = (Ci - CO) / CO
Lorsqu’un liquide est sursaturé vis-à-vis d’une substance chimique, on a Si > 0. Le liquide évacue une partie de son contenu en cette substance chimique pour retrouver un nouvel état d’équilibre qui vérifie la loi de Henry. When a liquid is supersaturated with a chemical substance, we have Si> 0. The liquid evacuates part of its content in this chemical to find a new state of equilibrium which verifies Henry's law.
En conditions de dégustation, dans un contenant, la pression qui règne dans le liquide est quasiment identique à la pression ambiante. Compte tenu de la faible hauteur de liquide qui n’excède pas 10 à 12 cm, l’effet de la surpression hydrostatique qui règne au fond du contenant est négligeable par rapport à la pression atmosphérique. A une température de 4 °C, on peut alors en déduire la concentration à l’équilibre comme étant égale à : Under tasting conditions, in a container, the pressure in the liquid is almost identical to the ambient pressure. Given the low height of the liquid, which does not exceed 10 to 12 cm, the effect of the hydrostatic overpressure at the bottom of the container is negligible compared to atmospheric pressure. At a temperature of 4 ° C, we can then deduce the concentration at equilibrium as being equal to:
[Math 3] co = IÎHPL « kHPo « 2,6 g/L [Math 3] co = IÎHPL “kHPo“ 2.6 g / L
Les bières ne disposent pas toutes de la même concentration en CO2 dissous. Certaines sont faiblement chargées à hauteur de 3-4 g/L, alors que d’autres sont fortement chargées, jusqu’à 7-8 g/L. Leurs coefficients de sursaturation respectifs vis-à-vis du CO2 dissous ne seront donc pas les mêmes. Dans le cas d’une bière moyenne, chargée à environ 5 g/L. Son coefficient de sursaturation (à 4 °C) en appliquant l’équation [Math 2] : Beers do not all have the same dissolved CO2 concentration. Some are lightly loaded at a level of 3-4 g / L, while others are heavily loaded, up to 7-8 g / L. Their respective supersaturation coefficients with respect to dissolved CO2 will therefore not be the same. In the case of an average beer, loaded at about 5 g / L. Its supersaturation coefficient (at 4 ° C) by applying the equation [Math 2]:
[Math 4] [Math 4]
Sco2 = (ci — co)/co « (5 — 2,6)/2,6 « 0,9 Sco2 = (ci - co) / co "(5 - 2.6) / 2.6" 0.9
Pour comparaison (toujours à 4 °C), les eaux fortement gazeuses (de type Badoit Rouge) présentent des coefficients de sursaturation de l’ordre de 1 ,3, alors que les vins de Champagne (encore jeunes) présentent des coefficients nettement plus élevés, de l’ordre de 3,4. D’une manière générale, plus le coefficient de sursaturation d’un liquide chargé en CO2 dissous est élevé, plus la cinétique d’échappement du gaz carbonique dissous qui en résulte sera intense afin de rétablir l’équilibre de Henry. Cependant, il a été observé que la sursaturation d’un liquide en gaz dissous n’est pas nécessairement synonyme de formation de bulles et donc d’effervescence. For comparison (still at 4 ° C), strongly carbonated waters (Badoit Rouge type) have supersaturation coefficients of around 1.3, while Champagne wines (still young) have significantly higher coefficients. , of the order of 3.4. In general, the higher the supersaturation coefficient of a liquid loaded with dissolved CO2, the more intense the resulting dissolved carbon dioxide escape kinetics will be in order to restore Henry's equilibrium. However, it has been observed that the supersaturation of a liquid with dissolved gas is not necessarily synonymous with the formation of bubbles and therefore effervescence.
En effet, aux valeurs de sursaturation des bières, la formation de bulles nécessite la présence de poches de gaz dans le milieu, dont le rayon de courbure rc dépasse une valeur dite critique définie comme suit : Indeed, at the beers supersaturation values, the formation of bubbles requires the presence of gas pockets in the medium, the radius of curvature rc of which exceeds a so-called critical value defined as follows:
[Math 5] rc = 2 g/PoS où Y est la tension de surface du liquide, Po est la pression ambiante et S est le coefficient de sursaturation de la phase liquide en CO2. [Math 5] rc = 2 g / PoS where Y is the surface tension of the liquid, Po is the ambient pressure and S is the coefficient of supersaturation of the liquid phase with CO2.
A la pression atmosphérique normale de 1 bar et à 4 °C, dans le cas d’une bière dont la tension de surface vaut typiquement 45 mN/m et le coefficient de sursaturation environ 0,9, l’équation précédente fait apparaître un rayon critique de l’ordre de 1 pm en dessous duquel la formation de bulles n’a pas lieu. At normal atmospheric pressure of 1 bar and at 4 ° C, in the case of a beer whose surface tension is typically 45 mN / m and the supersaturation coefficient about 0.9, the preceding equation shows a radius critical of the order of 1 μm below which the formation of bubbles does not take place.
Pour faire apparaître et grossir des bulles de CO2 dans un vin effervescent, le milieu contient en son sein des microbulles de gaz dont les rayons sont supérieurs à un rayon critique. On parle de nucléation hétérogène non-classique (par opposition aux nucléations dites classiques qui concernent la formation spontanée, ex nihilo, de bulles dans un liquide fortement sursaturé). Les nucléations classiques requièrent des coefficients de sursaturation en gaz dissous très importants (>100), incompatibles avec les boissons gazeuses. To make CO2 bubbles appear and grow in a sparkling wine, the medium contains gas microbubbles with radii greater than a critical radius. We speak of non-classical heterogeneous nucleation (as opposed to so-called classical nucleations which concern the spontaneous formation, ex nihilo, of bubbles in a highly supersaturated liquid). Nucleations conventional require very high dissolved gas supersaturation coefficients (> 100), incompatible with carbonated drinks.
La question se pose alors de l’origine des germes gazeux qui sont les catalyseurs de l’effervescence dans un contenant. The question then arises of the origin of the gaseous germs which are the catalysts of effervescence in a container.
Le rayon critique de nucléation tient compte de la concentration de la boisson en CO2 dissous, cf. équations [Math 4] et [Math 5]. Or, après le service, ladite concentration n’est plus la même que la concentration initiale. Le service est une étape critique. En effet, le versement dans le contenant génère d’importantes turbulences qui accélèrent l’échappement du gaz carbonique dissous. Plus la boisson est froide, plus le gaz carbonique dissous est conservé dissous au moment du service. En effet, la boisson est d’autant plus visqueuse qu’elle est froide. Or, la vitesse de diffusion du CO2 dissous hors de la boisson est d’autant plus rapide que la viscosité est faible. De plus, les turbulences du versement s’atténuent d’autant plus efficacement que la boisson est visqueuse. En conséquence, plus la boisson est servie froide, meilleure est la conservation du gaz carbonique dissous pendant le service. The critical nucleation radius takes into account the dissolved CO2 concentration of the drink, cf. equations [Math 4] and [Math 5]. However, after service, said concentration is no longer the same as the initial concentration. Service is a critical step. Indeed, pouring into the container generates significant turbulence which accelerates the escape of dissolved carbon dioxide. The colder the drink, the more dissolved carbon dioxide is kept dissolved when served. This is because the drink is more viscous the cold it is. However, the rate of diffusion of dissolved CO2 out of the drink is all the more rapid the lower the viscosity. In addition, the turbulence of pouring is eased the more effectively the viscous the drink is. Consequently, the colder the drink is served, the better the retention of dissolved carbon dioxide during service.
Pour du vin effervescent, le rayon critique est influencé par plusieurs facteurs : type de vin, taux de sucre, composition, etc.. For sparkling wine, the critical radius is influenced by several factors: type of wine, sugar level, composition, etc.
Par ailleurs, il a été établi que le flux de bulles, c’est-à-dire le nombre de bulles par seconde est proportionnel au carré de la température, à la concentration en CO2 dissous dans le liquide, et inversement proportionnel à la viscosité dynamique du liquide (en kg/m/s). In addition, it has been established that the flow of bubbles, that is to say the number of bubbles per second is proportional to the square of the temperature, to the concentration of CO2 dissolved in the liquid, and inversely proportional to the viscosity liquid dynamics (in kg / m / s).
En approfondissant le phénomène de bullage des vins effervescents, la Demanderesse a procédé à des essais en mettant en œuvre des verres à vin effervescent dont le fond est rendu rugueux par des tirs laser sur la paroi de verre non revêtue. Le verre à l’issue d’une finition normale lui conférant une surface lisse est traité par faisceau laser générant des impacts contrôlés dans la paroi de fond à partir de la surface intérieure. By examining the phenomenon of bubbling sparkling wines, the Applicant has carried out tests by using sparkling wine glasses whose bottom is roughened by laser shots on the uncoated glass wall. Glass after a normal finish giving it a smooth surface is treated with a laser beam generating controlled impacts in the back wall from the interior surface.
A la différence des verres à bière dont le fond est globalement plan, les verres à vins effervescents, de type flûte ou coupe, présentent des fonds de hauteur variable, notamment en ogive inversée, parabolique, en accolade, etc. de diverses courbures. Ces essais ont montré l’intérêt d’un bullage réparti radialement, notamment par le brassage que le bullage réparti provoque par convection massique. Unlike beer glasses, the bottom of which is generally flat, sparkling wine glasses, of the flute or cup type, have bottoms of variable height, in particular inverted ogive, parabolic, brace, etc. of various curvatures. These tests have shown the benefit of radially distributed bubbling, in particular by the stirring that the distributed bubbling causes by mass convection.
Un contenant 1 est représenté sur les figures. Le contenant 1 prend, ici, la forme d'un verre à pied. Le procédé décrit dans la suite s'applique à la plupart des contenants pour boisson gazeuse pour lesquels la maîtrise de l'effervescence présente un intérêt. A container 1 is shown in the figures. The container 1 here takes the form of a stemmed glass. The method described below applies to most of the containers for carbonated drinks for which the control of effervescence is of interest.
Le contenant 1 comprend, ici, un pied 2 et une paraison 3. La paraison 3 comprend un fond 4 et une paroi supérieure 5 de forme sensiblement cylindrique ou tronconique. Le contenant 1 est, ici, axisymétrique. Dans l'exemple décrit ici, le fond 4 et la paraison 3 forment un corps monobloc. La paraison 3 présente une surface intérieure de fond et une surface intérieure de bord. La paraison 3 est étanche. Les surfaces intérieures sont destinées à être au contact de la boisson lors de l'utilisation du contenant 1 . The container 1 comprises, here, a foot 2 and a parison 3. The parison 3 comprises a bottom 4 and an upper wall 5 of substantially cylindrical or frustoconical shape. The container 1 is, here, axisymmetric. In the example described here, the bottom 4 and the parison 3 form a one-piece body. The parison 3 has an inner bottom surface and an inner edge surface. The parison 3 is waterproof. The interior surfaces are intended to be in contact with the drink when using the container 1.
Le contenant 1 peut être obtenu par des techniques de fabrication connues en tant que telles, par exemple par pressage, soufflage et/ou par centrifugation. En sortie de telles techniques de fabrication, l’intérieur du contenant 1 est sensiblement lisse et uniforme. Le contenant 1 est commercialisable en l’état. The container 1 can be obtained by manufacturing techniques known as such, for example by pressing, blowing and / or by centrifugation. On leaving such manufacturing techniques, the interior of container 1 is substantially smooth and uniform. Container 1 is marketable as is.
Le contenant 1 lisse est traité pour former des perforations 6 borgnes à la surface supérieure du fond 4 située du côté de la paroi supérieure 5, c’est-à-dire la surface intérieure de fond. The smooth container 1 is treated to form blind perforations 6 on the upper surface of the bottom 4 located on the side of the upper wall 5, that is to say the inner bottom surface.
Les perforations 6 sont appliquées sur le fond de la paraison 3 selon un motif cruciforme. Le motif est ici en croix à 4 branches d’égales longueurs, d’égales largeurs et circonférentiellement régulièrement réparties. Le matériau du contenant 1 , ici un verre, fait l’objet de tirs laser formant les perforations 6 et ainsi déterminant le motif. The perforations 6 are applied to the bottom of the parison 3 in a cruciform pattern. The motif here is a cross with 4 branches of equal lengths, equal widths and evenly distributed circumferentially. The material of the container 1, here a glass, is the subject of laser shots forming the perforations 6 and thus determining the pattern.
Le motif présente une longueur légèrement inférieure au diamètre intérieur maximal de la paraison 3, par exemple supérieure à 90% du diamètre intérieur maximal de la paraison 3. The pattern has a length slightly less than the maximum internal diameter of the parison 3, for example greater than 90% of the maximum internal diameter of the parison 3.
La croix peut présenter des branches diamétrales de longueur comprise entre 4 et 6 cm. La croix présente ici une forme ouverte. Les croix comprenant des formes fermées, croix lobée, croix celtique, s’avèrent moins intéressantes. En effet, un motif circulaire aurait une longueur de PI fois le diamètre alors que la croix carrée présente une longueur de 2 fois le diamètre, d’où une fabrication plus rapide et un bullage lent et persistant tout en offrant un aspect satisfaisant et un brassage efficace. The cross can have diametral branches of length between 4 and 6 cm. The cross here has an open shape. Crosses comprising closed shapes, lobed crosses, Celtic crosses, are less interesting. Indeed, a Circular pattern would have a length of PI times the diameter while the square cross has a length of 2 times the diameter, resulting in faster fabrication and slow and persistent bubbling while providing a satisfactory appearance and efficient brewing.
Les branches de la croix peuvent présenter une largeur de quelques dizièmes de millimètres à quelques millimètres, par exemple entre 0,025 et 0,080 mm, plus généralement entre comprise entre 0,1 et 5 mm. Une branche de la croix peut être formée de perforations 6 disposées de manière aléatoire au sein du motif ou disposées de manière ordonnée, par exemple en une ou plusieurs rangées. The branches of the cross may have a width of a few tenths of a millimeter to a few millimeters, for example between 0.025 and 0.080 mm, more generally between between 0.1 and 5 mm. A branch of the cross may be formed of perforations 6 arranged randomly within the pattern or arranged in an orderly manner, for example in one or more rows.
Rapporté à l’aire de la partie de fond, le motif occupe une aire comprise entre 0,01 et 5%, préférablement entre 0,10 et 1%. Une telle surface permet bullage prolongé d’au moins 10 minutes. Related to the area of the bottom part, the pattern occupies an area between 0.01 and 5%, preferably between 0.10 and 1%. Such a surface allows prolonged bubbling of at least 10 minutes.
La croix peut présenter des branches de largeur constante ou variable. The cross can have branches of constant or variable width.
La croix peut présenter des branches en nombre pair, 4, 6, 8 ou 10, passant par le centre ou interrompues au voisinage du centre. j The cross may have branches in an even number, 4, 6, 8 or 10, passing through the center or interrupted near the center. j
La croix peut présenter des branches en nombre impair, 3, 5, 7 ou 9, passant par le centre ou interrompues au voisinage du centre. The cross can have branches in odd number, 3, 5, 7 or 9, passing through the center or interrupted near the center.
L’interruption au centre permet une répartition plus homogène des perforations 6 sur la surface de la partie de fond. The interruption in the center allows a more homogeneous distribution of the perforations 6 on the surface of the bottom part.
Sur la figure 1, un verre à pied est muni d’un motif cruciforme. La paraison 3 présente un diamètre maximal compris entre 40 et 45% de sa hauteur intérieure. La paraison 3 présente une hauteur intérieure comprise entre 180 et 200% du diamètre maximal. In Figure 1, a stemmed glass has a cruciform pattern. The parison 3 has a maximum diameter of between 40 and 45% of its interior height. The parison 3 has an interior height of between 180 and 200% of the maximum diameter.
Sur la figure 2, un verre à pied est muni d’un motif cruciforme. La paraison 3 présente un diamètre maximal compris entre 45 et 50% de sa hauteur intérieure. La paraison 3 présente une hauteur intérieure comprise entre 170 et 180% du diamètre maximal. In Figure 2, a stemmed glass has a cruciform pattern. The parison 3 has a maximum diameter of between 45 and 50% of its interior height. The parison 3 has an interior height of between 170 and 180% of the maximum diameter.
Sur la figure 3, un verre à pied est muni d’un motif cruciforme. La paraison 3 présente un diamètre maximal compris entre 70 et 80% de sa hauteur intérieure. La paraison 3 présente une hauteur intérieure comprise entre 110 et 130% du diamètre maximal. En figure 4, est montrée la comparaison entre deux verres à champagne de forme flûte, l’un connu en verre lisse à gauche et l’autre, selon l’invention, remplis du même champagne dans les mêmes conditions opératoires de pression, température, luminosité, etc.. Ledit autre verre est muni de perforations 6 proches du centre et donc du fond du verre. Le mouvement du vin généré par le bullage est visible et le mouvement rotatif de brassage est significatif. In Figure 3, a stemmed glass is provided with a cruciform pattern. The parison 3 has a maximum diameter of between 70 and 80% of its interior height. The parison 3 has an interior height of between 110 and 130% of the maximum diameter. In Figure 4, is shown the comparison between two champagne glasses of flute shape, one known in smooth glass on the left and the other, according to the invention, filled with the same champagne under the same operating conditions of pressure, temperature, brightness, etc. Said other glass is provided with perforations 6 close to the center and therefore to the bottom of the glass. The movement of the wine generated by the bubbling is visible and the rotary movement of the brewing is significant.
En figure 5, est montrée un verre rempli de champagne, selon l’invention, avec un motif cruciforme comme sur les figures 1 à 3. Un rideau de bulles est visible et provoque un brassage important avec un dégazage lent et stable. En figure 6, est montrée un verre rempli de champagne, selon l’invention, avec un motif cruciforme comme sur les figures 1 à 3. Après 10 minutes de bullage verre maintenu immobile, un rideau de bulles reste visible et maintient un brassage. In Figure 5 is shown a glass filled with champagne, according to the invention, with a cruciform pattern as in Figures 1 to 3. A curtain of bubbles is visible and causes significant stirring with slow and stable degassing. In Figure 6, there is shown a glass filled with champagne, according to the invention, with a cruciform pattern as in Figures 1 to 3. After 10 minutes of bubbling the glass kept motionless, a curtain of bubbles remains visible and maintains brewing.

Claims

Revendications Claims
[Revendication 1] Contenant (1) à boisson gazeuse, notamment verre, comprenant une paroi étanche réalisée en au moins un matériau structurel, la paroi étanche définissant une surface interne présentant une partie de fond comprise entre un fond (4) de la paroi étanche et une zone de diamètre maximal et une partie de bord située au-dessus de la partie de fond, la paroi étanche comprenant dans la partie de fond une pluralité de porosités (6) ouvertes formant un motif occupant une aire comprise entre 0,01 et 5%, préférablement entre 0,10 et 1%, de l’aire de la partie de fond et présentant une forme ouverte de croix. [Claim 1] Container (1) for a carbonated drink, in particular glass, comprising a sealed wall made of at least one structural material, the sealed wall defining an internal surface having a bottom portion between a bottom (4) of the sealed wall and an area of maximum diameter and an edge portion located above the bottom portion, the sealed wall comprising in the bottom portion a plurality of open porosities (6) forming a pattern occupying an area between 0.01 and 5%, preferably between 0.10 and 1%, of the area of the bottom part and having an open cross shape.
[Revendication 2] Contenant à boisson gazeuse selon la revendication 1, dans lequel la croix présente des branches en segments de droite. [Claim 2] A carbonated beverage container according to claim 1, wherein the cross has branches in straight segments.
[Revendication 3] Contenant à boisson gazeuse selon l’une des revendications précédentes, dans lequel la croix présente un nombre de branches compris entre 3 et 10, jointives ou non jointives. [Claim 3] A carbonated drink container according to one of the preceding claims, in which the cross has a number of branches between 3 and 10, contiguous or not.
[Revendication 4] Contenant à boisson gazeuse selon l’une des revendications précédentes, dans lequel la croix présente au moins discontinuité. [Claim 4] A carbonated drink container according to one of the preceding claims, in which the cross has at least a discontinuity.
[Revendication 5] Contenant à boisson gazeuse selon l’une des revendications précédentes, dans lequel le motif présente une pluralité de zones ponctuelles présentant lesdites porosités. [Claim 5] A carbonated drink container according to one of the preceding claims, wherein the pattern has a plurality of point areas having said porosities.
[Revendication 6] Contenant à boisson gazeuse selon l’une des revendications précédentes, dans lequel la paroi étanche forme une paraison (3) présentant un diamètre à l’embouchure inférieur au diamètre à mi-hauteur et une hauteur supérieure au diamètre à mi-hauteur. [Claim 6] A carbonated drink container according to one of the preceding claims, wherein the sealed wall forms a parison (3) having a diameter at the mouth less than the diameter at mid-height and a height greater than the diameter at mid-height. height.
[Revendication 7] Contenant à boisson gazeuse selon l’une des revendications précédentes, dans lequel ladite croix présente au moins deux branches s’étendant, en longueur développée, sur plus de 90% du rayon maximal de la partie de fond, lesdites deux branches étant opposées si le nombre de branches est pair et disposées à au moins 120° l’une de l’autre si le nombre de branches est impair. [Claim 7] A carbonated drink container according to one of the preceding claims, wherein said cross has at least two branches extending, in developed length, over more than 90% of the maximum radius of the bottom portion, said two branches being opposite if the number of branches is even and arranged at least 120 ° from each other if the number of branches is odd.
[Revendication 8] Contenant à boisson gazeuse selon l’une des revendications précédentes, dans lequel la croix est centrée sur un axe de symétrie du contenant. [Claim 8] A carbonated drink container according to one of the preceding claims, wherein the cross is centered on an axis of symmetry of the container.
[Revendication 9] Contenant à boisson gazeuse selon l’une des revendications précédentes, dans lequel la croix présente des branches de largeur comprise entre 0,1 et 5 mm, préférablement entre 0,25 et 0,80 mm. [Claim 9] A carbonated drink container according to one of the preceding claims, wherein the cross has branches with a width of between 0.1 and 5 mm, preferably between 0.25 and 0.80 mm.
[Revendication 10] Contenant à boisson gazeuse selon l’une des revendications précédentes, dans lequel la croix présente des branches de longueurs égales, de largeurs égales, et une discontinuité au centre. [Claim 10] A carbonated drink container according to one of the preceding claims, wherein the cross has branches of equal lengths, equal widths, and a discontinuity in the center.
PCT/FR2021/050261 2020-02-14 2021-02-12 Carbonated beverage container with improved bubbling behaviour WO2021160976A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180014609.2A CN115103616A (en) 2020-02-14 2021-02-12 Effervescent beverage container with improved effervescence behaviour
EP21708728.7A EP4103022A1 (en) 2020-02-14 2021-02-12 Carbonated beverage container with improved bubbling behaviour
US17/798,767 US20230089369A1 (en) 2020-02-14 2021-02-12 Sparkling beverage container with improved bubbling behavior

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2001477A FR3107262B1 (en) 2020-02-14 2020-02-14 ENHANCED BUBBLE SOFT DRINK CONTAINER
FR2001477 2020-02-14

Publications (1)

Publication Number Publication Date
WO2021160976A1 true WO2021160976A1 (en) 2021-08-19

Family

ID=71094469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2021/050261 WO2021160976A1 (en) 2020-02-14 2021-02-12 Carbonated beverage container with improved bubbling behaviour

Country Status (5)

Country Link
US (1) US20230089369A1 (en)
EP (1) EP4103022A1 (en)
CN (1) CN115103616A (en)
FR (1) FR3107262B1 (en)
WO (1) WO2021160976A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2531891A1 (en) 1982-08-17 1984-02-24 Schott Zwiesel Glaswerke Small recesses made in vessels by laser beam
DE4015188A1 (en) * 1989-12-07 1991-06-13 Jinro Co Promoting bubble formation in carbonated drink - by porous area or insert at container floor and/or wall
EP0703743A1 (en) 1993-06-18 1996-04-03 Charles (Glassware) Ltd. Drinking vessel
US20070267422A1 (en) * 2006-05-17 2007-11-22 Claudio Barducci Glass for drinks
US20100104697A1 (en) * 2008-10-23 2010-04-29 The Coca-Cola Company Bottles with Controlled Bubble Release
US20140023767A1 (en) * 2012-06-18 2014-01-23 Michael J. Dikas Oxygenating drinking/mixing vessel
FR3008295A1 (en) 2013-07-10 2015-01-16 Arc Internat France CONTAINER WITH EFFERVESCENT ACTION
WO2018055613A1 (en) * 2016-09-20 2018-03-29 Novoglass Pte. Ltd. Beverage cup with nucleation sites
FR3065360A1 (en) 2017-04-21 2018-10-26 Arc France CONTAINER WITH EFFERVESCENT ACTION
FR3081304A1 (en) 2018-05-24 2019-11-29 Arc France EFFERVESCENT ACTION CONTAINER

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2353265B (en) * 2000-05-18 2001-07-11 Scottish & Newcastle Plc Beverage frothing
US20120100266A1 (en) * 2010-10-20 2012-04-26 Pepsico., Inc. Control of bubble size in a carbonated liquid
JP2013220270A (en) * 2012-04-18 2013-10-28 Kirin Beer Marketing Co Ltd Container for sparkling drink

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2531891A1 (en) 1982-08-17 1984-02-24 Schott Zwiesel Glaswerke Small recesses made in vessels by laser beam
DE4015188A1 (en) * 1989-12-07 1991-06-13 Jinro Co Promoting bubble formation in carbonated drink - by porous area or insert at container floor and/or wall
EP0703743A1 (en) 1993-06-18 1996-04-03 Charles (Glassware) Ltd. Drinking vessel
US20070267422A1 (en) * 2006-05-17 2007-11-22 Claudio Barducci Glass for drinks
US20100104697A1 (en) * 2008-10-23 2010-04-29 The Coca-Cola Company Bottles with Controlled Bubble Release
WO2010048488A1 (en) 2008-10-23 2010-04-29 The Coca-Cola Company Bottles with controlled bubble release
US20140023767A1 (en) * 2012-06-18 2014-01-23 Michael J. Dikas Oxygenating drinking/mixing vessel
FR3008295A1 (en) 2013-07-10 2015-01-16 Arc Internat France CONTAINER WITH EFFERVESCENT ACTION
WO2018055613A1 (en) * 2016-09-20 2018-03-29 Novoglass Pte. Ltd. Beverage cup with nucleation sites
FR3065360A1 (en) 2017-04-21 2018-10-26 Arc France CONTAINER WITH EFFERVESCENT ACTION
FR3081304A1 (en) 2018-05-24 2019-11-29 Arc France EFFERVESCENT ACTION CONTAINER

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
LIGER-BELAIR, G.: "How many bubbles in your glass of bubbly?", JOURNAL OF PHYSICAL CHEMISTRY B, vol. 118, 2014, pages 3156 - 3163, XP055432622, DOI: 10.1021/jp500295e
LIGER-BELAIR, G.: "La physique des bulles de champagne", ANNALES DE PHYSIQUE (PARIS, vol. 27, no. 4, 2002, pages 1 - 106, XP055432605, DOI: 10.1051/anphys:2002004
LIGER-BELAIR, G.: "The physics behind the fizz in champagne and sparkling wines", EUROPEAN PHYSICAL JOURNAL: SPECIAL TOPICS, vol. 201, 2012, pages 1 - 88, XP035024081, DOI: 10.1140/epjst/e2012-01528-0
LIGER-BELAIR, G.BOURGET, M.VILLAUME, S.JEANDET, P.PRON, H.POLIDORI, G.: "On the losses of dissolved C02 during champagne serving", JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, vol. 58, 2010, pages 8768 - 8775, XP055432628, DOI: 10.1021/jf101239w
LIGER-BELAIR, G.CONREUX, A.VILLAUME, S.CILINDRE, C.: "Monitoring the losses of dissolved carbon dioxide from laser-etched champagne glasses", FOOD RESEARCH INTERNATIONAL, vol. 54, 2013, pages 516 - 522, XP028750341, DOI: 10.1016/j.foodres.2013.07.048
LIGER-BELAIR, G.PARMENTIER, M.JEANDET, P.: "Modeling the kinetics of bubble nucleation in champagne and carbonated beverages", JOURNAL OF PHYSICAL CHEMISTRY B, vol. 110, 2006, pages 21145 - 21151, XP055432618, DOI: 10.1021/jp0640427
LIGER-BELAIR, G.VOISIN, C.JEANDET, P.: "Modeling non-classical heterogeneous bubble nucleation from cellulose fibers: Application to bubbling in carbonated beverages", JOURNAL OF PHYSICAL CHEMISTRY B, vol. 109, 2005, pages 14573 - 14580

Also Published As

Publication number Publication date
FR3107262B1 (en) 2022-01-21
US20230089369A1 (en) 2023-03-23
FR3107262A1 (en) 2021-08-20
CN115103616A (en) 2022-09-23
EP4103022A1 (en) 2022-12-21

Similar Documents

Publication Publication Date Title
EP2385776B1 (en) Tasting glass
Liger-Belair Effervescence in champagne and sparkling wines: From grape harvest to bubble rise
Liger-Belair The physics behind the fizz in champagne and sparkling wines
EP2643225B1 (en) Combined petaloid base of a container
EP1662945B1 (en) A method for eliminating excess carbon dioxide from alcoholic drinks
WO2021160976A1 (en) Carbonated beverage container with improved bubbling behaviour
Polidori et al. Bubbles and Flow Patterns in Champagne: Is the fizz just for show, or does it add to the taste of sparkling wines?
FR2788210A1 (en) SPECIAL TASTING GLASS FOR USE IN THE OLFACTORY EXAMINATION OF ALCOHOLIC BEVERAGES
US20090053374A1 (en) Beverage Container
GB2565872A (en) Container with effervescent action
WO2016173569A1 (en) The wooden longitudinal profile chain piece and the way of its adjustment
EP3801142B1 (en) Container with effervescent action
WO2005094639A1 (en) Tasting glass
EP3866648A1 (en) Container with effervescent action
Liger-Belair The science of bubbly
FR2684534A1 (en) Glass for tasting wine and the like
RU2799723C2 (en) Hiss-stimulating container
GB2289477A (en) Alcoholic beverage with high nitrogen content and method of dispensing it
JP7352404B2 (en) Beer-taste beverage non-foaming intermediate liquid frozen product and method for producing the same
RU2252682C1 (en) Method for producing of beverage and beverage produced by method
FR3020257A1 (en) GLASS ON FOOT WITH LEG DESAXEE
WO1999044481A1 (en) Tasting and drinking glass
US136914A (en) Improvement in putting up and preserving cider
Henick-Kling Introduction to the 34th Annual New York Wine Industry Workshop 2005
JPH119256A (en) Production of creamy foam in effervescent beverage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21708728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021708728

Country of ref document: EP

Effective date: 20220914